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Summary

A Skorokhod embedding is a stopping time of a stochastic process such that the stopped

process has a given distribution. We consider the problem of finding embeddings when

the underlying process is a Brownian motion in one dimension. We are interested in

solving the problem for distributions which are not centred. We begin by extending a

solution of Perkins from the centred case to any (not necessarily integrable) measure,

and demonstrate that this solution maintains a desirable optimality property concern-

ing the distributions of its maximum and minimum.

We then consider the problem of embedding integrable, but not necessarily centred

distributions. In the centred case there exists a natural condition on the class of

stopping times to determine which stopping times are ‘suitable’. In the non-centred

case we propose that the class of minimal stopping times is the correct class to consider.

We are able to provide simple necessary and sufficient conditions for a stopping time to

be minimal. We also demonstrate that the famous embedding of Azema and Yor can

be extended naturally to non-centred target distributions and maintains its optimality

properties in the class of minimal embeddings.

Finally we consider the case where the Brownian motion starts in a given distribution,

rather than just at a single point. We show that techniques of Chacon and Walsh

can be extended to the more general case where the means do not agree. In this new

setting we prove new equivalent conditions to minimality. We are able to give simple

graphical conditions for a stopping time constructed using the Chacon-Walsh technique

to be minimal. Further we show that there is a simple interpretation of several known

constructions in this framework — the Azema-Yor and Vallois embeddings.
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Chapter 1

Introduction

At the heart of the modern study of Probability theory lies — almost 100 years after

Wiener showed its existence — the Brownian motion. It remains one of those rare

mathematical objects which is simple enough to describe in a few lines, and yet on

closer inspection reveals myriad surprising properties and appears in many real world

applications, ranging from finance to biology and queuing theory. It is this connec-

tion with applications and the natural questions that arise from considering processes

evolving in time that really make the study of such processes a topic distinct from the

measure theory that forms the basis of the subject.

Our interest lies within one particular question related to the study of Brownian motion.

The question was one first posed by Skorokhod (1965) and has henceforth been known

as the Skorokhod Embedding problem:

Key Question. Suppose B is a one-dimensional Brownian motion and µ is a dis-

tribution on R. When can we find a stopping time T such that BT has distribution

µ?

1.1 Basic Solutions

It turns out that the problem is easy to solve, and we are able to give two easy solutions

to the problem immediately. In this introduction we shall leave the details out, and we

refer a curious reader to the Appendix for the calculations.

Example 1.1 (A Quick and Dirty solution). The Skorokhod embedding problem is
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solved by the stopping time

TQ = inf{t ≥ 1 : Bt = F−1(Φ(B1))}

where F is the cumulative distribution of µ and Φ the cumulative distribution of a

N(0, 1) random variable. It is easy to check that F−1(Φ(B1)) has the required distri-

bution.

Example 1.2 (Skorokhod’s solution). The second solution we present is the original

solution due to Skorokhod (1965). He makes the natural assumption that the target

distribution is centred. The embedding is defined to be

TS = inf{t ≥ 0 : Bt 6∈ [X,Y ]} (1.1)

where X and Y are random variables independent of B with a given joint law ν ∈

B(R × R) dependent on µ (see Proposition A.2).

So we have answered our original question and also shown that the solution is not

unique. This suggests a new question: in given situations when is a particular embed-

ding ‘better’, and why have I called the first embedding a ‘quick and dirty’ solution?

The key observation is the following: when the target distribution is centred with a

finite second moment we may calculate E(T ) for both embeddings. When we do this

we find that for the first example E(TQ) = ∞ (unless the target distribution is the

N (0, 1) distribution) while the second embedding has E(TS) = E(B2
TS

) < ∞. We will

see shortly that in some of the key applications of Skorokhod embeddings it will be

necessary to keep ET small. So the next question we might ask is: can we find an

embedding of µ for which ET < E(B2
T )?

The answer to this question lies in the following Lemma (see also Section A.1.3 for a

proof):

Lemma 1.3 (Wald’s Lemma). If T is a stopping time of a Brownian motion (Bt)t≥0

with B0 = 0 such that ET <∞ then

(i) EBT = 0;

(ii) EB2
T = ET .

So we can’t do any better than E(B2
T ), we can only do a lot worse! In fact, as a

consequence of the lemma we can conclude that ET < ∞ if and only if the process

Bt∧T is a L2-martingale.
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Much of the subsequent work will be primarily concerned with the consequences of

relaxing the conditions on µ. The case where µ is centred and in L2 is closely related

to the study of L2-martingales, and when we drop the assumption that µ ∈ L2 naturally

we can no longer find a suitable martingale. However for centred target distributions

we can relax the criterion to: Bt∧T is a UI martingale. We will often call such an

embedding a UI embedding. For the embedding to be UI we must therefore have

EBT = 0. This acts in much the same way as the condition ET < ∞ and will be

satisfied by TS but not in general by TQ. This is a partial improvement, but still leaves

us with the following question:

Key Question. Let µ be any probability measure on R. Can we find a general class

of embeddings which includes ‘nice’ stopping times such as Example 1.2 but excludes

‘nasty’ examples like Example 1.1?

We note that the embedding of Example 1.1 will work for any probability measure µ,

and in fact it can be generalised easily (using an independent random variable with

distribution µ) to work for any recurrent process on any space. The embedding of

Example 1.2 can also be generalised for Brownian motion by allowing X or Y to take

the value ∞.

1.2 Further Questions

The main emphasis in this work shall be examining the embedding problem when

we consider general target laws. Historically the emphasis in solving the embedding

problem has been in two different directions. We will give a brief description here of

some of the work carried out in these two directions; a more detailed survey of the

literature can be found in the survey paper, Ob lój (2004b).

1.2.1 Optimal Embeddings

In addition to the embedding of Skorokhod (1965) there are many examples of embed-

dings for centred target distributions where the process remains UI. Consequently an

interesting question is which embeddings have further maximal or minimal properties.

We now list some of these embeddings and their properties:

• Root (1969): based on the construction of barriers, this stopping time minimises

ET 2 but is difficult to apply to concrete examples.
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• Chacon and Walsh (1976): a construction which generalises Dubins (1968) using

techniques from potential theory; we shall look at this construction in more detail

in Chapter 4.

• Azéma and Yor (1979a): much studied, this embedding has the property that it

maximises the law of the maximum among the class of UI embeddings; again we

shall return to the study of this process in Chapters 3 and 4.

• Vallois (1983): based on the local time, two similar constructions maximise and

minimise the distribution of the local time at zero.

• Perkins (1986): an embedding that has the surprising property that it simultane-

ously maximises the distribution of the minimum, and minimises the distribution

of the maximum; this embedding will form the basis of the work in Chapter 2.

As well as the above embeddings there are many further constructions which build

on these (Jacka, 1988; Bass, 1983; Roynette et al., 2002; Hobson, 1998a; Brown et al.,

2001a) or provide different approaches to the same embeddings (Azéma and Yor, 1979b;

Pierre, 1980; Rogers, 1981; Meilijson, 1983).

1.2.2 Process Generalisations

Another natural direction in which to extend the questions is to consider the same

problem for more general processes. Consider the problem of embedding a distribution

on some space E into a Markov process on the same space. Immediately this introduces

a new complication: consider the problem of embedding a point mass at some non-zero

point of R2 into a Brownian motion in R2; the process will almost surely avoid the point

and we cannot find a finite stopping time which embeds. So in the more general case

we must first ask the question of when can we embed. This was the question asked by

Rost (1971) who used potential theoretic results to show that there exists a stopping

time embedding µ in the process (Xt)t≥0 with X0 ∼ µ0 if and only if

Uµ ≤ Uµ0,

where U is the potential kernel of X. In this full generality very few explicit embeddings

exist, although Bertoin and Le Jan (1992) show that when X is a Hunt process1 starting

from a regular, recurrent point, we can construct an embedding which minimises E(AT )

1A Hunt process is a standard process which is quasi-left-continuous on [0,∞); a special case is a
Lévy process.
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for any positive continuous additive functional. More recently Ob lój and Yor (2004)

have constructed an embedding — based on the local time — of a functional of the

process, where the process can be from a general class of processes which include for

example the Azema martingale.

Further work has considered n-dimensional Brownian motion (Heath, 1974), and several

authors have considered (time-homogeneous) diffusions (Grandits and Falkner, 2000;

Pedersen and Peskir, 2001; Hambly et al., 2003); as we shall see, this is an example

which has close connections with the Brownian case through the technique of scale-

change, and in particular to the case where the target distribution is not centred, and

possibly not integrable. We shall study this technique in more detain in Section 2.3.

1.3 Applications

1.3.1 Donsker’s Invariance Principle

One of the key applications of solutions to the Skorokhod embedding problem is to

prove the following theorem:

Theorem 1.4 (Donsker’s Invariance Principle). Let Sn be a simple random walk with

a centred step distribution µ of variance 1. Define

S
(n)
t = n1/2

[(

t−
k

n

)

Sk+1 +

(

k + 1

n
− t

)

Sk

]

,
k

n
≤ t ≤

k + 1

n
.

Then the processes (S
(n)
t )0≤t≤1 converge weakly to Brownian motion (Bt)0≤t≤1 as n→

∞ on the space C[0, 1] of continuous functions on [0, 1].

A proof of this result is to construct a sequence 0 ≤ T1 ≤ T2 ≤ . . . of stopping times

such that T1 is an embedding of µ in a Brownian motion B̃t with ET1 = 1, T2 − T1 is

an embedding of µ in (B̃T1+t − B̃T1) with ET2 = 2, and so on. Since ETn = n (and this

is crucial) in the limit it is possible to show we have the desired convergence.

Further work in this direction includes a result on the speed of the above convergence

(Strassen, 1967), and showing that in fact any local semimartingale is a time change of

a Brownian motion, and that these are the only possible time changes (Monroe, 1978).
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1.3.2 Optimal Stopping Theory

Let φ be a increasing, continuous function and c a continuous function and define

Bt = sups≤tBt. Then we look to maximise

VT = E

(

φ(BT ) −

∫ T

0
c(Bs) ds

)

(1.2)

over all stopping times for which

E

(

φ(BT ) +

∫ T

0
c(Bs) ds

)

<∞.

This problem was solved originally by Dubins and Schwarz (1988) when φ(x) = x and

c(x) = c > 0; their solution is based on the embedding of Azéma and Yor (1979a). The

solutions when more general functions are considered have been investigated in Peskir

(1998, 1999); Meilijson (2003); Ob lój (2004a), where the solutions are shown (when

they are unique) to be the Azema-Yor stopping time for target distributions dependent

on the functions φ and c. Also examined by some of these authors is the question: for

a given µ, what pairs of functions φ, c have a solution to (1.2) where the optimal T is

an embedding of µ? Again the Azema-Yor solution is of importance in answering this

question.

1.3.3 Finance

In mathematical finance asset prices are commonly modelled as a stochastic process

and lack of arbitrage conditions suggest that the (discounted) underlying process is

a martingale under what is known as the risk-neutral measure. Commonly traded

products in the financial markets are European calls, which are contracts based on an

underlying asset (St)t≥0. A European call is a contract that entitles the holder to buy

the underlying asset at a price K at some fixed future time T0. Mathematically the

payout of such a contract at time T0 can then be written (ST0 − K)+. We can then

price this contract (assuming zero interest rates) as

C(K,T0) = EQ(ST0 −K)+.

When the behaviour of the asset is known (under Q) we can calculate C(K,T0).

In a similar manner, more complicated derivatives can be priced, an example of this

being the lookback option which will pay supt≤T0
St at time T0. When the model of the
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underlying is unknown, but can be assumed to be a continuous martingale (under the

risk-neutral measure), Skorokhod embeddings give a method for pricing the lookback

option, under the assumption that the call prices C(K,T0) are known for all strike

prices. The idea is that there is some time change under which the underlying is a

Brownian motion, and the time T0 is transformed to some stopping time T of the

Brownian motion. The distribution of the process at this time is determined by the

call prices. The problem of finding suitable processes is related to finding a stopping

time embedding the determined distribution. If, for example, we can find the maximal

distribution of the maximum, then this will provide an upper bound on the price

of a lookback option. This is precisely the technique used in Hobson (1998b) and

subsequently extended in Brown et al. (2001b) (where knowledge of strike prices at

an intermediate time is supposed) and Hobson and Pedersen (2002), which supposes

the stock starts in some given distribution. In general upper and lower bounds can be

given, together with hedging strategies to exploit any prices outside these ranges.

Further to these examples, Madan and Yor (2002) supposes that the call prices C(K, t)

are known both for all strikes and all times thus determining the marginal distributions

of the underlying processes. They then show that solutions to the Skorokhod embedding

problem can be used to construct (non-unique) processes which meet these marginals.

A further connection to finance can be seen in Cox and Hobson (2004a), where assets

with a pricing bubble are considered. As well as using the above ideas in pricing options

where the underlying process has a financial bubble, it turns out that a key idea in

establishing tradable portfolios is to demand (under the risk-neutral measure)

xQ( inf
t≤T

Vt ≤ −x) → 0

as x → ∞, where Vt is the value of the portfolio at time t and T is the terminal date

of the economy. We will later see that this condition has related interpretations in the

theory of embeddings.

1.4 An Overview of the Subsequent Material

The material in this thesis is substantially concerned with embedding in Brownian

motion and the following question:

Key Question. Let µ be any probability measure on R. Can we find a general class

of embeddings which includes ‘nice’ stopping times such as Example 1.2 but excludes

13



‘nasty’ examples like Example 1.1?

1.4.1 Chapter 2: The Minimax-Maximin Solution

We begin by examining an embedding of Perkins (1986). He shows that, given a

centred, integrable target distribution µ we are able to construct functions γ+, γ− such

that the stopping time

TP = inf{t > 0 : Bt 6∈ (−γ+(Bt), γ−(−Bt))}

is an embedding. Here we have defined the supremum and infimum processes of B:

Bt = sup
s≤t

Bt;

Bt = inf
s≤t

Bt.

The remarkable property of this embedding is that it simultaneously minimises

P(BT ≥ x)

and maximises

P(BT ≥ −x)

over all x ≥ 0 and all embeddings T of µ. We begin by showing that we can extend

these results to all (not necessarily integrable) target measures.

We then discuss a related problem: given a regular, time-homogeneous diffusion on

an interval I ⊆ R there exists a scale function s(x) which is a function mapping the

diffusion to a local martingale, and therefore a time-change of a Brownian motion. We

might ask when are we able to construct an embedding of the diffusion for a particular

target distribution, and via a scale change this essentially becomes a question of finding

an embedding of the new local martingale under certain extra conditions. We show

how this can be done using the method of scale change, and how the embedding we

use fits nicely with this technique.

Finally we consider the problem of finding Hp-embeddings. An embedding T (or its

associated process Xt∧T ) is an Hp-embedding if and only if

E(sup
t≤T

|Xt|
p) <∞.

14



The stopping times we introduce minimise the law of supt≤T |Xt|
p, and therefore if

there exists an Hp-embedding for the distribution µ, the minimax solution will be

such a solution. This is a question that has been considered by Perkins (1986) for the

centred, Brownian case, who shows that for p > 1 the embedding is in Hp if and only

if µ ∈ Lp; the case where p = 1 is more subtle and the embedding is in Hp if and only

if
∫ ∞

0
y−1

∣

∣

∣

∣

∫ ∞

−∞
x1{|x|≥y} µ(dx)

∣

∣

∣

∣

<∞.

We consider the problem of the existence of Hp-embeddings for diffusions and give

necessary and sufficient conditions on the diffusion and the target law for the existence

of Hp-embeddings. Under certain additional assumptions we are able to give simple

and often equivalent conditions.

1.4.2 Chapter 3: Minimality and Azema-Yor Type Embeddings

In this chapter we are again interested in the problem of embedding non-centred target

distributions. However in this section we consider a slightly different optimality condi-

tion. Instead of trying to minimise the distribution of the maximum we now consider

the problem of maximising this distribution. Of course in the general case this problem

is degenerate: we can ensure that

P(BT ≥ x) = 1

for any x simply by considering stopping times of the form ‘wait until the process hits

x, wait until it returns to 0 and then use any desired embedding.’ Clearly we cannot

attain equality for all x since T <∞ a.s..

In the Brownian case, with a centred target distribution, this issue is resolved by con-

sidering only stopping times for which Bt∧T is UI. Then the solution to the problem

is given by the embedding of Azéma and Yor (1979a,b). This is the embedding con-

structed using the barycentre function:

Ψ(x) =







1
µ([x,∞))

∫

{u≥x} uµ(du) µ([x,∞)) > 0

x µ([x,∞)) = 0.

Then the Azema-Yor stopping time is defined to be:

TAY := inf{t > 0 : Bt ≥ Ψ(Bt)},
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which maximises P(BT ≥ x) for all x ≥ 0 over the class of embeddings which are UI.

When we consider the problem of embeddings with non-centred target distributions,

in order to make the question sensible we need to find a natural class of embeddings

which rules out pathological examples. One constraint suggested in Pedersen and Peskir

(2001) is to consider only stopping times for which E(BT ) < ∞; however this seems

unnatural in this context — we could be ruling out stopping times simply because they

are too good! Instead we suggest the following concept originally proposed by Monroe

(1972).

Definition 1.5. A stopping time T for the process X is minimal if whenever S ≤ T is

a stopping time such that XS and XT have the same distribution then S = T a.s..

One of the key results concerning minimal embeddings in Monroe (1972) is that — in

the case where the target distribution is centred — an embedding is minimal if and

only if it is UI. We show that minimal embeddings in the more general situation of non-

centred (but still integrable) target distributions have the properties we desire: that is,

we can find an extension to the Azema-Yor stopping time which is itself minimal and

maximises the maximum among the class of minimal stopping times. Further we show

similarly that the embedding of Jacka (1988) can be extended to allow the construction

of stopping times that maximise the distribution of supt≤T h(Bt) for any function h.

We also consider again the implications of minimal embeddings for diffusions. If we

consider the embedding to be a scale change of a Brownian motion, when the diffusion

is transient and solutions exist there is a one-to-one correspondence between embed-

dings of the diffusions and minimal embeddings in the Brownian scale. The techniques

established in the Brownian case are then easily extended to the diffusion case — one of

the nice properties of minimality being that it is unaltered by scale change techniques.

Also included in this chapter is a partially constructive proof that minimal stopping

times exist; this compares with a non-constructive proof due to Monroe (1972).

1.4.3 Chapter 4: Generalised Starting Distributions and the Chacon-

Walsh Construction

Finally we consider a further generalisation of the problem: we suppose in this section

that the Brownian motion starts in some distribution µ0. Then we can ask when is

an embedding minimal. The conditions given previously are no longer sufficient, as

can be seen by the following example. Consider starting with mass divided equally
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between −1 and 1, and with stopping distribution consisting of a unit mass at 0; both

distributions are centred, and it is clear that the only minimal embedding is to stop

the first time the process hits 0, yet this is not a UI stopping time. Clearly we have to

refine the conditions of Chapter 3.

It will turn out that necessary and sufficient conditions to be minimal in this setting

are closely related to the ‘potential’ of the measures. For the purposes of this work we

define the potential of a measure to be

uµ(x) = −

∫

|y − x|µ(dx).

Using these functions we are able to specify intervals on which a minimal process will

remain, and its behavior on these intervals is also specified.

The potential functions are known to play an important role in the embedding of

centred target distributions, and Chacon and Walsh (1976) provides a construction

of an embedding in the case where uµ0(x) ≥ uµ(x) for all x ∈ R. We extend their

construction to allow it to be used in the general case, using our results on minimality

to give a simple way of determining whether a stopping time constructed using these

techniques is indeed minimal.

Finally we show that by taking limits in the new construction some of the classical

embeddings, such as the Azema-Yor embedding and the Vallois embedding, can be

constructed. This has several advantages: it allows extensions of the constructions

to be generated easily; it allows us to deduce that the embeddings are minimal; for

some embeddings, such as the Azema-Yor embedding, we are able to prove optimality

properties among the class of minimal embeddings.
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Chapter 2

The Minimax-Maximin Solution

and Applications to Diffusions

(This work has appeared in Cox and Hobson (2004b))

In this Chapter we extend the embedding first described in Perkins (1986) to the case

where the target distribution is not centred or even integrable. We are also able to

show that the embedding inherits the optimality properties of the original embedding.

In this context it is natural to consider the problem of embedding in time-homogeneous

diffusions. Via the method of scale change this can be related to the Brownian case,

and when the extended Perkins embedding is used for the Brownian scale-change, the

diffusion inherits the optimality properties of the Brownian case. This allows us to

address further questions of interest, including the existence of Hp-embeddings for a

given diffusion and target distribution.
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2.1 Introduction

We begin this chapter by considering the embedding problem for a continuous local

martingale (Mt)t≥0 on R, vanishing at 0. When the quadratic variation 〈M〉∞ = ∞

a.s. we show that we are able to extend the embedding of Perkins from the case where

the target distribution is centred to the general case where there are no restrictions on

the distribution. We are also able to show that the embedding is optimal in the sense

that for any embedding T and x ≥ 0

P(MT ≥ x) ≥ P(MTP
≥ x);

P(MT ≥ −x) ≤ P(MTP
≥ −x),

where TP is the (extended) Perkins embedding and

M t = sup
s≤t

Ms; (2.1)

M t = inf
s≤t

Ms. (2.2)

This property has the additional consequence that the stopping time TP is minimal (see

Definition 1.5 and further discussion in Chapters 3 and 4), since any other embedding

must be larger than TP on some set of positive probability.

The second purpose of this chapter is to consider the embedding of µ in a one-

dimensional diffusion. The main technique is to use a change of scale to reduce the

problem to the local-martingale case, and under this transformation it is completely

natural for the target measure to have non-zero mean in the local-martingale (or Brow-

nian) scale. We will see that our embedding is a natural one to use in this situation,

and we are able to identify the cases where it is possible to embed a given target distri-

bution, thus rederiving a result in Pedersen and Peskir (2001). We also identify some

properties of the maximum and minimum of the processes in these cases. Our results in

this direction can be seen as an extension of the results in Grandits and Falkner (2000)

(for drifting Brownian motion) and Pedersen and Peskir (2001). In this last paper

the authors use an extension of the Azema-Yor embedding which may not be defined

in certain cases of interest. Thus our construction of a Skorokhod embedding is both

different to, and more general than, the embedding in Pedersen and Peskir (2001).

Finally we use the optimal properties of the embedding, together with the scale change

techniques to deduce when it is possible to construct a Hp-embedding, i.e. given a

diffusion process Y and a target law ν when does there exists a stopping time T such
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that YT ∼ ν and E supt |Yt∧T |
p <∞. While the construction gives us explicit formulae

for the distribution of the maxima and minima, these are often difficult to calculate,

and in some cases we are able to give conditions which are simpler to verify.

2.2 Embedding a General Target Measure in Brownian

Motion

Consider first the problem of embedding a target distribution µ in a one-dimensional

local martingale (Mt)t≥0, M0 = 0 a.s.. We make no assumptions on µ other than

that µ(R) = 1, and that µ has no atom at 0. In fact this second assumption can be

avoided by stopping immediately according to some independent randomisation with

suitable probability, and then using the construction to embed the remaining mass of

µ, conditional on not stopping at 0. Clearly such a construction is necessary in any

stopping time that will minimise the maximum, and maximise the minimum.

For a general local martingale the above conditions are not sufficient to ensure that an

embedding exists. However a sufficient condition for the existence of an embedding for

any µ is that our local martingale almost surely has infinite quadratic variation. Since

any local martingale is simply a time change of Brownian motion, this just ensures that

our time change does not stall.

We begin by defining a series of functions. Let

κ(x) =







∫

{u≥0}(x ∧ u)µ(du) : x ≥ 0;
∫

{u<0}(|x| ∧ |u|)µ(du) : x < 0.
(2.3)

Then κ(x) is increasing and concave on {x ≥ 0}, decreasing and concave on {x ≤ 0}

and continuous on R (see Figures 2-1 and 2-2). It is also differentiable Lebesgue-almost-

everywhere and:

κ′(x)+ =







µ((x,∞)) : x ≥ 0;

−µ((−∞, x]) : x < 0;
(2.4)

κ′(x)− =







µ([x,∞)) : x > 0;

−µ((−∞, x)) : x ≤ 0,
(2.5)

where κ′(x)−, κ
′(x)+ are the left and right derivatives respectively. In particular,

the points at which κ(x) is not differentiable are precisely the atoms of out target

distribution. We also note that κ(∞) < ∞ if and only if our target distribution
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satisfies
∫

{x≥0} xµ(dx) < ∞, when κ(∞) =
∫

{x≥0} xµ(dx), and similarly κ(−∞) =
∫

u<0 |u|µ(du) when this is finite. Finally, we have κ(∞) = κ(−∞) < ∞ if and only if

µ ∈ L1 and µ is centred.

For λ > 0, define the following quantities:

γ+(λ) = argmin
x>0

{

κ(λ) − κ(−x)

λ− (−x)

}

, (2.6)

γ−(λ) = argmax
x>0

{

κ(x) − κ(−λ)

x− (−λ)

}

, (2.7)

θ+(λ) = − inf
x>0

{

κ(λ) − κ(−x)

λ− (−x)

}

, (2.8)

θ−(λ) = sup
x>0

{

κ(x) − κ(−λ)

x− (−λ)

}

, (2.9)

µ+(λ) = θ+(λ) + µ([λ,∞)),

= −
κ(λ) − κ(−γ+(λ))

λ− (−γ+(λ))
+ κ′(λ)−, (2.10)

µ−(λ) = µ((−∞,−λ]) + θ−(λ),

= −κ′(−λ)+ +
κ(γ−(λ)) − κ(−λ)

γ−(λ) − (−λ)
, (2.11)

where argminx f(x) is the value of x which minimises the function f and argmaxx f(x) is

the value which maximises the function f . If the minimising (respectively maximising)

x in (2.6) (resp. (2.7)) is not unique then we take the smallest such x. If there is no

minimising x, then the function we are minimising is decreasing (resp. increasing) as

x → ∞, and we define γ+(λ) = ∞ (resp. γ−(λ) = ∞). In this case we also define

θ+(λ) = 0 (resp. θ−(λ) = 0).

Remark 2.1. Although we have given formal definitions these quantities are best

described pictorially. Given λ > 0, we consider points (y, κ(y)) for y < 0 and more

specifically the line segment joining (y, κ(y)) with (λ, κ(λ)). As y ranges over the

negative reals we let θ+(λ) be the steepest possible downward slope of this line segment,

and we let γ+(λ) be the absolute value of the x-coordinate of the point where this

maximum is attained. See Figures 2-1 and 2-2.

The quantities θ−(λ) and γ−(λ) are obtained by reflecting the picture. Alternatively,

if we define the measure µ̃((−∞, x]) = µ([−x,∞)) then we obtain a correspondence

between the pairs of definitions above — that is γµ
−(λ) = γµ̃

+(λ), θµ
−(λ) = θµ̃

+(λ) and

µ−(λ) = µ̃+(λ), with the obvious extension of the notation.

Remark 2.2. It is only possible to have γ+(λ) = ∞ when µ satisfies
∫

{x≥0} xµ(dx) >
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λ1−γ+(λ1) -λ2 γ−(λ2)

κ(x)

x

β

µ

Figure 2-1: κ(x) for a centred non-atomic measure. As |x| → ∞, κ(x) is asymptotic to
β, where β =

∫

{x≥0} xµ(dx).

