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TIME-HOMOGENEOUS DIFFUSIONS WITH A GIVEN MARGINAL
AT A RANDOM TIME

Alexander M.G. Cox1, David Hobson2 and Jan Ob�lój3

Abstract. We solve explicitly the following problem: for a given probability measure µ, we spec-
ify a generalised martingale diffusion (Xt) which, stopped at an independent exponential time T , is
distributed according to µ. The process (Xt) is specified via its speed measure m. We present two
heuristic arguments and three proofs. First we show how the result can be derived from the solution
of [Bertoin and Le Jan, Ann. Probab. 20 (1992) 538–548.] to the Skorokhod embedding problem.
Secondly, we give a proof exploiting applications of Krein’s spectral theory of strings to the study of
linear diffusions. Finally, we present a novel direct probabilistic proof based on a coupling argument.
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1. Introduction

We are interested in the following general problem: suppose μ is a given distribution on R, and suppose T is a
(possibly random) time. Find a time-homogeneous martingale diffusion, (Xt), independent of T , for which XT

is distributed according to μ. In particular, when μ is regular enough, we want to specify a function σ : R → R+

such that

XT =
∫ T

0

σ(Xs) dWs ∼ μ, (1.1)

where (Wt) is a Brownian motion. The process (Xt) is a diffusion on natural scale described by its speed
measure m(dx) = σ(x)−2dx. When μ is less regular, the interpretation of m as a speed measure remains valid,
but m may no longer have a density. In this case X becomes a generalised or gap diffusion.

In this paper we present a solution to the problem in the case where T is distributed exponentially with
parameter 1. Somewhat surprisingly, not only does this problem always have a solution but also the solution
is fully explicit. This can be seen both using a probabilistic and an analytic approach. More precisely, in
Section 3 we exploit the general solution to the Skorokhod embedding problem of Bertoin and Le Jan [1].
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This construction is essentially based on the theory of additive functionals for (nice) Markov processes. Then,
in Section 4, we present a second proof based on the theory of generalised diffusions as presented in [14]. This
is a more analytic approach which hinges on duality between generalised diffusions and strings and uses Krein’s
spectral theory of strings.

Both of the above proofs exploit deep known results. In the final section, we present a direct proof from
first principles. First we prove that the problem has a solution. We do this by writing X as a time-changed
Brownian motion, Xt = BAt and hence AT is a solution to the Skorokhod embedding in B: that is, BAT has
distribution μ. Our proof relies on a specific coupling of time-changes At for different processes X . Furthermore,
the interpretation in terms of stopping times for B gives an intuitive justification for the explicit formula for X
(i.e. σ in Eq. (1.1)).

1.1. Motivation

Our original goal was to solve the problem for the case where the time T is a fixed, positive constant.
Then, a time-homogeneous diffusion with T -marginal μ is in some sense the canonical, and perhaps simplest,
process consistent with a given (single) marginal. For the problem with fixed T and under sufficient smoothness
conditions, Jiang and Tao [11] have proposed a relaxation scheme for calculating the diffusion co-efficient.
However, to the best of our knowledge, existence and uniqueness for the problem with a general measure μ
remain open. One application of this result would be to mathematical finance: the traded prices of call options
with maturity T can be used to infer the marginal distribution of the underlying asset under the pricing measure
– note also that the price process (St), suitably discounted, is a martingale under this measure – so that the
solution of the problem for fixed T would give a canonical candidate price process consistent with market data.
Other time-inhomogeneous processes exist with the correct time T marginals (cf. [3,7,17]), and the problem
of finding examples, is related to the Skorokhod embedding problem. For further discussion of the Skorokhod
embedding problem, and the connection to finance and model-independent hedging of derivatives, see Ob�lój [19]
or Hobson [9].

