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Abstract

In this paper we consider the problem of computing the spectrum of a Schrödinger op-
erator with discontinuous, periodic potential in two dimensions using Fourier (or planewave
expansion) methods. Problems of this kind are currently of great interest in the design of
new optical devices to determine band gaps and to compute localised modes in photonic
crystal materials. Although Fourier methods may not be every applied mathematician’s first
choice for this problem because of the discontinuities in the potential, we will show here
that, even though (as expected) the convergence is not exponential, the method has sev-
eral desirable features that make it competitive with other discretisation techniques, such
as finite element methods, both with respect to implementation and convergence properties.
In particular, we will prove that simple preconditioners for the system matrix are optimal
leading to a computational complexity of O(N logN) in the number of planewaves N (using
the Fast Fourier Transform). Moreover, we derive sharp error estimates that show that the
method is essentially third order in the eigenvalues and of order 3

2
in the eigenfunctions in

the H1-norm and 5

2
in the L2-norm. To improve the planewave expansion method in the

case of discontinuous potentials, it has been proposed in the physics literature to replace
the discontinuous potential with an effective potential that is smooth, despite the additional
error this incurs. We will here answer the question whether this smoothing is worth it. In
fact, our convergence analysis of the modified method provides an optimal choice for the
smoothing parameter, but it also shows that the overall rate of convergence is no faster
than before and so smoothing does not seem to be worth it. All the theoretical results are
confirmed in our numerical experiments.

Key words. spectral approximation, PDE eigenproblems, Fourier methods, error analysis,
optimal preconditioners, discontinuous coefficients, smoothing.
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1 Introduction

Photonic crystal materials, i.e. periodic optical nanostructures which consist in the simplest
case of a periodic arrangement of glass and air, are currently of great interest for their prop-
erties in guiding, bending or slowing down light [7, 9]. The design of these materials relies on
mathematical modelling of light propagation, and in particular on being able to find gaps and
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localised modes in the spectrum of the underlying differential operators. In general this will be
the Maxwell operator, but under some simplifying assumptions, e.g. in the case of optical fibres
made of photonic crystal materials, this can be simplified to the Schrödinger operator

L := −∇2 + V (x) (1)

on the Hilbert space L2(R2) (cf. [2, 16]). The potential V (x) is related to the spatial distribution
of the refractive index of the material and will therefore in general be discontinuous, piecewise
constant.

It is well known (cf. [6, 10]) that periodic potentials V (x) = Vp(x) lead in general to a band
structure in the essential spectrum of L, and that compact perturbations of these periodic nanos-
tructures allow for localised modes (or L2-eigenvalues). In this paper we consider the problem
of numerically computing the spectrum of L in the case of discontinuous, periodic potentials
V (x) = Vp(x) using Fourier (or planewave expansion) methods. To be able to apply these meth-
ods also in the context of periodic potentials with a compact perturbation V (x) = Vp(x)+Vc(x),
e.g. to derive localised modes, we resort to the so-called supercell method. We replace V (x) with
a periodic potential V super

p (x) with sufficiently large period cell (the supercell). Since the essential
spectrum is not affected by the compact perturbation (cf. [6]), it can be computed by discarding
Vc(x) and using V (x) = Vp(x) in (1). Localised modes, on the other hand, can be computed
with V (x) = V super

p (x), and due to the exponential decay of the localised eigenmodes (cf. [10])
the convergence of this supercell method is exponential in the diameter of the supercell, i.e. any
localised mode of the compactly perturbed periodic operator is approximated by a thin band
of essential spectrum whose width decreases exponentially with the diameter of the supercell.
This follows directly from the convergence analysis for a slightly different problem in [20] (al-
though this seems to be unpublished for the operator L considered here). Henceforth we will
only consider periodic potentials V (x), but we note that the local variation within the period
cell may be complicated. By applying the so-called Floquet-Bloch transform we can reduce the
calculation of the spectrum of L to a family of variational eigenproblems on the period cell of
V (x), which we then discretise using Fourier methods. The arising matrix eigenproblems are
solved by Krylov subspace iteration.

The motivation for studying Fourier methods for (1) stems from the fact that they are well
suited for periodic problems and very popular in nonlinear optics and solid state physics, as they
are very simple to implement and can be extremely fast and accurate. However, when applied to
problems with piecewise smooth or discontinuous coefficients much of this efficiency and accuracy
is lost (see [3, 21] for some numerical studies). Probably due to this fact, there is comparatively
little material in the mathematical literature on this problem. The only theoretical paper that
we could find is [15], but this is restricted to 1D and considers a slightly different spectral
problem with discontinuous coefficients.

Our basic analysis will rely on abstract theory for Galerkin methods applied to variational
eigenvalue problems, as presented in [1], and on Fourier approximation results that can to a
large extent be found in [19]. The key regularity results are derived from the theory in [12, 13].
We show that certain classes of piecewise smooth periodic functions V (x) are in the Sobolev
spaces H1/2−ε for all ε > 0, which in a straightforward way leads to a convergence of the
eigenfunctions of order 3

2 − ε in the H1-norm. The eigenvalues converge (as expected) at twice
this rate. By carefully studying the decay of the Fourier coefficients of V (x), we are able to get
rid of ε and show that the eigenfunctions actually converge with order 3

2 , which is confirmed in
our numerical experiments. Using a standard duality argument we can then also deduce that
the eigenfunctions converge with order 5

2 in the L2-norm.
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To improve the planewave expansion method in the case of discontinuous potentials, it has
been proposed in the physics literature [8, 14, 17, 18] to replace the discontinuous potential with
an effective potential that is smooth. However, this leads to an additional error, and so the
question arises whether smoothing is really worth it. Using Strang’s lemma and the abstract
error analysis in [1] in a non-standard way we show that in fact the overall rate of convergence is
indeed no faster than for the standard method and we give an optimal choice for the smoothing
parameter.

Even though exponential convergence of the method is as expected not achieved, the method
has several desirable features that make it competitive with other discretisation techniques,
such as finite element (FE) methods. Firstly, without specially adapted meshes, FEs lead to
the same order of convergence with respect to the number of degrees of freedom (if at least
quadratic elements are used). For better convergence rates it is necessary to use adaptive
FEs. Secondly, the computational complexity of both methods hinges on robust preconditioners
that guarantee that the convergence of the iterative eigensolver is independent of the number
of degrees of freedom. In the case of FEs it is necessary to use multilevel methods such as
multigrid to achieve this, whereas we will show here (rigorously) that for Fourier methods a
simple diagonal preconditioner is sufficient, and so we can guarantee a total computational cost
of order O(N logN) in the number N of Fourier modes for our method (dominated by the
application of the Fast Fourier Transform in each iteration).

The paper is organised as follows. We start in §2 by defining the problem and describing the
method. In §3 we analyse the regularity of piecewise smooth, periodic functions, which will be
crucial for our convergence analysis in §4. In §5 we give details on the numerical implementation
and analyse optimal preconditioners, followed by some numerical results in §6. Section 7 is
devoted to the issue of smoothing, and we finish the paper in §8 with some numerical results
that confirm that smoothing is not worth it.

2 Problem Definition and Planewave Expansion

Let us consider the differential operator

L := −∇2 + V (x) +K, (2)

on the Hilbert space L2(R2) with domain D(L) = H2(R2), where V ∈ L∞(R2) is periodic on the
Bravais lattice Z

2 and K ≥ ‖V ‖L∞(R2) +2π2 + 1
2 is a constant (which ensures that the spectrum

of L is positive). We are interested in computing the spectrum σ(L) of L in the case when V (x)
may be discontinuous and is only piecewise smooth. We choose the period cell for the lattice
Z

2 to be Ω := (−1
2 ,

1
2)2 and set L2

p := {f ∈ L2
loc(R

2) : f is periodic on Z
2} with the usual L2(Ω)

inner product. The extension to more general lattices is straight forward.
The operator L is positive definite and self-adjoint, and so the spectrum of L is a subset of the

positive real axis. Moreover, it is well-known that the spectrum of L is absolutely continuous
(see [10] and references therein) which implies that the spectrum consists of purely essential
spectrum. Since the coefficients of L are periodic we can apply the Floquet–Bloch transform to
this problem (see e.g. [10, 20] for details). To do this we need to first introduce periodic Sobolev
spaces on R

2.
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2.1 Periodic Sobolev Spaces

Let D(R2) := C∞
0 (R2) be the usual space of test functions and let D′(R2) be the set of dis-

tributions, i.e. the set of sequentially continuous linear functionals on D(R2). A distribution
u ∈ D′(R2) is periodic, if

〈u, τnφ〉 = 〈u, φ〉, for all φ ∈ D(R2) and n ∈ Z
2,

where τnφ(x) := φ(x + n) for all x ∈ R
2. The set of all periodic distributions is denoted by

D′
p(R

2).
To define Fourier expansions of periodic distributions it is useful to introduce a function

θ : R
2 → R such that

θ ∈ D(R2), 0 ≤ θ ≤ 1, and
∑

n∈Z2
τnθ = 1. (3)

See [16] for a simple example of a function θ that satisfies (3). Then, for any u ∈ D′
p(R

2) and
n ∈ Z

2 the Fourier coefficient of u with index n is defined by

[u]n := 〈u, ψn〉 , where ψn(x) := θ(x)e−i2πn·x . (4)

Since θ is not uniquely defined by (3), it might appear that [u]n depends on the choice of θ.
However, it can easily be shown that this is not the case (cf. [16, 19]).

