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In this talk we discuss the use of domain decomposition parallel iterative solvers for
highly heterogeneous problems of flow in porous media, in both the deterministic
and (Monte-Carlo simulated) stochastic cases. We are particularly interested in
the case of highly unstructured coefficient variation where standard periodic or
stochastic homogenisation theory is not applicable, and where there is no a priori
scale separation. We will restrict attention to the important model elliptic problem

(1) −∇ · (K∇u) = f ,

in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2, 3, with suitable
boundary data on the boundary ∂Ω. The d× d coefficient tensor K(x) is assumed
symmetric positive definite, but may vary over many orders of magnitude in an
unstructured way on Ω. Many examples arise in groundwater flow and oil reser-
voir modelling, e.g. in the context of the SPE10 benchmark or in Monte Carlo
simulations of stochastic models for strong heteoregeneities [3] (see Figure 1).

Figure 1. Typical coefficients: Society of Petroleum Engineer
benchmark SPE10 (left); lognormal random field (right).

Let T h be a conforming shape-regular simplicial mesh on Ω and let Sh(Ω)
denote the space of continuous piecewise linear finite elements on T h. The finite
element discretisation of (1) in Vh (the N -dimensional subspace of functions in
Sh(Ω) which vanish on essential boundaries), yields the linear system:

(2) Au = f .

It is well-known that the size of this system grows like O(h−d), as T h is refined,
and that the condition number κ(A) of A worsens like O(h−2). Moreover the
conditioning of A also depends on the heterogeneity (characterised by the range
and the variability of K) and the anisotropy (characterised by the maximum ratio
of the largest to the smallest eigenvalue of K(x) at any point x ∈ Ω). It is of
interest to find solvers for (2) which are robust to changes in the mesh width h as
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well as to heterogeneity and anisotropy in K. For the remainder we assume that
K is only “mildly” anisotropic, i.e. that the ratio of the largest to the smallest
eigenvalue of K(x) is uniformly bounded from above by a benign constant of O(1),
and concentrate on spatial heterogeneity in the coefficient tensor K.

When the smallest scale ε, at which the coefficient tensor K(x) varies, is very
small it may not be feasible to solve (1) on a mesh of size h = O(ε) with standard
solvers, and it may be necessary to scale up the equation to a coarser computational
grid of size H � ε. A large number of computational methods have been suggested
over the years in the engineering literature on how to derive such an upscaled
equation numerically (see e.g. the review [16]). More recently this area has also
started to attract the attention of numerical analysts, who have started to try to
analyse the approximation properties of such upscaling or multiscale techniques
theoretically. Among the methods that have been suggested and analysed are the
Variational Multiscale Method [9], the Multiscale Finite Element Method [8], the
Multiscale Finite Volume Method [10]. However, the existing theory is restricted
to periodic fine scale variation or to ergodic random variation. No theory is yet
available that gives a comprehensive analysis of the dependency of the accuracy
of the upscaled solution on the coefficient variation in the general case.

Moreover, if the coefficient varies arbitrarily throughout Ω and there is no scale
separation into a fine O(ε) scale variation and a coarse O(H) scale variation, then
all these methods require the solution of local ”cell” problems, of size O((H/ε)d),
in each cell or element of the coarse mesh, i.e. O(H−d) problems. Thus, even if we
assume that the local problems can be solved with optimal (linear) complexity, the
total computational cost of the method is O(ε−d). In practice the complexity may
actually be worse. A huge advantage is of course the fact that the cell problems are
all completely independent from each other. This means that they can be solved
very efficiently on a modern multiprocessor machine. This makes this method so
attractive to scale up a physical problem, especially if the upscaled matrix can be
used for several right hand sides, within a two-phase flow simulation, or for several
time steps in a time-dependent simulation.

A viable and attractive alternative is the use of parallel multilevel iterative
solvers, such as multigrid or domain decomposition, for the original fine scale
problem (2) on the “subgrid” T h where h = O(ε). These are known to lead
to a similar overall computational complexity O(ε−d) and, especially in the case
of domain decomposition, are designed to scale optimally on modern multipro-
cessor machines. That is, at (asymptotically) the same cost as using any of the
above upscaling procedures, we can obtain the fine-scale solution with guaran-
teed and quantifiable approximation properties. However, previously no theory
was available that guarantees the robustness of these multilevel iterative solvers to
heterogeneities in the coefficient, and indeed most of these methods are not robust
in their unmodified form. The most successful, completely robust method for (2)
is algebraic multigrid (AMG), originally introduced in [2, 17]. Many different ver-
sions of AMG have emerged since, but unfortunately no theory exists that proves
the (observed) robustness of any of these methods to arbitrary spatial variation
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of K(x). The robustness of geometric multigrid for “layered media” in which dis-
continuities in K are simple interfaces that can be resolved by the coarsest mesh
has recently been proved in [21]. Some ideas towards a theory for more general
coefficients can be found in [1]. The related BoxMG by Dendy has recently also
been used in the context of numerical upscaling in [13, 11, 12].

The situation is different for domain decomposition methods. There are many
papers (with rigorous theory) which solve (2) for “layered media” in which discon-
tinuities in K are simple interfaces that can be resolved by the subdomain parti-
tioning and the coarse mesh (see e.g. [19] and the references therein). However,
until recently there was no rigorously justified method for general heterogeneous
media. In a series of papers [5, 6, 7, 14, 15, 18, 20] we have started to develop
new theoretical tools to analyse domain decomposition methods for (2) (which
have inherent robustness with respect to h). This analysis indicates explicitly how
subdomains and coarse solves should be designed in order to achieve robustness
also with respect to heterogeneities. It does not require periodicity and does not
appeal to homogenisation theory. Although the analysis in [14, 15] on nonover-
lapping FETI-type methods [4] is also of large current interest, in the talk we will
focus on the theory for two-level overlapping Schwarz methods in [5, 6, 7, 18, 20],
since it gives a clearer picture of the synergies between domain decomposition and
numerical upscaling. In particular, we will highlight the important concept of a
certain energy minimising property of the coarse space which has yet got to be
fully understood in the context of numerical upscaling.

To give a brief indication of the kind of results presented in [5, 6, 7, 18, 20] let
us assume that we have a finite overlapping covering of Ω by (open) subdomains
{Ωi : i = 1, . . . , s}. Let us assume that the diameter of a typical subdomain Ωi is
of size O(H) and that the minimum overlap of Ωi with the neighbouring domains
is of size O(δ).
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