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Derivations and automorphisms

Let A be a non-associative algebra over a field F .

• A derivation of A is a linear map D : A→ A such that

D(a · b) = (Da) · b + a · (Db), for a,b ∈ A.

Lemma
Assume char(F ) = 0. If D is a nilpotent derivation of A, then
exp D =

∑∞
k=0 Dk/k ! is an automorphism of A.

• D being a derivation is equivalent to

D ◦m = m ◦ (D ⊗ id+ id⊗D),

where m : A⊗ A→ A is the multiplication map.
• The Lemma follows from

exp(X + Y ) = exp(X ) · exp(Y )

after setting X = D ⊗ id and Y = id⊗D.
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Proof of the Lemma

Proof.
Because

Dk ◦m = m ◦ (D ⊗ id+ id⊗D)k

for k ≥ 0, we have

(exp D) ◦m = m ◦ exp(D ⊗ id+ id⊗D)

= m ◦ exp(D ⊗ id) ◦ exp(id⊗D)

= m ◦
(
(exp D)⊗ id

)
◦
(
id⊗(exp D)

)
Evaluating on x ⊗ y , for x , y ∈ A, we get

(exp D)(x · y) = (exp D)(x) · (exp D)(y)

and hence exp D is an automorphism of A.
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Example: A polynomial algebra

Example

Let A = F [X ], D = d/dX , α, β ∈ F . Then
• exp(βD)f (X ) = f (X + β) (Taylor’s formula);
• exp(αXD)f (X ) = f (eαX ) (if eα makes sense).

• In fact, all automorphisms of F [X ] as an F -algebra are
given by substitutions X 7→ aX + b, for a ∈ F ∗, b ∈ F .

• The derivation algebra is much larger,

W1 = Der(F [X ]) =
⊕

k≥−1

Der(F [X ])k =
⊕

k≥−1

F · X k+1D,

but exp does not apply to derivations of positive degree.
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Example: The Lie algebra W1

• W1 = Der(F [X ]) is the Lie algebra of polynomial vector
fields on the line (usually with F = R or C).

• W1 has a Z-graded basis given by the X i+1D, where
D = d/dX , this element having degree i , for i ≥ −1.

• Lie bracket:

[X i+1D,X j+1D] = (j − i)X i+j+1D.

In particular, consider the inner derivation ad D = [D, ·].

Example

Lie algebra W1 = Der(F [X ]).
Then exp(ad D) is an automorphism of W1. Explicitly:

exp(ad D)X i+1D = (X + 1)i+1D
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Exponentials in positive characteristic

From now on assume char(F ) = p > 0.

• For exp(D) to make sense we need at least Dp = 0, but
then what we really apply is the truncated exponential

E(D) =

p−1∑
k=0

Dk/k !

• This is defined for any derivation D but it need not be
an automorphism, even when Dp = 0.

• In the theory of modular Lie algebras, this is good:
certain E(D) can be used to pass from some torus to
another torus with more desirable properties
(toral switching: [Winter 1969], [Block-Wilson 1982],
[Premet 1986/89]).
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What fails with the truncated exponential

We compute E(X ) · E(Y ),

1 Y Y 2

2!
Y 3

3! . . . . . . Y p−1

(p−1)!

X XY XY 2

2!
XY p−2

(p−2)!
XY p−1

(p−1)!
X 2

2!
X 2Y

2!
X 2Y p−3

2!(p−3)!
X 2Y p−2

2!(p−2)!
X 2Y p−1

2!(p−1)!

X 3

3!

...
... X p−3Y 2

(p−3)!2!
... X p−2Y

(p−2)!
X p−2Y 2

(p−2)!2!

...
X p−1

(p−1)!
X p−1Y
(p−1)!

X p−1Y 2

(p−1)!2! . . . . . . X p−1Y p−1

(p−1)!(p−1)!

and find

E(X ) · E(Y )− E(X + Y ) =

2p−2∑
k=p

p−1∑
i=k+1−p

X iY k−i

i!(k − i)!
.
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A closer look at the term of degree p

• The term with k = p in E(X ) · E(Y )− E(X + Y ) is

1
p!

p−1∑
i=1

(
p
i

)
X iY p−i =

(X + Y )p − X p − Y p

p!
.

• Modulo p it can also be written as

p−1∑
i=1

(−1)i

i
X iY p−i .
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The obstruction formula

• Setting X = D ⊗ id and Y = id⊗D yields the
obstruction formula

E(D)x ·E(D)y−E(D)(xy) =
2p−2∑
k=p

p−1∑
i=k+1−p

(Dix)(Dk−iy)
i!(k − i)!

,

for D any derivation of A, and x , y ∈ A.
• In particular, if p is odd and D(p+1)/2 = 0, then E(D) is

an automorphism of A.
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Example: A truncated polynomial ring

Example

If A = F [X ]/(X p) and D = d/dX , then Dp = 0, and

E(D)X k = (X + 1)k for 0 ≤ k < p.

Here X p = 0, but (X + 1)p = 1, and hence
E(D) is not an automorphism of A.