Applications of the problem with T exponentially distributed are discussed in a recent paper of Carr [2]. Carr
proposes modelling the stock price process as a time-homogeneous diffusion time-changed by an independent
gamma subordinator: St = Xγt . The clock is normalised so that T = γt∗ has an exponential distribution,
where t∗ is now the maturity of options whose prices are known, so that Carr [2] effectively considers the same
problem as the present paper. His approach is to use forward-backward Kolmogorov equations combined with
Laplace transform properties. He is able to derive explicitly σ in equation (1.1), although he only considers μ
with positive density and does not prove general existence or uniqueness results.

1.2. Heuristics

We close the introduction with a couple of heuristic derivations of our result; one probabilistic and one
analytic1. In both cases we assume that we are in the “nice” case where the target law μ is centred and has a
density. Later, our goal will be to provide a unified treatment which covers general probability measures μ with
a finite first moment.

Suppose that the martingale (Xt) is sufficiently regular that it can be represented as the solution of the SDE
dXt = σ(Xt)dWt, with initial condition X0 = 0, and that μ has density ρ. If (Xt) stopped at an independent,
rate 1, exponential time T is such that XT ∼ μ then we must have

P(stop in (x, x + dx)) = E(time in (x, x + dx)) × (Rate of stopping at x).

By hypothesis the first term is ρ(x)dx and the last term is unity. For the middle term, by Itô’s formula,

f(XT ) − f(X0) =
∫ T

0

f ′(Xs)dXs +
1
2

∫ T

0

f ′′(Xs)σ2(Xs)ds,

1 We thank the referee for outlining the second argument to us.



TIME-HOMOGENEOUS DIFFUSIONS WITH A GIVEN MARGINAL AT A RANDOM TIME S13

so that setting f(z) = |z − x| and taking expectations we obtain

E[|XT − x| − |x|] = σ(x)2dxE

[∫ T

0

δx(Xs)ds

]
,

where δx is the delta function at x. Hence σ should be taken to solve

σ(x)2ρ(x) = E[|XT − x| − |x|]. (1.2)

Now we give an argument via resolvents. Let V denote the one-resolvent of (Xt), so that V f(x) =
E

x[
∫ ∞
0 e−sf(Xs)ds], and write G for the generator of (Xt), so that Gf(x) = σ(x)2f ′′(x)/2. Then we want

to choose (Xt), or equivalently V or G, such that for a sufficiently wide class of f ,

V f(0) = 〈f, ρ〉, (1.3)

where 〈g, h〉 =
∫

R
g(x)h(x)dx. The resolvent equation is V (f − Gf) = f and since V and G commute we have

f = V f − GV f . Writing h = V f , and G∗ for the adjoint operator, equation (1.3) becomes 〈h, δ0〉 = h(0) =
〈h, ρ〉 − 〈Gh, ρ〉 = 〈h, ρ〉 − 〈h,G∗ρ〉. Since h is a test function, we have that ρ solves

ρ− 1
2

(σ2ρ)′′ = δ0,

and σ2ρ is the second anti-derivative of 2(ρ− δ0), from which we recover equation (1.2).

2. Generalised (gap) diffusions

We recall the classical construction of a generalised diffusion. Let mi : [0,∞] → [0,∞] be non-decreasing
and right-continuous with mi(∞) = ∞ and �i = sup{x : mi(x) < ∞} > 0, i = 1, 2. Assume further that
m2(0+) = 0. Then dmi are well defined measures and we can define a measure m on R by

m(dx) =
{

dm1(x) for x ∈ [0,∞),
dm̌2(x) for x ∈ (−∞, 0), (2.1)

where dm̌2 is the image of dm2 under x → −x. Naturally, �i can be defined directly from m and we write
�− = �−(m) = −�2 and �+ = �+(m) = �1.

