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Warmup

Exercise
Find the flat sections of the connection

1 —z\ dz
v_d_<o o>£

on the trivial bundle £ = O;‘?z over the curve X = C.

i.e. find a fundamental matrix solution of the ODE

dy z72 771
w‘(o o)¢

NB: Pole of order two, i.e. V: & — Q) (D) ® £, where D =2 - {0} C X.

)
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Solution method

Goal: flat sections of

1 —z\ dz
V“"(o 0>22

Strategy: Find a gauge transformation ¢ taking V to the simpler diagonal

connection J
-1 o . 1 0 z

Z2

Solutions of Vg are easily found:

e~z 0
wo:( 0 1)'

Y = Pyo.

Then we can write



The gauge transformation

- 1 —z\dz\ , 1 0\ dz
oo 0) %)= (00)

Guess form for ¢:

Want:

¢ = <(1) f(12)> a solution = zzi =f—-z

dz

Solution has series expansion

f(z) = Z nl z"L,

n>0
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All is not lost

Borel summation/multi-summation: recover solutions from divergent series

(E Borel, Ecalle, Ramis, Sibuya, ...)

The essential idea:

o0 () 1 00
Saertt= Y ( [Ceea)
n=0

n=0
0o o0 ntn
- / St et/ gy
0 =0 n:

and the new series (the Borel transform) is more likely to converge.

g
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Our example

o0 oo [ X 0o ,—t/z
nlz"t = / t" | e"t/Zdt = / €t
Stokes phenomenon: sums for Im(z) > 0 and Im(z) < 0 differ:

7z

1/z

= 27iRes = —2mie™
3‘\

NB: this comes from the other solution of ODE.

6
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Resummation, cont.

(Nearly) equivalent: Weight the partial sums:
o0

() Mn n
E 2,z = lim e# — E a,zk T
n=0 K k=0

n=0
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Pros and cons

Success: solution of the ODE with the divergent series as an asymptotic
expansion; truncating the series gives a good approximation for small z

The Stokes phenomenon: “correct” sum of the series varies from sector
to sector (wall crossing) — patched by “generalized monodromy data”

Drawbacks: the procedure is a bit ad hoc:

@ Correct weights depend on order of pole and “irregular type”

@ Not directly applicable to related and important situations

» WKB approximation (aka A-connections)
» Normal forms in dynamical systems
> Perturbative QFT

Leads to even more complicated theory of “resurgence” (Ecalle)



The problem

What is the geometry of these resummation procedures?

Question J

Answer (Gualtieri-Li—P.) J

It is governed by a very natural Lie groupoid.
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Viewpoint
A holomorphic flat connection V : £ — Q}< ® &£ gives an action of vector
fields by derivations

Tx xE—E
(n,9) = Vi,

compatible with Lie brackets:
ViVe = VeVy = Vi g
Slogan:

{holomorphic flat connections} = {representations of Tx}.
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Parallel transport

@ Solve the ODE V¢ = 0 along a path «y : [0,1] — X from s to t
@ Get the parallel transport

V(y): Els — Ele

e If 7,7/ are homotopic, then W(v) = W(v/).
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The fundamental groupoid

@ Domain for parallel transport is the fundamental groupoid:

M1(X) = {paths ~ : [0, 1] — X}/(end-point-preserving homotopies)

@ Source and target s, t: 1(X) — X

s(v) =~(0) t(y) = (1)

Product: concatenation of paths, defined when endpoints match

Identities: constant paths, one for each x € X

Inverses: reverse directions

Lemma

M1(X) has a unique manifold structure such that (s, t) : M1(X) — X x X
is a local diffeomorphism. Thus M1(X) is a (complex) Lie groupoid.
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Example: the fundamental groupoid of C* = C \ {0}

@ We have an isomorphism

C x C* = My (C¥)
(sz) = [’Y)\,z] C*
» Source and target:
s(A\,z)=z t(\, z)= e’z

» |dentities:

i(z) = (0, 2)

» Product:
Yaz(t) = exp(tA) - z

AN z2) N, Z) =+ N, Z)
A

- !’
defined whenever z = e* Z'.
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Parallel transport as a representation