• However,

A = F1⊕ FX ⊕ · · · ⊕ FX p−1

is a Z-grading of A, and E(D) maps it to

A = F1⊕ F (X + 1)⊕ · · · ⊕ F (X + 1)p−1,

which is a (genuine) Z/pZ-grading of A.
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Why did E(D) turn a grading into another?

Lemma
If D is a derivation of A with Dp = 0, for x , y ∈ A we have

E(D)x · E(D)y − E(D)(xy) = E(D)

p−1∑
i=1

(−1)i

i
(Dix)(Dp−iy).

• The sum at the RHS equals the term with k = p of the
obstruction formula. That is the primary obstruction
cocycle

Sqp(D) =

p−1∑
i=1

Di

i!
^

Dp−i

(p − i)!
∈ Z 2(A,A)

which arises in Gerstenhaber’s deformation theory.
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Truncated exponentials and gradings

Theorem (grading switching with Dp = 0)

• Let A =
⊕

k Ak be a Z/mZ-grading of A;
• let D be a derivation of A, homogeneous of degree d,

with m | pd, such that Dp = 0.

Then
A =

⊕
k

E(D)Ak

is a Z/mZ-grading of A.

• In our example with A = F [X ]/(X p), its derivation
D = d/dX had degree −1, and A was graded over Z,
but then also over Z/mZ with m = p.

• Less trivial application: construction of gradings over a
group having elements of order p2.
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Two basic methods to produce gradings

• If D ∈ Der(A) and Aα =
⋃
i>0

ker
(
(D − α · id)i),

then A =
⊕

α∈F Aα is a grading over the additive group
of F (or a subgroup).

• With ψ ∈ Aut(A) in place of D we get a grading
A =

⊕
α∈F∗ Aα over the multiplicative group of F .

• Combining the two methods one can get gradings over
any f.g. abelian group with no elements of order p2.

• These methods alone are unable to produce genuine
Z/psZ-gradings with s > 1, which do occur in practice.

• ‘genuine’ means that the grading does not simply come
from a Z/mZ-grading with m = 0 or a larger power of p
by viewing the degrees modulo ps.
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Weakening the condition Dp = 0

• The Artin-Hasse exponential series

Ep(X ) = exp
(

X +
X p

p
+

X p2

p2 + · · ·
)

=
∞∏

i=0

exp
(

X pi

pi

)
has coefficients in the (rational) p-adic integers.

• For example, the term of degree p is (p−1)!+1
p! X p.

Lemma
There exist integers aij , with aij = 0 if p - i + j , such that
for D a nilpotent derivation of A, and for x , y ∈ A, we have

Ep(D)x · Ep(D)y − Ep(D)(xy) = Ep(D)
∑
i,j>0

aijDix · Djy .

• Proof: Ep(X ) · Ep(Y ) = Ep(X + Y ) ·
(
1 +

∑
aijX iY j) .
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Artin-Hasse exponentials and gradings

Theorem (grading switching for nilpotent D)

• Let A =
⊕

k Ak be a Z/mZ-grading of A;
• let D be a nilpotent derivation of A, homogeneous of

degree d, with m | pd.

Then
A =

⊕
k

Ep(D)Ak

is a Z/mZ-grading of A.

S. Mattarei
Artin-Hasse exponentials of derivations
J. Algebra 294 (2005), 1–18
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Application: gradings of a Zassenhaus algebra

• W (1 : n) =
⊕pn−2

i=−1 FEi , with

[Ei ,Ej ] =
((i+j+1

j

)
−
(i+j+1

i

))
Ei+j .

• Because [E−1,Ej ] = Ej−1 we have (ad E−1)
pn

= 0.

Theorem
W (1 : n) has a genuine Z/prZ-grading, for each 1 ≤ r ≤ n.

• Proof: Apply grading switching to A = W (1 : n) with the
Z-grading viewed modulo pr , and D = (ad E−1)

pr−1
.

Then Ep(D) maps that grading to a Z/prZ-grading.
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Application: a grading of a Block algebra

Theorem (M. Avitabile and SM, 2005)

The simple Lie algebra H(2;n;Φ(τ))(1) has a grading over a
finite cyclic group, for which

‘the corresponding infinite dimensional loop algebra
is a thin Lie algebra with certain properties.’

• The grading is produced from some known grading by
applying the Artin-Hasse exponential of a derivation D
which satisfies only D2p = 0.
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An approximate functional equation for Ep(X )

• If F (X ) ∈ 1 + XC[[X ]] satisfies F (X + Y ) = F (X )F (Y ),
then F (X ) = exp(cX ), for some c ∈ C.

• Recall that (Ep(X + Y ))−1Ep(X )Ep(Y ) has only terms
of total degree a multiple of p.

