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Warmup

Exercise

Find the flat sections of the connection

∇ = d −
(

1 −z
0 0

)
dz

z2

on the trivial bundle E = O⊕2X over the curve X = C.

i.e. find a fundamental matrix solution of the ODE

dψ

dz
=

(
z−2 −z−1

0 0

)
ψ

NB: Pole of order two, i.e. ∇ : E → Ω1
X (D)⊗ E , where D = 2 · {0} ⊂ X .
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Solution method

Goal: flat sections of

∇ = d −
(

1 −z
0 0

)
dz

z2

Strategy: Find a gauge transformation φ taking ∇ to the simpler diagonal
connection

∇0 = φ−1∇φ = d −
(

1 0
0 0

)
dz

z2

Solutions of ∇0 are easily found:

ψ0 =

(
e−1/z 0

0 1

)
.

Then we can write
ψ = φψ0.
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The gauge transformation

Want:

φ−1
(

d −
(

1 −z
0 0

)
dz

z2

)
φ = d −

(
1 0
0 0

)
dz

z2

Guess form for φ:

φ =

(
1 f (z)
0 1

)
a solution ⇐⇒ z2 df

dz
= f − z .

Solution has series expansion

f (z) =
∑
n≥0

n! zn+1.

DIVERGES!!!!!
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All is not lost
Borel summation/multi-summation: recover solutions from divergent series
(É. Borel, Écalle, Ramis, Sibuya, ...)

The essential idea:
∞∑
n=0

anzn+1 =
∞∑
n=0

an

(
1

n!

∫ ∞
0

tne−t/z dt

)

=

∫ ∞
0

( ∞∑
n=0

antn

n!

)
e−t/z dt

and the new series (the Borel transform) is more likely to converge.

z
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Our example

∞∑
n=0

n!zn+1 =

∫ ∞
0

( ∞∑
n=0

tn

)
e−t/zdt =

∫ ∞
0

e−t/z

1− t
dt

Stokes phenomenon: sums for Im(z) > 0 and Im(z) < 0 differ:

z
−

z
= 2πiRes = −2πie−1/z

NB: this comes from the other solution of ODE.
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Resummation, cont.

(Nearly) equivalent: Weight the partial sums:

∞∑
n=0

anzn+1 = lim
µ→∞

e−µ
∞∑
n=0

(
µn

n!

n∑
k=0

akzk+1

)
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Pros and cons

Success: solution of the ODE with the divergent series as an asymptotic
expansion; truncating the series gives a good approximation for small z

The Stokes phenomenon: “correct” sum of the series varies from sector
to sector (wall crossing) — patched by “generalized monodromy data”

Drawbacks: the procedure is a bit ad hoc:

Correct weights depend on order of pole and “irregular type”

Not directly applicable to related and important situations
I WKB approximation (aka λ-connections)
I Normal forms in dynamical systems
I Perturbative QFT

Leads to even more complicated theory of “resurgence” (Écalle)
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The problem

Question

What is the geometry of these resummation procedures?

Answer (Gualtieri–Li–P.)

It is governed by a very natural Lie groupoid.
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Viewpoint

A holomorphic flat connection ∇ : E → Ω1
X ⊗ E gives an action of vector

fields by derivations

TX × E → E
(η, ψ) 7→ ∇ηψ,

compatible with Lie brackets:

∇η∇ξ −∇ξ∇η = ∇[η,ξ]

Slogan:

{holomorphic flat connections} = {representations of TX}.
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Parallel transport

s

t

γ
γ′

Solve the ODE ∇ψ = 0 along a path γ : [0, 1]→ X from s to t

Get the parallel transport

Ψ(γ) : E|s → E|t

If γ, γ′ are homotopic, then Ψ(γ) = Ψ(γ′).
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The fundamental groupoid

Domain for parallel transport is the fundamental groupoid:

Π1(X ) = {paths γ : [0, 1]→ X}/(end-point-preserving homotopies)

Source and target s, t : Π1(X )→ X

s(γ) = γ(0) t(γ) = γ(1)

Product: concatenation of paths, defined when endpoints match

Identities: constant paths, one for each x ∈ X

Inverses: reverse directions

Lemma

Π1(X ) has a unique manifold structure such that (s, t) : Π1(X )→ X × X
is a local diffeomorphism. Thus Π1(X ) is a (complex) Lie groupoid.
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Example: the fundamental groupoid of C∗ = C \ {0}

We have an isomorphism

C× C∗ ∼= Π1(C∗)
(λ, z) 7→ [γλ,z ]

I Source and target:

s(λ, z)= z t(λ, z)= eλz

I Identities:

i(z) = (0, z)

I Product:

(λ, z)(λ′, z ′) = (λ+ λ′, z ′)

defined whenever z = eλ
′
z ′.