∫

{x≤0} |x|µ(dx), as in Figure 2-2. If this is true, then γ+(λ) = ∞ for all λ such that

κ(λ) >
∫

{x≤0} |x|µ(dx) (and if the support of µ is not bounded below, also when

equality holds).

We take this opportunity to record some further relationships between the various

quantities defined in (2.6) to (2.11). It follows from (2.6) and (2.7) that for λ > 0:

−κ′(−γ+(λ))− ≤ θ+(λ) ≤ −κ′(−γ+(λ))+, (2.12)

κ′(γ−(λ))+ ≤ θ−(λ) ≤ κ′(γ−(λ))−, (2.13)

so there is equality in (2.12) or (2.13) when there is no atom of µ at −γ+(λ) or γ−(λ) re-

spectively. From Figure 2-2 it is clear that if there is an atom of µ at −γ+(λ) then κ has

a kink there, and −θ+(λ) is then the gradient of the line joining (−γ+(λ), κ(−γ+(λ)))

and (λ, κ(λ)). Further, for λ > 0 such that γ+(λ), γ−(λ) <∞, we have

κ(λ) = κ(−γ+(λ)) − (λ+ γ+(λ))θ+(λ), (2.14)

κ(−λ) = κ(γ−(λ)) − (λ+ γ−(λ))θ−(λ). (2.15)

Note that as a simple consequence of these equalities, κ(λ) ≤ κ(−γ+(λ)) and κ(−λ) ≤

κ(γ−(λ)).
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λ1−γ+(λ1) -λ2 γ−(λ2)

κ(x)

x

β

α

µ

Figure 2-2: κ(x) for a non-integrable measure with an atom at −γ+(λ1). As x → ∞,
κ(x) →

∫

{x≥0} xµ(dx) = ∞, while as x → −∞, κ(x) is asymptotic to the level β =

−
∫

{x≤0} xµ(dx), which for this example is taken to be finite. The point α is such that

κ(α) = β, and for all λ > α, γ+(λ) = ∞.

Remark 2.3. By considering Figures 2-1 and 2-2, we see that alternative definitions

for γ+(λ), γ−(λ), θ+(λ) and θ−(λ) are

γ+(λ) = − sup

{

x < 0 :
κ(λ) − κ(x)

λ− x
≤ κ′(x)+

}

, (2.16)

γ−(λ) = inf

{

x > 0 :
κ(x) − κ(−λ)

x− (−λ)
≥ κ′(x)−

}

, (2.17)

θ+(λ) = −
κ(λ) − κ(−γ+(λ))

λ− (−γ+(λ))
, (2.18)

θ−(λ) =
κ(γ−(λ)) − κ(−λ)

γ−(λ) − (−λ)
. (2.19)

As a result it is easy to see that, in the case where µ is centred, these quantities are

identical to the quantities defined in Perkins (1986), where the quantity q+(λ) defined

in Perkins (1986) satisfies θ+(λ) = q+(λ) + µ((−∞,−γ+(λ))).

Our first theorem shows that for any target measure µ there is an embedding which si-

multaneously stochastically maximises the distribution of the minimum, and minimises

the distribution of the maximum.
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Theorem 2.4. (i) Let (Mt)t≥0 be a continuous local martingale, vanishing at zero,

and let T be a stopping time such that MT ∼ µ. Then, for all λ ≥ 0, the following

hold:

P(MT ≥ λ) ≥ µ+(λ) (2.20)

P(−MT ≥ λ) ≥ µ−(λ) (2.21)

(ii) For a continuous local martingale, Mt, vanishing at zero and such that 〈M〉∞ =

∞ a. s., define the stopping time

T = inf{t > 0 : Mt 6∈ (−γ+(M t), γ−(−M t))}. (2.22)

Then the stopped process MT has distribution µ, and equality holds in (2.20) and

(2.21).

Remark 2.5. When µ is centred, the fact that the quantities γ+ and γ− agree with

those in Perkins (1986), and the fact that in this case T as defined in (2.22) is the

Perkins stopping time, means that we know that T embeds µ. Moreover we know that

T minimises the law of the maximum, and maximises the law of the minimum. These

results follow directly from Theorems 3.7 and 3.8 in Perkins (1986). The content of

Theorem 2.4 is that these results can be extended to any choice of µ.

Remark 2.6. We may think of θ+(λ) and θ−(λ) as probabilities, and in particular,

for the embedding defined in (2.22), θ+(λ) is the probability that our process stops

below −γ+(λ) but with a maximum above λ. If µ has no atom at −γ+(λ) then for

this construction the maximum will be above λ if and only if our final value is above λ

or below −γ+(λ). However if there is an atom at −γ+(λ), the process may stop there

without previously having reached λ. This event is represented graphically by the fact

that there are multiple tangents to κ at −γ+(λ). Also, when γ+(λ) = ∞ for some λ,

if the supremum of our process gets above λ before stopping then our stopping rule

becomes simply to wait until we reach some upper level, dependent on the infimum.

An alternative way to visualise the stopping time in (2.22) is shown in Figure 2-3. We

think of the process (−M t,M t), and define the stopping time to be the first time it

leaves the region defined via γ+ and γ− as shown.

The first half of the proof of Theorem 2.4 is a consequence of the following lemma.

Lemma 2.7. Let (Mt)t≥0 be a continuous local martingale. Suppose that M vanishes

at zero, M converges a.s., and that M∞ ∼ µ, for some probability measure µ on R.
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M t

−M t

γ−(−M t)

γ+(M t)

Figure 2-3: The path of the process in the (−M t,M t)-space. T is the first time this
process leaves the region.

Then, for λ > 0,

P(M∞ ≥ λ) ≥ µ+(λ), (2.23)

P(−M∞ ≥ λ) ≥ µ−(λ), (2.24)

where M∞ = supsMs, and M∞ = infsMs.

Proof. For x < 0 < λ, we define Hλ = inf{t > 0 : Mt = λ} where we take inf ∅ = ∞.

By examining on a case by case basis, we find that the following inequality holds:

1{M∞≥λ} ≥ 1{M∞≥λ} +
1

λ− x

[

MHλ
− (λ ∧M∞)1{M∞≥0} + (|M∞| ∧ |x|)1{M∞<0}

]

.

After taking expectations, this implies that

P(M∞ ≥ λ) ≥ κ′(λ)− +
1

λ− x
EMHλ

−
κ(λ) − κ(x)

λ− x
.

Now Mt∧Hλ
is a local martingale bounded above, and hence a submartingale, so

EMHλ
≥M0 = 0. Substituting this in the above equation, we get:

P(M∞ ≥ λ) ≥ κ′(λ)− −
κ(λ) − κ(x)

λ− x
,
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and since x is arbitrary,

P(M∞ ≥ λ) ≥ κ′(λ)− + sup
x<0

{

κ(x) − κ(λ)

λ− x

}

≥ µ([λ,∞)) + θ+(λ) = µ+(λ),

which is (2.23).

We may deduce (2.24) using the correspondence µ 7→ µ̃.

Remark 2.8. In particular, for equality to hold for fixed λ in the above, we must have

(i) if M∞ ≥ λ, either M∞ ≥ λ or M∞ ≤ −γ+(λ) a.s.,

(ii) if M∞ < λ, M∞ ≥ −γ+(λ) a.s.,

(iii) EMHλ
= 0, so that Mt∧Hλ

is a true martingale.

It can be seen that these will hold simultaneously for all λ in the case where the stopping

time is that given in Theorem 2.4, and that this is almost surely the only stopping time

where (2.23) and (2.24) hold.

Proof of Theorem 2.4. We apply Lemma 2.7 to the process (MT∧t)t≥0, which allows us

to deduce (2.20) and (2.21).

For the second part of the theorem recall that if µ is centred then the Theorem follows

from Theorems 3.7 and 3.8 in Perkins (1986). In the case when µ is not centred define

ξn
+ = inf

{

x : µ([x,∞)) ≤
1

2n

}

,

ξn
− = sup

{

x : µ((−∞, x]) ≤
1

2n

}

,

and, for n sufficiently large, consider a sequence of measures µn satisfying:

(i) µn((α, β)) = µ((α, β)), ξn
− < α ≤ β < ξn

+;

(ii) µn([ξn
−, ξ

n
+]) = µn([(−n) ∧ ξn

−, n ∨ ξn
+]) = n−1

n ;

(iii) µn({ξn
±}) ≤ µ({ξn

±});

(iv)
∫

xµn(dx) = 0;

(v)
∫

|x|µn(dx) <∞.
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M t

−M t

γµn

− (−M t)

γµn

+ (M t)

−ξ−

ξ+

n

n

γµ
−(−M t)

γµ
+(M t)

Figure 2-4: The path of the process in the (−M t,M t)-space, showing boundaries to
embed both µ and µn. We have shown here a possible choice of µn in the case where
ξ+ < n < (−ξ−).

We can construct such a sequence by redistributing the mass that lies in the tails of µ

as follows: each µn agrees with µ on the interval (ξn
−, ξ

n
+), and mass is placed at the

endpoints of this interval to satisfy (ii) and (iii) if there are atoms here; the remaining

mass is then placed outside the interval [(−n) ∧ ξn
−, n ∨ ξn

+] in such a way as to ensure

that (iv) and (v) hold.

For the rest of this section a superscript n will denote the fact that a quantity is

calculated relative to the measure µn.

Note that if we can construct µn in such a way that µn(R−) = µ(R−) then we find that

κn(x) ≡ κ(x) on [ξn
−, ξ

n
+]. However it is not possible to construct µn with this additional

property if µ(R−) = 0 or 1, and in that case we need a more general argument.

Suppose µn(R−) − µ(R−) = ψn for some number ψn ∈ (−1/2n, 1/2n). Then κn(x) =

κ(x)−ψnx for x ∈ [ξn
−, ξ

n
+]. If both λ and γ+(λ) lie in this interval then it is clear from

(2.6) that γn
+(λ) = γ+(λ). Conversely if γ+(λ) = ∞, then γn

+(λ) ≥ n. Similar results

hold for γn
−.

We define the stopping times associated with these measures,

T n := inf{t > 0 : Mt /∈ (−γn
+(M t), γ

n
−(−M t))},
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so that MT n ∼ µn. Note that if MT n ∈ [(−n) ∧ ξn
−, n ∨ ξn

+], then T = T n a. s.

(see Figure 2-4). However this implies that P(T = T n) → 1, since these intervals are

increasing to cover the whole of R. Together with the fact that µn([λ,∞)) → µ([λ,∞)),

we conclude that MT ∼ µ.

Finally, we need to show that our process attains equality in (2.20) and (2.21). Fix

λ > 0. We know that

P(MT n ≥ λ) = µn
+(λ) = µn([λ,∞)) + θn

+(λ)

and since P(T n = T ) ≥ (n − 1)/n, we have P(MT n ≥ λ) → P(MT ≥ λ). Moreover

µn([λ,∞)) → µ([λ,∞)) so that in order to prove

P(MT ≥ λ) = µ([λ,∞)) + θµ
+(λ) = µ+(λ), (2.25)

it is sufficient to show that θn
+(λ) → θµ

+(λ) as n → ∞. Now, when x ∈ [ξn
−, ξ

n
+], we

have κn(x) − κ(x) = ψnx and for x outside this range (κn)′ − κ′ ≤ 1/n. Hence

|κn(x) − κ(x)| ≤
|x|

n
,

for all x. As a corollary, for x < 0 < λ,

∣

∣

∣

∣

κn(λ) − κn(x)

λ− x
−
κ(λ) − κ(x)

λ− x

∣

∣

∣

∣

≤
1

n
,

from which it follows that

|θµn

+ (λ) − θµ
+(λ)| ≤

1

n
.

using the representation (2.18).

As before we can also show (2.21) holds by using the correspondence µ 7→ µ̃.

Example 2.9. We demonstrate the new embedding by constructing a stopping time

for a non-integrable, non-symmetric distribution. In this case we use a parametrised

Cauchy distribution to give positive and negative tails, with different parameters for

each tail.

We note that for a scaled Cauchy distribution on the half-line

∫ ∞

0

1

π(1 + (ax)2)
dx =

1

2a

28



−M t

M t

43.532.521.510.50
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3.5
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1.5

1

0.5

0

Figure 2-5: γ−(−M t) and γ+(M t) for the distribution f defined in (2.26) with a = 0.75
and b = 1.5.

and consider a distribution with density

f(x) =







1
π(1+(ax)2)

: x ≥ 0

1
π(1+(bx)2)

: x < 0
(2.26)

where 1
2a + 1

2b = 1. We note that neither tail of the distribution is integrable. We can

compute the function κ for this class of densities:

κ(y) =







ln(1+(ay)2)+(ay)(π−2 arctan(ay))
2πa2 : y ≥ 0;

ln(1+(by)2)−(by)(π−2 arctan(−by))
2πb2

: y < 0.

We can use this to find (computationally) the functions γ− and γ+. These are shown

in Figure 2-5. We observe that the functions move apart very rapidly, in contrast to

integrable, centered distributions where the functions would be expected to move closer

in the tails; this is partly a consequence of the fact that T is generally ‘very’ large.

2.3 Applications to Diffusions

We now work with the class of regular (time-homogeneous) diffusions (see Rogers and

Williams (2000b), V. 45) (Yt)t≥0 on an interval I ⊆ R, with absorbing or inaccessible
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endpoints, and vanishing at zero. The extension to reflecting endpoints is possible,

although we leave the extension of the theory to the reader. Consider the problem

of determining when and how we may embed a distribution ν on I◦ in the diffusion.

Since the diffusion is regular, there exists a continuous, strictly increasing scale function

s : I → R such that Mt = s(Yt) is a diffusion on natural scale on s(I). We may also

choose s such that s(0) = 0. In particular, Mt is (up to exit from the interior of s(I))

a time change of a Brownian motion, with strictly positive speed measure.

If we now define the measure µ on s(I) by

µ(A) = ν(s−1(A)), A ⊆ s(I), Borel,

then our problem is equivalent to that of embedding µ in a Brownian motion before

it leaves s(I)◦. This is because M is a local martingale on s(I)◦, and hence a time

change of a Brownian motion on s(I)◦, and if we construct a stopping time T such

that MT = s(YT ) ∼ µ, then YT ∼ ν. In this context it makes sense to consider ν

and µ as measures on R which place all their mass on I◦ and s(I)◦ respectively. Our

approach will be to use the embedding we established in Theorem 2.4 to embed µ in

the local martingale M , and our first step will be to transfer the framework of the

previous section to our new setting. This framework for embedding in diffusions was

first suggested in Azéma and Yor (1979b).

An advantage of using the embedding we established in Section 2.2 in this situation

is that, because we have a strictly increasing scale function, the properties of the

maximum and the minimum are preserved. In particular, this transformed stopping

time will maximise the distribution of the minimum, and minimise the distribution

of the maximum of the process (YT∧t) among all stopping times of Yt with YT ∼ ν.

It is also important to have an embedding which works when the mean of the target

distribution is non-zero, since under the scale change transition described above the

properties of the target distribution will be altered — it is perfectly natural for a target

distribution not to be centred or even integrable under this transformation.

The first question that it is necessary to ask is: when is it possible to embed a given

target law? This is exactly the question considered by Rost (1971) using potentials,

but we want a more direct criterion. In the diffusion case it is no longer possible to

embed all target laws, as can be witnessed by considering the problem of embedding

unit mass at −1 in Brownian motion with positive drift. The result we need was first

proved in Pedersen and Peskir (2001).

Lemma 2.10 (Pedersen and Peskir (2001), Theorem 2.1). There are three different
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cases:

(i) s(I)◦ = R, in which case the diffusion is recurrent, and we can embed any distri-

bution ν on I◦ in Y .

(ii) s(I)◦ = (−∞, α) (respectively (α,∞)) for some α ∈ R. Then we may embed ν in

Y if and only if m =
∫

I s(y) ν(dy) exists, and m ≥ 0 (resp. m ≤ 0).

(iii) s(I)◦ = (α, β), α, β ∈ R. Then we may embed ν in Y if and only if m = 0.

The statement of the result in Pedersen and Peskir (2001) has the additional assumption

in Case (i) that
∫

I |s(y)| ν(dy) <∞. This can be dropped since in Case (i) the diffusion

is recurrent so that either the ‘Quick and Dirty’ stopping time defined the introduction,

or the extension of the Perkins embedding we introduced in the previous section, can

be used to embed µ.

For the precise details of the proof of Lemma 2.10 we refer the reader to Pedersen

and Peskir (2001). However we can provide a sketch of the proof using the modified

Perkins embedding. For t less than the first exit time of the diffusion from the interior

of s(I) we have Mt = s(Yt) = Bτt for some time-change τ and Brownian motion B.

If 〈M〉∞ = τ∞ < ∞ we may extend the time domain on which Bτt is defined to all

positive times by continuing the Brownian motion beyond τ∞. In this way we may drop

the assumption of Theorem 2.4 that the process Mt has infinite variation. We deduce

that we may embed our distribution on s(I)◦ if and only if, when we consider the

problem of embedding µ in Brownian motion, our process remains on s(I)◦. However

the transformed target distribution has support concentrated only on this interval, so

when we consider the stopping time T defined in (2.22) and the form of γ+(λ) and

γ−(λ) in the martingale scale, we see that problems can only occur if γ+(λ) = ∞ or

γ−(λ) = ∞ for some λ. Further examination shows that this is only possible when µ is

not integrable, or not centred — see Remark 2.2 — and the three cases of Lemma 2.10

all follow.

Our aim in the remainder of this section is to look at some of the properties of the

construction, and of embeddings in general. Our principal question is (c.f. Perkins

(1986) and Jacka (1988), where the law of sup |Yt| in the Brownian case with centred

target distribution is considered),

given a diffusion Yt, and a law ν, when does there exists an embedding for

which the law of the maximum modulus of the process, supt |YT∧t|, lies in

the space Lp of random variables with finite pth moment?

31



Before answering this question we show how the results of the previous section can be

used to define an embedding of a target law in a diffusion.

Given ν and (Yt)t≥0 define µ and M = s(Y ) as above. As before, for M on s(I) we can

define

κM (x) =







∫

{u≥0}(x ∧ u)µ(du) : x ≥ 0;
∫

{u<0}(|x| ∧ |u|)µ(du) : x < 0,

together with the quantities defined in (2.6)–(2.11). Write

κY (y) = κM (s(y)) =







∫

{w≥0}(s(y) ∧ s(w)) ν(dw) : y ≥ 0;
∫

{w<0}(|s(y)| ∧ |s(w)|) ν(dw) : y < 0.

and, for z > 0, define the quantities:

ρ+(z) = argmin
y>0

{

κY (z) − κY (−y)

s(z) − s(−y)

}

, (2.27)

ρ−(z) = argmax
y>0

{

κY (y) − κY (−z)

s(y) − s(−z)

}

, (2.28)

ζ+(z) = − inf
y>0

{

κY (z) − κY (−y)

s(z) − s(−y)

}

, (2.29)

ζ−(z) = sup
y>0

{

κY (y) − κY (−z)

s(y) − s(−z)

}

, (2.30)

ν+(z) = ζ+(z) + ν([z,∞)), (2.31)

ν−(z) = ν((−∞,−z]) + ζ−(z). (2.32)

By convention, if ρ+(z) or ρ−(z) is not uniquely defined then we take the smallest

solution.

Now define a stopping time for Yt by:

T = inf{t > 0 : Yt /∈ (−ρ+(Y t), ρ−(−Y t))} (2.33)

= inf{t > 0 : Mt /∈ (−γ+(M t), γ−(−M t))}.

The two alternative characterisations of T are equivalent because of the identities

s(−ρ+(z)) = −γ+(s(z)),

s(ρ−(z)) = γ−(−s(−z)).

We also have that ζ+(z) = θ+(s(z)), and ζ−(z) = θ−(−s(−z)). It follows that T embeds
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µ in (Mt)t≥0, and hence ν in (Yt)t≥0. Also ν+ and ν− are the laws of the supremum

and infimum respectively of YT∧t. Consequently we may restate Theorem 2.4 in the

diffusion context.

Theorem 2.11. Let (Yt)t≥0 be a regular, time-homogeneous diffusion, vanishing at

zero and with supremum process Y t and infimum process Y t, and let T be a stopping

time such that YT ∼ ν. Then, for all λ ≥ 0, the following hold:

P(Y T ≥ λ) ≥ ν+(λ), (2.34)

P(Y T ≤ −λ) ≥ ν−(λ). (2.35)

If there exists an embedding, the stopping time T defined in (2.33) is an embedding and

is optimal in the sense that it attains equality in (2.34) and (2.35).

We are interested in the measure ν∗ where ν∗ is the law of supt≤T |Yt|. Trivially, for

z ≥ 0,

max (ν+(z), ν−(z)) ≤ ν∗([z,∞)) ≤ ν+(z) + ν−(z), (2.36)

and it follows that ν∗ ∈ Lp if and only both ν+ and ν− are elements of Lp.

The next two lemmas give upper and lower bounds on ν+ and ν−. We give proofs in the

case of ν+; the corresponding results for ν− can be deduced using the transformation

µ 7→ µ̃.

Lemma 2.12. For all z > 0, we have

ν+(z) ≤
1

s(z)
[κY (−z) − κY (z) − |s(−z)|ν((−∞,−z])]+ 1{z>ρ+(z)}

+ ν({|y| ≥ z}), (2.37)

ν−(z) ≤
1

|s(−z)|
[κY (z) − κY (−z) − s(z)ν([z,∞))]+ 1{z>ρ−(z)}

+ ν({|y| ≥ z}). (2.38)

Proof. Suppose first that z > ρ+(z), or equivalently s(−z) < −γ+(s(z)). Then by the

concavity of κM on R−,

κM (−γ+(s(z))) − γ+(s(z))θ+(s(z)) ≤ κM (s(−z)) + s(−z)ν((−∞,−z]),

which translates to

κY (−ρ+(z)) + s(−ρ+(z))ζ+(z) ≤ κY (−z) + s(−z)ν((−∞,−z]).
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Substituting this inequality into (2.29) we deduce that

s(z)ζ+(z) = s(−ρ+(z))ζ+(z) + κY (−ρ+(z)) − κY (z)

≤ κY (−z) − κY (z) + s(−z)ν((−∞,−z]).

Conversely, if z ≤ ρ+(z), then

ζ+(z) ≤ ν((−∞,−ρ+(z)]) ≤ ν((−∞,−z]).

Given that ν+(z) = ν([z,∞)) + ζ+(z), these two bounds lead directly to (2.37).

Lemma 2.13. For all z > 0, we have

ν+(z) ≥
[κY (−z) − κY (z)]+
s(z) + |s(−z)|

+ ν([z,∞)), (2.39)

ν−(z) ≥
[κY (z) − κY (−z)]+
s(z) + |s(−z)|

+ ν((−∞,−z]). (2.40)

Proof. By (2.29), for z > 0,

ζ+(z) ≥
κY (−z) − κY (z)

s(z) + |s(−z)|
.

Since also ζ+(z) ≥ 0 the result follows easily from the identity ν+(z) = ν([z,∞)) +

ζ+(z).

Corollary 2.14. For z > 0, we have:

(

1

s(z)
+

1

|s(−z)|

)

|κY (z) − κY (−z)| + 2ν({|y| ≥ z})

≥ ν+(z) + ν−(z) ≥
|κY (z) − κY (−z)|

s(z) + |s(−z)|
+ ν({|y| ≥ z}).

Let T ′ be an embedding of ν in Y . For p > 0 we say this embedding is a Hp-embedding

if supt |Yt∧T ′ | is in Lp. We may ask when does there exist a solution of the Skorokhod

problem which is a Hp-embedding, and when is every (‘sensible’) solution of the Sko-

rokhod problem a Hp-embedding? In this thesis we are interested in the first of these

questions. By the extremality properties of our embedding T it is clear that there exists

a Hp-embedding if and only if T is a Hp-embedding.

Corollary 2.14 can be used to give necessary and sufficient conditions for ν∗ to be an

element of Lp. In particular, the following result follows easily from Corollary 2.14 and

34



(2.36).

Theorem 2.15. Let Yt be a regular diffusion and suppose that ν can be embedded in

Y . Consider the embedding T of ν given in (2.33). A sufficient condition for T to be

a Hp-embedding is that ν ∈ Lp and

∫ ∞

zp−1

(

1

s(z)
+

1

|s(−z)|

)

|κY (z) − κY (−z)| dz <∞. (2.41)

Necessary conditions are that ν ∈ Lp and

∫ ∞

0
zp−1 |κY (z) − κY (−z)|

s(z) + |s(−z)|
dz <∞. (2.42)

Remark 2.16. Note that in the symmetric case where s(z) = −s(−z) then (2.41) and

(2.42) are equivalent and Theorem 2.15 gives a necessary and sufficient condition for T

to be a Hp-embedding.

We return to the problem of the existence of a Hp-embedding in the next section, and

close this section with a further observation about the optimality of the embedding T .

Remark 2.17. Fix a measurable function f : R → R and let (Yt)t≥0 be a regular

diffusion with Y0 = 0 and ν a probability measure on R. Then the embedding defined

in (2.33) minimises the distribution of supt≥0 f(Yt∧T ′) over all stopping times T ′ such

that YT ′ ∼ ν.

In particular the minimising choice of stopping time does not depend on the function

f . This is in contrast with the problem of finding the Skorokhod embedding which

maximises the law of supt≥0 f(Yt∧T ′). In that case the optimal embedding will in

general depend on f .

2.4 H
p Embeddings for Diffusions.

Our goal in this section is to investigate further conditions on whether T is a Hp-

embedding in the cases when s(I)◦ = (−∞, α), (α,∞), (β, α) and R. The first two

cases are equivalent up to the map x 7→ −x and we consider them first.
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2.4.1 Diffusions Transient to +∞.

Theorem 2.18. Let Yt be a diffusion on I with scale function s(z), such that s(0) = 0,

supz∈I s(z) = α <∞, and infz∈I s(z) = −∞. We may embed a law ν in Y if and only

if
∫

I |s(z)| ν(dz) <∞ and m =
∫

I s(z) ν(dz) ≥ 0.

Under these conditions:

• if m > 0, then a necessary and sufficient condition for E supt |YT∧t|
p <∞ is that

∫ ∞ zp−1

|s(−z)|
dz <∞ and ν ∈ Lp; (2.43)

• if m = 0, this is also a sufficient condition. A necessary and sufficient condition

is:
∫ ∞ zp−1

|s(−z)|
|κY (z) − κY (−z)| dz <∞ and ν ∈ Lp. (2.44)

Proof. The first part of this Theorem is a restatement of Lemma 2.10(ii) (or equiva-

lently Pedersen and Peskir (2001)[Theorem 2.1]). For the second part assume m ≥ 0

where m =
∫∞
0 s(y) ν(dy) −

∫ 0
−∞ |s(y)| ν(dy). For z ≥ 0,

κY (−z) − κY (z) = −

∫

{y<−z}
|s(y)| ν(dy) +

∫

{y>z}
s(y) ν(dy) −m

+

∫

{y≤−z}
|s(−z)| ν(dy) −

∫

{y≥z}
s(z) ν(dy)

≤

∫

{y>z}
s(y) ν(dy) +

∫

{y≤−z}
|s(−z)| ν(dy),

so by Lemma 2.12,

ν+(z) ≤
1

s(z)
[κY (−z) − κY (z) − |s(−z)|ν((−∞,−z])]+ 1{z>ρ+(z)}

+ ν({|y| ≥ z})

≤

∫

{y>z}

s(y)

s(z)
ν(dy) + ν({|y| ≥ z})

≤
α

s(z)
ν({|y| ≥ z}).