Theorem (SM, 2006)

Let F (X ) ∈ 1 + XFp[[X ]], such that (F (X + Y ))−1F (X )F (Y )
has only terms of total degree a multiple of p. Then

F (X ) = Ep(cX ) ·G(X p),

for some c ∈ Fp and G(X ) ∈ 1 + XFp[[X ]], where Ep(X ) is
the Artin-Hasse exponential.
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Motivation

• What follows appears in

M. Avitabile and S. Mattarei
Laguerre polynomials of derivations
Israel J. Math. 205 (2015), 109–126

• It finds one application (to thin Lie algebras) in

M. Avitabile and S. Mattarei
Nottingham Lie algebras with diamonds of finite
and infinite type
J. Lie Theory 24 (2014), 268–274

• There we need a cyclic grading of H(2;n;Φ(1)), an
Albert-Zassenhaus algebra, obtained from a standard
grading by grading switching with a derivation which is
not nilpotent.
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Laguerre polynomials

• The (generalized) Laguerre polynomial of degree n ≥ 0
and parameter α is

L(α)
n (X ) =

n∑
k=0

(
α+ n
n − k

)
(−X )k

k !
∈ Q[α,X ].

• In the classical setting, α ∈ R and > −1, and then∫ ∞
0

e−X Xα · L(α)
n (X )L(α)

m (X )dX = 0 iff n 6= m.

• Y = L(α)
n (X ) ∈ R[X ] satisfies the differential equation

XY ′′ + (α+ 1− X )Y ′ + nY = 0.
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Laguerre polynomials modulo p

Letting p be a prime and n = p − 1, we find

L(α)
p−1(X ) ≡ (1 − αp−1)

p−1∑
k=0

X k

(α+ k)(α+ k − 1) · · · (α+ 1)

modulo p, with its special case

L(0)
p−1(X ) ≡ E(X ) =

p−1∑
k=0

X k/k ! (mod p).
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A modular differential equation for L(α)
p−1(X )

X
d

dX
L(α)

p−1(X ) ≡ (X − α)L(α)
p−1(X ) + X p − (αp − α) (mod p)

• This is an analogue modulo p of the differential
equation exp′(X ) = exp(X ). For α = 0 it reads

XE ′(X ) ≡ XE(X ) + X p (mod p).

• Taking a further derivative we would get

XY ′′ + (α+ 1− X )Y ′ − Y ≡ 0 (mod p)

for Y = L(α)
p−1(X ), which is the classical differential

equation read modulo p.
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A modular functional equation for L(α)
p−1(X )

Now we turn the differential equation into an analogue of the
functional equation exp(X ) · exp(Y ) = exp(X + Y ).

Theorem
Let α, β,X ,Y be indeterminates, and consider the subring
R = Fp[α, β, ((α+ β)p−1 − 1)−1] of Fp(α, β). Then there
exists rational expressions ci(α, β) ∈ R such that

L(α)
p−1(X )L(β)

p−1(Y ) ≡ L(α+β)
p−1 (X + Y )·

·
(

c0(α, β) +

p−1∑
i=1

ci(α, β)X iY p−i
)

in R[X ,Y ], modulo the ideal generated by X p − (αp − α)
and Y p − (βp − β).
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Laguerre polynomials and gradings
(a model special case)

Theorem (grading switching with Dp2
= Dp)

• Let A =
⊕

k Ak be a Z/mZ-grading of A;
• let D ∈ Der(A), homogeneous of degree d, with m | pd,

such that Dp2
= Dp;

• let A =
⊕

a∈Fp
A(a) be the decomposition of A into

generalized eigenspaces for D;
• assuming Fpp ⊆ F, fix γ ∈ F with γp − γ = 1;
• let LD : A→ A be the linear map on A whose restriction

to A(a) coincides with L(aγ)
p−1(D).

Then A =
⊕

k LD(Ak ) is a Z/mZ-grading of A.
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Laguerre polynomials and gradings

Theorem (general grading switching)

• Let A =
⊕

k Ak be a Z/mZ-grading of A;
• let D ∈ Der(A), homogeneous of degree d, with m | pd,

such that Dpr
is diagonalizable over F ;

• let A =
⊕

ρ∈F A(ρ) be the decomposition of A into
generalized eigenspaces for D;

• assuming F large enough, there is a p-polynomial
g(T ) ∈ F [T ], such that g(D)p − g(D) = Dpr

;
set h(T ) =

∑r−1
i=1 T pi

;
• let LD : A→ A be the linear map on A whose restriction

to A(ρ) coincides with L((g(ρ)−h(D))
p−1 (D).

Then A =
⊕

k LD(Ak ) is a Z/mZ-grading of A.
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Comparison with toral switching

• On the subalgebra A(0) the map LD coincides with
(a variation of) the Artin-Hasse exponential.

• When specialising to the toral switching setting we
recover the formulas used there to map the old root
spaces to the new ones.

• Toral switching
• applies some E(ad x) to a torus T to get a new torus

(as the maximal torus in the centralizer of E(ad x)T ),
• and leaves to that the job of recovering the whole

grading as a root space decomposition;
• hence the grading group has exponent p.

• Grading switching
• produces the whole grading at the same time (over a

cyclic group, but this is not restrictive);
• applies to nonassociative algebras;
• is not restricted to gradings over groups of exponent p.
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