γλ,z(t) = exp(tλ) · z

z

eλz

C∗
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Parallel transport as a representation

Parallel transport of holomorphic connection ∇ is an isomorphism of
bundles on Π1(X ):

Ψ : s∗E → t∗E

If ψ is a fundamental solution, then Ψ = t∗ψ · s∗ψ−1

It’s a representation of Π1(X ):

Ψ(γ1γ2) = Ψ(γ1)Ψ(γ2) Ψ(γ−1) = Ψ(γ)−1 Ψ(1x) = 1

Version of the Riemann–Hilbert correspondence:

{representations of TX} {representations of Π1(X )}

Integration

Differentiation
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Meromorphic connections

D = k1 · p1 + · · ·+ kn · pn an effective divisor (ki ∈ N)

p1

p2
p3

Meromorphic connection ∇ : E → Ω1
X (D)⊗ E

In a local coordinate z near pi

∇ψ = dz ⊗
(

dψ

dz
− A(z)

zki
ψ

)
.

Can’t define parallel transport for paths that intersect D
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Lie-theoretic perspective

TX (−D) the sheaf of vector fields vanishing on D.
I Locally free (a vector bundle). Near a point p ∈ D, we have

TX (−D) ∼=
〈
zk∂z

〉
I Anchor map

a : TX (−D)→ TX

I Closed under Lie brackets

Thus, TX (−D) is a very simple example of a Lie algebroid

Pairing with ∇ : E → Ω1
X (D)⊗ E gives a holomorphic action

TX (−D)× E → E .
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Lie-theoretic perspective

Slogan:

{flat connections on X with poles ≤ D} = {representations of TX (−D)}

Consequence: The correct domain for the solutions is the Lie groupoid
that “integrates” TX (−D).
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Lie groupoids (Ehresmann, Pradines 50–60s)

A Lie groupoid G ⇒ X is

1 A manifold X of objects

2 A manifold G of arrows

3 Maps s, t : G → X
indicating the source
and target

4 Composition of arrows
whose endpoints match

5 An identity arrow for
each object i : X ↪→ G

6 Inversion ·−1 : G → G .

satisfying associativity, etc.

cba

h•g•

gh
•

h−1
•

•

st

X

G
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Infinitesimal counterpart: Lie algebroids

A
i(X )

G

Vector bundle A = Ni(X ),G with Lie bracket

[·, ·] : A×A → A

on sections and anchor map a : A → TX satisfying the Leibniz rule

[ξ, f η] = (La(ξ)f )η + f [ξ, η].
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Examples

G A

G ⇒ {pt} a Lie group g its Lie algebra

H × X ⇒ X group action h→ TX infinitesimal action

Π1(X ) TX

Pair(X ) = X × X ⇒ X TX
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Algebroid representations

A representation of A is a flat A-connection, i.e. an operator

∇ : E → A∨ ⊗ E

satisfying
∇(f ψ) = (a∨df )⊗ ψ + f∇ψ

and having zero curvature in
∧2A∨ ⊗ EndE .

Examples:

1 For X = {∗} and A = g: finite-dimensional g-reps

2 For A = TX : have A∨ = Ω1
X and ∇ a usual flat connection

3 For TX (−D): have A∨ = Ω1
X (D), and ∇ a meromorphic flat

connection with poles bounded by D

4 Logarithmic connections, λ-connections, connections with central
curvature, Poisson modules (= “semi-classical” bimodules), ...
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Parallel transport for algebroid connections

An A-path is a Lie algebroid homomorphism

Γ : T[0,1] → A

A-connections pull back to usual connections on [0, 1].

Thus, parallel transport is defined on the fundamental groupoid of A:

Π1(A) =
{A-paths}

{A-homotopies}

Examples:

For A = g a Lie algebra, get Π1(g) = G , the simply-connected group

For A = TX , get Π1(TX ) = Π1(X ).

22 / 34



Integrability of algebroids (analogue of Lie III)

The Crainic–Fernandes theorem (Annals 2003) gives necessary and
sufficient conditions for Π1(A) to have a smooth structure, making it a Lie
groupoid.

Parallel transport of A-connections along A-paths gives:

{representations of A} {representations of Π1(A)}

Integration

Differentiation

Theorem (Debord 2001)

If A → TX is an embedding of sheaves, then A is integrable.
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Applied to TX (−D)
Get a Lie groupoid Π1(X ,D), functorial in X and D
Two types of algebroid paths:

I Usual paths in X \ D, so we have open dense

Π1(X \ D) ↪→ Π1(X ,D)

I Boundary: a one-dimensional Lie group of loops at each p ∈ D⊔
p∈D

(T ∗p X )mult(p)−1 ↪→ Π1(X ,D)

γr

rD

X = C e.g., mult(p) = 1 limiting
procedure

lim
r→0

[γr ] = lim
r→0

log
γr (1)

γr (0)

∈ C

giving “loops” at D.
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Parallel transport

Meromorphic connection ∇ : E → Ω1
X (D)⊗ E

Usual parallel transport defined on Π1(X \ D) extends to

Ψ : s∗E → t∗E

globally defined and holomorphic on Π1(X ,D).