It follows from (4) and from convergence in D′
p(R

2) that every periodic distribution u ∈
D′

p(R
2) can be identified with its Fourier expansion such that

u(x) =
∑

n∈Z2
[u]nei2πn·x, for all x ∈ R

2 , (5)

where equality has to be understood in the distributional sense. A proof of this result in 1D can
be found in [19], while the obvious extension to R

d, d ∈ N, is given in [16].
We can now define periodic Sobolev spaces and their corresponding norms. For s ∈ R we

define

Hs
p := {u ∈ D′

p(R
2) : ‖u‖Hs

p
<∞} , where

‖u‖2
Hs

p
:=

∑
n∈Z2

|n|2s
⋆ |[u]n|2 and |n|⋆ :=

{
1, if n = 0,

|n|, if n 6= 0.

The space Hs
p is complete with respect to this norm and it is a Hilbert space with inner product

(u, v)Hs
p

:=
∑

n∈Z2
|n|2s

⋆ [u]n[v]n , for u, v ∈ Hs
p.

Note that (using (5)) we can identify H0
p with L2

p and the corresponding inner products are
equal. The following Theorem contains some important results about periodic Sobolev spaces
which we will require later.

Theorem 1. Let s, t ∈ R.

1. If s < t, then Ht
p ⊂⊂ Hs

p .

2. If s ≤ t, u ∈ Hs
p and τ ∈ [0, 1], then

‖u‖
H

τs+(1−τ)t
p

≤ ‖u‖τ
Hs

p
‖u‖1−τ

Ht
p
.
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3. If s > 1, then u ∈ Hs
p is continuous and

‖u‖L∞ ≤ C(s)‖u‖Hs
p
, where C(s) =

(∑
n∈Z2

|n|−2s
⋆

) 1
2

.

4. If t > 1, a ∈ H
max(|s|,t)
p and u ∈ Hs

p, then

‖au‖Hs
p

≤ C(s)‖a‖
H

|s|
p
‖u‖Hs

p
, if |s| > 1,

‖au‖Hs
p

≤ C(t)‖a‖Ht
p
‖u‖Hs

p
, if |s| ≤ 1,

where C(s) and C(t) are constants independent of a and u.

5. If s > 0, then with θ satisfying (3),

‖u‖Hs
p
≃ ‖u‖Hs(Ω) ≃ ‖θu‖Hs(R2) ,

where ‖ · ‖Hs(Ω) and ‖ · ‖Hs(R2) are defined in the usual way (see for example [13]).

Parts 1–4 are standard results for Sobolev spaces adapted to the periodic case. Part 5 shows
that periodic Sobolev space norms are equivalent to the usual Sobolev space norms. Detailed
proofs for all these results can be found in [16] but they are all heavily based on standard results
on Sobolev spaces in [5, 12, 13, 19].

2.2 The Floquet–Bloch Transform

Since we assumed the coefficients of L to be periodic, we can apply the Floquet–Bloch transform
to this problem to obtain a family of operators, parametrised by ξ ∈ B = [−π, π]2, on the
bounded domain Ω = (−1

2 ,
1
2)2 with periodic boundary conditions. See [10, 20] and references

therein for details. For each ξ ∈ B, we consider

Lξ := −(∇ + iξ)2 + V (x) +K

on the Hilbert space L2
p with domain D(Lξ) := H2

p . Note that Lξ is self-adjoint and compact,
and hence the spectrum of Lξ is real and discrete. Moreover, λ(ξ) ∈ σ(Lξ) considered as a
function of ξ, is continuous on B. It is often referred to as a band in the essential spectrum of
L. The key result from Floquet–Bloch theory which we use to find the spectrum σ(L) of our
original operator L is that

σ(L) =
⋃

ξ∈B
σ(Lξ). (6)

In the physics literature the set B is usually referred to as the 1st Brillouin Zone and ξ as the
quasi-momentum.

It follows from (6) that the spectrum of the operator L, which is defined on all of R
2, can be

computed by solving a family of eigenproblems on the bounded domain Ω, which is numerically
more practical. This is what commonly is done in practice. Hence, for the remainder of this
paper we restrict our attention to the problem of approximating the spectrum of Lξ for a fixed
ξ ∈ B.

Since the spectrum of Lξ is discrete we need to only consider the eigenproblem

Lξu = λu , for x ∈ Ω, (7)
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subject to periodic boundary conditions, or its weak form: Find λ ∈ R and 0 6= u ∈ H1
p such

that
a(u, v) = λ b(u, v) , for all v ∈ H1

p , (8)

where

a(u, v) :=

∫

Ω
(∇ + iξ)u · (∇ + iξ)v + V (x)uv +Kuv dx ,

b(u, v) :=

∫

Ω
uv dx .

It is a simple calculation to show that a(·, ·) is bounded, coercive and Hermitian on H1
p . Also

note that b(·, ·) is equal to the usual inner-product of L2
p.

2.3 The Planewave Expansion Method

The planewave expansion method is a numerical method for solving (7) by expanding u in terms
of a finite number of planewaves. In this paper we will represent it as a Galerkin method applied
to (8). To do this we first need to define finite dimensional subspaces of H1

p , formed by taking
the span of a finite number of planewaves (or Fourier basis functions). For G ∈ N, let

Z
2
G :=

{
n ∈ Z

2 : |n| ≤ G
}
,

and define the following trigonometric function space

SG := span{ei2πn·x : n ∈ Z
2
G} .

The dimension of SG is O(G2). The set {ei2πn·x : n ∈ Z
2
G} is an orthogonal basis for SG (with

respect to the L2
p inner product) and we call it a Fourier basis. Each member of the Fourier

basis is called a Fourier basis function or planewave.
Applying the Galerkin method to (8) and restricting to SG for some G ∈ N results in the

planewave expansion method: Find λG ∈ R and 0 6= uG ∈ SG such that

a(uG, vG) = λG b(uG, vG) , for all vG ∈ SG. (9)

This problem (since it is finite dimensional) can be rewritten as a matrix eigenvalue problem.
Expanding uG in terms of the Fourier basis for SG yields

uG(x) =
∑

n∈Z
2
G

cnei2πn·x , (10)

where the coefficients cn are the Fourier coefficients of uG, i.e cn = [uG]n. Therefore, (9) is
equivalent to the following N := dim(SG) simultaneous equations:

∑

n∈Z
2
G

cna(e
i2πn·x, ei2πm·x) = λG

∑

n∈Z
2
G

cnb(e
i2πn·x, ei2πm·x) , for all m ∈ Z

2
G. (11)

Let us define a vector u of length N that has entries un = cn with index n ∈ Z
2
G. In practice,

we order the entries of u in ascending order of magnitude of n. Now define a N ×N matrix A
with entries Amn = a(ei2πn·x, ei2πm·x), for m,n ∈ Z

2
G. Then

Amn =

∫

Ω
(∇ + iξ) ei2πm·x · (∇ + iξ) ei2πn·x + (V (x) +K)ei2πm·xei2πn·xdx

= ((ξ + 2πm) · (ξ + 2πn) +K)

∫

Ω
ei2π(m−n)·xdx+

∫

Ω
V (x)ei2π(m−n)·xdx (12)

= (|ξ + 2πn|2 +K)δn,n + [V ]n−m .
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If we use this together with the fact that

b(ei2πn·x, ei2πm·x) = δn,m , for all m,n ∈ Z
2
G ,

we can write (11) as the matrix eigenvalue problem

Au = λGu. (13)

From (12) we can see that A = D + W where D is a diagonal matrix with entries Dnn =
|ξ + 2πn|2 +K and W is a dense matrix (in general) with entries Wmn = [V ]n−m. This special
form of the matrix A is due to the choice of basis functions for SG and the fact that they are
eigenfunctions of the Laplacian, which are orthogonal with respect to the L2

p inner product.
The fact that a(·, ·) is Hermitian and coercive directly implies that A is Hermitian and positive
definite.