Consider (Bt,P
x0) a one-dimensional Brownian motion defined on (Ω,F , (Ft)), with B0 = x0, P

x0-a.s. We
assume F0 is rich enough to support random variables independent of B. Let (Lx

t ) be the jointly continuous
version of the local time of (Bt). We adopt here the classical Itô–McKean normalisation in which |Bt − x| −Lx

t

is a martingale. Put Φt =
∫

R
Lx

tm(dx) and let (At) be the right-continuous inverse of (Φt). Then

(Xt,P
x0), Xt := BAt , for t ≤ ζ = inf{t ≥ 0 : Xt /∈ (�−, �+)} (2.2)

is a time-change of a Brownian motion and hence a strong Markov process living on supp(m). It is called a
generalised diffusion (on natural scale) corresponding to the measure m. It has also been called a gap diffusion
in [13]. Note that, due to our normalisation, the local time Lx

t is twice the local time in [14]. In consequence
(Xt) is a generalised diffusion corresponding to measure 2m in the notation of Kotani and Watanabe [14].
As an example, in this paper Brownian motion is a diffusion with speed measure equal to the Lebesgue measure
and not twice the Lebesgue measure as in [14].

In order to understand better the relationship between features of m and the behaviour of X we discuss two
important classes, firstly where m has a positive density, and secondly where m only charges points.
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Suppose first that 0 < m([a, b]) < ∞ for any �− < a < b < �+. Then (X,Px) is a regular2 diffusion on
I = [�−, �+] with absorbing boundary points. X is on natural scale and m(dx) is simply its speed measure. We
have At = [X ]t and the measure m can be recovered from X as

m(dx) = −1
2
h′′J(dx), hJ := E

x[inf{t : Xt /∈ J}], J = [a, b] ⊂ I,

since it can be shown that hJ(x) is convex and, for J ⊂ K, as measures h′′J = h′′K on int(J), see [20], Section V.47,
for a detailed discussion. If further m(dx) = λ(x)dx, with λ bounded and uniformly positive on I, then (Xt)
solves

dXt = λ(Xt)−1/2dWt, t < ζ, (2.3)

for a Brownian motion (Wt). Equivalently the infinitesimal generator of X , when acting on functions supported
on I, is G = 1

2λ(x)
d2

dx2 = 1
2

d2

dmdx . Note that then At = [X ]t =
∫ t

0
λ(Xs)−1ds and it can be verified directly from

the occupation time formula that Φ−1
t = [X ]t:

Φ[X]t =
∫

R

Lx
[X]t

m(dx) =
∫

R

Lx
[X]t

λ(x)dx

=
∫ [X]t

0

λ(Bs)ds =
∫ t

0

λ(B[X]u)d[X ]u =
∫ t

0

λ(Xu)d[X ]u = t. (2.4)

From the above discussion we see that the regions where m has more mass correspond to the regions where
(Xt) moves more slowly (and thus spends more time).

By a natural extension of the above analysis, if m has zero mass in an interval, then since (Xt) lives on the
support of m, this interval is not visited by (Xt) at all. Conversely, if m({a}) > 0 (and for every neighbourhood
U of a, m charges U \ {a}), then a is a sticky point for X : started in a, (Xu : u ≤ t) spends a positive time in
a even though it exits a instantaneously.

It remains now to understand the role of isolated atoms in m. Consider m =
∑N

i=1 βiδai for a1 < . . . < aN ,
βi > 0 and β1 = βN = ∞. Then X is a continuous-time Markov chain living on {a1, . . . , aN}, stopped upon
hitting a1 or aN . From the construction it follows that X can only jump to nearest neighbours, i.e. from ai it
can jump to ai−1, ai+1, and the probabilities of these follow instantly from the fact that (Xt) is a martingale.
The time spent in ai, 1 < i < N , before (Xt) jumps to a next point, has an exponential distribution with mean

βiE
ai [Lai

Hai−1,ai+1
] = 2βi

(ai+1 − ai)(ai − ai−1)
ai+1 − ai−1

,

where Ha,b is the first hitting time of {a, b} for (Bt). (This is an example of the more general formula (for
a < x ∧ y ≤ x ∨ y < b)

E
x[Ly

Ha∧Hb
] = 2

(x ∧ y − a)(b− x ∨ y)
b − a

(2.5)

for expected values of Brownian local times.) This completes the description of X . We see that an isolated
atom in ai has an effect of introducing a holding time in that point for X , with mean proportional to m({ai}).