Since α/s(z) < 2 for sufficiently large z it follows that ν ∈ Lp is a necessary and

sufficient condition for ν+ ∈ Lp.
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Now consider ν−(z). We note that given ε > 0, for sufficiently large z,

m− ε ≤ κY (z) − κY (−z) ≤ m+ ε,

and so by Lemma 2.12,

ν−(z) ≤
1

|s(−z)|
(m+ ε) + ν({|y| ≥ z}).

As a result (2.43) is a sufficient condition for ν− ∈ Lp when m ≥ 0.

Conversely, if m > 0 Lemma 2.13 implies that for sufficiently large z,

ν−(z) ≥
1

2|s(−z)|
(m− ε),

and so (2.43) is also necessary.

Now suppose m = 0. By (2.38),

ν−(z) ≤
1

|s(−z)|
[κY (z) − κY (−z)]+ + ν({|y| ≥ z})

so (2.44) is a sufficient condition for ν− ∈ Lp. By Corollary 2.14, for sufficiently large

z,

ν+(z) + ν−(z) ≥
|κY (z) − κY (−z)|

2|s(−z)|
+ ν({|y| ≥ z}).

If ν∗ ∈ Lp then both ν+ and ν− lie in Lp, and so (2.44) is a necessary condition.

Example 2.19 (Drifting Brownian Motion). Suppose Y is drifting Brownian motion

on R,

Yt = Bt + ϕt,

for t ≥ 0 and ϕ > 0. Then s(y) = 1−e−2ϕy is the scale function for Y , so supy s(y) = 1.

If
∫

R
s(y) ν(dy) < 0, then it is not possible to embed ν in Y . If

∫

R
s(y) ν(dy) ≥ 0, we

may embed ν in Y , and since

∫ ∞ yp−1

|s(−y)|
dy =

∫ ∞ yp−1

e2ϕy − 1
dy <∞,

if follows that if ν ∈ Lp, then supt |YT∧t| is too.

These conclusions should be compared with those in Grandits and Falkner (2000).
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Grandits and Falkner conclude that if Y is drifting Brownian motion, and if T ′ is any

embedding of an integrable target distribution ν in Y , then T ′ ∈ H1.

Example 2.20 (Bessel d Process). In Hambly et al. (2003) the authors consider a

Skorokhod embedding for the Bes(3) process. For d > 2 let Y solve

dYt = dBt +
d− 1

2Yt
dt, Y0 = 1.

Then I = (0,∞) and s(y) = −y2−d. We do not have Y0 = 0, nor s(0) = 0 but the modi-

fications to the theory are trivial. We can embed ν in Y if and only if
∫∞
0 y2−dν(dy) < 1.

Furthermore Y is only defined on the positive reals, so in deciding whether ν∗ ∈ Lp we

need only consider ν+. But, provided we may embed ν in Y , it follows from the proof

of Theorem 2.18 that a necessary and sufficient condition for ν+ ∈ Lp is ν ∈ Lp.

2.4.2 Recurrent Diffusions

The general case is covered by Theorem 2.15. If we have some control on the scale

function then we are able to make the results more explicit.

Theorem 2.21. Suppose for |y| ≥ 1 there exists k,K > 0 such that

k|y|r ≤ |s(y)| ≤ K|y|q, for some q ≥ r ≥ 0. (2.45)

Then for p > 0,

(i) if p > q,

m = 0 and ν ∈ Lp+q−r =⇒ ν∗ ∈ Lp =⇒ ν ∈ Lp and m = 0;

(ii) if p < r,

ν ∈ Lp+q−r =⇒ ν∗ ∈ Lp =⇒ ν ∈ Lp;

(iii) if r ≤ p ≤ q,

∫ ∞

1
yp−r−1|κY (y) − κY (−y)| dy <∞ and ν ∈ Lp (2.46)

=⇒ ν∗ ∈ Lp

=⇒ ν ∈ Lp and

∫ ∞

0
yp−q−1|κY (y) − κY (−y)| dy <∞. (2.47)
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In particular, if r = q, the three cases each become if and only if statements.

Remark 2.22. The case where the diffusion is in natural scale, so that s(y) = y, is

the case considered by Perkins (1986). Here the Cases (i) and (ii) are dealt with in his

introduction, while in Case (iii) he shows that ν ∈ L1, m = 0 and H(µ) <∞, where

H(µ) =

∫ ∞

0
y−1

∣

∣

∣

∣

∫ ∞

−∞
x1{|x|≥y} µ(dx)

∣

∣

∣

∣

dy,

are necessary and sufficient conditions for ν∗ ∈ L1. It is not hard to see that this

condition is equivalent to (2.47).

Proof. (i) Suppose p > q. If ν ∈ Lq then since |s(y)| ≤ K|y|q for |y| ≥ 1, we have
∫

|s(y)| ν(dy) <∞, so m exists.

Now suppose m = 0 and ν ∈ Lp+q−r. By Theorem 2.15 it is sufficient to show

∫ ∞

1
yp−1

(

1

s(y)
+

1

|s(−y)|

)

|κY (y) − κY (−y)| dy <∞.

For y > 0,

κY (y) − κY (−y)

=

∫

{|w|≤y}
s(w) ν(dw) +

∫

{w>y}
s(y) ν(dw) −

∫

{w<−y}
|s(−y)| ν(dw)

= −

∫

{|w|>y}
s(w) ν(dw) + s(y)ν({w > y}) − |s(−y)|ν({w < −y}),

where we have used the fact that m = 0. By assumption

(

1

s(y)
+

1

|s(−y)|

)

≤
2

kyr
, for y ≥ 1

so that

∫ ∞

1
yp−1

(

1

s(y)
+

1

|s(−y)|

)

|κY (y) − κY (−y)| dy

≤
2

k

∫ ∞

1
yp−r−1

[

Kyqν((y,∞)) +Kyqν((−∞,−y))

+

∫

{|w|>y}
|s(w)| ν(dw)

]

dy.

The first two terms in the bracket will be finite upon integration since ν ∈ Lp+q−r.
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Also, by Fubini,

∫ ∞

1
yp−r−1

[

∫

{w>y}
s(w) ν(dw)

]

dy =

∫

{w>1}

[∫ w

1
yp−r−1s(w) dy

]

ν(dw)

≤ K

∫

{w>1}

wq+p−r

p+ q − r
ν(dw) <∞.

We can show a similar result for the integral over {w < −1} and it follows that ν∗ ∈ Lp.

Now suppose that ν∗ ∈ Lp. Then clearly ν ∈ Lp, and

E sup
t

|s(YT∧t)| ≤ KE

(

sup
t

|YT∧t|
q + 1

)

≤ KE

(

sup
t

|YT∧t|
p

)

+K <∞.

Furthermore s(Yt) is a local martingale, so, since E supt |s(YT∧t)| <∞, s(YT∧t) is a UI

martingale, and hence

m = E (s(YT )) = 0.

(ii) Suppose now p < r, and ν ∈ Lp+q−r. Then as before, by Theorem 2.15 it is

sufficient to show

∫ ∞

1
yp−1

(

1

s(y)
+

1

|s(−y)|

)

|κY (y) − κY (−y)| dy <∞.

A simple inequality gives

|κY (y) − κY (−y)| ≤ κY (y) + κY (−y)

=

∫

{|w|≤y}
|s(w)| ν(dw) + s(y)ν({w > y}) + |s(−y)|ν({w < −y}),

and so

∫ ∞

1

(

1

s(y)
+

1

|s(−y)|

)

|κY (y) − κY (−y)| dy

≤
2

k

∫ ∞

1
yp−r−1

[

Kyqν({|w| > y}) +

∫

{|w|≤y}
|s(w)| ν(dy)

]

dy,
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where, as before, the first term is finite upon integration. For the final term

∫ ∞

1
yp−r−1

[

∫

{0<w≤y}
s(w) ν(dw)

]

dy

=

∫

{w>0}
s(w)

[∫ ∞

w∨1
yp−r−1 dy

]

ν(dw)

≤

∫

{w>0}

(w ∨ 1)p−r

r − p
s(w) ν(dw)

≤

∫ 1

0

s(w)

r − p
ν(dw) +

K

r − p

∫

{w>1}
wp+q−r ν(dw),

which is finite by assumption since ν ∈ Lp+q−r. The corresponding result also holds

over {w < 0}. So we have shown ν ∈ Lp+q−r =⇒ ν∗ ∈ Lp. The second implication

ν∗ ∈ Lp =⇒ ν ∈ Lp is clear.

(iii) This case is a trivial application of (2.45) to Theorem 2.15.

For the integral condition in (2.46) to hold, a necessary condition is that |κY (z) −

κY (−z)| → 0 as z → ∞. However this occurs if and only if m = 0, provided m exists.

So if m exists, if r = p = q and if ν ∈ Lp, then m = 0 is a necessary condition for

ν∗ ∈ Lp. We show in Example 2.23 that this condition is not sufficient.

Note that it is not necessary for m to exist for the integral condition in (2.42) to be

satisfied, and for ν∗ to be an element of Lp. For example, suppose that both the scale

function and the target measure are symmetric about 0, i.e. suppose s(z) = −s(−z)

and ν(dz) = ν(d(−z)). Then κY (z) = κY (−z) and (2.42) is trivially satisfied. If s and

ν are symmetric then ν∗ ∈ Lp if and only if ν ∈ Lp.

Example 2.23. We now consider a diffusion on R with behaviour specified by

dYt = 2
√

|Y |tdBt + δ sign(Yt)dt,

where Y0 = 0, and δ ∈ (0, 2). The solution to this SDE is not unique in law, but

we make it so by assuming the law of the process is symmetric about 0, and that the

process does not wait at 0. In particular, |Yt| is a Bessel process of dimension δ. Such

a process is recurrent, and we can construct the process Yt from |Yt| by assigning to

each excursion away from 0 an independent random variable with value either 1 or −1.

Alternatively we may define the process by its scale function

s(y) = (|y|1−
δ
2 ) sign(y),
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and write Yt = s(Wτt), for a Brownian motion Wt and a suitable time change τt. Since

(Yt)t≥0 is recurrent on R we may embed any target distribution.

We may apply Theorem 2.21 to this process for some target distribution ν and examine

the behaviour of supt |YT∧t|, for our embedding T . We note that, using the notation

of Theorem 2.21, r = q = 1 − δ
2 , so the statements in the theorem each become if and

only if statements. We can consider each case separately:

(i) In the case where p > 1 − δ
2 , ν ∈ Lp guarantees that m exists, and a necessary and

sufficient condition for supt |YT∧t| ∈ Lp is that m = 0.

(ii) If p < 1 − δ
2 , ν ∈ Lp is both necessary and sufficient for supt |YT∧t| ∈ Lp.

(iii) Suppose now that p = 1 − δ
2 . If m 6= 0 then supt |YT∧t| /∈ Lp. However we now

show that m = 0 is not a sufficient condition for supt |YT∧t| ∈ Lp.

We embed the probability measure ν defined by

ν(dy) =
y−p−1

(log y)2
dy for y ≥ e,

with the rest of the mass placed at −b. Here b is chosen such that
∫

s(y) ν(dy) = 0. It

can be checked that ν ∈ Lp. Then, provided z > max(e,−s−1(−b)),

|κY (z) − κY (−z)| =

∫ ∞

z

1

y(log y)2
dy − zpν((z,∞))

=
1

log z
− zpν([z,∞)).

Consequently, because ν ∈ Lp and
∫∞
z

1
y log(y) dy = ∞,

∫ ∞

y−1|κY (y) − κY (−y)| dy = ∞.

So m = 0 is not sufficient to ensure that supt |YT∧t| ∈ Lp.

2.4.3 Diffusions Which in Natural Scale Have State Space Consisting

of a Finite Interval.

Theorem 2.24. Let Yt be a diffusion on I with scale function s(z), such that s(0) = 0,

supz∈I s(z) = α < ∞, and infz∈I s(z) = β > −∞. We may embed a law ν in Y if and

only if
∫

I |s(z)| ν(dz) <∞ and m =
∫

I s(z) ν(dz) = 0.
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Furthermore ν∗ ∈ Lp if and only if ν ∈ Lp.

Proof. The first part of this result follows from Lemma 2.10(iii) (or equivalently Peder-

sen and Peskir (2001)[Theorem 2.1]). The remaining part follows from Theorem 2.21.

In our setting the scale function s is bounded — so we have q = r = 0, p > 0 and we

are in case (i) of Lemma 2.10. In particular, m exists, and ν∗ ∈ Lp if and only if m = 0

and ν ∈ Lp. However we have already noted that in order to be able to embed in this

case we must have m = 0, so our condition is essentially ν∗ ∈ Lp ⇐⇒ ν ∈ Lp.
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Chapter 3

Minimality and the Azema-Yor

Solution

We now turn to considering embeddings which maximise the distribution of the max-

imum. In the centred case the solution to this problem, among the class of uniformly

integrable embeddings, is known to be the embedding described in Azéma and Yor

(1979a). We begin the chapter with a review of this embedding.

When we consider non-centred target distributions it is no longer appropriate to con-

sider the class of uniformly integrable martingales. Instead we propose using the class

of minimal stopping times of Monroe (1972). In particular we deduce necessary and

sufficient conditions for a stoppping time embedding a non-centred distribution to be

minimal in terms of properties of the local-martingale Bt∧T . Using this equivalence we

are able to extend the Azema-Yor embedding to non-centred target laws and show that

the extension retains the optimality property of the original embedding.

Finally we show that these ideas extend naturally to diffusions, and that we are able

to extend an idea of Jacka (1988) to find embeddings which maximise supt≤T |Yt| and

more generally supt≤T f(Yt) for a general function f .
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3.1 Introduction

The work we present in this chapter is motivated by the following question:

Given a diffusion (Xt)t≥0 and a target distribution µX for which an embed-

ding exists, which embedding maximises the law of sups≤T Xs (respectively

sups≤T |Xs|)?

For Brownian motion, the question has been solved by Azéma and Yor (1979a) (respec-

tively Jacka (1988)) in the class of stopping times for which Bt∧T is a UI-martingale.

There are several considerations that need to be made when moving from the Brownian

case to the diffusion case. Firstly, the mean-zero assumption that is made by Azéma

and Yor (1979a) and Jacka (1988) is no longer natural since we are no longer necessarily

dealing with a martingale. The second aspect that needs to be considered is with what

restriction should we replace the UI condition? That such a condition is desirable may

be seen by considering a recurrent diffusion. Here the maximisation problem can easily

seen to be degenerate by considering first running the diffusion until it hits a level x,

allowing it to return to the origin and then using the reader’s favourite embedding.

Clearly this dominates the unmodified version of the reader’s favourite embedding.

In Pedersen and Peskir (2001) an integrability condition on the maximum (specifically

that E(sups≤T s(Xs)) <∞ where s is the scale function of X) was suggested to replace

the UI condition in the Brownian case. In this work we propose using the following class

of stopping times introduced by Monroe (1972) to provide us with a natural restriction

on the set of admissible embeddings.

Definition 3.1. A stopping time T for the process X is minimal if whenever S ≤ T is

a stopping time such that XS and XT have the same distribution then S = T a.s..

The class of minimal stopping times provides us with a natural link to the uniformly

integrable Brownian case as a consequence of the following result:

Theorem 3.2. (Monroe, 1972, Theorem 3) Let S be a stopping time such that E(BS) =

0. Then S is minimal if and only if the process Bt∧S is uniformly integrable.

It will turn out that the minimality idea fits well with the problem of embedding in

diffusions. As in the previous chapter, our approach to embedding in diffusions will

be to map the diffusion into natural scale (so that, up to a time change, it resem-

bles Brownian motion) and use techniques developed for embedding Brownian motion.
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Using this method on a transient diffusion one finds that the state space and target

distribution for the Brownian motion is restricted to a half-line (or sometimes a finite

interval). We will show minimality to be equivalent to stopping the Brownian motion

before it leaves this interval, so that a minimal stopping time is necessarily before the

explosion time of X.

When we map from the problem of embedding µX in X to the Brownian scale the

target law µ we obtain for B is the image of µX under the scale function. The key

point is that there is no reason why this target law should have mean zero. Thus,

unlike most of the other studies of Skorokhod embeddings in Brownian motion we are

interested in non-centred target distributions, and non-UI stopping times. One of our

main results is to recharacterise the minimality condition on T in terms of a condition

on E(BT |FS) for stopping times S ≤ T . In fact most of the chapter will concentrate

on embedding non-centred target distributions in B, and we will only return to the

diffusion case in a short final section.

The chapter will proceed as follows. In Section 3.2 we construct the classical Azema-Yor

embedding (see Azéma and Yor (1979a)) to introduce the reader to the construction

we will use later. Then in Section 3.3 we prove some results concerning minimality

of stopping times for non-centred target distributions, giving an equivalent condition

to minimality in terms of the process. In particular, given a non-minimal embedding

T , we show in Section 3.4 how to construct a new (minimal) stopping time T ′ ≤ T

which embeds µ. Next, in Section 3.5 we construct an extension of the Azema-Yor

embedding for non-centred target distributions and show both that it is minimal, and

that it retains the optimality properties of the original Azema-Yor embedding. In

Section 3.6 we use these stopping times to construct an embedding maximising the

distribution of sups≤T h(Bs) for a general function h. Finally in Section 3.7 we apply

these results to the problem of embedding optimally in diffusions.

Throughout this chapter we work with a standard Brownian motion with B0 = 0. In

the next chapter we will want to consider the case where our basic process is a Brownian

motion with general starting law, B0 ∼ µ0 and in this case it will turn out that some

of work in this chapter will be relevant to the later problem. However for clarity of

exposition we ignore the general case for this chapter and we will consider when the

results can be extended in Chapter 4.
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3.2 The Azema-Yor Embedding

We begin by introducing the Azema-Yor embedding (see Azéma and Yor (1979a)) and

a notation which we will use in later sections.

Let µ be our target distribution on R, with mean m = 0, and let Bt be a Brownian

motion with B0 = 0. Our goal is to embed µ in B.

Define1

η(x) := Eµ|X − x|. (3.1)

The definition of η ensures that η(x) is a convex function which is asymptotic to, and

greater than or equal to, the function |x|. For θ ∈ [−1, 1],

u(θ) := inf{y ∈ R : η(y) + θ(x− y) ≤ η(x),∀x ∈ R}. (3.2)

We will later want to use the inverse function, which we will define to be

u−1(y) = inf{θ : u(θ) ≥ y}.

For an interpretation of these and subsequent quantities we refer the reader to Figure 3-

1. Our interpretation of θ in (3.2) is that it is the gradient of a tangent to η, and then

u(θ) is the smallest x at which there exists a tangent to η with gradient θ.

Let

z+(θ) :=
η(u(θ)) − θu(θ)

1 − θ
, (3.3)

and define also

b(w) := u(z−1
+ (w))

for 0 ≤ w ≤ sup{supp(µ)}. The function b is well defined and left-continuous since

z+(θ) is a continuous bijection z+ : [−1, 1] → [0, sup{supp(µ)}] (if sup{supp(µ)} = ∞,

u(1) = ∞ and we take z+(1) = ∞). We interpret z+(θ) as the x-co-ordinate of the

intersection of the line y = x and the tangent with gradient θ. It follows that b(w)

is the x-value of the left-most point on (x, η(x)) with the property that the tangent

through this point hits the line y = x at w, see Figure 3-1 for a pictorial representation

of this idea.

Lemma 3.3 (The Azema-Yor Embedding). For µ, B as above, define the stopping

1This function is related to the function κ introduced in Chapter 2, and also to the potential of the
measure µ. The exact relationship is given in (4.3).
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α β

η(x)

xz

Figure 3-1: η(x) where the support of the corresponding distribution µ is bounded
below. Further µ((α, β)) = 0 and there is an atom at β. Consequently there are
multiple tangents to η at β. We have that α = b(z). Note that u(u−1(β)) = α, but
that η(α) − αu−1(α) = η(β) − βu−1(β).

time

TAY := inf{t > 0 : Bt ≤ b(Bt)}. (3.4)

Then TAY is a minimal embedding of µ in B. Further TAY has the property that if T

is another minimal stopping time which embeds µ in B, then

P(BT ≥ y) ≤ P(BTAY
≥ y). (3.5)

Remark 3.4. The above theorem is the standard statement of the Azema-Yor em-

bedding (e.g. Perkins (1986, Theorem 2.5)) except for the minimality condition on T .

In other statements of the result T is required to be a stopping time for which the

process BT∧t is a UI-martingale. However we are able to replace this condition with a

minimality condition due to Theorem 3.2.

Classically (see e.g. Pedersen and Peskir (2001)), the above result is stated for the

stopping time

T ′
AY := inf{t > 0 : Bt ≥ Ψ(Bt)},
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where Ψ is the barycentre function:

Ψ(x) =







1
µ([x,∞))

∫

{u≥x} uµ(du) µ([x,∞)) > 0

x µ([x,∞)) = 0.

Here, we do not prove the result but show simply that TAY = T ′
AY .

Since

TAY = inf{t > 0 : Bt ≤ b(Bt)}

= inf{t > 0 : b−1(Bt) ≤ Bt}

where b−1(y) = inf{z : b(z) ≥ y}, it is sufficient to show that Ψ = b−1. Note that

b−1(y) = z+(u−1(y)). Further, from the definition of η, we have that

u−1(y) = η′−(y)

= 1 − 2µ([y,∞)), (3.6)

where η′− denotes the left-derivative of η (which exists by the convexity of η).

Now u(u−1(y)) = y unless there exits some z < y for which µ((z, y)) = 0, in which case

however it is still true that η(u(u−1(y))) − u(u−1(y))u−1(y) = η(y) − yu−1(y), since

η′(w) = η′−(y) for all w ∈ (z, y). Collecting all these observations together we have

b−1(y) = z+(u−1(y))

=
η(u(u−1(y))) − u(u−1(y))u−1(y)

1 − u−1(y)

=
η(y) − yu−1(y)

1 − u−1(y)

=

∫

|w − y|µ(dw) − y(1 − 2µ([y,∞)))

2µ([y,∞))

=
1

µ([y,∞))

∫

{w≥y}
wµ(dw)

= Ψ(y), (3.7)

and we are done.

Remark 3.5. Thus we have shown that the embedding we define in (3.4) is a repre-

sentation of the Azema-Yor embedding and hence, by the well known properties of this

embedding established in Blackwell and Dubins (1963), is optimal in the sense that it

maximises the distribution of the maximum among all stopping times embedding µ in
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B which are minimal (see also Azéma and Yor (1979b)).

3.3 Minimal Embeddings for Non-centred Distributions

In this section we examine the properties of minimal stopping times. In particular, we

aim to find equivalent conditions to minimality — in a similar way to Theorem 3.2 —

when the target distribution is not centred.

We begin by noting the following result from Monroe (1972) which justifies the existence

of minimal stopping times:

Proposition 3.6 (Monroe (1972), Proposition 2). For any stopping time T there exists

a minimal stopping time S ≤ T such that BS ∼ BT .

For completeness, we repeat the proof given in Monroe (1972).

Proof. Consider the class T of stopping times S which embed µ and S ≤ T . There is

a natural ordering on this set (S1 � S2 iff S1 ≤ S2 a.s.). Set α = supS∈T Ee−T ∈ (0, 1].

We can therefore find a sequence S1, S2, . . . of stopping times, decreasing in the natural

ordering, such that Ee−Sn ↑ α. Then Sn ↓ S and the stopping time S is minimal,

embeds µ and S ≤ T .

Of course the above proof does not help us to construct a minimal stopping time, and

the sequence chosen is not unique — there can be multiple minimal stopping times

which are smaller than a given embedding. We shall see in Section 3.4 that we are able

to provide an (essentially) constructive method for providing such stopping times.

The main result of this section is the following:

Theorem 3.7. Let T be a stopping time of Brownian motion which embeds a distri-

bution µ where m =
∫

R
xµ(dx) < 0. Then the following conditions are equivalent:

(i) T is minimal for µ;

(ii) for all stopping times R ≤ S ≤ T ,

E(BS |FR) ≤ BR a.s.;

(iii) for all stopping times S ≤ T ,

E(BT |FS) ≤ BS a.s.; (3.8)
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(iv) for all γ > 0

E(BT ;T > H−γ) ≤ −γP(T > H−γ),

where Hα = inf{t > 0 : Bt = α} is the hitting time of the level α;

(v) as γ → ∞

γP(T > H−γ) → 0.

In the case where supp(µ) ⊆ [α,∞) for some α < 0 then the above conditions are also

equivalent to the condition:

(vi)

P(T ≤ Hα) = 1. (3.9)

Remark 3.8. Of course the Theorem may be restated in the case where m > 0 by

considering the process −Bt. We will use this observation extensively in Section 3.5.

Remark 3.9. Equation (3.8) makes us suspect that when T is minimal, the process

Bt∧T is in fact a supermartingale. To check this we need to show also that EB−
t∧T <∞

for all t, where, for a random variable X we define X+ = X ∨ 0 and X− = (−X) ∨ 0

— the positive and negative parts respectively. We show this more generally, for a

stopping time S ≤ T . Using (ii),

E(BT ;BT ≤ 0) ≤ E(BT ;BS ≤ 0) ≤ E(BS ;BS ≤ 0),

so that EB−
S < EB−

T <∞ and the process is indeed a supermartingale.

As a consequence of (ii), if S ≤ T is a stopping time and T is minimal, then S is minimal

too provided EBS < 0 and E|BS | < ∞. The first condition is a trivial consequence of

(ii) on taking R = 0, the second condition then follows from the first on noting that

EB−
S <∞, EBS = EB+

S − EB−
S and E|BS | = EB+

S + EB−
S .

Consequently we have the following corollary of Theorem 3.7:

Corollary 3.10. If T is minimal and S ≤ T for a stopping time S then S is minimal

for L(BS).

Remark 3.11. The third condition of Theorem 3.7 can be thought of as analogous to

the condition

∀S ≤ T, E(BT |FS) = BS a.s.

in the case where m = 0. The proof of the corresponding result in Monroe (1972)

shows that this is the key idea in showing that uniform integrability is equivalent to
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minimality. In the case we are interested in there is no equivalent notion to correspond

with uniform integrability, so we use (3.8) instead.

Before the proof of Theorem 3.7 we prove the following, which (although very similar

to the conclusions of Remark 3.9) will be necessary to show that condition (v) implies

(ii).

Proposition 3.12. If T is a stopping time such that BT ∼ µ where µ is integrable and

m < 0 and

γP(T > H−γ) → 0, (3.10)

as γ → ∞ then E|BS| <∞ and EBS ≤ 0 for all stopping times S ≤ T .

Proof of Proposition 3.12. We show that, for S ≤ T , EB−
S <∞ and EB+

S ≤ EB−
S from

which the result follows.

Suppose γ > 0. Since Bt∧H−γ is a supermartingale,

E(BT∧H−γ ;BS < 0, S < H−γ) ≤ E(BS∧H−γ ;BS < 0, S < H−γ).