To analyse the convergence of the planewave expansion method we need to restrict to a
certain class of piecewise smooth periodic potentials V (x) in (2).

3 Two Regularity Classes for Piecewise Smooth Periodic Func-

tions

We define two special classes of functions that we will refer to throughout the paper. We will
then study certain examples of piecewise smooth periodic functions and check whether they fall
into either of these regularity classes.

Definition 2. For f ∈ D′
p(R

2) and n ∈ N define

Fn(f) :=

( ∑

|g1|+|g2|=n

|[f ]g|2
)1

2

.

The two classes of periodic functions are

Xp := {f ∈ H1/2−ε
p for any ε > 0} ∩ L∞(R2) and

Yp := {f ∈ D′
p(R

2) : Fn(f) . n−1 for all n ∈ N} ∩ L∞(R2).

By the definition of ‖ · ‖Hs
p

it is clear that Yp ⊂ Xp. The converse is not true in general and
Xp 6= Yp. In practical terms we may ask what kind of functions are in Xp and Yp. To do this
let us consider the following piecewise smooth periodic functions.

Definition 3. Let J ∈ N and let {Ωj , j = 1, . . . , J} be a set of disjoint Lipschitz domains such
that Ωj ⊂⊂ Ω. (See [13] for a definition of a Lipschitz domain.) Consider a function V that
can be expressed as the sum of J periodic functions Vj :

V = V0 +
J∑

j=1

Vj (14)

such that supp(Vj) ∩ Ω ⊂ Ωj, V0 ∈ C∞(R2) and Vj|Ωj ∈ C∞(Ωj).

Proposition 4. Let V be defined as in Definition 3. Then V ∈ Xp.
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Proof. It is obvious that V ∈ L∞(R2). To see that V ∈ H
1/2−ε
p for any ε > 0 let us sketch the

proof of [16, Theorem 3.40].
Let s < 1

2 . Using (14) it suffices to show that Vj ∈ Hs
p for each j. It follows from the

definition of a Lipschitz domain that there exists a finite open covering {Wk}K
k=1 of ∂Ωj such

that each function f with suppf ⊂ Wk ∩ Ωj and f |Ωj ∈ C∞(Ωj) can be transformed through a
uniformly Lipschitz continuous bijective mapping κ such that

f ◦ κ(x) =

{
ψ(x), for x2 ≤ 0,

0, for x2 > 0,

for some ψ ∈ C∞
0 (R2). Note that κ(Wk ∩ ∂Ωj) ⊂ {x2 = 0}. Also, let WK+1 cover the remainder

of Ωj, i.e. WK+1 ⊇ Ωj\
⋃K

k=1Wk and define a partition of unity {φk}K+1
k=1 of Ωj such that

φk ∈ C∞(R2), suppφk ⊂Wk and
∑
φk = 1 on Ωj. Finally, define θ(x) according to (3) with the

additional restriction that θ(x) = 1 for x ∈ Ωj (which is possible since Ωj ⊂⊂ Ω). Then, using
Part 5 of Theorem 1 and the triangle inequality we can write

‖Vj‖Hs
p

. ‖θVj‖Hs(R2) ≤
K+1∑

k=1

‖φkθVj‖Hs(R2) .

Let f = φkθVj and let κ and ψ be defined as above. Then it follows from [13, Exercise 3.22 and
Theorem 3.23] that f ∈ Hs(R2). (See [16, Appendix A2] for a proof of [13, Exercise 3.22]).

Conjecture 5. Let V be defined as in Definition 3. Then V ∈ Yp.

Unfortunately, we have so far not been able to prove this conjecture for the case of arbitrary
Lipschitz domains Ωj. However, we have managed to prove it for example in the following two
special cases.

Proposition 6. Let V be defined as in Definition 3. In addition, assume that each Ωj is a
convex Lipschitz polygon with finitely many corners. Then V ∈ Yp ⊂ Xp.

Proof. Again, it is obvious that V ∈ L∞(R2). To see that Fn . n−1 for all n ∈ N, we proceed
as in the proof of Proposition 4 by defining a finite open cover of each Ωj, {Wjk}K+1

k=1 so that
each Wjk with k ≤ K covers either a corner or a straight edge of ∂Ω and Wj(K+1) ∩ ∂Ωj = ∅.
Moreover, we restrict our choice of Wjk so that Wjk ⊂ Ω (possible since Ωj ⊂⊂ Ω). Define a
partition of unity {φjk}K+1

k=1 for Ωj such that φjk ∈ C∞(R2) and suppφjk ⊂ Wjk ⊂ Ω for each

k = 1, . . . ,K + 1 and
∑

k φjk = 1 on Ωj. Define φ̃jk as the periodic extension of φjk|Ω to R
2\Ω.

¿From the definition of Fn(V ), using (14) and the triangle inequality, we get

Fn(V )2 ≤ (J + 1)2(K + 1)2
( ∑

|g1|+|g2|=n

|[V0]g|2

︸ ︷︷ ︸
=:I0(n)

+

J∑

j=1

K+1∑

k=1

∑

|g1|+|g2|=n

|[φ̃jkVj ]g|2

︸ ︷︷ ︸
=:Ijk(n)

)
.

Given r ∈ N, since V0 is in C∞(R2), we can use integration by parts to show that |[V0]g| .

|g|−r for all 0 6= g ∈ Z
2, and hence I0(n) . n−2, for all n ∈ N.

It remains to bound Ijk(n). Let us fix j and k and consider each |[φ̃jkVj ]g| separately. If
k = K + 1, then φ̃j(K+1)Vj ∈ C∞(R2) and we can again use integration by parts to show that
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Ij(K+1)(n) . n−2 for all n ∈ N. Thus, we can assume that k ≤ K. There are two possibilities:
either Wjk covers a corner of ∂Ωj or Wjk covers a straight edge of ∂Ωj .

If Wjk covers a straight edge of ∂Ω, then we can define a map κ := S ◦ T where S is a
rotation and T is a translation so that

φjkVj ◦ κ|Ω(x) =

{
f(x), for x2 ≤ 0,

0, for x2 > 0,

for some f ∈ C∞
0 (R2). For 0 6= g ∈ Z

2 and h := S−1g, if h1 6= 0 and h2 6= 0, then

|[φ̃jkVj ]g| =

∣∣∣∣
∫

Ω
(φjkVj)(x)e−i2πg·xdx

∣∣∣∣ =

∣∣∣∣
∫

y2<0
f(y)e−i2πh·ydy

∣∣∣∣

= 1
4π2|h1||h2|

∣∣∣∣
∫

y2=0

∂g
∂y1

e−i2πh·ydy +

∫

y2<0

∂2g
∂y2∂y1

e−i2πh·ydy

∣∣∣∣ . |h1|−1|h2|−1.

If h1 = 0 or h2 = 0 (i.e. when g is parallel or perpendicular to ∂Ωj) then we can not carry out
both integrations by parts and so

|[φ̃jkVj ]g| . |h1|−1
⋆ |h2|−1

⋆ ∀g ∈ Z
2, h = S−1(g) . (15)

Alternatively, if Wjk covers a corner of ∂Ωj , then we can define a map κ := S ◦ T (where S
is a rotation and T is a translation) so that

φjkVj ◦ κ|Ω(x) =

{
f(x), x ∈ Ωs ,

0, x ∈ R
2\Ωs ,

for c ∈ R, Ωs = {x ∈ R
2 : x1 ≥ 0 and x2 ≤ cx1} and some f ∈ C∞

0 (R2) . Using integration by
parts as in (15), for 0 6= g ∈ Z

2 and h := S−1g, we get

|[φ̃jkVj]g| =

∣∣∣∣
∫

Ωs

g(y)e−i2πh·ydy

∣∣∣∣ . |h2|−1
⋆ |h1 + ch2|−1

⋆ . (16)

Note that h2 = 0 and h1 + ch2 = 0 correspond to g ∈ Z
2 that are perpendicular to one of the

edges of Ωj at the corner covered by Wjk.
To bound Ijk(n) we only look at the case when Wjk covers a corner of ∂Ωj as the straight

edge case is a special case of the corner case with c = 0.
In order to simplify the following we define the following four sets of points:

An := {a ∈ Z
2 : |a1| + |a2| = n},

Bn := {b = ηa : a ∈ An and η = n√
2
|a|−1},

(17)
Cn := {c = S−1(b) : b ∈ Bn},
Dn := {d = ηc : c ∈ Cn and η is s.t. |d2| = d or |d1 + cd2| = d

√
1 + c2},

where d = n√
2
min(1 + (

√
1 + c2 ± c)2)−1/2. Note that the vectors in An lie on a rotated square

with sides of length
√

2n centred at the origin; the vectors in Bn lie on a circle with radius n√
2

centred at the origin; the vectors in Cn also lie on a circle with radius n√
2

centred at the origin;

and d has been calculated so that the points in Dn lie on the largest possible rhombus inside
a circle of radius n√

2
centred at the origin where the sides of the rhombus are perpendicular to
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either (0, 1) or (1, c). Also note that d is the closest distance that a point in Dn can be to the
origin. Define α to be the smallest interior angle of the rhombus. It is possible to define angle
preserving bijections between each of these sets. For example, each b ∈ Bn is a scaled vector
in An, each c ∈ Cn is a rotation of a vector in Bn, and each d ∈ Dn is a scaled vector in Dn.
Just as the distance between neighbouring points in An is 1√

2
we also can bound (from above

and below) the distance between neighbouring points in Dn. Let a denote the lower bound. We
are now in a position to bound Ijk(n). Using the definition of Ijk(n) together with (16), where
h = S−1g as before, and the fact that η ≤ 1 in the definition of Bn and Dn, we have

Ijk(n) .
∑

g∈An

1

|h1 + ch2|2⋆|h2|2⋆
≤
∑

h∈Dn

1

|h1 + ch2|2⋆|h2|2⋆

=
2

d2(1 + c2)

∑

h∈Dn:

|h1+ch2|=d
√

1+c2

1

|h2|2⋆
. n−2


4 +

4

a2| sinα|2
⌈n/2⌉∑

m=1

1

m2


 . n−2, (18)

where we have used symmetry in going from the first to the second line. Therefore Fn(V ) . n−1

and V ∈ Yp.

Proposition 7. Let V be a periodic extension of

V |Ω(x) =

{
a, |x| ≤ r < 1

2 ,

0, otherwise,

to R
2, where a and r are two constants, i.e. the special case of Definition 3 with J = 1,

Ω1 = Br(0) (ball with radius r), V0 ≡ 0 and V1|Ω1 ≡ a. Then V ∈ Yp ⊂ Xp.

Proof. In this case, we can explicitly derive the Fourier coefficients of V , i.e.

[V ]g =

{
aπr2 , g = 0,

ar
2π|g|J1(π|g|r), g 6= 0,

where J1 is the Bessel function of 1st order. Using the fact that there exists a constant b such
that J1(x) ≤ bx−1/2 for x ≥ 1 it follows that [V ]g . |g|−3/2 and so Fn(V ) . n−1. Hence V ∈ Yp.

4 Error Analysis for the Planewave Expansion Method

Throughout this section we will assume that the potential V (x) in (2) is in Xp. We will not
require the stronger type of regularity of Yp just yet.

4.1 Solution Operator and Regularity of Eigenfunctions

It is useful for the analysis to define the solution operator T : L2
p → H1

p corresponding to (8)
such that for every f ∈ L2

p, Tf ∈ H1
p is defined by

a(Tf, v) = b(f, v), for all v ∈ H1
p . (19)

Note that T is well-defined and bounded by the Riesz Representation Theorem (since a(·, ·) is
bounded, Hermitian and coercive). It is self-adjoint with respect to a(·, ·), and it follows from
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T : L2
p → H1

p bounded and H1
p ⊂⊂ L2

p that T : H1
p → H1

p is compact. ¿From the definition of

T it follows that (λ, u) is an eigenpair of (8) if and only if ( 1
λ , u) is an eigenpair of T. Using

well-known spectral theory results (see for example [13]) we conclude from the fact that T is
bounded, compact and self-adjoint, that (8) has real eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ր +∞

counted up to multiplicity with corresponding eigenfunctions

u1, u2, . . .

that can be chosen so that they are orthogonal to each other with respect to a(·, ·) and complete
in L2

p.
T is a smoothing operator and we have the following result.

Lemma 8. Let V ∈ Xp and u ∈ H1
p . Then

‖Tu‖
H

5/2−ε
p

. ‖u‖H1
p
, for any ε > 0. (20)

Proof. Let V ∈ Xp and u ∈ H1
p . From the definition of T we know that w = Tu is a weak

solution to an elliptic boundary value problem

L0w = f , on Ω,

with L0 := −(∇+ iξ)2 +K and f := u−VTu , subject to periodic boundary conditions. Notice
that L0 has constant coefficients, and hence

‖w‖Hs+2
p

. ‖f‖Hs
p
, for any s ≥ 0. (21)

This is an adapted version, for periodic boundary conditions, of a result in Lions and Magenes
[12]. See [16, Thm. 3.77] for a proof.

Now, since H0
p = L2

p and V ∈ Xp ⊂ L∞(R2), and since T : H1
p → H1

p is bounded, applying
(21) we have

‖Tu‖H2
p

= ‖w‖H2
p

. ‖u‖H0
p

+ ‖V ‖L∞‖Tu‖H0
p

. ‖u‖H1
p
. (22)

Now let 0 ≤ s < 1
2 . Since V ∈ Xp ⊂ Hs

p, we can use (21) and (22) together with Part 4 of
Theorem 1 to get ‖Tu‖Hs+2

p
. ‖u‖Hs

p
+ ‖V ‖Hs

p
‖Tu‖H2

p
. ‖u‖H1

p
.

The following corollary is a trivial consequence of Lemma 8.

Corollary 9. If u is an eigenfunction of (8) with V ∈ Xp, then

‖u‖
H

5/2−ε
p

. ‖u‖H1
p
, for any ε > 0. (23)

4.2 Application of Abstract Theory for the Galerkin Method

Similarly to T we can also define the solution operator TG : L2
p → SG corresponding to (9). For

G ∈ N and f ∈ L2
p define TG : L2

p → SG by

a(TGf, vG) = b(f, vG), for all vG ∈ SG. (24)
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TG is bounded and self-adjoint with respect to a(·, ·). Moreover, since TG = QGT with the
(bounded) projection QG defined by a(QGu − u, v) = 0, for all u ∈ H1

p and v ∈ SG, and since
T : H1

p → H1
p is compact, it follows that TG : H1

p → H1
p is also compact. Again, λG is an

eigenvalue of (9) if and only if λ−1
G is an eigenvalue of TG.

For s ∈ R and G ∈ N we define an orthogonal projection from Hs
p onto SG such that for all

u ∈ Hs
p

PGu(x) :=
∑

g∈Z2
G

[u]gei2πg·x for all x ∈ R
2. (25)

Lemma 10. For s, t ∈ R with s ≤ t, and G ∈ N, if u ∈ Ht
p then

‖u− PGu‖Hs
p
≤ Gs−t‖u‖Ht

p
. (26)

Proof. (Adapted from the 1D version in [19].) For s ≤ t ∈ R, u ∈ Ht
p and G ∈ N,

‖u− PGu‖2
Hs

p
=
∑

|n|>G

|n|2s|[u]n|2 ≤ G2s−2t
∑

|n|>G

||n|2t|[u]n|2 ≤ G2s−2t‖u‖2
Ht

p
.

Corollary 11. Let V ∈ Xp. For u ∈ H1
p and ε > 0,

inf
χ∈SG

‖Tu− χ‖H1
p

. G−3/2+ε‖u‖H1
p
. (27)

Moreover, if u is an eigenfunction of (8) and ε > 0, then

inf
χ∈SG

‖u− χ‖H1
p

. G−3/2+ε‖u‖H1
p
. (28)

Proof. Let ε > 0 and χ := PGTu. Then it follows from Lemmas 8 and 10 that

inf
χ∈SG

‖Tu− χ‖H1
p
≤ ‖Tu− PGTu‖H1

p
≤ G−3/2+ε‖Tu‖

H
5/2−ε
p

. G−3/2+ε‖u‖H1
p
.

Inequality (28) is proved analogously using Corollary 9 instead of Lemma 8.

To use the abstract theory for Galerkin approximations of variational eigenproblems (e.g. in
Babuška and Osborn [1]), we need to first prove the following lemma.