@ Parallel transport of holomorphic connection V is an isomorphism of
bundles on My (X):
V:s'E - t'E

e If ¢ is a fundamental solution, then W = t*¢) - s*¢p~1

e It's a representation of I;(X):

V(1) =V(n)V¥(re) VYA H=VvH)t v(1)=1

@ Version of the Riemann—Hilbert correspondence:

Integration
/\
representations of Tx representations of (X
{ b (x)}

Differentiation
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Meromorphic connections

D=k -p1+--+ kn- pn an effective divisor (k; € N)

@ Meromorphic connection V : & — QL (D) ® &

@ In a local coordinate z near p;

Vi = dz ® (d—w - A(Z)u;) .

dz zki

o Can’t define parallel transport for paths that intersect D
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Lie-theoretic perspective

@ Tx(—D) the sheaf of vector fields vanishing on D.
» Locally free (a vector bundle). Near a point p € D, we have

Tx(—D) = <Zk82>

» Anchor map

a:Tx(—-D)— Tx

> Closed under Lie brackets
@ Thus, Tx(—D) is a very simple example of a Lie algebroid
e Pairing with V : & — Q}(D) ® & gives a holomorphic action

Tx(—=D) x & — €.

16
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Lie-theoretic perspective

Slogan:

{flat connections on X with poles < D} = {representations of Tx(—D)}

Consequence: The correct domain for the solutions is the Lie groupoid
that “integrates” Tx(—D).
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Lie groupoids (Ehresmann, Pradines 50-60s)

A Lie groupoid G = X is
@ A manifold X of objects

t gh S
@ A manifold G of arrows 2
©Q Mapss,t:G6G— X g h
indicating the source i n
and target Q X
© Composition of arrows a p—""c
whose endpoints match v

© An identity arrow for
each object i : X — G

@ Inversion -7 1: G — G.

satisfying associativity, etc.
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Infinitesimal counterpart: Lie algebroids

G
|
T

‘3‘ i)

Vector bundle A = Nj(x) ¢ with Lie bracket
[,]:AxA—A
on sections and anchor map a: A — Tx satisfying the Leibniz rule

[€, fn] = (Laeyf)n + €, 0]
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Examples

G A

G = {pt} a Lie group g its Lie algebra
H x X = X group action | h — Tx infinitesimal action
M1 (X) Tx

Pair(X) =X x X = X Tx
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Algebroid representations

A representation of A is a flat .A-connection, i.e. an operator
ViEsARE

satisfying
V(fy) = (aVdf) @ + FVY

and having zero curvature in /\2 AY @ End€.

Examples:
© For X = {x} and A = g: finite-dimensional g-reps
@ For A= Tx: have AY = Q& and V a usual flat connection

© For Tx(—D): have AV = Q% (D), and V a meromorphic flat
connection with poles bounded by D

@ Logarithmic connections, A-connections, connections with central
curvature, Poisson modules (= “semi-classical” bimodules), ...
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Parallel transport for algebroid connections

An A-path is a Lie algebroid homomorphism
[ 7—[071] — A

A-connections pull back to usual connections on [0, 1].

Thus, parallel transport is defined on the fundamental groupoid of A:

_ {A-paths}
Ma(4) = {A-homotopies}

Examples:

e For A =g a Lie algebra, get N1(g) = G, the simply-connected group
e For A ="Tx, get MN1(Tx) = N1(X).



Integrability of algebroids (analogue of Lie IlI)

The Crainic—Fernandes theorem (Annals 2003) gives necessary and

sufficient conditions for 1;(.A) to have a smooth structure, making it a Lie
groupoid.

Parallel transport of .A-connections along .A-paths gives:
Integration

/\
representations of A representations of (A
{rep b e 1(A)}

Differentiation

Theorem (Debord 2001)
If A — Tx is an embedding of sheaves, then A is integrable. J
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Applied to Tx(—D)

@ Get a Lie groupoid My(X, D), functorial in X and D
@ Two types of algebroid paths:
» Usual paths in X \ D, so we have open dense

M (X \ D) — M(X, D)

» Boundary: a one-dimensional Lie group of loops at each p € D

| | (T;x)mP)=1 — ny(X, D)

pED l |- ..
X_C e.g., mult(p) =1 limiting
Vr procedure
. o 7r(1)
N, fimby] = lim log 03

eC

giving “loops” at D.
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Parallel transport

@ Meromorphic connection V : £ — Q% (D) ® &
@ Usual parallel transport defined on M1(X \ D) extends to
V:s*'E - t"E

globally defined and holomorphic on I;(X, D).

e Caveat: [1;(X, D) was constructed as an infinite-dimensional
quotient—not very explicit.