2 i.e. P
x(Hy < ∞) > 0 for all x, y ∈ I, where Hy = inf{t > 0 : Xt = y}.
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3. Main result and probabilistic proof

Having recalled generalised diffusions we can now state the main result of our paper. In this section we provide
a proof rooted in probabilistic arguments while in the next section we describe a more analytical approach. For
a probability measure μ we let �μ− and �μ+ denote respectively the lower and the upper bounds of its support.

Theorem 3.1. Let μ be a probability measure,
∫ |x|μ(dx) <∞,

∫
xμ(dx) = x0 and let uμ(x) =

∫
R
|x−y|μ(dy).

Define a measure m by

m(dx) =
μ(dx)

uμ(x) − |x− x0| for x ∈ (�μ−, �
μ
+),

m([y, x0)) = m([x0, x]) = ∞ for y ≤ �μ− ≤ �μ+ ≤ x. (3.1)

Let (Xt) be the generalised diffusion associated with m and T be an F0-measurable P
x0-exponential random

variable independent of (Xt). Then, under P
x0 , XT ∼ μ and (Xt∧T ) is a uniformly integrable martingale.

Proof. It suffices to prove the theorem for x0 = 0 as the general case follows by a simple shift in space. Assume
in first instance that supp(μ) ⊂ (−N,N). Consider the following process (Yt): it takes values in (−N,N)∪{
},
with 
 added as an isolated point. Y starts in 
 which is a holding point with parameter 1. On exit from {
}
at time ρ�, the process behaves as B under the measure P

0, so that Yρ�+t = Bt, until exit from (−N,N) when
Y jumps back to 
. In this way (Yt) is a recurrent strong Markov process with 
 as its regular starting point.
Write P̃

x for the probability measure associated with the process Yt started at x, noting that for all P̃
x, the

path jumps from 
 to 0. We make explicit the Bertoin and Le Jan solution [1] to the Skorokhod embedding
problem of μ in Y .

Let τ� = inf{t > ρ� : Yt = 
} = ρ� + inf{t > 0 : Bt /∈ (−N,N)} =: ρ� +H . The process (Yt) admits a family
of local times (La

t (Y )). We simply have La
t (Y ) = La

t−ρ�
, |a| < N and L�

t (Y ) = L�
ρ�

(Y ) for ρ� ≤ t < τ�. This
last quantity is exponentially distributed and independent of (Bt). It follows from equation (2.5) that

Ẽ
�[La

τ�
(Y )] = E

0[La
H ] = N − |a|, |a| < N,

Ẽ
x[La

τ�
(Y )] = E

x[La
H ] =

(a ∧ x+N)(N − a ∨ x)
N

, |a| < N, |x| < N. (3.2)

The invariant measure ν for Y , displayed in equation (1) in [1], acts by

∫
fdν = Ẽ

�

[∫ τ�

ρ�

f(Ys)ds
]

+ f(
) = E
0

[∫ H

0

f(Bu)du

]
+ f(
)

=
∫ N

−N

f(a)E0[La
H ]da+ f(
) =

∫ N

−N

f(a) (N − |a|) da+ f(
). (3.3)