We may rewrite the term on the left of the equation as

E(BT ;BS < 0, T < H−γ) − γP(BS < 0, S < H−γ < T ),

and by (3.10)

γP(BS < 0, S < H−γ < T ) ≤ γP(H−γ < T ) → 0

as γ → ∞. Further, by dominated convergence,

E(BT ;BS < 0, T ≤ H−γ) → E(BT ;BS < 0)

and it follows that

E(BS ;BS < 0) = lim
γ→∞

E(BS ;BS < 0, S < H−γ)

≥ E(BT ;BS < 0).

Hence EB−
S ≤ −E(BT ;BS < 0) ≤ EB−

T <∞.

Again using the fact that Bt∧H−γ is a supermartingale,

0 ≥ E(BS ∧H−γ) = E(BS ;S < H−γ) − γP(H−γ ≤ S)
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so that

E(B+
S ;S < H−γ) ≤ E(B−

S ;S < H−γ) + γP(H−γ ≤ S).

By monotone convergence the term on the left increases to EB+
S , while by monotone

convergence and (3.10) the right hand side converges to EB−
S . Consequently

EB+
S ≤ EB−

S <∞

and E|BS | <∞ and EBS ≤ 0.

We now turn to the proof of Theorem 3.7. We will prove this theorem in several stages.

We begin with a lemma whose corollary shows that the intermediate stopping time

condition implies minimality. The lemma has the form given because we use this form

in a later proof. For our current purposes it is the subsequent and immediate corollary

which is most important.

Throughout this section it is to be understood that µ is a distribution with negative

mean and T a stopping time embedding µ. Given a stopping time S let θS be the shift

operator — the map for which Bt(θS(ω)) = BS+t(ω).

Lemma 3.13. Suppose that for all stopping times S with S ≤ T and E|BS| < ∞ we

have

E(BT |FS) ≤ BS a.s.. (3.11)

Then T is minimal.

Proof. Let S ≤ T be a stopping time such that E(BT |FS) ≤ BS almost surely and such

that S embeds µ (so that E|BS | = E|BT | <∞). For a ∈ R,

sup
A∈FT

E(a−BT ;A) = E(a−BT ;BT ≤ a)

= E(a−BS ;BS ≤ a)

≤ E(a−BT ;BS ≤ a) (3.12)

≤ sup
A∈FT

E(a−BT ;A)

where we use (3.11) to deduce (3.12). However since we have equality in the first and

last expressions, we must also have equality throughout and so

{BT < a} ⊆ {BS ≤ a} ⊆ {BT ≤ a}.

Since this holds for all a ∈ R we must have BT = BS a.s..
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Now suppose that S 6= T with positive probability, and consider the stopping time

Sǫ = (S +HBS−ǫ ◦ θS) ∧ T . Then E|BSε | ≤ E|BS | + E|BT | + ε <∞. For small enough

ε > 0, Sε < T with positive probability, and on the FSε-measurable set {BSε = BS −ε}

we have BSε = E(BT |FSε) − ε which contradicts (3.11). Consequently if (3.11) holds,

S ≤ T and S ∼ µ implies S = T a.s..

Corollary 3.14. Suppose that for all stopping times S ≤ T ,

E(BT |FS) ≤ BS a.s.. (3.13)

Then T is minimal.

For the converse we need to show that if T is minimal then for any stopping time S ≤ T

and A ∈ FS

E(BT ;A) ≤ E(BS ;A).

We will use the following lemma:

Lemma 3.15. If T is minimal then, for all γ ≤ 0,

f(γ) = E(BT −BT∧Hγ ) ≤ 0.

Proof. Let f(γ) = E(BT −BT∧Hγ ) = E(BT − γ;T > Hγ).

Note that f(0) = m < 0. Since

{T ∈ (Hγ−ε,Hγ+ε) \ {Hγ}} = {BT ∈ (γ − ε, γ + ε), T 6= Hγ}

and P(BT = γ, T 6= Hγ) = 0, we have that

P(T ∈ (Hγ−ε,Hγ+ε) \ {Hγ}) ≤ P(BT ∈ (γ − ε, γ) ∪ (γ, γ + ε)).

Further P(BT ∈ A) is a probability measure on R, so it follows from the bounded

convergence theorem that

P(T ∈ (Hγ−ε,Hγ+ε) \ {Hγ}) → 0

as ε→ 0. The continuity of f(γ) follows from the dominated convergence theorem and

the fact that E|BT | <∞, since for 0 ≥ γ > γ′ we may write

f(γ) − f(γ′) = E(BT ;Hγ < T < Hγ′) + (γ′ − γ)P(T ≥ Hγ′) − γP(Hγ < T < Hγ′).
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As a corollary if f(γ0) > 0 for some γ0 < 0, then there exists γ1 ∈ (γ0, 0) such that

f(γ1) = 0.

Given this γ1, and conditional on T > Hγ1 , let T ′′ = T −Hγ1 , Wt = BHγ1+t − γ1, and

µ′′ = L(WT ′′). Suppose that T ′′ is not minimal, so there exists S′′ ≤ T ′′ with law µ′′.

If we define

S =







T on T ≤ Hγ1

Hγ1 + S′′ on T > Hγ1

then S embeds µ and S ≤ T but S 6= T , contradicting the minimality of T . Hence T ′′

is minimal. But then by Theorem 3.2, Wt∧T ′′ is uniformly integrable and so, for γ < γ1

E(WT ′′ − (γ − γ1);T ′′ > HW
γ−γ1

) = 0

or equivalently

f(γ) = E(BT − γ;T > Hγ) = 0.

Hence f(γ) ≤ 0 for all γ ∈ (−∞, 0].

We now turn to the proof of the main result:

Proof of Theorem 3.7. We begin by showing the equivalence of conditions (ii) – (v).

It is clear that (ii) =⇒ (iii) =⇒ (iv), the latter implication following from taking

expectations in (3.8), so that when S = T ∧H−γ we have

E(BT ;T ≤ H−γ) − γP(T > H−γ) ≥ E(BT ).

Given (iv) we know

γP(T > H−γ) ≤ −E(BT ;T > H−γ)

and by dominated convergence the term on the right converges to 0 as γ → 0 so that

(v) holds.

For the equivalence of (ii) to (v) it only remains to show that (v) =⇒ (ii). So suppose

(v) holds and choose stopping times R ≤ S ≤ T and A ∈ FR. Set Aγ = A∩{R < H−γ}.

Since Bt∧H−γ is a supermartingale

E(BS∧H−γ ;Aγ) ≤ E(BR∧H−γ ;Aγ). (3.14)

By Proposition 3.12 E|BR| < ∞ and by dominated convergence the right hand side
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converges to E(BR;A) as γ → ∞. For the term on the left we consider

E(BS∧H−γ ;Aγ) = E(BS ;A,S < H−γ) − γP(R < H−γ < S).

Again by Proposition 3.12 and dominated convergence the first term on the right con-

verges to E(BS;A) while the other term converges to 0 by (v). Hence on letting γ → ∞

in (3.14) we have

E(BS;A) ≤ E(BR;A)

and we have shown (ii).

We have already shown that minimality is equivalent to these conditions: (iii) =⇒

(i) is Corollary 3.14, while (i) =⇒ (iv) is Lemma 3.15.

We have shown equivalence between (i) – (v). We are left with showing that if µ

has support bounded below then (vi) is also equivalent. So assume that the target

distribution µ has support contained in [α,∞) and that T is an embedding of µ. In

that case it is easy to show that (3.9) is equivalent to (3.8). To deduce the forward

implication, note that Bt∧Hα is a continuous supermartingale, bounded below and

therefore if S ≤ T ≤ Hα,

E(BT |FS) ≤ BS .

The reverse implication follows from considering the stopping time Hα−ǫ = inf{t ≥ 0 :

Bt ≤ α− ε}, for then if A = {ω : Hα−ǫ < T} and S = Hα−ε ∧ T ,

(α− ǫ)P(A) = E(BHα−ǫ ;A) = E(BS;A) ≥ E(BT ;A) ≥ αP(A)

which is only possible if P(A) = 0.

This completes the proof of Theorem 3.7. We finish this section with a remark on an

application of the theorem.

Remark 3.16. Suppose we are embedding a target distribution with negative mean

m. Let T be such an embedding which consists of running the Brownian motion until

it hits m, and thereafter using a (shifted) Azema-Yor embedding to embed the (zero-

mean) shifted target distribution applied to −B, so that we maximise P(B ≤ x) for

x < 0. This is an embedding we will look at more closely in Section 3.5 and has been

studied by Pedersen and Peskir (2001). We show that T is minimal.

It is clear that T has the property that E(BT ;A) = mP(A) for any set A ∈ FHm , since

(BT∧(Hm+t))t≥0 is a UI process.
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To prove the minimality property we show that E(BT |FS) ≤ BS for all stopping times

S ≤ T . Let S be such a stopping time, and suppose A ∈ FS . Then A may be written

as the disjoint union, A = (A ∩ {S ≤ Hm}) ⊔ (A ∩ {S > Hm}) and

E(BT ;A) = E(BT ;A ∩ {S ≤ Hm}) + E(BT ;A ∩ {S > Hm}).

For the first term we can deduce that

E(BT ;A ∩ {S ≤ Hm}) = mP(A,S ≤ Hm) ≤ E(BS;A ∩ {S ≤ Hm}).

For the second term, and again as a consequence of the fact that on {t ≥ Hm} the

process BT∧t is UI,

E(BT ;A ∩ {S > Hm}) = E(BS ;A ∩ {S > Hm}).

Combining the results for the two terms gives

E(BT ;A) ≤ E(BS ;A)

as required.

3.4 Constructing Minimal Stopping Times

This section is concerned with the following question:

Suppose T is not minimal. Can we find a stopping time T ∗ ≤ T which

embeds µ and is itself minimal?

The answer to this question is in the positive, as we have seen in Proposition 3.6. In

this section we will demonstrate this by providing just such a construction for a given

non-minimal stopping time.

The construction will be carried out in three parts. First we construct T ∗ in the case

where µ has support on [α,∞) and an atom at α. We then use limiting arguments to

show that we can drop the assumption of an atom at α, and finally that we can embed

µ with support on R.
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So we first assume that our support is restricted to [α,∞). We will show that if T is a

stopping time embedding µ, and T has the property that

P(T > Hα) > 0 (3.15)

then we can construct a new stopping time T ∗ ≤ T which is less than Hα almost surely,

and which embeds µ.

In the construction we make, we find it necessary to introduce independent randomi-

sation. While this is undesirable, it is central to the method we use here; the randomi-

sation will be used to ‘kill’ the process at rate ν. The set MT we introduce below

is a set of suitable ‘killing measures’. In general it would seem that, for a given non-

minimal stopping time, we should be able to find a non-randomised minimal stopping

time which is smaller, however the specification would depend on the properties of the

specific embedding.

We begin by considering the set of positive measures M+ on B(R) and define an

ordering on M+ by:

ρ � ν iff ρ(A) ≤ ν(A) for all A ∈ B(R).

Then M+ is a lattice where

(ρ ∨ ν)(A) = sup{ρ(B) + ν(A \B) : B ⊆ A};

(ρ ∧ ν)(A) = inf{ρ(B) + ν(A \B) : B ⊆ A}.

Also (see Doob (1984, A.IV.4)) if {ρi : i ∈ I} is an arbitrary subset of M+, then there

exists an order supremum of the set. To see this, we begin by assuming that the set

contains every supremum of finitely many of its elements since adding these does not

change the overall supremum. Define

ρ∗ (A) = sup
i∈I

ρi (A) ;

it is clear that ρ∗ =
∨

i∈I ρi provided that ρ∗ is a measure. If A =
⋃∞

j=0Aj is a countable

union of disjoint measurable sets, then

ρi(A) =
∞
∑

j=0

ρi(Aj) ≤
∞
∑

j=0

ρ∗(Aj)
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for all i, and hence ρ∗ is countably subadditive. Finite additivity of ρ∗ is trivial (given

the fact that {ρi : i ∈ I} contains the suprema of each finite set of elements) and implies

ρ∗(A) =
n
∑

j=0

ρ∗(Aj) + ρ∗





∞
⋃

j=n+1

Aj



 ≥
n
∑

j=0

ρ∗(Aj).

On letting n→ ∞, we conclude that ρ∗ is countably superadditive as well as subaddi-

tive. Hence ρ∗ is a measure.

Recall that T is a stopping time that embeds µ. Given a measure ν ∈ M+ we define

the stopping time T ν as follows.

• Let X− and X+ be independent random variables, independent also of B and T ,

and both distributed uniformly on [0, 1].

• Define the levels

Gν
+ = inf{x ≥ 0 : ν([0, x]) ≥ X+},

Gν
− = sup{x ≤ 0 : ν([x, 0)) ≥ X−},

and the stopping times Sν
+ = HGν

+
, Sν

− = HGν
−

and Sν = Sν
+ ∧ Sν

−.

• Finally set

T ν = Sν ∧ T ∧Hα.

We now define the set MT ⊆ M+ to be

MT = {ν ∈ M+ : ν((−∞, α]) = 0,P (BT ν ∈ A) ≤ µ(A) ∀A ∈ B((α,∞))}.

Our aim is to show that the supremum of this set, ν∗ =
∨

ν∈MT ν, is a non-zero element

of MT , and that the stopping time T ∗ ≡ T ν∗ associated with this measure embeds µ.

Since T ∗ ≤ Hα it is minimal by Theorem 3.7.

Our analysis of MT begins with a statement of some basic properties. Recall that we

are assuming that µ has support in [α,∞). Suppose also that µ has an atom at α.

Lemma 3.17. If P(Hα < T ) > 0 and µ({α}) > 0 then the set MT has the following

properties:

(i) there exists a measure ν̄ ∈ M+ satisfying ν̄(R) < ∞ and such that ν ∈ MT

implies ν � ν̄;
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(ii) if ν1 � ν2 then T ν2 ≤ T ν1;

(iii) if ν1, ν2 ∈ MT then their supremum ν1 ∨ ν2 ∈ MT ;

(iv) if νn ∈ MT are a sequence of measures and νn ↑ ν ∈ M+ in the sense that νn(A)

is increasing for all A ∈ B(R) and

lim
n

sup
A

{|νn(A) − ν(A)| : A ∈ B(R)} = 0,

then ν ∈ MT .

(v) if ν ∈ MT and we define a measure ρ with support in (α,∞) such that for

A ∈ B(α,∞), ρ(A) = µ(A) − P(BT ν ∈ A) then ν ′ = ν + ρ is also an element of

MT .

Proof. (i) Suppose ν ∈ MT and x > 0. Then E (BHx∧T ν ) = 0, so

|m| = E(BHx∧T ν ) − E(BT ν )

= E(BHx −BT ν ;Hx ≤ T ν)

≤ (x− α)P(Hx ≤ T ν).

It follows that

P (Hx ≤ T ν) ≥
|m|

x− α
. (3.16)

In particular, for all x > 0, P(T ν ≥ Hx) > 0 and hence it must be the case that

ν([0, x)) < 1 for all x > 0.

Define a measure ν̄ by

ν̄(dx) =















(x−α)µ(dx)
|m| x ≥ 0

µ(dx)
µ([α,x]) α < x < 0

0 x ≤ α

We interpret statements about measures such as the above as shorthand for statements

about the integrals over general functions. So we will write ν1(dx) ≤ ν2(dx) to mean

that
∫

fdν1 ≤
∫

fdν2 for all positive, measurable functions f . We aim to show that ν̄

is an upper bound for elements of MT . First note that ν̄(R) < ∞, since µ has a well

defined first moment, and by assumption µ has an atom at α.

Fix ν ∈ MT , and for x ≥ 0 consider the probability that we stop in dx under T ν . By

definition this probability is bounded above by µ(dx). Conversely, one way to stop at
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x, is to be stopped by T ν on first reaching x. Hence

µ(dx) ≥ P (Hx ≤ T ν) ν(dx) ≥
|m|

(x− α)
ν(dx),

and, for x > 0, ν(dx) ≤ ν̄(dx).

If x < 0, since P (BT ν ∈ A) ≤ µ(A) for all A ∈ B(R \ {α}), we must have

P (Hx ≤ T ν) ≥ µ([α, x]).

By similar arguments to above we find that ν ∈ MT must satisfy

ν(dx) ≤
µ(dx)

µ([α, x])
= ν̄(dx).

(ii) This is immediate since ν1 ≤ ν2 implies Sν1 ≥ Sν2 .

(iii) We wish to show that for any two measures ν1, ν2 ∈ MT , their supremum ν∨ =

ν1 ∨ ν2 is also in MT .

For x > α and a measure ν ∈ MT

{BT ν ∈ dx} = {BT ∈ dx, T ≤ Sν ∧Hα} ∪ {BSν ∈ dx, Sν < T ∧Hα}. (3.17)

If ν ′ ∈ MT and ν � ν ′, then Sν′

≤ Sν and

{BT ∈ dx, T ≤ Sν′

∧Hα} ⊆ {BT ∈ dx, T ≤ Sν ∧Hα}. (3.18)

Now we consider the term {BSν ∈ dx, Sν < T ∧Hα}. Suppose x > 0 (the case x < 0

is similar). Fix a Brownian path ω = (Bt)0≤t≤T , and let B = BHx∧Hα
= inf{Bt; t ≤

Hx ∧Hα}. The interesting case is when T (ω) > Hx(ω). Conditional on such a path ω

P(BSν ∈ dx, Sν < T ∧Hα|ω) = P(Gν
+ ∈ dx,Gν

− < B)1{B>α}

= ν(dx)(1 − ν([B, 0)))1{B>α}.

Without loss of generality suppose ν1(dx) ≥ ν2(dx). Then

ν∨(dx)(1 − ν∨([B, 0))) ≤ ν1(dx)(1 − ν1([B, 0)))

and

P(BSν∨ ∈ dx, Sν∨ < T ∧Hα|ω) ≤ P(BSν1 ∈ dx, Sν1 < T ∧Hα|ω).
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Combining this result with the decomposition (3.17) and the set inequality (3.18) (with

ν ′ = ν∨ and ν = ν1) we deduce

P(BT ν∨ ∈ dx) ≤ P(BT ν1 ∈ dx) ≤ µ(dx).

Hence ν∨ = ν1 ∨ ν2 ∈ MT .

(iv) Suppose now we have a sequence of measures νn ∈ MT such that νn ↑ ν. Recall

the definitions of Gν
+ and Gν

− and the fact that ν(R) <∞. Define

Gn
+ = inf{x ≥ 0 : νn([0, x]) ≥ X+}

Gn
− = sup{x ≤ 0 : νn([x, 0)) ≥ X−}

where the random variables X+ and X− are the same random variables as those used

in the definition of Gν
+ and Gν

−. Here Gn
+ is a shorthand for Gνn

+ . Then, for example,

P(Gn
+ ∈ A) = νn(A) for A ∈ B([0,∞)). Consequently,

P(Gn
+ ∈ A) ↑ P(Gν

+ ∈ A) (3.19)

for A ∈ B([0,∞)), and similarly for Gν
−, G

n
−. Now consider a fixed path and stopping

time (so T could be determined by some independent randomisation as well as the

path) of the Brownian motion, ω = (Bt)t≤T , and a set A ∈ B(R). Then there exists a

set F = F (ω,A) ∈ B([0,∞)) × B((−∞, 0)) such that

BT ν ∈ A ⇐⇒ (Gν
+, G

ν
−) ∈ F.

Note that for a fixed Brownian path, the event BT ν ∈ A depends on the measure ν

only via the random variables Gν
+ and Gν

−. In particular for a different measure such

as νn we have BT νn ∈ A if and only if (Gn
+, G

n
−) ∈ F for the same set F = F (ω,A).

Now

|P(BT ν ∈ A) − P(BT νn ∈ A)| ≤ E|P(BT ν ∈ A|ω) − P(BT νn ∈ A|ω)|.

Further, since P(BT ν ∈ A|ω) = P((Gν
+, G

ν
−) ∈ F (ω)) we have that

P(BT ν ∈ A|ω) − P(BT νn ∈ A|ω)

= P((Gν
+, G

ν
−) ∈ F (ω)) − P((Gn

+, G
n
−) ∈ F (ω))

which tends to zero using (3.19) and its analogue for S−. We conclude that |P(BT ν ∈

A) − P(BT νn ∈ A)| → 0 and hence that ν ∈ MT .
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(v) Suppose that ν ∈ MT and define the measures ρ and ν ′ with support (α,∞) via

ρ(A) = µ(A) − P(BT ν ∈ A) and ν ′ = ν + ρ. We wish to show that ν ′ is also in MT .

As before, for x > α we have

{BT ν′ ∈ dx} = {BT ∈ dx, T ≤ Sν′

∧Hα} ∪ {BSν′ ∈ dx, Sν′

< T ∧Hα},

and

{BT ∈ dx, T ≤ Sν′

∧Hα} ⊆ {BT ∈ dx, T ≤ Sν ∧Hα}. (3.20)

Now suppose x > 0; the case x < 0 is similar. Conditional on a path ω = (Bt)0≤t≤T

with the property that Hx < T , and with B = BHx∧Hα
= inf{Bt; t ≤ Hx ∧ Hα} as

before,

P(BSν′ ∈ dx;Sν′

< T ∧Hα|ω) = ν ′(dx)(1 − ν ′([B, 0)))1{(B>α)}.

It follows that

P(BSν′ ∈ dx;Sν′

< T ∧Hα|ω) = (ν(dx) + ρ(dx))(1 − ν ′([B, 0)))1{(B>α)}

≤ ν(dx)(1 − ν([B, 0)))1{(B>α)} + ρ(dx)

= P(BSν ∈ dx;Sν < T ∧Hα|ω) + ρ(dx).

Averaging over the Brownian paths, and combining this result with (3.20) we find

P
(

BT ν′ ∈ dx
)

≤ P (BT ν ∈ dx) + ρ(dx) = µ(dx)

and hence ν ′ ∈ MT .

We now show that T ∗, our candidate for the minimal reduction of T , is an embedding.

Suppose P(T > Hα) > 0, and also for the moment suppose that µ({α}) > 0, so we

may apply Lemma 3.17. The zero measure is an element of MT and therefore by

Lemma 3.17(v), MT contains a non-zero element. Now take an increasing sequence νi

of measures such that νi ↑ ν∗ =
∨

MT . We know that ν∗ ∈ MT , (Lemma 3.17(iv)) so

the law of BT ∗ is dominated by µ. Conversely the law of T ∗ also dominates µ by (v).

Hence T ∗ must embed µ.

We now note that we may drop the assumption that µ has an atom at α. Suppose µ

has no atom at α. By (3.15) the law µ̃ of BT∧Hα does. Define

µ(n) =
1

n
µ̃+

n− 1

n
µ,
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and let MT
n be the associated set of measures. Then for k ≥ n, MT

n ⊆ MT
k and so

T ν
(k)
∗ ≤ T ν

(n)
∗ (where we write ν

(k)
∗ for the maximal element of MT

k ). So as n → ∞,

T ν
(n)
∗ ↓ T ∗, which must therefore embed µ. Since T ∗ ≤ Hα, it must also be minimal.

We now consider the case of measures µ where the support is not bounded below.

Define the measure µn by

µn((x, y)) = µ((x, y)) ∀x, y ≥ −n;

µn({−n}) = µ((−∞,−n]);

µn((−∞,−n)) = 0.

Then for sufficiently large n,
∫

xµn(dx) < 0. Also, L(BT∧H−n) is dominated by both

µ and µn on (−n,∞).

First consider the problem of embedding µn in BT∧H−n∧t — that is finding a stopping

time Tn ≤ T ∧H−n such that L(BTn) = µn. The construction above tells us that there

exists a measure νn for which Tn = T ∧H−n ∧HGn
+
∧HGn

−
embeds µn, and is minimal,

where

Gn
+ = inf{x ≥ 0 : νn([0, x]) ≥ X+},

Gn
− = sup{x ≤ 0 : νn([x, 0)) ≥ X−},

for independent random variables X+,X− uniformly distributed on [0, 1].

Let n0 be such that
∫

xµn0(dx) < 0. For n2 ≥ n1 ≥ n0 we have that νn2 |(−n1,∞) ∈ MT
n1

since for A ∈ B((−n1,∞)),

P(BTn2∧H−n1
∈ A) ≤ µn2(A) = µn1(A).

Hence for A ∈ B((−n0,∞)), νn(A) decreases as n increases and we may define a

measure ν∞ by

ν∞ = lim inf
n→∞

νn = sup
k≥0

inf
n≥k

νn,

where the final representation ensures that ν∞ is a measure. Our goal is to show that

T ∗ = Sν∞ ∧ T embeds µ, and to use the fact that Tn is minimal for µn to deduce that

T ∗ is minimal for µ. To this end we want to construct a coupling of the stopping times

(Tn)n≥n0 and T ∗.
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Let ν̃n with support (−n,∞) be given by

ν̃n([0, x]) = νn([0,x])−ν∞([0,x])
1−ν∞([0,x]) x ≥ 0;

ν̃n([x, 0)) = νn([x,0))−ν∞([x,0))
1−ν∞([x,0)) x ∈ (−n, 0).

Let X̃+,X
∞
+ , X̃−,X

∞
− be independent random variables, independent also of B and

uniformly distributed on [0, 1], and define the levels

G̃n
+ = inf{x ≥ 0 : ν̃n([0, x]) ≥ X̃+},

G∞
+ = inf{x ≥ 0 : ν∞([0, x]) ≥ X∞

+ },

G̃n
− = sup{x ≤ 0 : ν̃n([x, 0)) ≥ X̃−},

G∞
− = sup{x ≤ 0 : ν∞([x, 0)) ≥ X∞

− },

Ḡn
+ = G̃n

+ ∧G∞
+ ,

Ḡn
− = G̃n

− ∨G∞
− .

Note that ν̃n([0, x]) ↓ 0 as n ↑ ∞ and hence G̃n
+ ↑ ∞ almost surely. For x > 0 we have

P(Ḡn
+ > x) = P(G̃n

+ > x)P(G∞
+ > x) = 1 − νn([x, 0))

so that Ḡn
+ has the same law as Gn

+ defined above.

Similar calculations can be made for x < 0, and, using the fact that the pair (Ḡn
+, Ḡ

n
−)

has the same law as (Gn
+, G

n
−), we can deduce that T ∗

n = T ∧H−n∧HḠn
+
∧HḠn

−

embeds

µn and is minimal. Furthermore, from the fact that G̃n
+ and G̃n

− increase to infinity

almost surely we have

T ∗
n ↑ T ∗ = T ∧HG∞

+
∧HG∞

−
. (3.21)

Since T ∗
n embeds µn we find that T ∗ embeds µ.

Finally we show that T ∗ is minimal.

Proposition 3.18. Suppose that Tn embeds µn, µn converges weakly to µ and Tn ↑

T <∞, almost surely. Then T embeds µ.

If also ln → l∞ < ∞ where ln =
∫

|x|µn(dx) and l∞ =
∫

|x|µ(dx), and Tn is minimal

for µn, then T is minimal for µ.

Remark 3.19. The requirement that ln → l∞ is necessary and can be seen in the

following example: consider stopping times Tn embedding µn = 1
nδ−n + n−2

n δ0 + 1
nδn

by running until hitting either −1 or 1, and then running until hitting either 0 or ±n.

Then µn =⇒ δ0, Tn is minimal for µn and Tn ↑ T <∞, where T is the stopping time
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‘run until ±1, then run until 0’, which is not minimal.

Proof. The first part is clear, so we restrict ourselves to proving the minimality of T

under the stated assumptions.