Lemma 12. Let V ∈ Xp. Then

‖T − TG‖H1
p

. G−3/2+ε, for any ε > 0.

Proof. The proof of this result uses Cea’s Lemma (see [4, Thm. 2.4.1]) and (27),

‖T − TG‖H1
p

= sup
u∈H1

p

‖Tu− TGu‖H1
p

‖u‖H1
p

. sup
u∈H1

p

inf
χ∈SG

‖Tu− χ‖H1
p

‖u‖H1
p

. G−3/2+ε .

We also need to define the gap between two subspaces of a Hilbert space H with norm ‖ · ‖H:

δH(X,Y ) := sup
x∈X,‖x‖H=1

dist(x, Y ) = sup
y∈Y,‖y‖H=1

dist(y,X) .

It can be shown (cf. [16, Appendix] for details) that δH(·, ·) obeys a triangle inequality.
We are now ready to state the main theorem for this section.
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Theorem 13. Let V ∈ Xp and let λ be an eigenvalue of (8) with multiplicity m and corre-
sponding eigenspace M . Then for G sufficiently large and ε > 0 arbitrarily small, there exist m
eigenvalues λ1, . . . , λm of (9) (counted according to their multiplicity) with λj = λj(G) and with
corresponding eigenspaces M1(λ1), . . . ,Mm(λm) ⊂ SG such that

δH1
p
(M,MG) . G−3/2+ε , where MG :=

m⊕

j=1

Mj(λj) , and

|λ− λj | . G−3+2ε , for j = 1, . . . ,m.

Proof. This result follows directly from [1, Theorems 7.1 & 7.3] applied to T and TG. The
details of this are given in [16].

This result shows that the planewave expansion method is essentially third order in the
eigenvalues and of order 3

2 − ε in the eigenfunctions. The numerical results in §6 confirm this.
They even suggest that the result might be true with ε = 0. To prove this stronger bound,
which we have claimed in the introduction, is more subtle and requires the stronger regularity
assumption V ∈ Yp. We will come back to this at the end of §7 (cf. Corollary 22).

A simple extension of this result using a standard duality argument shows that the gap,
measured in L2

p, is O(G−5/2+ε), and so eigenfunctions essentially converge with order 5
2 in L2

p.
Again we will come back to this at the end of §7.

5 Implementation and Optimal Preconditioning

In this section we consider how to efficiently solve the matrix eigenvalue problem (13). For the
theoretical results in this section we will require that V has the stronger regularity of Yp .

In practice only the smallest eigenvalues of A are good approximations of eigenvalues of (8).
However, in the applications we have in mind in photonic crystals they are the only physically
relevant eigenvalues. For this reason we use a Krylov subspace iteration method to calculate
only a few of the smallest eigenvalues of A. Moreover, experience tells us that typically, the
largest eigenvalues of A−1 are more favourably spaced than the smallest eigenvalues of A. Hence,
we use the Implicitly Restarted Arnoldi (IRA) method implemented in the ARPACK software
package [11] applied to A−1 instead of A.

At each iteration of the IRA method we require the action of A−1 on a vector, or equivalently,
we must solve a linear system. Since A is Hermitian and positive definite we can use the
preconditioned conjugate gradient (PCG) method. This method has an advantage over direct
solvers for A, because matrix-vector multiplications with A can be computed in O(N logN)
operations (where N is the dimension of A), while a factorisation of A would require O(N3)
operations. However, more importantly it turns out that we also have optimal preconditioners
for A that guarantee that the number of PCG iterations is independent of N .

To compute the product Av, for v ∈ R
N , efficiently we recall that A = D +W where D is

diagonal and the entries of W are Fourier coefficients of V (x). Since D is diagonal, it is obvious
that Dv can be computed in O(N). To compute Wv we notice that the entries of Wv are
discrete convolutions of the Fourier coefficients of P2GV with the entries of v and can thus be
computed in O(N logN) operations using the Fast Fourier Transform. Further details on how
Av is computed can be found in [16].

As a preconditioner for A in the PCG method we first consider simply the diagonal of A,
i.e. Pd := diag(A). Provided that V ∈ Yp and K is sufficiently large, we can prove that this is
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an optimal preconditioner for (13) in the sense that the condition number of P−1
d A is bounded

independently of N . Recall that for every symmetric positive definite matrix T the condition
number κ(T ) := λmax(T )/λmin(T ).

Theorem 14. Let V ∈ Yp and let γ be a constant such that Fn(V ) ≤ γn−1 for all n ∈ N. For
any C > 1 (arbitrary), if K ≥ C+1

C−1211/4γ
√
G+ |[V ]0|, then

κ(P−1
d A) ≤ C.

Proof. The proof of this result relies on Gershgorin’s Circle Theorem, i.e. for any matrix T we
have

σ(T ) ⊂
⋃N

i=1
B(Tii, ri) ,

where B(Tii, ri) is an open ball centred at Tii with radius ri :=
∑N

j 6=i |Tij |.
Let g ∈ Z

2
G and K ≥ C+1

C−1211/4γ
√
G + |[V ]0| be fixed. The definition of Pd implies that

(P−1
d A)gg = 1 and we can bound the radius rg in the following way:

rg =
∑

g 6=g′∈Z
2
G

|(P−1
d A)gg′ | ≤ 1

|ξ+2πg|2+K−|[V ]0|
∑

g 6=g′∈Z
2
G

|[V ]g−g′ |

≤ 1
K−|[V ]0|

∑

0<|g1|+|g2|≤2
√

2G

|[V ]g| = 1
K−|[V ]0|

⌊2
√

2G⌋∑

n=1

∑

|g1|+|g2|=n

|[V ]g|

≤ 1
K−|[V ]0|

⌊2
√

2G⌋∑

n=1

(4n)1/2Fn(V ) ≤ 2γ
K−|[V ]0|

⌊2
√

2G⌋∑

n=1

n−1/2

≤ 2γ
K−|[V ]0|

(
1 +

∫ 2
√

2G

1
x−1/2dx

)
≤ 211/4γ

√
G

K − |[V ]0|
≤ C − 1

C + 1
.

Applying Gershgorin’s Circle Theorem we get

σ(P−1
d A) ⊂

[
1 − C−1

C+1 , 1 + C−1
C+1

]

and thus κ(P−1
d A) = λmax

λmin
≤ C.

The number of PCG iterations is O(κ(P−1
d A)1/2), and thus we can reduce it arbitrarily by

increasing the value of K, and it does not grow when we increase the number N of planewaves.
The numerical results in Table 1 confirm this. However, there is a certain trade-off. The
convergence of IRA depends on the relative gap between the eigenvalues of A−1 which decreases
when K gets larger leading to a larger number of IRA iterations as we can also see in Table 1.
Moreover, the number of IRA iterations shows a dependence on N for larger K.

Although Pd is asymptotically optimal, in practice even better performance can be achieved
by choosing the preconditioner to be

Pb =

[
B1 0
0 B2

]
, (29)

where B1 is a Nb ×Nb dense matrix with entries

(B1)gg′ = Agg′ g,g′ ∈ Z
2
Gb
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Table 1: Comparing different preconditioners for matrix A in (13) in the case of Problem 2 (see
§6) with K = ‖V ‖L∞ + π2 + 1

2 ≈ 172.4 (left table, Pb with Nb = 512) and with K = 5000 (right
table).

IRA restarts PCG iterations

G N I Pd Pb I Pd Pb

15 709 7 7 50 38
31 3001 7 7 99 38
63 12453 7 7 7 204 39 18
127 50617 7 7 7 410 39 18

IRA restarts PCG iterations

Pd (K = 5000) Pd (K = 5000)

22 8
41 8
65 8
96 8

with Nb := dim Z
2
Gb

, and B2 is a (N −Nb) × (N −Nb) diagonal matrix with entries

(B2)gg = Agg g ∈ Z
2
Gb
, |g| > Gb.

In practice we choose Nb ≤ 512. Note that Pd is a special case of Pb with Gb = 0 (Nb = 1).
The application of P−1

b requires O(N + N2
b ) operations, if the Cholesky factorisation of B1 is

pre-computed (O(N3
b ) operations).

Corollary 15. Let V ∈ Yp. For any C > 1, there exists a K sufficiently large such that

κ(P−1
b A) ≤ C .

Proof. This follows directly from the fact that

κ(P−1
b A) = κ(P−1

b PdP
−1
d A) ≤ κ(P−1

b Pd)κ(P
−1
d A)

and
κ(P−1

b Pd) = κ(P−1
d Pb) = κ(diag(B1)

−1B1)

by applying Theorem 14 to P−1
d A and to diag(B1)

−1B1.