25 /34



Our paper

With M. Gualtieri and S. Li we give
@ Explicit local normal forms, the Stokes groupoids

o Finite-dimensional global construction using the uniformization
theorem

» analytic open embedding in a P'-bundle
Mi(X, D) = P(J% p2/?)

» groupoid structure maps given by solving the uniformizing ODE
» e.g. groupoid for X = P! and D = 0 + 1 + oo involves hypergeometric
functions and the elliptic modular function A(7)

e Constructions of Pair(X, D) by iterated blowups

@ Application to divergent series

26
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Local normal form: the Stokes groupoids
The case X = C and D = k - 0 is the Stokes groupoid Sto, = I11(C, k - 0)

Stoy,=CxC=C

s(x,y) = exp(—x*"1y) - x
t(x,y) = exp(x*1y) - x
i(z) = (2,0)

k=1
Or s(z,\) = z and t(z,\) = exp(A\*~1z) - z, in which case

(21, M1)(22, A2) = (21, tp exp((k — Durzk ™) + 1)

Demonstration on my web site
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Resummation, redux

Suppose given the following data:
@ Two connections V,Vo : & — Q4 (D) ® &
@ ApointpeD

@ An isomorphism on the formal completion XCXat p:

$:Vo’5< — V’)“(.

Integrating V, Vo and qAS we get the parallel transports on M1 (X, D):

W,V s*E — €,

and their Taylor expansions W, ¥ on I'IlT)?D) C Mi(X, D).
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Resummation, redux

~

¢: (€, Vo)lg = (€,V)Ig W, Wy s*E — t°E

Theorem (Gualtieri—Li—P.)

The formal power series .
t'¢ - Wy -s ¢t
converges to V in a neighbourhood of id(p) € My(X, D).

Proof.

Because qg is an isomorphism, we have the identity of formal power series:

V=t Vo - s'o L

But W is holomorphic a priori, so its Taylor expansion converges. []
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Resummation example

In our example:

1 —z\ dz 1 0\ dz
v=d <o 0)22 vo_d_(o 0)22

~ 1 f ~ ~

¢:(0 (12)>V0—>V1

with f(z) = Y ,50 nlz".

Fundamental solutions:

e /72 0 e Vz f
we(C0 D) (%)
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Resummation example

Choose local coordinates (4, z) on Stop in which s =z and t = 2.

We compute

Wo = t*go - s*hg

B t -5
(DT -
(

e 0 . .
= which must be holomorphic.
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Resummation example

Using f = > o2 o nlz™1, we find
I+1 I+_j+1

zZ N\ _ ok
flim) - etflz ZZ (i+0)(+2)---(i+j+1)

i= 0_] 0
— E & E k!zk+1
n!
n=0 k=0

which is holomorphic on the groupoid Sto,.

Result: We have taken the divergent series, and the solutions of the
“simple” connection Vg, and obtained a convergent series for the parallel
transport of V by elementary algebraic manipulations
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Recovering the Borel sum

So far we have the parallel transport W between points in X \ D = C*.

To see the Borel sum: look for gauge transformations <Z~>(z) such that

lim ¢(z) =1

z—0

Recall that we have
o(1) = W(s)¥g" € Aut(e]e)
for any gauge transformation.

Using the previous formula, we easily find

. . — oo " n k
d(z) = ((1) lim,—oo € ”anzo ar 2k—o K1z > = BorelSum(¢)

in the appropriate sector.
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Conclusion

Moral: The formula for Borel resummation is a consequence of the
geometry of the groupoid My(X, D).

Future directions:
@ Recover the Riemann—Hilbert correspondence/Stokes data

@ Extend this method to other situations, e.g. WKB approximation in
quantum mechanics, other types of singular DEs

@ Isomonodromic deformations via Morita equivalences (in prep. with
Gualtieri)
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