Suppose that S ≤ T and A′ ∈ FS . By Lemma 3.13 we need to show E(BT ;A′) ≤

E(BS ;A′) for stopping times S ≤ T such that E|BS| <∞. Let A = A′ ∩ {S < T} and

An = A′ ∩ {S < Tn}. Then

E(BT ;A′) ≤ E(BS ;A′) ⇐⇒ E(BT ;A) ≤ E(BS;A) (3.22)

so we restrict our attention to sets A. Note that An ↑ A.

Since Tn is minimal and An ∈ FS∧Tn

E(BTn ;An) ≤ E(BS∧Tn ;An) = E(BS;An)

so we deduce that both sides of (3.22) hold provided:

lim
n

E(BTn ;An) = E(BT ;A), (3.23)

lim
n

E(BS;An) = E(BS ;A). (3.24)

For (3.23) we consider |E(BT ;A) − E(BTn ;An)|. Then

|E(BT ;A) − E(BTn ;An)| ≤ E(|BT |;A \ An) + E(|BT −BTn |;An)

and the first term on the right tends to zero by dominated convergence (this follows

from the assumption that Tn converges to T in probability). For the second term we

show E(|BT −BTn |) → 0. Fix ε > 0. We have

|BT −BTn | ≤ |BTn | − |BT | + 2|BT |1{Tn≤T−ε} + 2|BT −BTn |1{Tn>T−ε}.

We take expectations and let n→ ∞. By the definition of µn the first two terms cancel

each other out, while the third tends to zero by dominated convergence. For the last

term, by the (strong) Markov property

E(|BT −BTn |;Tn > T − ε) ≤ E(|BTn+ε −BTn |) = E(|Bε|) =

√

ε

2π
.

Consequently, in the limit, E(|BT −BTn |;Tn > T − ε) → 0 and (3.23) holds.

By Lemma 3.13, we can assume that E|BS| < ∞ and so (3.24) follows by dominated
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convergence.

3.5 A Maximal Embedding for a Non-centred Target

Distribution

In this section we are interested in finding an embedding to solve the following problem:

Given a Brownian motion (Bt)t≥0 and an integrable (but possibly not cen-

tred) target distribution µ with mean m, find a minimal stopping time T

such that T embeds µ and

P(BT ≥ x)

is maximised for all x and over all minimal stopping times T embedding µ.

We call an embedding with this property the max-max embedding, and denote it by

Tmax.

Without some condition on the class of admissible stopping times the problem is clearly

degenerate — any stopping time may be improved upon by waiting for the first return

of the process to 0 after hitting level x and then using the original embedding. For this

improved embedding P(BT ≥ x) = 1. Further, since no almost surely finite stopping

time can satisfy

P(BT ≥ x) = 1

for all x > 0, there can be no solution to the problem above in the class of all embed-

dings. As a consequence some restriction on the class of admissible stopping times is

necessary for us to have a well defined problem.

Various conditions have been proposed in the literature to restrict the class of stopping

times. In the case where m = 0, the condition on T that Bt∧T is a UI martingale has

been suggested Dubins and Gilat (1978), and in this case the maximal embedding is

the Azema-Yor embedding. When m = 0 Monroe (1972) tells us that minimality and

uniform integrability are equivalent conditions, so the Azema-Yor stopping time is the

max-max embedding. For the case where m > 0, Pedersen and Peskir (2001) showed

that EBT <∞ is another suitable condition, with the optimal embedding being based

on that of Azema and Yor. We argue that the class of minimal embeddings is the

appropriate class for the problem under consideration since minimality is a natural

and meaningful condition, which makes sense for all m (and which, for m > 0, includes

as a subclass those embeddings with E(BT ) <∞).

67



η(x)

xzb(z) 2m

Figure 3-2: η̂(x) for a µ with support bounded above, and positive non-zero mean m.
Also shown is an intuitive idea of b(z).

We now describe the construction of the candidate max-max stopping time. There is

some difference in the proofs of embedding and maximality between the cases where

m > 0 and m < 0, however the basic idea remains the same, and much of the following

construction will apply for both cases. Figures 3-2 and 3-3 show how the constructions

are related.

As a refinement of (3.1), define:

η̂(x) := Eµ|X − x| + |m|. (3.25)

We note that as x → ±∞, η̂(x) − |x| → |m| ∓ m. The refined function η̂ has the

same properties as η — it is convex and Lebesgue-almost everywhere differentiable.

We maintain the same definitions for u, z+ and b, so for θ ∈ [−1, 1], let

u(θ) := inf{y ∈ R : η̂(y) + θ(x− y) ≤ η̂(x),∀x ∈ R},

z+(θ) :=
η̂(u(θ)) − θu(θ)

1 − θ
,

and for x ≥ 0

b(x) := u(z−1
+ (x)),

68



η(x)

xzb(z) 2m

Figure 3-3: η̂(x) for a distribution µ with strictly negative mean m. Now η̂ is tangential
to x+ |m| as x→ ∞.

where z−1
+ is well defined. Finally we define the stopping time

Tmax := inf{t > 0 : Bt ≤ b(Bt)}. (3.26)

As mentioned above, for m = 0 this is exactly the Azema-Yor stopping time, while if

m > 0, b(x) = −∞ for x < m, and consequently Tmax ≥ Hm. So when m > 0 this

embedding may be thought of as ‘wait until the process hits m then use the Azema-Yor

embedding.’ This is also the embedding proposed by Pedersen and Peskir (2001) and

discussed in Remark 3.16. Consequently, apart from the fact that we are considering

a slightly more general class of stopping times, the original part of the subsequent

theorem is the case in which m < 0 — the rest is included for completeness.

Theorem 3.20. Let T be a stopping time of (Bt)t≥0 which embeds µ and is minimal.

Then for x ≥ 0

P(BT ≥ x) ≤

(

1

2
inf
λ<x

η̂(λ) − λ

x− λ

)

. (3.27)

Further Tmax embeds µ, is minimal and attains equality in (3.27) for all x ≥ 0.

Remark 3.21. Note that

η̂(λ) − λ

x− λ
= 1 −

x− η̂(λ)

x− λ
. (3.28)
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We can relate the right-hand-side of (3.28) to the slope of a line joining (x, x) with

(λ, η̂(λ)). In taking the infimum over λ we get a tangent to η̂ and a value for the slope

in [−1, 1]. Thus the bound on the right-hand-side of (3.27) lies in [0, 1].

Remark 3.22. Tmax has the property that it maximises the law of BT over minimal

stopping times which embed µ. If we want to minimise the law of the minimum, or

equivalently we wish to maximise the law of −BT , then we can deduce the form of

the optimal stopping time by reflecting the problem about 0, or in other words by

considering −B. Let Tmin be the embedding which arises in this way, so that amongst

the class of minimal stopping times which embed µ, the stopping time Tmin maximises

P(−BT ≥ x)

simultaneously for all x ≥ 0.

The following lemma will be needed in the proof of the theorem.

Lemma 3.23. Suppose m ≤ 0 and T is minimal. Then for x ≥ 0

E(BT∧Hx) = 0.

Proof. For x ≥ 0,

|Bt∧T∧Hx | ≤ 2x−Bt∧T∧Hx

and thus

E|Bt∧T∧Hx | ≤ 2x− E(Bt∧T∧Hx).

T is minimal so for the stopping time S = t∧ T ∧Hx ≤ T , and on taking expectations

in (3.8), we get

E(Bt∧T∧Hx) ≤ E(BT ) = m.

Thus E|Bt∧T∧Hx | ≤ 2x+ |m|, and by dominated convergence

E(BT∧Hx) = lim
t→∞

E(Bt∧T∧Hx) = 0.

We now turn to the proof of Theorem 3.20.

Proof. The following inequality for x > 0, λ < x may be verified on a case by case
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basis:

1{BT ≥x} ≤
1

x− λ

[

BT∧Hx +
|BT − λ| − (BT + λ)

2

]

. (3.29)

In particular, on {BT < x}, (3.29) reduces to

0 ≤







0 λ ≥ BT

BT −λ
x−λ λ < BT ,

(3.30)

and on {BT ≥ x} we get

1 ≤







x−BT

x−λ λ > BT

1 λ ≤ BT .
(3.31)

Then taking expectations,

P(BT ≥ x) ≤
1

x− λ

[

E(BT∧Hx) +
η̂(λ) − |m| − (m + λ)

2

]

. (3.32)

If m ≤ 0 then by Lemma 3.23 and the minimality of T we have E(BT∧Hx) = 0 and so

P(BT ≥ x) ≤
1

2

η̂(λ) − λ

x− λ
.

Conversely if m > 0, by Theorem 3.7 applied to −B,

m = E(BT ) ≥ E(BT∧Hx) (3.33)

and so

P(BT ≥ x) ≤
1

x− λ

[

m+
η̂(λ) − 2m− λ

2

]

=
1

2

η̂(λ) − λ

x− λ
.

Since λ was arbitrary in either case, (3.27) must hold. It remains to show that Tmax

attains equality in (3.27), embeds µ and is minimal.

We begin by showing that it does attain equality in (3.27). Since

η̂(λ) − λ

x− λ
= 1 +

η̂(λ) − x

x− λ

the infimum in (3.27) is attained by a value λ∗ with the property that a tangent of η̂ at

λ∗ intersects the line y = x at (x, x). By the definition of b we can choose λ∗ = b(x). In

particular, since {BTmax < x} ⊆ {BTmax ≤ b(x)} and {BTmax ≥ x} ⊆ {BTmax ≥ b(x)},

the stopping time Tmax attains equality almost surely in (3.30) and (3.31). Assuming

that Tmax is minimal, we are then done for m ≤ 0. If m > 0 we do not always have
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equality in (3.33). If x < m then E(BTmax∧Hx) = x, but then λ∗ = −∞ and so the

extra term (E(BTmax∧Hx) − m)/(x − λ∗) = 0. As a result equality is again attained

in (3.27). Otherwise, if x ≥ m then Tmax ≥ Hm and the properties of the classical

Azema-Yor embedding ensure that E(BTmax∧Hx) = m and there is equality both in

(3.33) and (3.27).

Fix a value of y which is less than the supremum of the support of µ, and recall that

b−1 is defined to be left continuous. Then given (3.6) and the subsequent discussion

(which remains valid even if m 6= 0), and since we now have equality in (3.27), we

deduce:

P(BTmax ≥ y) = P(BTmax ≥ b−1(y))

=
1

2

[

1 +
η̂(b(b−1(y))) − b−1(y)

b−1(y) − b(b−1(y))

]

=
1

2
(1 − η̂′−(y))

= µ([y,∞)).

Hence Tmax embeds µ.

In the case where m > 0, minimality of the stopping time is discussed in Remark 3.16,

while the case where m = 0 is discussed in Remark 3.4. We consider the case where

m < 0. Suppose there exists S ≤ Tmax such that S embeds µ. By the construction in

Section 3.4 we may assume that S is minimal.

Then the following must hold:

• BTmax = b(BTmax) by the definition of Tmax;

• b(BTmax) ≥ b(BS) since Tmax ≥ S and BTmax ≥ BS ;

• b(BS) ≤ BS since S ≤ Tmax = inf{u : Bu ≤ b(Bu)}.

Hence

BTmax = b(BTmax) ≥ b(BS) ≤ BS .

If we can show b(BTmax) = b(BS) a.s. then BTmax ≤ BS and since S and Tmax embed

the same law, BS = BTmax = b(BS). Thus Tmax ≤ S and Tmax is minimal.

For y ∈ R, consider BTmax∧H
b−1(y)

. This random variable is distributed according to µ

on (−∞, y) with a mass of size µ([y,∞)) at b−1(y). By the definition of the barycentre

BTmax∧H
b−1(y)

has mean zero.
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Now consider BS∧H
b−1(y)

. On the set {Hb−1(y) < S} we have BS ≥ b−1(y) and then

BS ≥ b(BS) ≥ b(b−1(y)). Since µ assigns no mass to (b(b−1(y)), y) we have BS ≥ y.

Further since BS ∼ µ, then BS∧H
b−1(y)

is distributed according to µ on (−∞, y) with

perhaps some mass in [y, b−1(y)) and the rest at b−1(y). However S is minimal, so

E(BS∧H
b−1(y)

) = 0 by Lemma 3.23 and in fact BS∧H
b−1(y)

assigns no mass to [y, b−1(y)).

Thus

P(BS ≥ b−1(y)) = P(BTmax ≥ b−1(y))

and since BTmax ≥ BS we conclude that the sets {BS ≥ b−1(y)} and {BTmax ≥ b−1(y)}

are almost surely equal.

Suppose now that P(b(BTmax) > b(BS)) > 0. Then there exists y ∈ R such that

P(b(BTmax) > y > b(BS)) > 0. But

{b(BTmax) > y > b(BS)} ⊆ {BTmax > b−1(y) ≥ BS}

since b−1 is increasing and left-continuous, and the event on the right-hand side has

zero probability.

3.6 An Embedding to Maximise the Modulus

In Jacka (1988), Jacka shows how to embed a centred probability distribution in a

Brownian motion so as to maximise P(supt≤T |Bt| ≥ y). Our goal in this section is

to extend this result to allow for non-centered target distributions with mean m 6= 0.

In fact we solve a slightly more general problem. Let h be a measurable function;

we will construct a stopping time Tmod which will maximise P(supt≤T |h(Bt)| ≥ y)

simultaneously for all y where the maximum is taken over the class of all minimal

stopping times which embed µ. The reason for our generalisation will become apparent

in the application in the next section.

Without loss of generality we may assume that h is a non-negative function with h(0) =

0 and such that for x > 0 both h(x) and h(−x) are increasing. To see this, observe

that for arbitrary h we can define the function

h̃(x) =







max0≤y≤x |h(y)| − |h(0)| x ≥ 0;

maxx≤y≤0 |h(y)| − |h(0)| x < 0.
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η(x)

x−z−(θ0) z+(θ0)u(θ0)

Figure 3-4: η̂(x) for a distribution µ showing the construction of z+(θ0) and z−(θ0).
The slope of the tangent is θ0 where θ0 has been chosen such that (assuming h is
continuous) h(z+(θ0)) = h(−z−(θ0)).

Then h̃ has the desired properties and since

sup
s≤T

|h(Bs)| = sup
s≤T

|h̃(Bs)| + |h(0)|

the optimal embedding for h̃ will be an optimal embedding for h.

So suppose that h has the properties listed above. We want to find an embedding of

µ in B which is minimal and which maximises the law of supt≤T h(Bt). (Since h is

non-negative we can drop the modulus signs.) Suppose also for definiteness that µ has

a finite, positive mean m =
∫

R
xµ(dx) > 0. In fact our construction will also be optimal

when m = 0 (the case covered by Jacka (1988)), but in order to avoid having to give

special proofs for this case we will omit it.

We begin by making the definitions

z+(θ) :=
η̂(u(θ)) − θu(θ)

1 − θ
, (3.34)

z−(θ) :=
η̂(u(θ)) − θu(θ)

1 + θ
, (3.35)
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and

θ0 := inf{θ ∈ [−1, 1] : h(z+(θ)) ≥ h(−z−(θ))},

as pictured in Figure 3-4. Our optimal stopping time will take the following form. Run

the process until it hits either z+(θ0) or −z−(θ0), and then embed the restriction of µ

to [u(θ0),∞) or (−∞, u(θ0)] respectively (defining the target measures more carefully

when there is an atom at u(θ0)). For the embeddings in the second part, we will use

the constructions described in Section 3.5.

To be more precise about the measures we embed in the second step, define

p := P(Hz+(θ0) < H−z−(θ0)) =
z−(θ0)

z+(θ0) + z−(θ0)
,

and note

θ0 =
z+(θ0) − z−(θ0)

z+(θ0) + z−(θ0)
= 1 − 2p.

Then let µ+ be the measure defined by

• µ+(A) = p−1µ(A), A ⊆ (u(θ0),∞), A Borel;

• µ+([u(θ0),∞)) = 1;

• µ+((−∞, u(θ0))) = 0,

and similarly let µ− be given by

• µ−(A) = (1 − p)−1µ(A), A ⊆ (−∞, u(θ0)), A Borel;

• µ−((−∞, u(θ0)]) = 1;

• µ−((u(θ0),∞)) = 0.

The measure µ+ (respectively µ−) is obtained by conditioning a random variable with

law µ to lie in the upper pth (respectively lower (1 − p)th) quantile of its distribution.

Recall that

η̂(y) =

∫

|w − y|µ(dw) + |m|

= 2

∫

{w>y}
(w − y)µ(dw) −m+ y + |m|.
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Then from the definition in (3.34) we have that

z+(θ0) =
1

2p

(

2

∫

{w>u(θ0)}
(w − u(θ0))µ(dx) −m+ u(θ0)

+ |m| − (1 − 2p)u(θ0)

)

=
1

p

∫

{w>u(θ0)}
wµ(dw) + u(θ0)

(

1 −
1

p

∫

{w>u(θ0)}
µ(dw)

)

+
|m| −m

2p

=
1

p

∫

{w>u(θ0)}
wµ(dw) + u(θ0)

(

1 −
1

p
µ((u(θ0),∞))

)

where we have used m = |m|. In particular z+(θ0) is the mean of µ+, since

µ+({u(θ0)}) = 1 − 1
pµ((u(θ0),∞)). When we repeat the calculation for z−(θ0) we

find that

−z−(θ0) =
1

1 − p

∫

{w<u(θ0)}
wµ(dw) + u(θ0)

(

1 −
1

1 − p
µ((−∞, u(θ0))

)

−
|m| +m

2(1 − p)
.

Since m > 0 the final term does not disappear and −z−(θ0) is strictly smaller than the

mean of µ−.

We now describe the candidate stopping time Tmod ≡ T h
mod. Note that this stopping

time will depend implicitly on the function h via z±(θ0). Let

T0 := inf{t > 0 : Bt 6∈ (−z−(θ0), z+(θ0))},

and define

Tmod :=







T
µ+
max ◦ θT0 + T0 BT0 = z+(θ0)

T
µ−

min ◦ θT0 + T0 BT0 = −z−(θ0).

Here we use θT0 to denote the shift operator, and T
µ+
max is the stopping time constructed

in Section 3.5 for a zero-mean target distribution, so that T
µ+
max is a standard Azema-

Yor embedding of the centred target law µ+. (Recall that z+(θ0) is the mean of the

corresponding part of the target distribution.) Similarly T
µ−

min is the stopping time

applied to −B started at −z−(θ0) which maximises the law of the maximum of −B.

In this case the mean of the target law µ− is larger than −z−(θ0) so that in order to
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define T
µ−

min we need to use the full content of Section 3.5 for embeddings of non-centred

distributions.

The following theorem asserts that this embedding is indeed an embedding of µ, that

it is minimal, and that it has the claimed optimality property.

Theorem 3.24. Let µ be a target distribution such that m > 0. Then within the class

of minimal embeddings of µ in B, the embedding Tmod as defined above has the property

that it maximises

P

(

sup
t≤T

h(Bt) ≥ x

)

simultaneously for all x.

Proof. By construction Tmod embeds µ. We need only show that it is optimal and

minimal.

Firstly, for x ≤ h(−z−(θ0)) ∧ h(z+(θ0)) we know that the probability of the event

{supt≤Tmod
h(Bt) ≥ x} is one and so, for such x, Tmod is clearly optimal. Indeed if

h is discontinuous at −z−(θ0) or z+(θ0) slightly more can be said: note first that if

z+(θ0) coincides with the supremum of the support of µ, then by Theorem 3.7(vi) and

the minimality of Tmod (see below), the stopped Brownian motion can never go above

z+(θ0). With this in mind let

L =

(

lim
y↑−z−(θ0)

h(y)

)

∧

(

lim
y↓z+(θ0)

h(y)

)

if z+(θ0) is less than the supremum of the support of µ and

L =

(

lim
y↑−z−(θ0)

h(y)

)

∧ h(z+(θ0))

otherwise. Now take x ≤ L. Then either BT0 = z+(θ0) or BT0 = −z−(θ0). If BT0 =

z+(θ0) then either BTmod
> z+(θ0) almost surely and

max
0≤t≤Tmod

h(Bt) ≥ lim
y↓z+(θ0)

h(y) ≥ L

or z+(θ0) is the supremum of the support of µ and

max
0≤t≤Tmod

h(Bt) = h(BT0) ≥ L.

Similar considerations apply for BT0 = −z−(θ0) except that then −BTmod
> z−(θ0) in
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all cases. We deduce that for x ≤ L

P

(

sup
t≤Tmod

h(Bt) ≥ x

)

= 1

and hence Tmod is optimal.

So suppose that x > L. For any stopping time T embedding µ, the following holds:

P

(

sup
s≤T

h(Bs) ≥ x

)

≤ P
(

h(BT ) ≥ x
)

+ P (h(BT ) ≥ x) . (3.36)

We will show that the embedding Tmod attains the maximal values of both terms on

the right hand side, and further that for Tmod the two events on the right hand side

are disjoint. Hence Tmod is optimal.

By the definition of θ0, x > (h(z+(θ0))) ∨ (h(−z−(θ0))). It follows that

P(h(BTmod
) ≥ x) = pP(h(BTmod

) ≥ x|BT0 = z+(θ0))

and by the definition of Tmod and the properties of Tmax, we deduce

P(h(BTmod
) ≥ x) = pP(h(BT µ

max
) ≥ x|BT µ

max
≥ z+(θ0))

= P(h(BT µ
max

) ≥ x)

where here T µ
max is the embedding of Section 3.5 applied to µ. A similar calculation

can be done for the minimum. In particular Tmod inherits its optimality property from

the optimality of its constituent parts T
µ+
max and T

µ−

min

Finally we note that Tmod is indeed minimal. Let S ≤ Tmod be a stopping time. We

show that for A ∈ FS

E(BTmod
;A) ≥ E(BS ;A), (3.37)

then minimality follows from Theorem 3.7. Observe that

BT −BS = BT −BS∨T0 +BS∨T0 −BS .

Then,

E(BT −BS∨T0;A ∩ {T0 = Hz+(θ0)}) = 0
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by the properties of T
µ+
max;

E(BT −BS∨T0;A ∩ {T0 = H−z−(θ0)}) ≥ 0

by the properties of T
µ−

min and

E(BS∨T0 −BS ;A) = 0

since Bt∧T0 is UI. If we add these various results then (3.37) follows.

Remark 3.25. If the restrictions of h to R+ and R− are strictly increasing then Tmod

will be essentially the unique embedding which attains optimality in Theorem 3.24. If

however h has intervals of constancy then other embeddings may also maximise the

law of supt≤T |h(Bt)|.

3.7 Embeddings in Diffusions

Our primary motivation in considering the embeddings of the previous sections was

their use in the investigation of the following question:

Given a regular (time-homogeneous) diffusion (Yt)t≥0 and a target distri-

bution ν, find (if possible) a minimal stopping time which embeds ν and

which maximises the law of supt≤T Yt (alternatively supt≤T |Yt|) among all

such stopping times.

Recall that in the martingale (or Brownian) case it is natural to consider centred target

laws, at least in the first instance. However in the non-martingale case this restriction

is no longer natural, and as we have seen in Chapter 2 is unrelated to whether it is

possible to embed the target law in the diffusion Y .

As in Section 2.3 we use a time change to map the diffusion to a local martingale,

Mt = s(Yt) = Bτt , τ being a time change which maps M to a Brownian motion. Then

we can ask the question of when an embedding of Y is minimal. Clearly:

T is minimal for Y ⇐⇒ T is minimal for M ⇐⇒ τT is minimal for B

By considering Lemma 2.10, we see that when the diffusion is transient every embedding

in Y is minimal, and every minimal embedding of B corresponds to an embedding of

the diffusion Y . This follows from Theorem 3.7(vi) and Theorem 3.2.
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It is now possible to apply the results of previous sections to deduce a series of corollaries

about embeddings of ν in Y . Suppose that ν can be embedded in Y or equivalently

that µ can be embedded in B before the Brownian motion leaves s(I)◦. Let Tmax and

T h
mod be the optimal embeddings of µ in B as defined in Sections 3.5 and 3.6. (Observe

that from now on we make the dependence of T h
mod on h explicit in the notation.) Then

we can define T Y
max and T Y,h

mod by

T Y
max = τ−1 ◦ Tmax T Y,h

mod = τ−1 ◦ T h
mod.

Corollary 3.26. T Y
max is optimal in the class of minimal embeddings of ν in Y in the

sense that it maximises

P

(

max
t≤T

Yt ≥ y

)

uniformly in y ≥ 0.

Corollary 3.27. T Y,h
mod is optimal in the class of minimal embeddings of ν in Y in the

sense that it maximises

P

(

max
t≤T

(h ◦ s)(Yt) ≥ y

)

uniformly in y ≥ 0.

Corollary 3.28. T
Y,|s−1|
mod is optimal in the class of minimal embeddings of ν in Y in

the sense that it maximises

P

(

max
t≤T

|Yt| ≥ y

)

uniformly in y ≥ 0.
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Chapter 4

Extending Chacon-Walsh:

Generalised Starting

Distributions

In this chapter we consider a more general method for constructing stopping times,

following the method of Chacon and Walsh (1976). In this context we are able to con-

sider the embedding problem where the process has an integrable starting distribution.

Consideration of general starting distributions requires a more general characterisation

of minimality, and we are able to use this characterisation of minimality to provide a

simple condition for the construction to be minimal.

We are then able to use the construction to provide a simple description of the stopping

times considered in Chapter 3 — in particular, the Azema-Yor and modulus maximising

stopping times can be easily extended to the case where we have a more general starting

distribution, and shown to be minimal and optimal. Further, we are able to show

that the stopping time introduced by Vallois (1983) can be described simply in the

construction, which allows us to extend the stopping time to general starting measures.
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4.1 Introduction

In this chapter we examine the construction of Chacon and Walsh (1976). This is

essentially a graphical construction, and can be used to construct embeddings from the

exit times of compact intervals. One of the features of this method is that it extends

easily to generalised starting measures. The construction relies heavily on properties

of the potential of the starting and target measure. Chacon and Walsh (1976) show

that when the starting measure, µ0 and the target measure µ are centred and satisfy

−Eµ0|X − x| = uµ0(x) ≥ uµ(x) = −Eµ|X − x| (4.1)

for all x ∈ R, then the construction can be used to produce many different embeddings.

One of the central aims of this chapter is to show that we can extend these results to the

case where (4.1) fails, possibly because the means of the target and starting distribution

are different.

In this new context we can ask the question of when the construction is minimal. When

the starting distribution is simply a point mass at zero previous results concerning

minimality will be relevant, however for more complicated starting distributions a new

characterisation of minimality is required. This can be seen by considering the example

of a target distribution consisting of a point mass at zero, but with starting distribution

of mass p at −1 and 1 − p at 1. Clearly the only minimal stopping time is to stop the

first time the process hits 0, however when p = 1
2 the stopping time is no longer UI,

and if p ∈ (0, 1
2) the process will not satisfy E(BT |FS) ≤ BS as might be expected from

consideration of Theorem 3.7. Consequently we shall require a new characterisation of

minimality.

Having obtained such a characterisation, we are able to give a simple graphical interpre-

tation of when the generalised Chacon-Walsh construction yields a minimal stopping

time. These techniques allow us to demonstrate the strength of the Chacon-Walsh

approach. In particular, following the techniques of Meilijson (1983), we are able to

show that the Azema-Yor stopping time is a specific example of the Chacon-Walsh

construction, and so we are able to construct easily an extension of the Azema-Yor

stopping time for any integrable starting and target measures, showing that it does

maximise the distribution of the maximum among the class of minimal stopping times.