This shows that the preconditioner Pb is also optimal. Moreover, it seems to be even more ef-
ficient as we can see from the numerical results in Table 1, more than halving the number of PCG
iterations at little extra cost. In practice we therefore always choose Pb as the preconditioner
with a suitably chosen Nb.

To conclude, we have shown that we can solve (13) for a few of the smallest eigenvalues
in O(N logN) operations using Krylov subspace iteration. Each iteration of the eigensolver
requires the solve of a linear system using PCG where the preconditioner is chosen to be Pd or
Pb. The memory requirements for storing A and for solving (13) are O(N).

6 Numerical Experiments

In this section we apply the planewave expansion method to two problems from photonic crystal
applications to verify our theoretical results and check if our error bounds are sharp. We refer
to the problems as Problem 1 and Problem 2. In both problems V (x) is piecewise constant and
takes the values Vair = −10.4 and Vglass = −162.0. The structure of V for these two model
problems is given in Fig. 1. The period cells for Problems 1 and 2 are Ω = (−1

2 ,
1
2)2 and
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Problem 1 Problem 2

Figure 1: The period cell for V (x) in Problems 1 and 2. V = −162.0 in the black regions and
V = −10.4 in the white regions.

Ω = (−5
2 ,

5
2)2, respectively. In this way, Problem 2 represents a perturbed version of Problem 1,

as it would arise by using the supercell method to approximate Problem 1 with a compact
perturbation.

In Fig. 2 we plot the relative errors in the eigenvalues and the errors in the normalised
eigenfunctions (measured in the H1

p norm) for ξ = (0, 0), (π, π) and (π
5 ,

π
5 ) for some physically

relevant eigenpairs. The reference solution for both problems is computed by solving (9) for a
sufficiently large G, i.e. G = 210 − 1. (Note that this corresponds to N = 3.3 × 106 planewaves
and requires 2D FFTs on arrays of size 4096× 4096.) The plots confirm the results in Theorem
13. They suggest, in fact, that the eigenfunction errors decay with O(G−3/2) and the eigenvalue
errors decay with O(G−3), which would correspond to choosing ε = 0 in Theorem 13. We will
come back to this below (cf. Corollary 22).

7 Modified Planewave Expansion Method - Smoothed Poten-

tials

Note that in this section we need to assume the stronger regularity V ∈ Yp for the potential.
A standard approach in the physics literature to “improve” the convergence rate of the

planewave method for Schrödinger operators with discontinuous potentials (e.g. in photonic
crystals) is to smooth the discontinuous potential [8, 14, 17, 18]. A typical approach (cf. [17, 18])
is to replace V with a smooth function Ṽ defined by

Ṽ (x) := (G ∗ V )(x) =

∫

R2

G(x − y)V (y)dy ,

where G(x) is the normalised Gaussian

G(x) := 1
2π∆2 exp(− |x|2

2∆2 ) ,

for 0 < ∆ < 1. The parameter ∆ determines the width of the Gaussian function and in papers
where this method is used it is referred to as FWHM (Full-Width-Half-Maximum). As ∆ → 0
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Figure 2: Eigenvalue error (a) and eigenfunction error in the H1
p norm (b) plotted against G for

selected eigenpairs in Problem 1 (1st-5th eigenpairs) and in Problem 2 (23rd-27th eigenpairs),
where ξ = (0, 0) (xi0), (π, π) (xi1), and (π

5 ,
π
5 ) (xi2).

the Gaussian G(x) approaches the Dirac delta distribution and Ṽ → V in the distributional
sense.

Now we define the smoothed (variational) problem. For fixed ξ ∈ B, find λ̃ ∈ R and
0 6= u ∈ H1

p such that

ã(u, v) = λ̃b(u, v), for all v ∈ H1
p , (30)

where

ã(u, v) :=

∫

Ω
(∇ + iξ) u · (∇ + iξ) v + Ṽ uv +Kuvdx

and where b(·, ·) is the same as in (8).
The bilinear form ã(·, ·) has the same properties as a(·, ·), i.e. it is bounded, coercive and

Hermitian on H1
p . Therefore, it defines an inner product on H1

p with an induced norm that is
equivalent to ‖ · ‖H1

p
.

The idea is now to approximate the solution to (30) again with the planewave expansion
method: For G ∈ N, find λ̃G ∈ C and 0 6= uG ∈ SG such that

ã(uG, vG) = λ̃Gb(uG, vG), for all vG ∈ SG. (31)

Associated with both (30) and (31) are corresponding solution operators T̃ and T̃G which
are defined as in (19) and (24). As before, T̃ : H1

p → H1
p and T̃G : H1

p → SG ⊂ H1
p are bounded,

compact, positive and self-adjoint with respect to ã(·, ·). However, in general they are not self-
adjoint with respect to a(·, ·)! Also as before, (λ̃, u) is an eigenpair of (30) if and only if (λ̃−1, u)
is an eigenpair of T̃. From the properties of T̃ we then deduce that (30) has a countable set of
positive real eigenvalues with corresponding eigenfunctions that can be chosen so that they are
orthogonal with respect to ã(·, ·) and complete in L2

p.
The implementation for this Galerkin method is the same as for the standard planewave

expansion method without smoothing but the error analysis will have to be refined to estimate
the dependence of the error on the amount of smoothing employed.

To justify the use of smoothing we would like to obtain error bounds that show that the
error of (31) decreases at a faster rate (with respect to G) than the error of (9). We certainly
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expect to see that the error of (31) approximating the solution to (30) decreases at a faster rate
with respect to G because the smooth problem will have eigenfunctions with more regularity
but there is also an additional error due to the smoothing. We need to examine how big the
additional error from smoothing is and whether or not it outweighs the benefits of smoothing.

In the following two lemmas we prove some properties of Ṽ and of its Fourier coefficients
that will be useful for the error analysis and for the implementation of this variation of the
planewave expansion method. The first lemma is a standard result that is used in e.g. [17, 18]
(for a proof see [16]).

Lemma 16. The Fourier coefficients of Ṽ (x) are related to those of V (x) by

[Ṽ ]g = e−2π2|g|2∆2
[V ]g , ∀g ∈ Z

2 .

Lemma 17. Let V ∈ Yp, s ∈ R and ∆ ∈ (0, 1). Then

‖Ṽ ‖Hs
p

.





∆−s+1/2 , for s > 1
2 ,

(1 + log(∆−1))1/2 , for s = 1
2 ,

1, for s < 1
2 ,

and (32)

‖V − Ṽ ‖Hs
p

. ∆−s+1/2 , for − 3
2 < s < 1

2 . (33)

Proof. Since V ∈ Yp there exists a constant γ such that Fn(V ) ≤ γn−1 for all n ∈ N. Using this
together with the definition of Hs

p and Lemma 16 we have

‖Ṽ ‖2
Hs

p
=

∑
g∈Z2

|g|2s
⋆ |[Ṽ ]g|2 =

∑
g∈Z2

|g|2s
⋆ e−4π2∆2|g|2|[V ]g|2

= |[V ]0|2 +

∞∑

n=1

∑

|g1|+|g2|=n

|g|2se−4π2∆2|g|2|[V ]g|2

. 1 +

∞∑

n=1

n2se−4π2∆2n2
F 2

n . 1 +

∞∑

n=1

n2s−2e−4π2∆2n2
. (34)

Now, to prove (32) let us first consider s > 1/2. Let f(t) = t2s−2e−2π2∆2t2 and let t ≥ 0.
Then f(t) has a single maximum at t0 =

√
2max(s − 1, 0)/2π∆, and is monotonically increasing

on the interval [0, t0] and monotonically decreasing on [t0,∞). Moreover, f(t0) . ∆2max(1−s,0).
Therefore,

∞∑

n=1

n2s−2 e−2π2∆2n2
=

⌊t0⌋−1∑

n=1

f(n) + f(⌊t0⌋) + f(⌈t0⌉) +
∞∑

n=⌈t0⌉+1

f(n) ≤

≤
∫ ⌊t0⌋

1
f(x)dx+ 2f(t0) +

∫ ∞

⌈t0⌉
f(x)dx . ∆2−2s +

∫ ∞

0
x2s−2e−2π2∆2x2

dx .(35)

Putting (35) into (34) and substituting y = x∆ we get

‖Ṽ ‖2
Hs

p
. 1 + ∆2−2s +

1

∆2s−1

∫ ∞

0
y2s−2e−2π2y2

dy . ∆1−2s .
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If s = 1
2 , then f(t) = t−1e2π2∆2t2 ≤ 1 is monotonically decreasing and following on from (34),

again with y = x∆, we obtain similarly that

‖Ṽ ‖2

H
1/2
p

. 2 +
∞∑

n=2

f(n) ≤ 2 +

∫ ∞

1
f(x)dx = 2 +

∫ ∞

∆
y−1e−2π2y2

dy

≤ 2 +

∫ 1

∆
y−1dy +

∫ ∞

1
e−2π2ydy = 2 + log(∆−1) + 1

2π2 . 1 + log(∆−1) .