Caveat: Π1(X ,D) was constructed as an infinite-dimensional
quotient—not very explicit.
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Our paper

With M. Gualtieri and S. Li we give

Explicit local normal forms, the Stokes groupoids

Finite-dimensional global construction using the uniformization
theorem

I analytic open embedding in a P1-bundle

Π1(X ,D) ↪→ P(J1
X ,DΩ

1/2
X )

I groupoid structure maps given by solving the uniformizing ODE
I e.g. groupoid for X = P1 and D = 0 + 1 +∞ involves hypergeometric

functions and the elliptic modular function λ(τ)

Constructions of Pair(X ,D) by iterated blowups

Application to divergent series

26 / 34



Local normal form: the Stokes groupoids
The case X = C and D = k · 0 is the Stokes groupoid Stok = Π1(C, k · 0)

Stok = C× C ⇒ C
s(x , y) = exp(−xk−1y) · x
t(x , y) = exp(xk−1y) · x

i(z) = (z , 0)

k = 1

k = 2k = 3k = 4k = 5

Or s(z , λ) = z and t(z , λ) = exp(λk−1z) · z , in which case

(z1, λ1)(z2, λ2) = (z1, u2 exp((k − 1)u1zk−1
1 ) + u1)

Demonstration on my web site
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Resummation, redux

Suppose given the following data:

Two connections ∇,∇0 : E → Ω1
X (D)⊗ E

A point p ∈ D

An isomorphism on the formal completion X̂ ⊂ X at p:

φ̂ : ∇0|X̂ → ∇|X̂ .

Integrating ∇,∇0 and φ̂, we get the parallel transports on Π1(X ,D):

Ψ,Ψ0 : s∗E → t∗E ,

and their Taylor expansions Ψ̂, Ψ̂0 on ̂Π1(X ,D) ⊂ Π1(X ,D).
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Resummation, redux

φ̂ : (E ,∇0)|X̂ → (E ,∇)|X̂ Ψ,Ψ0 : s∗E → t∗E

Theorem (Gualtieri–Li–P.)

The formal power series
t∗φ̂ · Ψ̂0 · s∗φ̂−1

converges to Ψ in a neighbourhood of id(p) ∈ Π1(X ,D).

Proof.

Because φ̂ is an isomorphism, we have the identity of formal power series:

Ψ̂ = t∗φ̂ · Ψ̂0 · s∗φ̂−1.

But Ψ is holomorphic a priori, so its Taylor expansion converges.
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Resummation example

In our example:

∇ = d −
(

1 −z
0 0

)
dz

z2
∇0 = d −

(
1 0
0 0

)
dz

z2

φ̂ =

(
1 f (z)
0 1

)
: ∇̂0 → ∇̂1

with f (z) =
∑

n≥0 n!zn+1.

Fundamental solutions:

ψ0 =

(
e−1/z 0

0 1

)
ψ =

(
e−1/z f

0 1

)
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Resummation example

Choose local coordinates (µ, z) on Sto2 in which s = z and t = z
1−µz .

We compute

Ψ0 = t∗ψ0 · s∗ψ−10

=

(
e−1/t 0

0 1

)(
e−1/s 0

0 1

)−1
=

(
e−

1−µz
z 0̂

0 1

)(
e1/z 0

0 1

)
=

(
eµ 0
0 1

)

Ψ = t∗φ ·Ψ0 · s∗φ−1

=

(
1 f (t)
0 1

)(
eµ 0
0 1

)(
0 −f (s)
0 1

)
=

(
eµ f ( z

1−µz )− eµf (z)

0 1

)
which must be holomorphic.
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Resummation example

Using f =
∑∞

n=0 n!zn+1, we find

f ( z
1−µz )− eµf (z) = −

∞∑
i=0

∞∑
j=0

z i+1µi+j+1

(i + 1)(i + 2) · · · (i + j + 1)

= −
∞∑
n=0

µn

n!

n∑
k=0

k! zk+1

which is holomorphic on the groupoid Sto2.

Result: We have taken the divergent series, and the solutions of the
“simple” connection ∇0, and obtained a convergent series for the parallel
transport of ∇ by elementary algebraic manipulations
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Recovering the Borel sum
So far we have the parallel transport Ψ between points in X \ D = C∗.

To see the Borel sum: look for gauge transformations φ̃(z) such that

lim
z→0

φ̃(z) = 1

Recall that we have

φ̃(t) = Ψφ̃(s)Ψ−10 ∈ Aut(E|t)

for any gauge transformation.

Using the previous formula, we easily find

φ̃(z) =

(
1 limµ→∞ e−µ

∑∞
n=0

µn

n!

∑n
k=0 k!zk

0 1

)
= BorelSum(φ)

in the appropriate sector.
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Conclusion

Moral: The formula for Borel resummation is a consequence of the
geometry of the groupoid Π1(X ,D).

Future directions:

Recover the Riemann–Hilbert correspondence/Stokes data

Extend this method to other situations, e.g. WKB approximation in
quantum mechanics, other types of singular DEs

Isomonodromic deformations via Morita equivalences (in prep. with
Gualtieri)
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