Further we show that a second known stopping time from the literature allows an

interpretation in the Chacon-Walsh picture. This time we consider the stopping time

introduced in Vallois (1983), a stopping time based on the local time at zero. We
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are able to show that the stopping time can be easily extended to non-centred target

distributions (with the process started at zero), and to some extent to more general

starting distributions.

The chapter will proceed as follows: in Section 4.2 we describe the Chacon-Walsh con-

struction, and in Section 4.3 discuss some extensions which will allow us to work more

easily with non-centred distributions; in Section 4.4 we prove some technical results

concerning minimality for general starting measures, which allow us in Section 4.5 to

relate minimality with the potential, and prove a generalisation of Theorem 3.7; in

Section 4.6 we show that (under some conditions) the limit of minimal stopping times

is minimal, an observation that allows us to conclude in Section 4.7 simple sufficient

conditions for a Chacon-Walsh construction to be minimal, and deduce that a gen-

eralised version of the Azema-Yor stopping time is minimal (and optimal); finally in

Section 4.8 we are able to construct the Vallois stopping time in the Chacon-Walsh

context, allowing us to deduce that there is a simple extension to non-centred target

distributions which is minimal.

4.2 The Balayage Construction

In the theory of general Markov processes, a common definition of the potential of a

stochastic process is given by

Uµ(x) =

∫

R

µ(dy)

∫

R+

ds ps(x, y),

where ps(x, ·) is the transition density at time s of the process started at x. In the case

of Brownian motion, we note that the integral is infinite. To resolve this we use the

compensated definition (and introduce new notation to emphasise the fact that this is

not the classical definition of potential) :

uµ(x) =

∫

R

µ(dy)

∫

R+

ds (ps(x, y) − ps(0, 0)).

This definition simplifies to the following:

uµ(x) = −

∫

|x− y|µ(dy). (4.2)

If the measure µ is integrable then the function uµ is finite for all x ∈ R. It is not hard

to see that (4.2) also implies that uµ is continuous, differentiable everywhere except
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the set {x ∈ R : µ({x}) > 0} and concave.

We note that the function uµ is connected to the functions κ of Chapter 2 and η of

Chapter 3 (as in (3.1)). In particular,

uµ(x) = −η(x) = 2κ(x) − |x| − Eµ|X|. (4.3)

The connection underlines the importance of potential theory in the study of em-

beddings, and the link between uµ and η will become clear in our treatment of the

Azema-Yor-type embeddings in this chapter.

In the zero-mean case, where B0 = 0 and BT ∼ µ for a centred distribution µ the

construction we describe is well understood. The main aim of this work is to discuss

the suitability of the construction when the initial law is non-trivial and the target

distribution is not centred. First we note the asymptotic behaviour of the potential.

Write

m =

∫

xµ(dx).

As |x| → ∞, we have

uµ(x) + |x| → m sign(x). (4.4)

Remark 4.1. The distribution µ is integrable if and only if uµ(x) is finite for any (and

thus all) x ∈ R. It will later be important to note that, as a consequence of (4.4), if µ

and ν are integrable distributions, then there exists a constant K > 0 such that:

sup
x∈R

|uµ(x) − uν(x)| < K.

Remark 4.2. The function uµ is almost everywhere differentiable with left and right

derivatives

u′µ,−(x) = 1 − 2µ((−∞, x));

u′µ,+(x) = 1 − 2µ((−∞, x]).

Chacon (1977) contains many results concerning potentials. We will describe a balayage

technique that produces a sequence of measures and corresponding stopping times, and

which will have as its limit our desired embedding. The following two lemmas are

therefore important in concluding that the limit we obtain will indeed be the desired

distribution:

Lemma 4.3 (Chacon (1977), Lemmas 2.5, 2.6). Suppose {µn} is a sequence of proba-
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a1

a2

b1
b2

uµ(x)

x

Figure 4-1: The above plot of uµ shows some additional lines. Each line represents a
step in the construction — starting from zero, we run until we hit a1 or b1. If we hit
a1 first, we then run until we hit a2 or b2 The infimum of the old potential and the line
gives our new potential. In the limit we aim to have potential agreeing with the target
distribution.

bility measures. If

(i) µn converges weakly to µ and limn→∞ uµn(x0) exists for some x0 ∈ R, then

limn→∞ uµn(x) exists for all x ∈ R and there exists C ≥ 0 such that

lim
n→∞

uµn(x) = uµ(x) − C. (4.5)

(ii) limn→∞ uµn(x) exists for all x ∈ R then µn converges weakly to µ for some

measure µ and µ is uniquely determined by the limit limn uµn(x).

We consider the embedding problem where we have a Brownian motion B with B0 ∼
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µ0 (an integrable starting distribution) and we wish to embed an integrable target

distribution µ. This is essentially the case considered by Chacon and Walsh (1976),

although they only consider the case where uµ0(x) ≥ uµ(x) for all x (when (4.4) implies

µ0 and µ have the same mean) — we will see that this case is simpler than the general

case we consider. The embedding problem is frequently considered when µ0 is the Dirac

measure at 0. One of the appealing properties of the case where B0 = 0 is that for all

centred target distributions (Chacon, 1977, Lemma 2.1)

uµ(x) ≤ −|x| = uµ0(x), (4.6)

and the condition on the ordering of potentials is easily satisfied.

One of the strengths of the Chacon-Walsh construction is that it admits a nice graphical

interpretation. This is shown in Figure 4-1.

Each step in the construction is described mathematically by a simple balayage tech-

nique:

Definition 4.4. Let µ be a probability measure on R, and I a finite, open interval,

I = (a, b). Then define the balayage µI of µ on I by:

µI(A) = µ(A) A ∩ Ī = ∅;

µI({a}) =

∫

Ī

b− x

b− a
µ(dx);

µI({b}) =

∫

Ī

x− a

b− a
µ(dx);

µI(I) = 0.

The balayage µI is a probability measure and

∫

xµI(dx) =

∫

ĪC

xµ(dx) + a

∫

Ī

b− x

b− a
µ(dx) + b

∫

Ī

x− a

b− a
µ(dx)

=

∫

ĪC

xµ(dx) +

∫

Ī
xµ(dx).

So the means of µ and µI agree. In particular, µI is the law of a Brownian motion

started with distribution µ and run until the first exit from (a, b).

Our reason for introducing the Balayage technique is that the potential of µI is readily

calculated from the potential of µ:

Lemma 4.5 (Chacon (1977) Lemma 8.1). Let µ be a probability measure with finite

potential, I = (a, b) a finite open interval and µI the balayage of µ with respect to I.
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Then

(i) uµ(x) ≥ uµI
(x) x ∈ R;

(ii) uµ(x) = uµI
(x) x ∈ IC ;

(iii) uµI
is linear for x ∈ Ī.

Formally, we may use balayage to define an embedding as the following result shows. In

the formulation of the result we assume we are given the sequence of functions we use

to construct the stopping time, and from these deduce the target distribution. However

we will typically use the result in situations where we have a desired target distribution

and choose the sequence to fit this distribution.

Lemma 4.6. Let f1, f2, . . . be a sequence of linear functions on R such that |f ′(x)| < 1

and define

g(x) = inf
n∈N

fn(x) ∧ (uµ0(x)). (4.7)

Set T0 = 0 and, for n ≥ 1, define

an = inf{x ∈ R : fn(x) < uµn−1(x)};

bn = sup{x ∈ R : fn(x) < uµn−1(x)};

Tn = inf{t ≥ Tn−1 : Bt 6∈ (an, bn)};

µn = (µn−1)(an,bn) .

Let T = limn→∞ Tn. If

g(x) = uµ(x) − C (4.8)

for some C ∈ R and some integrable probability measure µ then T < ∞ a.s. and T is

an embedding of µ.

The condition on the gradient of the functions fn is required to ensure that the points

an and bn exists.

Proof. The hard part is to show that if (4.8) holds then the stopping time T is almost

surely finite. We prove in fact that E(LT ) <∞, where L is the local time of B at zero.

By considering the martingale |Bt| − Lt we must have

E(LTn) = uµ0(0) − uµn(0). (4.9)
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By monotone convergence the term on the left hand side increases to E(LT ) and the

term on the right hand side increases to uµ0(0) − g(0), which is finite by assumption.

Lemma 4.5 implies

uµn(x) = fn(x) ∧ uµn−1(x) = inf
k≤n

fk(x) ∧ (uµ0(x)).

Since the functions fn satisfy (4.7), we know that the conditions of Lemma 4.3 hold,

determining the (unique) limiting distribution. Since Tn ↑ T < ∞ a.s., BT has distri-

bution µ — i.e. T embeds µ — by the continuity of the Brownian motion.

The case considered by Chacon and Walsh (1976) has a notable property. When the

starting and target measures are centred (or at least when their means agree) and

uµ0(x) ≥ uµ(x) (4.10)

then we may choose a construction such that C = 0 in (4.8). In this case the process

Bt∧T is uniformly integrable (Chacon, 1977, Lemma 5.1). The desire to find a condi-

tion to replace uniform integrability in situations where (4.10) does not hold, and to

construct suitable stopping times using this framework, is the motivation behind the

subsequent work.

We note also that — for given µ, µ0 — we may choose any C which satisfies C ≥

supx {uµ(x) − uµ0(x)}. As a consequence of (4.4) we must always have C ≥ 0.

4.3 Non-centred Target Distributions: An Extension to

Balayage

In this section we examine an extension to the method of balayage. The new step we

introduce will allow us to consider a larger class of Chacon-Walsh type stopping times,

and will be important when we come to consider the properties we wish our embeddings

to possess, particularly in the non-zero mean case.

Definition 4.7. Let I = (a,∞) (resp. I = (−∞, a)), and define the balayage µI of µ
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by

µI(A) = µ(A) A ∩ Ī = ∅;

µI({a}) =

∫

Ī
µ(dx);

µI(I) = 0.

This is the distribution of a Brownian motion started with distribution µ and run until

the first time it leaves I — i.e. the first time the process goes below (resp. above) the

level a.

It is clear that such a stopping time is not uniformly integrable when µ(I) > 0. This

can be seen by noting that the means of µI and µ do not agree, since:

∫

R

xµ(dx) =

∫

R

xµI(dx) +

∫

I
(x− a)µ(dx).

Our aim is to classify the impact of the balayage on the potential in a similar way to

Lemma 4.5.

Lemma 4.8. Let µ be a probability measure with finite potential uµ, I = (−∞, a) or

I = (a,∞) a semi-infinite interval and µI the balayage of µ with respect to I. Then

uµI
(x) = uµ(x) + ∆m x /∈ I;

uµI
(x) = uµ(a) + ∆m− |a− x| x ∈ I,

where we have written

∆m =

∫

I
|x− a|µ(dx).

We may consider this graphically in the same manner as before. If we consider uµI
−∆m

where I = (a,∞), then this function agrees with the original potential on IC , while

being a line with gradient −1 passing through the point (a, uµ(a)) on I.

The balayage step in Definition 4.7 can be recreated using the balayage steps of Defini-

tion 4.4, for example by taking the sequence of intervals (a, a+1), (a, a+2), (a, a+3), . . ..

However Lemma 4.5 does not tell us the resulting potential, and does not let us make

the same constructions as we can with the new definition — for example if we wish our

first step to be to move up to 1, we would not be able to carry out any further steps.

Lemma 4.9. Let f1, f2, . . . be a sequence of linear functions on R such that |f ′n(x)| ≤ 1

and

g(x) = inf
n∈N

fn(x) ∧ (uµ0(x)). (4.11)
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Set T0 = 0, g0(x) = uµ0(x) and, for n ≥ 1, define

an = inf{x ∈ R : fn(x) < gn−1(x)};

bn = sup{x ∈ R : fn(x) < gn−1(x)};

Tn = inf{t ≥ Tn−1 : Bt 6∈ (an, bn)};

gn(x) = gn−1(x) ∧ fn(x).

Then the Tn are increasing so we define T = limn→∞ Tn. If

g(x) = uµ(x) − C

for some C ∈ R and some integrable probability measure µ then T < ∞ a.s. and T is

an embedding of µ.

The proof of this result is essentially identical to that of Lemma 4.6, however we now

have gn(x) = uµn(x) − Cn for some constant Cn ∈ R. We also now allow |f ′n| = 1,

which means that we might now have semi-infinite intervals. Lemma 4.8 tells us how

these steps behave.

We also need to adjust the argument that T < ∞ a.s.. It is sufficient for this to note

that e.g. E(LH−1) = 2 when B0 = 0, and so (4.9) holds as before. The same argument

then works in this case.

The constant C chosen here is dependent on the approximating sequence of functions,

but can be written as C = uµ(a) − g(a). In the later sections we will see that the case

where the functions fn are chosen to minimise C for a given target distribution are

optimal in a sense to be made explicit later.

We can now apply the graphical routine used before, along with the new ‘move’ in-

troduced of drawing the line to (plus or minus) infinity with gradient plus or minus 1.

This construction is shown in Figure 4-2.

The extended Chacon-Walsh embedding gives us a relatively large class of embeddings

that (as a consequence of Remark 4.1) can be constructed for any integrable distribu-

tions µ, µ0. We now turn to the question of which of these embeddings — for given

starting and target distributions — are minimal.
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uµ(x)

x

Figure 4-2: The above plot shows a potential uµ shifted so that it is no longer tangential
to −|x| at either −∞ or ∞. This allows steps in the construction with gradients ±1 as
shown.

4.4 Minimality: Some Preliminary Results

In this and the subsequent section we discuss necessary and sufficient conditions for

an embedding of an integrable target distribution to be minimal when we have an

integrable starting distribution. These results will extend the the conditions of Theo-

rems 3.2 and 3.7. We begin by considering some of the previous results which extend

easily to the general case.

As a starting point, we note that the proof of Proposition 3.6 does not rely on the fact

that B starts at 0, and so the result extends to a general starting distribution, so that

there always exists a minimal embedding smaller than any given embedding.

It can also be seen that the argument used in Monroe (1972) to show that if the process
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is uniformly integrable then the process is minimal does not require the starting measure

to be a point mass. For completeness we state a similar result, with the proof identical

to that given in Monroe (1972):

Lemma 4.10. Let T be a stopping time embedding µ in (Bt)t≥0, with B0 ∼ µ0 where

µ and µ0 are integrable distributions. If

E(BT |FS) = BS a.s. (4.12)

for all stopping times S ≤ T then T is minimal.

Note that S ≡ 0 implies that µ, µ0 have the same mean.

Proof. Let S ≤ T be a stopping time such that BS ∼ µ. Then for a ∈ R

E(BT ;BT ≥ a) = E(BS;BS ≥ a) = E(BT ;BS ≥ a).

Consequently BS = BT a.s.. If R is another stopping time, S ≤ R ≤ T , then

BR = E(BT |FR) = E(BS |FR) = BS = BT a.s..

And by the continuity of Brownian paths, B is constant on the interval [S, T ] and hence

S = T a.s..

Remark 4.11. We will later be interested also in necessary conditions for minimality.

The condition in (4.12) is not necessary even when both starting and target measures

are centred, as can be seen by taking µ0 = 1
2δ−1 + 1

2δ1 and µ = δ0, where it is impossible

to satisfy (4.12) but the (only) minimal stopping time is ‘stop when the process hits 0.’

The condition in (4.12) is equivalent to uniform integrability of the process (Bt∧T )t≥0.

One direction follows from the optional stopping theorem, the reverse implication comes

from the upward martingale theorem (Rogers and Williams, 2000a)[Theorem II.69.5],

which tells us that the process Xt = E(BT |Ft) is a uniformly integrable martingale on

t ≤ T . When (4.12) holds, Xt = Bt∧T , and the process Bt∧T is a uniformly integrable

martingale.

For the rest of this section we will consider minimality for general starting and target

measures: particularly when the means do not agree. If this occurs when the starting

measure is a point mass, necessary and sufficient conditions are given in Theorem 3.7.

In subsequent proofs with general starting measures we will often reduce problems to

the point mass case in order to apply the result.
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Remark 4.12. The condition given in (iii) of Theorem 3.7 hints at a more general

idea inherent in the study of embeddings in Brownian motion. When B0 = 0, it is a

well known fact that if there exists α < 0 < β such that T ≤ Hα ∧ Hβ then Bt∧T is

a uniformly integrable martingale. If T ≤ Hα then the process is a supermartingale.

In terms of embeddings, this observation has the following consequence: if the target

distribution is centred and supported on a bounded interval, an embedding is minimal if

and only if the process never leaves this interval. If the target distribution has a negative

mean, but still lies on a bounded interval, any embedding must move above the interval

— i.e. P(supt≤T Bt ≥ x) > 0 for all x ≥ 0. Theorem 3.7 and Proposition 3.6 tell us

that in this case an embedding exists for which T ≤ Hα and all minimal embeddings

satisfy this property.

Recall that there is a natural ordering on the set of (finite) measures on R, that is

µ � ν if and only if µ(A) ≤ ν(A) for all A ∈ B(R), in which case we say that ν

dominates µ. In such instances it is possible to define a (positive, finite) measure

(ν − µ)(A) = ν(A) − µ(A). The notation ν = L(BT ;T < Hα) is used to mean the

(sub-probability) measure ν such that ν(A) = P(BT ∈ A,T < Hα).

Lemma 4.13. Let Bt be a Brownian motion with B0 = 0, T a stopping time embedding

a distribution µ, µ̃ a target distribution such that supp(µ̃) ⊆ [α,∞) for some α < 0 and
∫

x µ̃(dx) ≤ 0. Then if ν = L(BT ;T < Hα) is dominated by µ̃, there exists a minimal

stopping time T̃ ≤ T ∧Hα which embeds µ̃.

Similarly, if µ̃ is such that supp(µ̃) ⊆ [α, β] and
∫

x µ̃(dx) = 0, and if ν = L(BT ;T <

Hα∧Hβ) is dominated by µ̃, then there exists a minimal stopping time T̃ ≤ T ∧Hα∧Hβ

which embeds µ̃.

Proof. Construct a stopping time T ′ as follows: on {T < Hα}, T ′ = T ; otherwise choose

T ′ so that T ′ = Hα +T ′′ ◦θHα where T ′′ is chosen to embed (µ̃−ν) on {T ′ ≥ Hα} given

B0 = α. Then T ′ is an embedding of µ̃ and T ′ ≤ T on {T < Hα}. So by Proposition 3.6

we may find a minimal embedding T̃ ≤ T ′ ∧Hα = T ∧Hα which embeds µ̃.

The proof in the centred case is essentially identical, but now stopping the first time

the process leaves [α, β].

We turn now to the case of interest — that is when B0 ∼ µ0 and BT ∼ µ for integrable

measures µ0 and µ. The following lemma is essentially technical in nature, but will

allow us to deduce the required behaviour on letting A increase in density.
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Lemma 4.14. Let T be a minimal stopping time, and A a countable subset of R such

that A has finitely many elements in every compact subset of R and d(x,A) < M for

all x ∈ R and some M > 0. We consider the stopping time

R(A) = inf{t ≥ 0 : Bt ∈ A} ∧ T

and we write

EA(x) =







E(BT |T > R(A), BR(A) = x) : P(T > R(A), BR(A) = x) > 0;

x : P(T > R(A), BR(A) = x) = 0.

Then there exists a ∈ R̄ = R ∪ {−∞} ∪ {∞} such that

EA(x) > x =⇒ x < a, (4.13)

EA(x) < x =⇒ x > a, (4.14)

and T ≤ Ha on {T ≥ R(A)}.

Further, if there exists x < y such that EA(x) > x and EA(y) < y then there exists

a∞ ∈ [x, y] such that T ≤ Ha∞
.

Proof. Suppose that there exists x < y such that EA(x) < x and EA(y) > y, and

suppose EA(w) = w for x < w < y. We show that we can construct a strictly smaller

embedding, contradicting the assumption that T is minimal.

Define the stopping time T ′ = R(A)1{BR(A)∈{x,y}} + T1{BR(A) /∈{x,y}} and for some z ∈

(x, y), the stopping time

T ′′ = inf{t ≥ T ′ : Bt = z} ∧ T.

As a consequence of Remark 4.12, paths from both x and y must hit z.

Consider the set {T ′′ < T}. On this set we have only paths with BR(A) = x and

BR(A) = y. Define µx = L(BT ;BR(A) = x, T ′′ < T ) and µy = L(BT ;BR(A) = y, T ′′ <

T ). Since Brownian motion bounded above is a submartingale,

E(BT∧Hz ;BR(A) = x, T > R(A)) ≥ xP(BR(A) = x, T > R(A)).

Together with EA(x) < x this implies

zP(BR(A) = x, T ′′ < T ) > E(BT ;BR(A) = x, T ′′ < T ),
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i.e. we must have 1
µx(R)

∫

wµx(dw) < z, and similarly 1
µy(R)

∫

wµy(dw) > z. Then

we apply Lemma 4.13 to the processes BT ′′+t on {BR(A) = x, T ′′ < T} and {BR(A) =

y, T ′′ < T} with the measures

µ̃x = µx|[a1∞) + µy|(a2,∞)

µ̃y = µx|(−∞,a1) + µy|(−∞,a2)

where we choose a1 < z < a2 so that

1

µ̃x(R)

∫

w µ̃x(dw) ≤ z and
1

µ̃y(R)

∫

w µ̃y(dw) ≥ z

and also so that µx(R) = µ̃x(R) and µy(R) = µ̃y(R)1. This will produce a strictly

smaller embedding, in contradiction to the assumption that T is minimal.

So we have shown that there exists a such that (4.13) and (4.14) hold. We just need

to show that we can choose a so that T ≤ Ha on {T ≥ R(A)}.

Suppose that there exists x < y such that EA(x) > x and EA(y) < y and EA(w) = w

for w ∈ (x, y). If

sup
x<a

µx((a,∞)) = 0 and sup
y>a

µy((−∞, a)) = 0 for some a ∈ (x, y) (4.15)

then T minimal and Theorem 3.7 implies that T ≤ Ha on {T ≥ R(A)}.

So suppose that (4.15) does not hold. We shall show that we can find a sequence

x1, x2, . . . , xr of elements of A such that we are able to transfer mass between the xi to

produce a smaller embedding. We begin by choosing x1 to be the point of A satisfying

EA(x) > x for which the support of µx extends furthest to the right, and y1 similarly

the point satisfying EA(y) < y for which the support of µy extends furthest to the left.

If the support of these measures overlap we show we can exchange mass between µx1

and µy1 and embed to find a smaller stopping time. Otherwise we look at those points

for which EA(x) = x and the support overlaps that of µx1 but extends further to the

right. In this way we can find a sequence whose supports overlap (since (4.15) does not

hold) and we may again perform a suitable exchange of mass to show that we can find a

smaller embedding. Then we take xr = y1 and the points satisfy x2 < x3 < . . . < xr−1.

There are several technical issues we need to address. Firstly, if we find at some stage

1It may be necessary to consider only a proportion of the paths hitting z from one side; this can be
done by choosing paths according to an independent U([0, 1]) random variable and running the rest of
the paths according to T . This will still construct a strictly smaller stopping time.
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there are two points which both satisfy the criterion — for example their supports

have the same upper bound — then we may use either point. Secondly, if the support

of all suitable points has a maximum which is not attained we may still use the same

procedure but we must (and can) choose a point which approximates the bound suitably

closely for subsequent steps to work. Finally we note that once we choose x2, since

there is at most one point to the right of y1, there exists only a finite number of points

left to choose from (by assumption on A) and so the sequence will be finite.

The technical construction is as follows: let x1 be the largest value such that EA(x1) >

x1 and

sup{z : z ∈ supp(µx1)} = sup
w:EA(w)>w

{sup{z : z ∈ supp(µw)}},

(or at least so that the left hand side approximates the right hand side sufficiently

closely for the next step to work — since the support of the points to the right overlaps

we shall be able to find x1 with supremum of its support sufficiently close to the term

on the left) and let y1 be the smallest value such that EA(y1) < y1 and

inf{z : z ∈ supp(µy1)} = inf
w:EA(w)<w

{inf{z : z ∈ supp(µw)}}.

Then (by the assumption that (4.15) does not hold) we can find a sequence x1, x2, . . . , xr

such that xr = y1 and x2 < x3 < . . . xr−1, EA(xi) = xi for 1 < i < r and, if we define

Ii = inf{intervals I : supp(µxi
) ⊆ I}, then

Leb(Ii ∩ Ii+1) > 0 k = 1, . . . , r − 1,

Leb(Ii ∩ Ii+2) = 0 k = 1, . . . , r − 2.

This is done by choosing at each step the w with EA(w) = w which overlaps the support

of the previous µxi
and whose support extends furthest to the right, until the support

overlaps with the support of µy1.

We write µi = µxi
. For general 1 ≤ i < r now consider µ′i defined by

µ′i = µi|(−∞,yi) + µi+1|(−∞,yi)

where yi is chosen such that µi([yi,∞)) = µi+1((−∞, yi)). Then it must be true that
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∫

wµ′i(dw) <
∫

wµi(dw). Define

mi =

∫

wµi(dw) −

∫

wµ′i(dw) > 0

m0 =

∫

wµ1(dw) − µ1(R)x1 > 0

mr = µr(R)xr −

∫

wµr(dw) > 0

and set ∆m = inf{mi : 0 ≤ i ≤ r}. Then for each i we can find vi < zi such that

µi([zi,∞)) = µi+1((−∞, vi)) and for

µ′i = µi|(−∞,zi) + µi+1|(−∞,vi)

we have
∫

wµi(dw) −

∫

wµ′i(dw) = ∆m.

Set

µ′′1 = µ1|(−∞,z1) + µ2|(−∞,v1),

µ′′i = µi−1|[zi−1,∞) + µi|[vi−1,zi) + µi+1|(−∞,vi) i = 2, . . . , r − 1,

µ′′r = µr−1|[zr−1,∞)) + µr|[vr−1,∞).

Then

∫

xµ′′1 ≥ µ′′1(R)x1

∫

xµ′′i = µ′′i (R)xi i = 2, . . . , r − 1
∫

xµ′′r ≤ µ′′r(R)xr.

So the conditions of Lemma 4.13 are satisfied for each µ′′i and we can find strictly

smaller stopping times on each of the sets {T > R(A), R(A) = xi}.

It only remains to show the final statement of the lemma. Let A′ ⊃ A be another set

satisfying the conditions of the lemma for some M ′, such that A′ \ A ⊆ [x, y]. Then

there exists x′, y′ ∈ A′ such that x ≤ x′ < y′ ≤ y, EA′(x′) > x′ and EA′(y′) < y′ —

if this were not the case at least one of the embeddings conditional on {R(A′) = z}

would not be minimal.

Now consider a sequence A ⊂ A1 ⊂ A2 ⊂ . . . and such that An \ A ⊆ [x, y] and
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d(z,An) ≤ 2−n for z ∈ [x, y]. Let

Λ = {a ∈ [x, y] : T ≤ Ha on {T ≥ R(A)}};

Λn = {a ∈ [x, y] : T ≤ Ha on {T ≥ R(An)}}.

Then the sets Λ,Λn are closed, Λ ⊇ Λ1 ⊇ Λ2 ⊇ . . ., and each Λn is non-empty. So there

exists a∞ ∈ Λn for all n. Hence T ≤ Ha∞
on {T ≥ R(An)} for all n. But R(An) ↓ 0

on {B0 ∈ [x, y]} and R(A) ≤ Ha∞
on {B0 6∈ [x, y]}.