If s < 1/2, then Lemma 16 and the assumption that V ∈ Yp ⊂ Hs
p imply that

‖Ṽ ‖2
Hs

p
=
∑

g∈Z2
|g|2s

⋆ e−4π2∆2|g|2|[V ]g|2 ≤ ‖V ‖2
Hs

p
. 1 .

To prove (33) we proceed as in (34) to obtain

‖V − Ṽ ‖2
Hs

p
.

∞∑

n=1

n2s−2
(
1 − e−2π2∆2n2

)2
. (36)

To bound the right-hand-side of (36) we need to consider the function f(t) = 1 − e−t2 . By

expanding e−t2 in the usual way it can be shown that f(t) = t2 − ( t4

2! − t6

3! ) − · · · ≤ t2, for
|t| ≤ 3. Otherwise, f(t) ≤ 1. Applying these bounds separately to the individual terms on the
right-hand-side of (36) we get

‖V − Ṽ ‖2
Hs

p
.

∞∑

n=1

n2s−2f(
√

2π∆n)2 ≤ 4π4∆4

⌊ 1
π∆

⌋∑

n=1

n2s+2 +

∞∑

n=⌈ 1
π∆

⌉
n2s−2 , (37)

which can be bounded in the same way as in (35) by using appropriate integrals.

The key result that we need for the error analysis is the following lemma. It shows that the
regularity of eigenfunctions of (30) is much greater than the regularity of the eigenfunctions of
(8) (cf. Corollary 9). In fact, we see that the eigenfunctions of the smooth problem are infinitely
differentiable. However, we also crucially manage to extract how the bounds in different Sobolev
norms depend on ∆.

Lemma 18. Let V ∈ Yp, ∆ ∈ (0, 1) and let u be an eigenfunction of (30). Then u ∈ C∞(R2)
and

‖u‖Hs
p

. ζ(∆) ‖u‖H1
p
, where ζ(∆) :=

{ 1, for s < 5
2 ,

(1 + log(∆−1))1/2, for s = 5
2 ,

∆−s+5/2, for s > 5
2 .

Proof. Let λ̃ be the eigenvalue of (30) that corresponds to the eigenfunction u. It follows from
(30) that u is the weak solution of the elliptic boundary value problem

L1u = f , on Ω ,

with L1 := (∇ + iξ)2 + Ṽ + K and f := λ̃u , subject to periodic boundary conditions. L1 is
elliptic with periodic C∞–coefficients, and so we can use standard regularity results for elliptic
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boundary value problems and the fact that f is a multiple of u to “boot-strap” our way to
u ∈ Hs

p for any s ∈ R. It then follows from Part 3 of Theorem 1 that u ∈ C∞(R2).
To obtain bounds on ‖u‖Hs

p
we consider a different boundary value problem, i.e.

L2u = f , on Ω , (38)

with L2 := −(∇+iξ)2+K and f := λ̃u−Ṽ u+Ku , subject to periodic boundary conditions. L2

is (uniformly) elliptic and it has constant coefficients. The eigenfunction u is again the unique
weak solution to (38).

First, let s = 2. Since Ṽ is continuous it follows from [12, pages 188-189] (adapted for
periodic boundary conditions, cf. [16]) that

‖u‖H2
p

. ‖f‖L2
p
≤ |λ̃|‖u‖L2

p
+ ‖Ṽ ‖L∞‖u‖L2

p
+K‖u‖L2

p
. ‖u‖H1

p
. (39)

Now consider 2 ≤ s < 5
2 . Using again the theory in [12] together with Part 4 of Theorem 1 we

have
‖u‖Hs

p
. ‖f‖Hs−2

p
. ‖u‖Hs−2

p
+ ‖Ṽ ‖Hs−2

p
‖u‖H2

p
. ‖u‖H1

p
, (40)

where in the last step we have used (39) and Lemma 17. Note that this implies that (40) holds
for all s < 5

2 by the definition of ‖ · ‖Hs
p
.

Now consider 5
2 ≤ s < 9

2 . As above, using Lemma 17 we have

‖u‖Hs
p

.

{
(1 + log(∆−1))1/2‖u‖H1

p
, s = 5

2 ,

∆−s+5/2‖u‖H1
p
, 5

2 < s < 9
2 .

(41)

We now use induction to prove that ‖u‖Hs
p

. ∆−s+5/2‖u‖H1
p

for s ∈ N, s ≥ 4. This is not

trivial, if we want to obtain a sharp result. We have already proved the case s = 4 in (41). Our
inductive hypothesis is to assume for some k ∈ N, k ≥ 4, that

‖u‖Hn
p

. ∆−n+5/2‖u‖H1
p
, for all n ∈ N s.t. 3 ≤ n ≤ k . (42)

It follows from (42) and the theory in [12] that

‖u‖
Hk+1

p
. ‖f‖

Hk−1
p

. ‖u‖
Hk−1

p
+ ‖Ṽ u‖

Hk−1
p

. ∆−k+7/2‖u‖H1
p

+ ‖Ṽ u‖
Hk−1

p
.

The key is now to bound ‖Ṽ u‖Hk−1
p

in a clever way. We do not use Part 3 of Theorem 1 because

the bound would not be sharp enough. Instead, Let α and β define non-negative multi-indices.
We write β ≤ α, to mean βi ≤ αi for all i and |α| :=

∑
i αi. Using Parts 3 and 5 of Theorem 1
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together with Lemma 17 and (42) we get

‖Ṽ u‖2
Hk−1

p
= ‖Ṽ u‖2

Hk−1(Ω) =
∑

|α|≤k−1
‖Dα(Ṽ u)‖2

L2(Ω)

.
∑

|α|≤k−1

|α|∑

j=0

∑

|β|=j,β≤α

‖(Dβ Ṽ )(Dα−βu)‖2
L2(Ω)

≤
∑

|α|≤k−1

(
‖Ṽ ‖2

L∞‖Dαu‖2
L2(Ω) +

|α|∑

j=1

∑

|β|=j,β≤α

‖Dβ Ṽ ‖2
L2(Ω)‖Dα−βu‖2

L∞

)

. ‖Ṽ ‖2
L∞‖u‖2

Hk−1(Ω) +
k−1∑

j=1

‖Ṽ ‖2
Hj(Ω)‖u‖2

Hk−j+1(Ω)

. ‖Ṽ ‖2
H2

p
‖u‖2

Hk−1(Ω) +
k−2∑

j=1

‖Ṽ ‖2
Hj(Ω)‖u‖2

Hk−j+1(Ω) + ‖Ṽ ‖2
Hk−1(Ω)‖u‖2

H2(Ω)

.

(
∆−2k+4 +

k−2∑

j=1

∆−2j+1∆−2(k−j+1)+5 + ∆−2k+3

)

︸ ︷︷ ︸
.∆−2k+3

‖u‖H1
p
.

The result now follows by induction using Theorem 1, Part 2.

The following corollary is a direct consequence of Lemma 18. Its proof is similar to the proof
of Corollary 11.

Corollary 19. Let V ∈ Yp and ∆ ∈ (0, 1). Then, for any eigenfunction u of (30), we have

inf
χ∈SG

‖u− χ‖H1
p

. ∆−sG−3/2−s‖u‖H1
p
, for any s > 0, and (43)

inf
χ∈SG

‖u− χ‖H1
p

. C∗(G,∆)G−3/2‖u‖H1
p
, (44)

where C∗(G,∆) := min{Gε, (1 + log(∆−1))1/2} for any ε > 0.

The first bound in Corollary 19 shows that (by taking s as large as we like) we can get
polynomial decay of the approximation error of arbitrary degree with respect to G. However,
the fast decay with respect to G is penalised when ∆ is small. Nevertheless, the approximation
error cannot become arbitrarily bad when ∆ goes to zero due to the second bound.

With these improved regularity and approximation error results we can bound the error
of the Galerkin approximation to the smooth problem (30) as in Theorem 13 by applying the
abstract theory in [1]. This will form one part of the error bound for the smoothed planewave
expansion method in Theorem 21 below.