This result, although technical in nature, can be thought of as beginning to describe

the sort of behaviour we shall expect from minimal embeddings in this general context.

The cases considered in Chapter 3 suggest behaviour of the form: ‘the process always

drifts in the same direction’, if indeed it drifts at all. The example of Remark 4.11

suggests that this is not always possible in the general case, and the previous result

suggests that this is modified by breaking the space into two sections, in each of which

the process can be viewed separately. The way these sections are determined is clearly

dependent on the starting and target measures, and we shall see in the next section

that the potential of these measures provides an important tool in determining how

this occurs.

4.5 Minimality and Potential

The main aim of this section is to find equivalent conditions to minimality which allow

us to characterise minimality simply in terms of properties of the process Bt∧T . This

is partly in order to prove the following result:

The Chacon-Walsh type embedding is minimal when constructed using the

functions uµ0 and c(x) = uµ(x) −C where

C = sup
x
{uµ(x) − uµ0(x)}. (4.16)

We have already shown that provided the means of our starting and target distribution

match, and (4.10) holds (so that C = 0 — the solution in this case to (4.16)), then

the process constructed using the Chacon-Walsh technique is uniformly integrable, and

therefore minimal. Of course the Chacon-Walsh construction is simply an example of

an embedding, and the functions uµ0 and c are properties solely of the general problem
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— it seems reasonable however that these functions will appear in the general problem

of classifying all minimal embeddings.

So consider a pair µ0, µ of integrable measures. Remark 4.1 tells us we we can choose C

such that (4.16) holds. We know uµ0(x) − c(x) is bounded above, and infx∈R uµ0(x) −

c(x) = 0. We consider

A = {x ∈ [−∞,∞] : lim
y→x

uµ0(y) − c(y) = 0}. (4.17)

Since both functions are Lebesgue almost-everywhere differentiable, Remark 4.2 implies

A ⊆ A′ where A′ is the set

{x ∈ [−∞,∞] : µ((−∞, x)) ≤ µ0((−∞, x)) ≤ µ0((−∞, x]) ≤ µ((−∞, x])}. (4.18)

One consequence of this is that if the starting distribution has an atom at a point

of A then the target distribution has an atom at least as large. Also we introduce

the following definition. Given a measure ν, a ∈ R and θ ∈ [ν((−∞, a)), ν((−∞, a])]

we define the measure ν̌a,θ to be the measure which is ν on (−∞, a), has support on

(−∞, a] and ν̌a,θ(R) = θ. We also define ν̂a,θ = ν − ν̌a,θ. Then for a ∈ A we may find

θ such that

µ̌a,θ((−∞, a]) = µ̌a,θ
0 ((−∞, a])

µ̂a,θ([a,∞)) = µ̂a,θ
0 ([a,∞)).

When µ0((−∞, a)) < µ0((−∞, a]) there will exist multiple θ. We will occasionally drop

the θ from the notation since this is often unnecessary.

These definitions allows us to write the potential in terms of the new measures (for any

suitable θ)

uµ(x) =

∫

(−∞,x]
(y − x) µ̌x(dy) +

∫

[x,∞)
(x− y)µ̂x(dy). (4.19)

As a consequence of this and a similar relation for uµ0 , we are able to deduce the

following important facts about the set A:

• if x < z are both elements of A (possibly ±∞), then

∫

y (µ− µ̌x,θ − µ̂z,φ)(dy) =

∫

y (µ0 − µ̌x,θ
0 − µ̂z,φ

0 )(dy). (4.20)

That is, we may find measures agreeing with µ and µ0 on (x, z) and with support

on [x, z] which have the same mean.
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• If x ∈ A, by definition

uµ(x) − uµ0(x) ≥ lim
z→−∞

(uµ(z) − uµ0(z)). (4.21)

This can be rearranged, using (4.19), to deduce

∫

(−∞,x]
y µ̌x

0(dy) ≤

∫

(−∞,x]
y µ̌x(dy)

with equality if and only if there is also equality in (4.21) — that is when −∞ ∈ A.

Together these imply that the set A divides R into intervals on which the starting and

target measures place the same amount of mass. Further, the means of the distributions

agree on these intervals except for the first (resp. last) interval where the mean of the

target distribution will be larger (resp. smaller) than that of the starting distribution

unless −∞ (resp. ∞) is in A, when again they will agree. Note the connection between

this idea and Lemma 4.14

Before we prove the result we establish several results that are needed in the proof.

Proposition 4.15. Suppose T ≤ Ha∞
is an embedding of µ for a∞ ∈ R. Then a∞ ∈ A.

Proof. Clearly a∞ must lie in A′ (see (4.18)). Suppose also that a∞ < z ∈ A. We may

choose θ, φ such that µ0 − µ̌a∞,θ
0 − µ̂z,φ

0 has no atom at either a∞ or z.

Then

uµ0(a∞) ≥ uµ(a∞) − C (4.22)

and C = uµ(z) − uµ0(z) imply

∫

y (µ− µ̌a∞,θ − µ̂z,φ)(dy) ≥

∫

y (µ0 − µ̌a∞,θ
0 − µ̂z,φ

0 )(dy), (4.23)

the term on the right being equal to E(B0;B0 ∈ (a∞, z)) and the term on the left at

most E(BT ;B0 ∈ (a∞, z)). However BT = BT∧Ha∞
is a supermartingale on {B0 ≥ a∞},

so we must have equality in (4.23) and hence in (4.22). So a∞ ∈ A.

Proposition 4.16. Suppose T is minimal and A is a countable subset of R such that

A has finitely many elements in every compact subset of R and d(x,A) < M for all

x ∈ R and some M > 0. Suppose also that S ≤ T is a stopping time and I ⊆ R is an

interval such that ∂I ⊆ A. If

E(BT ;F ∩ {B0 ∈ I}) > E(BS ;F ∩ {B0 ∈ I}) (4.24)
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for some F ∈ FS then EA(x) > x for some x ∈ A ∩ Ī.

Proof. We may assume F ⊆ {B0 ∈ I} and we note that therefore BR(A) ∈ A ∩ Ī on

{R(A) < T} ∩ F . Since Bt∧R(A) is uniformly integrable,

E(BS ;F ) = E(BR(A);F ∩ {S ≤ R(A)}) + E(BS ;F ∩ {R(A) < S})

E(BT ;F ) = E(BR(A);F ∩ {T = R(A)}) + E(BT ;F ∩ {R(A) < T}).

So (4.24) and the above identities imply

E(BT ;F ∩ {R(A) < T}) >E(BR(A);F ∩ {S ≤ R(A) < T})

+ E(BS ;F ∩ {R(A) < S}).

However if EA(x) ≤ x for all x ∈ A ∩ Ī and T is minimal, by Theorem 3.7:

E(BT ;F ∩ {R(A) < S}) ≤ E(BS ;F ∩ {R(A) < S})

E(BT ;F ∩ {S ≤ R(A) < T}) ≤ E(BR(A);F ∩ {S ≤ R(A) < T})

and we deduce a contradiction.

Proposition 4.17. Suppose F ∈ F0, E(BT ;F ) = E(B0;F ) and

E(BT |FS) ≤ BS on F (4.25)

for all stopping times S. Then in fact we have equality — that is

E(BT |FS) = BS

almost surely on F .

Proof. If P(F ) = 0 there is nothing to prove. Otherwise we may condition on F to

reduce to showing the result when F = Ω.

By the upward martingale theorem (Rogers and Williams, 2000a)[Theorem II.69.5], the

process

Xt = E(BT |Ft)

is uniformly integrable. Also E(BT |F0) ≤ B0 and E(BT ) = E(B0) implies E(BT |F0) =

B0. Let Yt = BT∧t −XT∧t. By (4.25) Yt is a non-negative local martingale such that

Y0 = YT = 0. Hence Y ≡ 0.

101



Lemma 4.18. If T is minimal and a ∈ A then T ≤ Ha and

E(BT |FS) ≤ BS on {B0 ≥ a}; (4.26)

E(BT |FS) ≥ BS on {B0 ≤ a}. (4.27)

Proof. Suppose initially a ∈ R. Let θ = µ0((−∞, a)). If {B0 < a} 6⊆ {BT ≤ a} a.s.

then also {B0 ≥ a} 6⊆ {BT ≥ a} a.s. and

E(B0;B0 < a) =

∫

y µ̌a,θ
0 (dy) ≤

∫

y µ̌a,θ(dy) < E(BT ;B0 < a);

E(B0;B0 ≥ a) =

∫

y µ̂a,θ
0 (dy) ≥

∫

y µ̌a,θ(dy) > E(BT ;B0 < a).

So there exists x1 ≤ a and x2 ≥ a such that (by Proposition 4.16)

EA(x1) < x1 and EA(x2) > x2

for a suitable choice of A — a contradiction to Lemma 4.14.

A similar argument can be used with θ = µ0((−∞, a]) to deduce that {B0 ≤ a} ⊆

{BT ≤ a} a.s. and {B0 ≥ a} ⊆ {BT ≥ a} a.s.. So if there is an atom of µ0 at a then

paths starting at a must also stop at a, and hence (by the minimality of T ) must stop

immediately — i.e. T = 0 on {B0 = a}.

So consider paths for which {B0 < a}. For almost all these paths, for some choice of A,

BR(A) < a. If (4.27) fails, by Proposition 4.16 there exists x < a such that EA(x) < x.

Then Lemma 4.14 and (for θ = µ0((−∞, a)))

∫

y µ̌a,θ
0 (dy) ≤

∫

y µ̌a,θ(dy)

imply there must also exist y < x such that EA(y) > y, and hence a′ < a such that

T ≤ Ha′ . Then Bt∧T is a supermartingale on {B0 > a′} (and a submartingale on {B0 ≤

a′}). But Proposition 4.15 and (4.20) imply E(B0; a′ < B0 < a) = E(BT ; a′ < B0 < a)

and therefore (by Proposition 4.17) Bt∧T is a true martingale on {a′ < B0 < a} — in

particular T ≤ Ha on {B0 < a}, and (4.27) holds. Similarly (4.26) can be shown to

hold.

So suppose now that a = ∞ (the case a = −∞ is similar) and there exists a′ < ∞

also in A. By the above, T ≤ Ha′ and so Bt∧T is a supermartingale on {B0 > a′},

while by (4.20) E(B0;B0 > a′) = E(BT ;B0 > a′), and hence Bt∧T satisfies (4.27) by

Proposition 4.17.
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Finally suppose A = {∞}. By Lemma 4.14 EA(x) ≥ x for all suitable choices of A and

all x. Hence, by Proposition 4.16,

E(BT |FS) ≥ BS .

We note that some of the above arguments, particularly the use of Proposition 4.17,

allow us to deduce that if there exists a ∈ A, |a| < ∞ for which T ≤ Ha then (4.26)

and (4.27) hold and T ≤ Ha′ for all a′ ∈ A.

Lemma 4.19. Suppose that for all stopping times S with S ≤ T and E|BS| < ∞ we

have

E(BT |FS) ≤ BS a.s.. (4.28)

Then T is minimal.

We refer the reader back to Lemma 3.13, the proof of which is still valid in the more

general case.

Of course we may replace the ‘≤’ in (4.28) with ‘≥’ or ‘=’ without altering the conclu-

sion.

Lemma 4.20. If T ≤ HA = inf{t ≥ 0 : Bt ∈ A} is a stopping time of the Brownian

motion (Bt)t≥0 where B0 ∼ µ0 and BT ∼ µ, and

E(BT |FS) ≤ BS : on {B0 ≥ a−} (4.29)

E(BT |FS) ≥ BS : on {B0 ≤ a+}, (4.30)

where a− = inf A and a+ = supA, then T is minimal.

Proof. Choose a ∈ A. By assumption T ≤ Ha and by Lemma 4.19 T is minimal for µ̌a

on {B0 ≤ a} and for µ̂a on {B0 ≥ a}. It must then be minimal for µ.

These results show the equivalence of minimality and the conditions in (4.29), (4.30).

The following theorem states this together with some extra equivalent conditions. It

should be thought of as the extension of Theorem 3.7 to the setting with a general

starting measure.

Theorem 4.21. Let B be a Brownian motion such that B0 ∼ µ0 and T a stopping

time such that BT ∼ µ, where µ0, µ are integrable. Let A be the set defined in (4.17)
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and a+ = sup{x ∈ [−∞,∞] : x ∈ A}, a− = inf{x ∈ [−∞,∞] : x ∈ A}. Then the

following are equivalent:

(i) T is minimal;

(ii) T ≤ HA and for all stopping times R ≤ S ≤ T

E(BS |FR) ≤ BR on {B0 ≥ a−}

E(BS |FR) ≥ BR on {B0 ≤ a+};

(iii) T ≤ HA and for all stopping times S ≤ T

E(BT |FS) ≤ BS on {B0 ≥ a−}

E(BT |FS) ≥ BS on {B0 ≤ a+};

(iv) T ≤ HA and for all γ > 0

E(BT ;T > H−γ, B0 ≥ a−) ≤ −γP(T > H−γ , B0 ≥ a−)

E(BT ;T > Hγ , B0 ≤ a+) ≥ γP(T > Hγ , B0 ≤ a+);

(v) T ≤ HA and as γ → ∞

γP(T > H−γ , B0 ≥ a−) → 0

γP(T > Hγ , B0 ≤ a+) → 0.

We begin by proving the following result:

Proposition 4.22. If (v) holds and S ≤ T then E|BS| <∞.

Proof. We show that E(|BS|;B0 ≥ a−) < ∞. Since Bt∧H−k
is a supermartingale on

{B0 ≥ −k},

E(BT∧H−k
;BS < 0,S < H−k, B0 ≥ a− ∧ (−k))

≤ E(BS∧H−k
;BS < 0, S < H−k, B0 ≥ a− ∧ (−k)).

The term on the left hand side is equal to:

E(BT ;BS < 0,T < H−k, B0 ≥ a− ∧ (−k))

− kP(BS < 0, S ≤ H−k < T,B0 ≥ a− ∧ (−k)).
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The first term converges (by dominated convergence) to E(BT ;BS < 0, B0 ≥ a−) and

the second term vanishes by the assumption. By monotone convergence

E(BS ;BS < 0, B0 ≥ a−) = lim
k

E(BS ;BS < 0, S < H−k, B0 ≥ a− ∧ (−k))

≥ lim
k

E(BT ;BS < 0, S < H−k, B0 ≥ a− ∧ (−k))

≥ E(BT ;BS < 0, B0 ≥ a−) ≥ −E(B−
T ) > −∞.

Also

E(B0;B0 ≥ a− ∧ (−k)) ≥ E(BS∧H−k
;B0 ≥ a− ∧ (−k))

= E(BS ;B0 ≥ a− ∧ (−k), S < H−k)

− kP(H−k ≤ S,B0 ≥ a− ∧ (−k)),

and

E(BS ;B0 ≥ a− ∧ (−k), S < H−k) = E(B+
S ;B0 ≥ a− ∧ (−k), S < H−k)

− E(B−
S ;B0 ≥ a− ∧ (−k), S < H−k),

so

E(B+
S ;B0 ≥ a− ∧ (−k), S < H−k) ≤ E(B0;B0 ≥ a− ∧ (−k))

+ E(B−
S ;B0 ≥ a− ∧ (−k), S < H−k)

+ kP(H−k ≤ S,B0 ≥ a− ∧ (−k)).

By monotone and dominated convergence, in the limit we have

E(B+
S ;B0 ≥ a−) ≤ E(B0;B0 ≥ a−) + E(B−

S ;B0 ≥ a−)

< ∞.

So E(|BS |;B0 ≥ a−) < ∞. Similarly E(|BS |;B0 ≤ a+) < ∞, and together these imply

E(BS) <∞.

Proof of Theorem 4.21. Clearly (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) (the final implication

following from dominated convergence). We also know (i) ⇐⇒ (iii). We show (v)

=⇒ (ii).
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Suppose A ∈ FR, A ⊆ {B0 ≥ a−} and set Ak = A ∩ {R < H−k} ∩ {B0 ≥ −k}. Then

E(BS∧H−k
;Ak) ≤ E(BR∧H−k

;Ak).

By Proposition 4.22 we may apply dominated convergence to deduce that in the limit

as k → ∞ the right-hand side converges to E(BR;A). Also

E(BS∧H−k
;Ak) =E(BS ;A ∩ {B0 ≥ −k} ∩ {S ≤ H−k})

+ kP(A,R < H−k < S,B0 ≥ −k),

where the second term converges to zero by assumption and the first converges to

E(BS ;A) by dominated convergence.

4.6 Minimality of the Limit

We will want to show that stopping times constructed using the techniques of Sec-

tions 4.2 and 4.3 are indeed minimal when (4.16) is satisfied. To deduce that a stopping

time T constructed using the balayage techniques is minimal, we approximate T by the

sequence of stopping times Tn given in the construction (so T1 is the exit time from

the first interval we construct, and so on). Then it is clear that the stopping times Tn

satisfy the conditions of Lemma 4.20, since they are either the first exit time from a

bounded interval, or the first time to leave (−∞, α] for some α. Our aim is then to

deduce that the limit is minimal. We shall do this by extending Proposition 3.18 to

the case of a general starting measure.

Proposition 4.23. Suppose that Tn embeds µn, µn converges weakly to µ and P(|Tn −

T | > ε) → 0 for all ε > 0. Then T embeds µ.

If also ln → l∞ < ∞ where ln =
∫

|x|µn(dx) and l∞ =
∫

|x|µ(dx), and Tn is minimal

for µn, then T is minimal for µ.

Remark 4.24. Since µn =⇒ µ, on some probability space we are able to find random

variables Xn and X with laws µn and µ such that Xn → X a.s.. By Scheffé’s Lemma

therefore

E|Xn −X| → 0 if and only if E|Xn| → E|X|,

the second statement being equivalent to ln → l∞ in the statement of Proposition 4.23

Before we prove this result, we will show a useful result on the distribution of the

maximum — an extension of Theorem 3.20. This will be used in the proof of the above
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result, and also be important for the work in the next section, when we will show that

the inequality in (4.31) can be attained by a class of stopping times created by balayage

techniques.

Lemma 4.25. Let T be a minimal embedding of µ in a Brownian motion started with

distribution µ0. Then for all x ∈ R

P(BT ≥ x) ≤ inf
λ<x

1

2

[

1 +
uµ0(x) − c(λ)

x− λ

]

. (4.31)

Proof. We note the following inequality, which (by considering on a case by case basis)

holds for all paths and all pairs λ < x:

1{BT≥x} ≤
1

x− λ

[

BT∧Hx +
|BT − λ| − (BT + λ)

2
−

|B0 − x| + (B0 − x)

2

]

. (4.32)

In particular, on {BT < x}, when therefore {B0 < x}:

0 ≤
1

x− λ

[

BT +

{

−λ : BT > λ

−BT : BT ≤ λ

}]

. (4.33)

While on {BT ≥ x},

1 ≤
1

x− λ

[

BT∧Hx +

{

−λ : BT > λ

−BT : BT ≤ λ

}

−

{

B0 − x : B0 > x

0 : B0 ≤ x

}]

≤
1

x− λ

[

x+

{

−λ : BT > λ

−BT : BT ≤ λ

}]

. (4.34)

So we may take expectations in (4.32) to get

P(BT ≥ x) ≤
1

2

[

1 +
2E(BT∧Hx) + (uµ0(x) − uµ(λ)) − (E(BT ) + E(B0))

(x− λ)

]

. (4.35)

We can deduce (4.31) provided we can show

C ≥ 2E(BT∧Hx) − (E(BT ) + E(B0)) (4.36)

since (4.35) holds for all λ < x.

We now consider a ∈ A possibly taking the values ±∞. Since uµ(a) − uµ0(a) = C for
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a ∈ A, we can deduce

C = 2E(BT ;BT ≥ a) + 2E(B0;B0 < a) − E(BT ) − E(B0)

where we note that {BT < a} = {B0 < a}. Theorem 4.21 tells us that

E(BT∧Hx ;B0 < a) ≤ E(BT ;B0 < a) (4.37)

E(BT∧Hx ;B0 ≥ a) ≤ E(B0;B0 ≥ a) (4.38)

and (4.36) holds.

We also have the following result:

Proposition 4.26. Suppose µ and {µn}n≥1 are all integrable distributions such that

µn =⇒ µ and ln =
∫

|y|µn(dy) →
∫

|y|µ(dy) = l∞. Then uµn converges uniformly to

uµ.

Proof. Fix ε > 0. By (4.19), using the fact that µ− µ̂ = µ̌ we may write

uµ(x) =

∫ ∞

−∞
(x−y)µ(dy)+2

∫ x

−∞
(y−x)µ(dy) = x−

∫ ∞

−∞
y µ(dy)+2

∫ x

−∞
(y−x)µ(dy),

and similarly for uµn , hence

uµn(x) − uµ(x) = (m∞ −mn) + 2

∫ x

−∞
(y − x) (µn − µ)(dy), (4.39)

where we write mn,m∞ for the means of µn and µ respectively; mn → m as a conse-

quence of Remark 4.24. Since µ is integrable, as x ↓ −∞,

∫ x

−∞
(x− y)µ(dy) ↓ 0.

By (4.39) and Lemma 4.3 (which implies uµn converges to uµ pointwise, the C in (4.5)

being 0 since ln → l∞), for all x ∈ R

∫ x

−∞
(x− y)µn(dy) →

∫ x

−∞
(x− y)µ(dy)

as n→ ∞. Finally we note that both sides of the above are increasing in x.
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Consider

|uµn(x) − uµ(x)| ≤ |m∞ −mn| + 2

∫ x

−∞
(x− y)µn(dy) + 2

∫ x

−∞
(x− y)µ(dy).

We may choose x0 sufficiently small that
∫ x0

−∞(x0 − y)µ(dy) < ε, and therefore such

that
∫ x

−∞
(x− y)µ(dy) ≤

∫ x0

−∞
(x0 − y)µ(dy) < ε

for all x ≤ x0. By the above and Remark 4.24 we may now choose n0(ε) such that for

all n ≥ n0(ε)

|m∞ −mn| < ε and

∣

∣

∣

∣

∫ x0

−∞
(x0 − y)µn(dy) −

∫ x0

−∞
(x0 − y)µ(dy)

∣

∣

∣

∣

< ε.

Then for all x ≤ x0 and for all n ≥ n0(ε),

|uµn(x) − uµ(x)| ≤ ε+ 2 × 2ε+ 2ε = 7ε.

Similarly we can find x1, n1(ε) such that |uµn(x) − uµ(x)| ≤ 7ε for all x ≥ x1 and

all n ≥ n1(ε). Finally uµn , uµ are both Lipschitz and pointwise uµn(x) → uµ(x)

and we must have uniform convergence on any bounded interval, and in particular on

[x0, x1].

Proof of Proposition 4.23. Suppose first that there exists a ∈ A ∩ R. We show that

T ≤ Ha for all such a. As usual, we write µ0 for the starting measure, and c(x) =

uµ(x)−C. We define Cn to be the smallest value such that uµ0(x) ≥ uµn(x)−Cn and

the functions cn(x) = uµn(x) − Cn. Note that ln = uµn(0), so limn→∞ uµn(0) exists.

Then (by Lemma 4.3(i) or equivalently (Chacon, 1977)[Lemma 2.5]) weak convergence

implies

lim
n→∞

uµn(x) = uµ(x) −K

for all x ∈ R and (here) K = 0 since uµn(0) → uµ(0).

By Lemma 4.25 for x ∈ R and λ < x

P(BTn ≥ x) ≤
1

2

[

1 +
uµ0(x) − uµn(λ) + C

x− λ
+
Cn − C

x− λ

]

,

and we take the limit as n→ ∞, using Proposition 4.26 (so that Cn → C) and noting
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that P(BTn ≥ x) → P(BT ≥ x), to get

P(BT ≥ x) ≤
1

2

[

1 +
uµ0(x) − c(λ)

x− λ

]

.

Suppose now x = a. Since the above holds for all λ < a, we may take the limit of the

right hand side as λ ↑ a, in which case uµ0(a) = c(a), and by Remark 4.2

P(BT ≥ a) ≤
1

2

[

1 + c′−(a)
]

≤
1

2
[1 + (1 − 2µ((−∞, a)))]

≤ µ([a,∞)).

By considering −Bt we may deduce that P(BT ≤ a) ≤ µ((−∞, a]). Hence P(T ≤

Ha) = 1, and we deduce that T is minimal.

It only remains to show (by Lemma 4.19) that if ∞ ∈ A then

E(BT |FS) ≥ BS

for all stopping times S ≤ T . The case where −∞ ∈ A follows from Bt 7→ −Bt. In

particular, for S ≤ T and A ∈ FS we need to show

E(BT ;A) ≥ E(BS ;A). (4.40)

In fact we need only show the above for sets A ⊆ {S < T} since it clearly holds on

{S = T}. So we can define An = A∩{S < Tn} and therefore P(A\An) → 0 as n→ ∞.

Also An ∈ FS∧Tn . By Theorem 4.21 and the fact that the Tn are minimal

E(BS∧Tn ;An) ≤ E(BTn ;An ∩ {B0 ≤ an
+}) + E(BS∧Tn ;B0 > an

+)

− E(BS∧Tn ;AC
n ∩ {B0 > an

+})

≤ E(BTn ;An ∩ {B0 ≤ an
+})E(B0;B0 > an

+)

− E(BTn ;AC
n ∩ {B0 > an

+})

≤ E(BTn ;An) − E(BTn ; {B0 > an
+}) + E(B0;B0 > an

+)

where an
+ is the supremum of the set An (that is the corresponding set to A for the

measures µ0, µn). This is not necessarily infinite.
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So it is sufficient for us to show that

lim
n

E(BTn ;An) = E(BT ;A); (4.41)

lim
n

E(BS;An) = E(BS ;A), (4.42)

and

lim
n

|E(B0;B0 > an
+) − E(BTn ;B0 > an

+)| = 0. (4.43)

For (4.41) we may use a proof identical to that used in Proposition 3.18 to show (3.23).

We want to apply Lemma 4.19 so we can assume that E|BS | < ∞, and (4.42) follows

by dominated convergence.

Finally we consider (4.43). Let θn = µ0((−∞, an
+]). Since an

+ ∈ An we have

E(B0;B0 > an
+) − E(BTn ;B0 > an

+)

=

∫

y µ̂
an
+,θn

0 (dy) −

∫

y µ̂
an
+,θn

n (dy)

=

∫

(y − an
+) µ̂

an
+,θn

0 (dy) −

∫

(y − an
+) µ̂an

+,θn(dy)

=
1

2

[∫

y (µ0 − µn)(dy) + uµn(an
+) − uµ0(an

+)

]

=
1

2

[
∫

y (µ0 − µ)(dy) − Cn

]

,

where we have used the fact that (for a general measure ν)

∫

(y − x) ν̂x(dy) =
1

2

[
∫

y ν(dy) − uν(x) − x

]

.

As n→ ∞, since ∞ ∈ A,

∫

y (µ0 − µn)(dy) →

∫

y (µ0 − µ)(dy) = C.

So we need only show that Cn → C, which follows from the uniform convergence of

uµn to uµ (Proposition 4.26).

4.7 Tangents and Azema-Yor Type Embeddings

One of the motivations for this chapter is to discuss generalisations of the Azema-Yor

family of embeddings (see Azéma and Yor (1979a); Jacka (1988) and Chapter 3) to the
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integrable starting/target measures we have discussed already.