The second part of the error bound contains the contribution from the smoothing error. We
bound this error by comparing the two (infinite dimensional) problems (8) and (30), using again
the theory in [1, Theorems 7.1 & 7.3] (in a non-standard way). To do this we must first show
that the family of solution operators {T̃}∆>0 (parametrised by ∆) satisfies T̃ → T as ∆ → 0,
and establish certain other bounds related to the convergence of T̃ to T. Recall that T̃ is not
self-adjoint with respect to the inner product a(·, ·).
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Lemma 20. Let V ∈ Yp and ∆ ∈ (0, 1). Then

1. T̃ → T as ∆ → 0 and
‖T − T̃‖H1

p
. ∆3/2 ;

2. the adjoint T̃∗ of T̃ with respect to a(·, ·) satisfies

‖T − T̃∗‖H1
p

. ∆3/2 ; and

3. |a((T − T̃)u, v)| . ∆3/2‖u‖H1
p
‖v‖H1

p
, for any u, v ∈ H1

p .

Proof. Part 1. The proof for this result relies on an infinite dimensional version of Strang’s First
Lemma which we couldn’t find in the literature (see [4] for a reference in the finite dimensional
case).

Let f ∈ H1
p . Then using Part 3 of Theorem 1 together with Strang’s Lemma and choosing

v := Tf ∈ H1
p we have

‖Tf − T̃f‖H1
p

. inf
v∈H1

p

{
‖Tf − v‖H1

p
+ sup

w∈H1
p

|a(v,w) − ã(v,w)|
‖w‖H1

p

}

≤ sup
w∈H1

p

|a(Tf,w) − ã(Tf,w)|
‖w‖H1

p

≤ sup
w∈H1

p

‖Tf‖L∞

∫
Ω |(V − Ṽ )w|dx
‖w‖H1

p

. ‖Tf‖H2
p
‖V − Ṽ ‖H−1

p
. ∆3/2‖f‖H1

p
,

where in the last step we have used Lemmas 8 and 17.
Part 2. Let f ∈ H1

p . Since a(·, ·) is bounded and coercive on H1
p we have

‖(T − T̃∗)f‖2
H1

p
. a((T − T̃∗)f, (T − T̃∗)f) = a((T − T̃)(T − T̃∗)f, f)

≤ ‖T − T̃‖H1
p
‖(T − T̃∗)f‖H1

p
‖f‖H1

p
.

Dividing through by ‖(T − T̃∗)f‖H1
p

and applying Part 1 we obtain the result.

Part 3 follows directly from Part 1 using the fact that a(·, ·) is bounded.

As above we can use the results in this lemma to apply the abstract theory in [1] to the
operators T̃ and T to obtain bounds on the errors between the spectra of the two infinite
dimensional problems (30) and (8). Putting these bounds together with the bounds on the
Galerkin error for the smoothed problem (cf. Corollary 19) and applying the triangle inequality
we obtain the main result of this section.

Theorem 21. Let V ∈ Yp and let λ be an eigenvalue of (8) with multiplicity m and correspond-
ing eigenspace M . Then, for sufficiently large G and small ∆ > 0, there exist m eigenvalues
λ̃1, . . . , λ̃m of (31) (counted according to multiplicity) with λ̃j = λ̃j(G,∆) and with corresponding

eigenspaces M̃1(λ̃1), . . . , M̃m(λ̃m) ⊂ SG, such that for any s > 0, we have

δH1
p
(M,M̃G,∆) . ∆3/2 + ∆−sG−3/2−s , where M̃G,∆ :=

m⊕

j=1

M̃j(λ̃j) , and

|λ− λ̃j | . ∆3/2 + ∆−2sG−3−2s , for j = 1, . . . ,m .

The second terms in these bounds can be replaced by C∗(G,∆)G−3/2 and C∗(G,∆)2G−3, respec-
tively, with C∗(G,∆) as defined in Corollary 19.
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As expected eigenpairs of (30) converge to eigenpairs of (8) as ∆ → 0 and the convergence
with respect to G is potentially faster. The eigenvalue bound does not decrease at twice the
rate of the eigenfunction error bound as ∆ → 0 (as in Theorem 13). The reason lies in the fact
that T̃ is not self-adjoint with respect to a(·, ·) (cf. [1]). The numerical results in §8 confirm
this, but we will see that our bound on the eigenvalue error is not completely sharp. Tracing
the slackness back through our error analysis, we notice that Part 3 of Lemma 20 is not sharp.

To obtain the best amount of smoothing, we can now set ∆ = O(Gr) and choose r ∈ R to
balance the two terms in the error bounds. However, we see that at best we can only achieve
eigenfunction errors that are O(G−3/2) in the H1

p -norm (choosing r ≤ −1) and eigenvalue
errors that are O(G−3 logG) (choosing r ≤ −2). Even though this appears to be a very slight
improvement on the bounds for the basic planewave expansion method in Theorem 13, the
numerical results in the next section will show that the modified planewave expansion method
always performs worse. The reason for the better error bound lies in the fact that we have
assumed the stronger regularity V (x) ∈ Yp here. In fact, it turns out that we can use the
error analysis in this section also to improve the error bound for the eigenfunctions in the basic
planewave expansion method (without smoothing, cf. Theorem 13).

Corollary 22. Let V ∈ Yp and let M and MG be eigenspaces defined as in Theorem 13. Then,
for sufficiently large G,

δH1
p
(M,MG) . G−3/2 and δL2

p
(M,MG) . G−5/2.

Proof. First we realise that replacing V in (9) with the smooth function P2GV (cf. (25)) does
not actually change the matrix eigenproblem (13). Then we proceed as shown for Ṽ in this
section. In particular, we note that [P2GV ]g = 0, if |g| > 2G (cf. Lemma 16), which allows us
to obtain the bounds

‖P2G‖Hs
p

.





Gs−1/2 , for s > 1
2 ,

(1 + logG)1/2 , for s = 1
2 ,

1, for s < 1
2 ,

and ‖V − P2G‖H−1
p

. G−3/2 ,

in the same way as for Ṽ in Lemma 17. The rest of the proof is identical.
The bound on δL2

p
(M,MG) follows by a standard duality argument for ‖T − TG‖L2

p
and the

fact that both T and TG are compact operators from L2
p to L2

p (cf. [1]).

Unfortunately we were not able to derive an improved eigenvalue error bound. The problem
lies again in the lack of a sharper bound for Part 3 of Lemma 20.

In conclusion we can say that smoothing V (x) does not seem to have an advantage over the
basic planewave expansion method where V is unmodified, and the numerical experiments in
the next section support this conclusion.

We have only one qualifying remark to make. We have assumed throughout that we can
calculate the entries of A in (13) exactly using an explicit formula for the Fourier coefficients of
V . If this is not the case (as is commonly the case in applications), then smoothing may be of
some benefit to reduce the additional error introduced by approximating the Fourier coefficients
of V . We hope to shed some light on this issue in future work.
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Figure 3: Eigenvalue error (a) and eigenfunction error in the H1
p norm (b) plotted against ∆ for

selected eigenpairs in Problem 1 (1st-5th eigenpairs) and in Problem 2 (23rd-27th eigenpairs),
where ξ = 0 (xi0), (π, π) (xi1), and (π

5 ,
π
5 ) (xi2).
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Figure 4: Error for the 1st eigenpair in Problems 1 and 2 plotted against G using the modified
planewave expansion method with ∆ = Gr for different r ∈ R. (Lines for different ξ have been
plotted but not labelled as they are indistinguishable.)

8 Numerical Experiments with Smoothing

We now perform some numerical experiments on Problems 1 and 2 from §6 to check whether the
error bounds in Theorem 21 are sharp. In Fig. 3 we have plotted eigenfunction and eigenvalue
errors against ∆ for fixed (large) G = 28 − 1. The plot suggests that the first term of the
eigenvalue error bound in Theorem 21 could be improved to ∆2. Despite this, our general
conclusion that smoothing has no advantage is still correct. Choosing ∆ = O(Gr) and balancing
the error terms again, we find that the best possible eigenvalue error bound is still of order
O(G−3 logG).

Finally to confirm the claim numerically, in Fig. 4 we have set ∆ = Gr for different choices
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of r ∈ R and plotted eigenvalue and eigenfunction errors against G. For comparison we include
the case ∆ = 0, i.e. the basic planewave expansion method with V unmodified. We see that the
error of the basic method is always smallest.
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