The aim is therefore to find the embedding which maximises the law of the maximum,

sup0≤t≤T Bt (or in the more general case sup0≤t≤T f(Bt)). If we look for the maximum

within the class of all embeddings there is no natural maximum embedding. For this

reason we consider the class of minimal embeddings. Lemma 4.25 establishes that there

is some natural limit when we consider this restriction. In fact the extended Azema-Yor

embedding will attain the limit in (4.31).

The idea is to use the machinery from the previous sections to show the embeddings

exist as limits of the Chacon-Walsh type embeddings of Section 4.3. It is then possible

to show that the embeddings are minimal and that they attain equality in (4.31).

Theorem 4.27. If T is a stopping time as described in Lemma 4.9, where C as de-

scribed in the lemma is

C = inf
x
{uµ(x) − uµ0(x)}, (4.44)

then T is minimal.

Proof. Lemma 4.9 suggests a sequence Tn of stopping times for which T is the limit.

We note that we can modify the definition of Tn so that T ′
n is specified by the functions

f1, f2, . . . , fn, f
−1, f+1 without altering their limit (as a consequence of (4.11)), where

f−1 is the tangent to g with gradient −1 and f+1 is the tangent to g with gradient

1. It is easy to see that this ensures that E(BT ′
n
) = E(BT ) (by (4.4)), and also that

uµn(0) → uµ(0) and n → ∞. Consequently the stopping times T ′
n and T satisfy the

conditions of Proposition 4.23, where it is clear that the T ′
n are all minimal, since each

step clearly satisfies the conditions of Theorem 4.21 as a consequence of (4.44). So T

is minimal.

Define the function

Φ(x) = argmin
λ<x

{

uµ0(x) − c(λ)

x− λ

}

. (4.45)

In the cases described by Azéma and Yor (1979a), this is the barycentre function.

It can also be seen to agree with the function appearing in the generalisation of the

Azema-Yor stopping time to non-centred means which appears in (3.26). A similar

function is used in Hobson (1998a) who examines the case where starting and target

means are centred and satisfy (4.10). Φ(·) can be thought of graphically as the point

(below x) at which there exists a tangent to c(·) meeting the function uµ0(·) at x.
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uµ(x)

x

Figure 4-3: Approximating the Azema-Yor stopping time: we take tangents to the
potential from left to right. In the limit the tangents become closer. The dotted lines
highlight the points at which the approximated stopping time will stop the process.

Lemma 4.28. The Azema-Yor stopping time

T = inf{t ≥ 0 : Bt ≤ Φ(Bt)} (4.46)

is minimal and attains equality in (4.31).

We prove this lemma using an extension of an idea first suggested in Meilijson (1983).

We approximate T by taking tangents to c, starting with gradient −1, and increasing

to +1. As the number of tangents we take increases, the stopping time converges to T .

The general approximation sequence can be seen in Figure 4-3.

Proof. We apply Lemma 4.9 for each n to the functions fn
1 , f

n
2 , . . . , f

n
m(n), which are

chosen as tangents to c(·) with increasing gradients, so that fn
1 has gradient −1, fn

m has

gradient 1, and so that the difference in the gradients of consequential tangents is less

than 1
n . We also choose the tangents in such a way that the points at which successive

tangents intersect each other (which are BTn stops) are at most 1
n apart when they lie

within [−n, n] (at least as far as this is possible — if both µ0 and µ have an interval

containing no mass, it might not be possible to manage this, but this case will not be

important). This defines a (minimal) stopping time Tn such that (by (4.4)) E(BTn) =
∫

xµ(dx). Also, by considering µn = L(BTn), |µn((−∞, x)) − µ((−∞, x))| ≤ 1
n for all
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x ∈ R. So µn =⇒ µ. The choice of Tn also ensures that P(|T − Tn| > ε) → 0 for all

ε > 0. Consequently T is minimal.

To deduce that T attains equality in (4.31) we note that Φ(x) is the optimal choice for

λ in (4.31), and by the definition of Φ(x),

{BT < x} ⊆ {BT ≤ Φ(x)}

{BT ≥ x} ⊆ {BT ≥ Φ(x)}.

This means we attain equality in (4.33) and (4.34), and so only need show that we have

equality in (4.37) and (4.38) for equality in (4.31) to hold. But for x given, we may

calculate the potential of µ′ = L(BT∧H̄x
) — where H̄x = inf{t ≥ 0 : B ≥ x} — as:

uµ′(y) =



















uµ(y) : y ≤ Φ(x);

uµ(Φ(x)) + y−Φ(x)
x−Φ(x)(uµ0(x) − uµ(Φ(x))) : Φ(x) ≤ y ≤ x;

uµ0(y) : y ≥ x.

It then follows from Theorem 4.21 and (4.4) that equality holds.

4.8 The Vallois Construction

We conclude with a second example demonstrating the advantages of the Chacon-Walsh

construction, and its power when used in conjunction with the preceding results. We

do much the same as in Section 4.7, in that we construct a sequence of stopping times

through balayage for which the desired limit (in the centred case) is the construction

first derived in Vallois (1983). In particular it will be comparatively simple to see how

the construction extends to both non-centred target distributions and general starting

distributions, and it will be a simple consequence that the construction in all these

cases is minimal.

Our main emphasis is on showing that the Vallois construction is a special case of the

balayage construction introduced earlier in the chapter. In this sense, the comparison

should be made with the work of Meilijson (1983), who showed that the Azema-Yor

stopping time is a special case of the Chacon-Walsh construction. We do not intend to

give a rigorous exposition, but we hope that the discussion here is sufficient to convince

the reader that the connection between the Vallois stopping time and the construction

we give in this section is valid.
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For simplicity we assume that our target distributions have a density with respect to

Lebesgue measure, so that c is a twice differentiable function. We also suppose that

our starting distribution is the unit mass at 0. We will discuss later the consequences

of a general starting distribution.

The Vallois construction can be described as follows: given a centred target distribution

µ there exist non-negative, non-increasing functions h, k such that the stopping time

TV = inf{t ≥ 0 : BT 6∈ (−h(Lt), k(Lt))} (4.47)

is an embedding of µ, where Lt is the local time at 0. Vallois (1992) demonstrates

also that the embedding maximises the law of the local time among the class of UI

embeddings. A corresponding stopping time also exists where the functions h, k are

non-decreasing which minimises the law of the local time.

Our aim is to approximate TV using an appropriate sequence Tm. A key idea in this

approximation is that of downcrossings. Specifically, for ε > 0, we define recursively

Rε
0 = 0;

Sε
n = inf{t > Rε

n : Bt = ε}, n ≥ 0;

Rε
n = inf{t > Sε

n−1 : Bt = 0}, n ≥ 1;

and the number of downcrossings at time t of the interval [0, ε] is then defined to be:

dε(t) = max{n : Rε
n < t}.

Then the following theorem links the number of downcrossings to the local time:

Theorem 4.29 (Revuz and Yor (1999) Ch. VI, 1.10). If T is a stopping time of a

Brownian motion such that for p ≥ 1

ET p/2 <∞,

then

lim
ε→0

E

[

sup
t≤T

∣

∣

∣

∣

εdε(t) −
1

2
Lt

∣

∣

∣

∣

p
]

= 0.

Graphically our stopping times can be described in the Chacon-Walsh sense as follows

(see Figure 4-4). Let ε(m) > 0 be a decreasing sequence, so that ε(m) ↓ 0 as m → ∞.

For each ε we construct tangents to c so that the first tangent (tangential to c at some

point less than 0) passes through (ε,−ε), the second tangent (tangential to c at some
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ε

s5

ψ+(s5)

Figure 4-4: The Chacon-Walsh type picture for an approximation to the Vallois stop-
ping time. In the limit, we allow ε→ 0.

positive point) passes through the intersection of the previous tangent and the line

x = 0; the third tangent is now chosen to intersect the second tangent and the line

x = ε at the same point. This procedure is repeated as far as possible. In terms of

when we stop the process, there is the following interpretation: starting from 0 we

run the process until it hits ε or some lower level (depending on the current number

of downcrossings); from ε the process then runs until it either hits some upper level

(again depending on the number of downcrossings already made) or it returns to 0,

having made one more downcrossing.

From the picture we can see the following quantities will be important: for s ≥ 0 define

ψ−(s) = sup{x ≤ 0 : c(x) − xc′(x) = −s};

ψ+(s) = inf{x ≥ 0 : c(x) − xc′(x) = −s}.

We now make the construction of Tm explicit: we write ε for ε(m), and define recursively

116



s0, s1, . . . to be the (unique) solutions of the equations

s0 = 0

s1 = ε+ ε
c(ψ−(s1)) + s1

ψ−(s1)

...

sn = sn−1 + ε

[

c(ψ−(sn)) + sn

ψ−(sn)
−
c(ψ+(sn−1)) + sn−1

ψ+(sn−1)

]

. (4.48)

We note also that

c′(ψ±(s)) =
s+ c(ψ±(s))

ψ±(s)
(4.49)

and c′(ψ+(0)) = −1 so that we may also write

sn = ε

n
∑

k=1

[

c′(ψ−(sk)) − c′(ψ+(sk−1))
]

.

We repeat this procedure as far as possible (a finite number of steps), and we stop the

process once this is no longer possible. The stopping time Tm can then be defined as

Tm = inf{t ≥ 0 : Bt 6∈ (ψm
− (sdε(t)), ψ

m
+ (sdε(t)))}

where ψm
+ (sdε(t)) is actually the x-value of the intersection of the line passing through

(0,−sdε(t)) and (ψ+(sdε(t)), c(ψ+(sdε(t))) and the line passing through (0,−sdε(t)−1) and

(ψ+(sdε(t)−1), c(ψ+(sdε(t)−1)). It is clear that as m → ∞, on [δ,∞) for any δ > 0 we

have uniform convergence ψm
+ → ψ+. A similar relation holds for ψm

− .

We shall be interested in comparing the limit to TV , so we need to be more specific

about the construction of the functions h, k. Vallois (1983) uses essentially the inverse

of the functions ψ+, ψ− but can be seen easily to be the same as:

TV = inf{t ≥ 0 : Bt 6∈ (ψ−(2F−1(Lt), ψ+(2F−1(Lt)))}

where the function F is defined by:

λ(s) = 1 −

∫ s

0

(

1

ψ+(2u)
−

1

ψ−(2u)

)

du;

F (s) = 2

∫ s

0

du

λ(u)
.

Write µm for the law of BTm . Our goal is to apply Proposition 4.23 to the Tm’s and
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show that TV is indeed their limit, and hence that TV embeds and is minimal. To apply

the result, we need to show the following:

(i) µm =⇒ µ as m→ ∞;

(ii)
∫

|x|µm(dx) →
∫

|x|µ(dx) as m → ∞;

(iii) the Tm’s are minimal;

(iv) P(|Tm − TV | > δ) → 0 as m→ ∞ for all δ > 0.

(i)–(iii) all follow trivially by construction. We need to show P(|Tm − TV | > δ) is

sufficiently small for large m. By ignoring an event of small probability we may assume

that sdε(Tm) and F−1(LTV
) are bounded away from 0 and ∞. Also we may then assume

that ψ+, ψ− are uniformly continuous, and m is large enough for ψm
+ , ψ

m
− to approximate

ψ+, ψ− sufficiently well. Consequently there are essentially two different ways in which

we can have |Tm − TV | > δ:

• sdε(t) and F−1(Lt) are substantially different at some time t;

• sdε(t) and F−1(Lt) are close, but the process stops under Tm or TV and does not

hit the slightly higher level in a short time, possibly even returning to 0 in the

intermediate time.

The probability of the second event can be made sufficiently small by ensuring that the

points sdε(t) and F−1(Lt) are sufficiently close. So we will be done if we can show that

P

(

sup
t≤TV ∨Tm

∣

∣sdε(t) − F−1(Lt)
∣

∣ > δ′

)

→ 0

as m→ ∞. We note however that E(TV ∨ Tm)1/2 <∞, so that by Theroem 4.29

P

(

sup
t≤TV ∨Tm

∣

∣

∣

∣

dε(t) −
1

2
Lt

∣

∣

∣

∣

> δ′′

)

→ 0.

So we need to show that sdε(t) ≈ F−1(2εdε(t)), since F−1 is uniformly continuous away

from 0 and ∞.
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Consider dε(t):

dε(t) =

dε(t)
∑

k=1

sk − sk−1

sk − sk−1

=

dε(t)
∑

k=1

sk − sk−1

ε [c′(ψ−(sk)) − c′(ψ+(sk−1))]
,

where the second line follows from (4.48) and (4.49). Since on letting m → ∞ the

sk become closer, in the limit we would expect the right hand side to approximate

G(sdε(t)), where we define the function G by

G(x) =

∫ x

0

du

c′(ψ−(u)) − c′(ψ+(u))
.

It therefore just remains to show that G(2x) = 2F (x), however clearly G(0) = 0 = F (0).

On differentiating and taking reciprocals we are reduced to showing that

1

2

[

c′(ψ−(2x)) − c′(ψ+(2x))
]

= 1 −

∫ x

0

(

1

ψ+(2x)
−

1

ψ−(2x)

)

dx.

Again both sides agree on taking x = 0; that they are the same function can be

concluded by differentiating and using the relation (4.49).

As already noted, the above construction will produce minimal embeddings for non-

centred target distributions (when one of ψ+ or ψ− will be infinite for small values),

and can be extended to general target distributions in various ways. One of these is

depicted in Figure 4-5, the idea being that, as much as possible while keeping the process

minimal, we run until we hit zero, with the rest of the mass stopping at the extremes.

The mass at zero can then be embedded using the standard Vallois construction, while

the mass at the extremes must still be embedded using some other technique — possibly

based on the local time at some new level. More generally this technique can be

extended so that suitable points x1, x2, . . . are chosen and the process run to hit these

points, from which a local-time based procedure can be used. These issues point to

the fact that there is no unique natural extension of the Vallois construction to general

starting measures; one way of seeing this is to consider an optimality property of

the original construction. Vallois (1983) shows that the construction maximises the

distribution of the local time at zero; in the general starting distribution example

there is mass that cannot be made to reach zero, and so, in terms of maximising the

distribution of the local time at zero, the construction we suggest in Figure 4-5 would

appear to be optimal but not unique, since any suitable embedding can be chosen for
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ε

Figure 4-5: The Chacon-Walsh type picture for an approximation to the Vallois stop-
ping time, with a general starting distribution. We note that after the first two steps,
there could still be mass at the extremes. This mass will have to be embedded using
some suitable procedure — for example a Vallois construction using the local time at
a different level.

that part of the process which never hits zero.
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Chapter 5

Further Work

In this final chapter we present some further questions which have arisen from the

previous work.

In Chapters 3 and 4 we demonstrated that minimality is an important idea when

considering which embeddings are suitable, and we were able to give necessary and

sufficient conditions for the the process to be minimal when the starting and target

distributions are integrable. This leads us to ask what conditions might be necessary

and sufficient when the target distribution, and possibly also the starting distribution

are not integrable. In this context many of the necessary and sufficient conditions we

give in (for example) Theorem 3.7 are no longer necessarily appropriate — many of the

conditions are no longer reasonable, for example if the negative tail is not integrable,

we cannot always have

γP(T > H−γ) → 0

as γ → ∞.

In fact even stranger things can happen! If we just consider the case where the negative

tail of the distribution is not integrable, but the positive tail is — what we might call

the m = −∞ case, we can provide the following example. Suppose we start at zero

and have a non-integrable target distribution µ with all its mass placed on (−∞,−1),

we may embed in the following manner: run the process until it hits +1, and look at

the minimum at this time, the distribution of which may be calculated easily to be

P(BH1
≤ −x) =

1

1 + |x|

for x ≥ 0. If further we demand that µ((−∞,−x)) > 1
1+|x| for all x > 0 then we can find
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a function h which is non-decreasing such that h(BH1) has the distribution µ and such

that h(x) < x. So having hit 1 we run the process until it hits h(BH1), which has the

desired distribution, and is such that the process stops at its minimum. This ensures

that the stopping time is minimal — any strictly smaller stopping time must have

a strictly smaller minimum, but the minimum of any embedding must stochastically

dominate the target distribution. This stopping time has the following unexpected

property: the stopping time S = inf{t ≥ H1 : Bt = −1} is smaller than T but is

not itself minimal; also condition (ii) of Theorem 3.7 does not hold — taking S = H1

and any R ≤ S contradicts the condition. Condition (iii) of the theorem still holds,

and could be a necessary and sufficient condition for the stopping time to be minimal

when m = −∞; however the example given shows that a proof of this result will be

trickier than in the case where the target distribution is integrable, and the case where

m is not even defined would seem to be even harder since it is even less clear what

the appropriate conditions might be. In the more general case where there is a non-

integrable starting distribution, by comparison with Theorem 4.21, we might expect

some dependence on the potential, and again here there is a further complication since

the potential as we have defined it is only finite for integrable distributions.

The brief discussion of the construction of the Vallois stopping time in Section 4.8

suggests two questions for further research. As mentioned, Vallois (1983) provides

two similar constructions of emeddings, both of the form given in (4.47). The one

we consider is where the functions h, k are both decreasing, however there is a second

embedding in which the functions are chosen to be increasing. While it is possible to

see how the functions arise from the potential/Chacon-Walsh picture, in the same way

that we do for the decreasing case, there does not appear to be a way of constructing

the stopping times by approximating with Chacon-Walsh stopping times. A similar

problem can be seen with the stopping times discussed in Perkins (1986) and Chap-

ter 2, where intermediate stages can be interpreted in the potential picture, but it does

not appear to be possible to interpret the stopping times as the limit of a balayage

construction. One possible explanation for this dichotomy is the fact that both the

Perkins embedding and the increasing Vallois case are ‘inside-out’ embeddings — that

is they begin embedding the distribution close to the starting point, and do not embed

the extremes until later in the process. This becomes hard to interpret graphically in

the Chacon-Walsh picture. The question then becomes: is there a picture in which we

can interpret the second Vallois and/or the Perkins embedding as the limit of balayage

steps?

The second question that arises from Section 4.8 is how far can we extend the Vallois
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uµ(x)

x

Figure 5-1: The Chacon-Walsh type picture for an extension to the Vallois stopping
time. Instead of using the local time at zero we consider approximations along the line
x = ay, for −1 < a < 1. The resulting stopping time appears to be based on the local
time of a derived skew Brownian motion. In general it would appear to be possible to
replace straight lines with suitable classes of curves.

construction? The pictoral interpretation we give uses the local time along the line

x = 0. There is no reason why the construction cannot be performed along any line

x = ay for −1 < a < 1, using a similar procedure to before (see Figure 5-1). This

construction appears to have an interpretation in terms of the local time of a skew

Brownian motion. A skew Brownian motion can be thought of in excursion terms

as a Brownian motion with standard Brownian excursions from zero, but which are

negative with probability p and positive with probability 1 − p. The construction is

then similar to the standard Vallois construction, but based on the local time of the

derived skew Brownian motion. We note that the construction also extends to the case

where a = 1 when the skew Brownian motion is really just the excursions of a Brownian

motion from its maximum. In this case it would appear that the construction is just

the Azema-Yor construction. This idea could be extended even further — rather than

just considering straight paths in the potential picture a wider class of paths could
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possibly be considered.

Another direction in which the ideas surrounding minimality could be considered is

in the case of different classes of processes. Two seemingly simple examples of more

complicated processes are Brownian motion in higher dimensions, where necessary and

sufficient conditions for existence of embeddings are known, but not conditions for

minimality; also for example Brownian motion on the circle can be considered. Another

seemingly simple case where a variety of issues appear to lie is embedding in a simple

symmetric random walk on Z. This case can be easily linked to the Brownian case by

considering the walk generated by a given Brownian motion in the obvious way. If we

want to construct an embedding we simply construct an embedding for the Brownian

case with the target distribution on Z and carry this over to the random walk example.

However in general, for example if we use the Azema-Yor stopping time, in the random

walk sense this will involve some independent randomisation. It would seem preferable

in the random walk case to have a minimal stopping time not dependent on independent

randomisation. If a stopping time is minimal in the Brownian case, it would be minimal

in the random walk case, but if we restrict attention only to non-randomised stopping

times is it still true that a stopping time that is minimal in the class of non-radomised

stopping times is minimal in the class of all stopping times? The answer appears to be

no: consider a target distribution with mass 1
3 at each of −1, 0, 1. Allowing randomised

stopping times means that the minimal stopping times do not go outside {−1, 0, 1}, but

if we do not allow randomised stopping times this is not possible. Consequently one

can ask a variety of questions concerning for example the difference between the class

of minimal randomised and non-randomised stopping times of simple random walks.
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Appendix A

Some Results From the

Introduction

A.1 Some Calculations for Embeddings

A.1.1 The ‘Quick and Dirty’ Solution

This stopping time is commonly attributed to Doob (see for example Rogers and

Williams (2000a)[I.7]). We define the supremum and infimum processes of B to be:

Bt = sup
s≤t

Bt;

Bt = inf
s≤t

Bt.

Proposition A.1. The stopping time TQ of Example 1.1 has the following properties:

(i) TQ is an embedding;

(ii) ETQ = ∞;

(iii) EBTQ
∨ EBTQ

= ∞,

unless µ is the N (0, 1) distribution, when only (i) holds (and TQ ≡ 1).

Proof. Φ(B1) ∼ U [0, 1] so for x ∈ R

P(F−1(Φ(B1)) ≤ x) = P(Φ(B1) ≤ F (x)) = F (x)
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and F−1 ◦ Φ(B1) ∼ µ. Since B is recurrent T <∞ a.s. and BT ∼ µ.

For the remaining two statements we show that they are true for the stopping time

H1 = inf{t ≥ 0 : Bt = 1} of a standard Brownian motion and note that (when µ is

not N (0, 1)) F−1(Φ(B1)) 6= B1 with positive probability. For (ii), it is a well known

property of Brownian motion that EH1∧H−n = n; this stopping time increases almost

surely to H1 so by monotone convergence EH1 = ∞. Also well known is the fact that

P(H−x < H1) = 1
1+x so that

E(BH1
) =

∫ ∞

0

1

1 + x
dx = ∞,

and E(BH−1) = ∞. Of course these results hold for Hx for all x ∈ R \ {0} and hence

for TQ.

A.1.2 Skorokhod’s Solution

The stopping time given in Skorokhod (1965) is in fact slightly different to the one we

give here (in the choice of ν) — he uses a deterministic relationship between X and Y .

The properties of the two embeddings are identical.

Proposition A.2. Let µ be a centred distribution. The stopping time TS of (1.1),

where ν is defined to be

ν(A1 ×A2) =

∫

A1

∫

A2

C(y − x)1{x≤0≤y} µ(dx)µ(dy)

with C a normalizing constant, is an embedding of µ. Further, the process Bt∧TS
is UI,

and if µ has a second moment E(B2
TS

) = ETS.

Proof. C can be calculated, since µ is centred, by

1

C
= −

∫ 0

−∞
xµ(dx) =

∫ ∞

0
y µ(dy).

For A ∈ B([0,∞)) we can condition on X,Y to get

P(BTS
∈ A) =

∫

A

∫ 0

−∞

−x

y − x
C(y − x)µ(dx)µ(dy) = µ(A)

and similarly for A ∈ B((−∞, 0]). So TS is an embedding. Similarly, by conditioning
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on X,Y , we may calculate ETS when µ has a second moment:

ET =

∫ 0

−∞

∫ ∞

0
y|x|C(y − x)µ(dx)µ(dy)

=

∫ 0

−∞
x2 µ(dx) +

∫ ∞

0
y2 µ(dy)

= E(B2
TS

).

Finally to deduce that Bt∧TS
is UI we use Levy’s upward martingale theorem (Rogers

and Williams, 2000a)[Theorem II.69.5]. For the moment we suppose X,Y are F0-

measurable and note that by the definition of TS , Bt∧TS
= E(BTS

|Ft). Since µ ∈ L1

the process is UI.

A.1.3 Wald’s Lemma

Lemma A.3 (Wald’s Lemma). If (Bt)t≥0 is a Brownian motion with B0 = 0 and T

is a stopping time of the Brownian motion such that ET <∞ then

(i) EBT = 0;

(ii) EB2
T = ET .

Proof. Fix n ∈ N. Since (B2
t − t)t≥0 is a martingale

E(B2
S) = ES ≤ E(T ∧ n) (A.1)

for all stopping times S ≤ T ∧ n. Then supS≤T∧n E(B2
S) ≤ ET and by Doob’s L2-

inequality E((B∗
T∧n)2) ≤ 4ET where we write B∗

t = sups≤t |Bs|. We let n → ∞ and

deduce (by monotone convergence) that E((B∗
T )2) < ∞. So Bt∧T is a L2-martingale

and (i) holds.

By (A.1)

E(B2
T∧n) = E(T ∧ n)

with the random variable on the left being dominated by B∗
T

2 ∈ L1. So we may take

limits to deduce (ii).
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Strasbourg, Strasbourg, 1977/78)’, Vol. 721 of Lecture Notes in Math., Springer,

Berlin, pp. 625–633.

Bass, R. F. (1983), Skorokhod imbedding via stochastic integrals, in ‘Seminar on prob-

ability, XVII’, Vol. 986 of Lecture Notes in Math., Springer, Berlin, pp. 221–224.

Bertoin, J. and Y. Le Jan (1992), ‘Representation of measures by balayage from a

regular recurrent point’, Ann. Probab. 20(1), 538–548.

Blackwell, D. and L. E. Dubins (1963), ‘A converse to the dominated convergence

theorem’, Illinois J. Math. 7, 508–514.

Brown, H., D. Hobson and L. C. G. Rogers (2001a), ‘The maximum maximum of

a martingale constrained by an intermediate law’, Probab. Theory Related Fields

119(4), 558–578.

Brown, H., D. Hobson and L. C. G. Rogers (2001b), ‘Robust hedging of barrier options’,

Math. Finance 11(3), 285–314.

Chacon, R. V. (1977), ‘Potential processes’, Trans. Amer. Math. Soc. 226, 39–58.

Chacon, R. V. and J. B. Walsh (1976), One-dimensional potential embedding, in
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excursions and Azéma martingale’, Stochastic Process. Appl. 110(1), 83–110.

Pedersen, J. L. and G. Peskir (2001), ‘The Azéma-Yor embedding in non-singular
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d’Azéma-Yor, in ‘Seminar on Probability, XIV (Paris, 1978/1979) (French)’, Vol.

784 of Lecture Notes in Math., Springer, Berlin, pp. 392–396.

130



Revuz, D. and M. Yor (1999), Continuous martingales and Brownian motion, Vol.

293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of

Mathematical Sciences], third edn, Springer-Verlag, Berlin.

Rogers, L. C. G. (1981), Williams’ characterisation of the Brownian excursion law:

proof and applications, in ‘Seminar on Probability, XV (Univ. Strasbourg, Stras-

bourg, 1979/1980) (French)’, Vol. 850 of Lecture Notes in Math., Springer, Berlin,

pp. 227–250.

Rogers, L. C. G. and D. Williams (2000a), Diffusions, Markov processes, and martin-

gales. Vol. 1, Cambridge University Press, Cambridge. Foundations, Reprint of the

second (1994) edition.

Rogers, L. C. G. and D. Williams (2000b), Diffusions, Markov processes, and martin-

gales. Vol. 2, Cambridge University Press, Cambridge. Itô calculus, Reprint of the
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