Consider a finite positive measure ξ on (−N,N) and a positive continuous additive functional Ft =
∫
La

t (Y )ξ(da).
The Revuz measure χ of F is then given by

∫
fdχ =

1
t
Ẽ

ν

[∫ t

0

f(Ys)dFs

]
=

1
t

∫
f(a)Ẽν [La

t (Y )]ξ(da) =
∫
f(a)(N − |a|)ξ(da)
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so that ξ(da) = χ(da)/(N − |a|) and χ = μ iff ξ(da) = μ(da)
N−|a| . We proceed to compute Vχ and V̂μ, as defined

in [1]. We have Vχ(x) = Ẽ
x[

∫ τ�

0 dFs] and
∫
V̂μdχ =

∫
Vχdμ. Then, for x ∈ (−N,N),

Vχ(x) =
∫

E
x[La

H ]
χ(da)
N − |a|

=
∫

(N + a ∧ x)(N − a ∨ x)
N(N − |a|) χ(da), (3.4)

and it follows that

V̂μ(a) =
∫

(N + a ∧ x)(N − a ∨ x)
N(N − |a|) μ(dx) =

N − uμ(a)
N − |a| · (3.5)

Jensen’s inequality grants us uμ(a) ≥ |a| and hence V̂μ ≤ 1 is bounded as required. Furthermore, from
equation (3.5), for 0 < a < N

V̂μ(a) ≥
∫ N

a u′μ(x)dx∫ N

a dx
≥ u′μ(a+) = 1 − 2μ((a,∞))

a↑N→ 1

since μ has support in (−N,N). Hence the bound V̂μ(a) ≤ 1 is best possible.
We have

(1 − V̂μ(a))−1 =
N − |a|

uμ(a) − |a|
and the Bertoin-Le Jan stopping time [1] is given by

TBLJ = inf
{
t ≥ 0 :

∫ t

0

N − |Ys|
uμ(Ys) − |Ys|dFs > L�

t (Y )
}
, (3.6)

where Ft =
∫
La

t (Y ) μ(da)
N−|a| . The key result of Bertoin and Le Jan [1] is that TBLJ solves the Skorokhod embedding

problem for μ: i.e. YTBLJ ∼ μ. Recall that Xt = BAt with At the right–continuous inverse of Φt =
∫
La

tm(da),
where m is as displayed in equation (3.1). By the corollary on p. 540 in [1], Ẽ

�[L�
TBLJ

(Y )] = 1 from which it
follows that TBLJ < τ�. This allows us to rewrite TBLJ as

TBLJ = ρ� + inf
{
t ≥ 0 :

∫ t

0

N − |Bs|
uμ(Bs) − |Bs|dFs−ρ� > L�

ρ�
(Y )

}

= ρ� + inf
{
t ≥ 0 :

∫
La

tμ(da)
uμ(a) − |a| > L�

ρ�
(Y )

}
= ρ� + inf

{
t ≥ 0 : Φt > L�

ρ�
(Y )

}
= ρ� +AL�

ρ�
(Y ). (3.7)

Hence BAT = XT ∼ μ, with T = L�
ρ�

(Y ) an exponential random variable, as required. Note that by construction
(Xt) remains within the bounds of the support of μ. In particular, uniform integrability of (Xt∧T ) follows from
the fact that it is a bounded martingale.

Now consider an arbitrary μ and m defined via equation (3.1). Note that �μ− = �−(m) and �μ+ = �+(m).
Naturally if μ has a bounded support then the previous reasoning applies, so suppose that −�μ− = �μ+ = ∞. For
M > |uμ(0)|, let μM be the measure on [q−M , q+M ] ∪ {−M,M}, centred in zero and with uμM = uμ on [q−M , q+M ],
and uμM ≤ uμ. Note that this defines q±M and μM uniquely, q±M converge to the bounds of the support of μ as
M → ∞, μM = μ on (q−M , q+M ), μ({q±M}) ≥ μM ({q±M}) and μM converges weakly to μ, see [4] for details. Let
AM

t be the inverse of ΦM
t =

∫
Lx

tmM (dx), with mM given by equation (3.1) for μM , and XM
t = BAM

t
. Fix

an exponential random variable T independent of (Bt). By the construction above (applied with N = M + 1,
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so that the support of μM is contained in (−N,N)), XM
T ∼ μM . Observe that, since mM = m on (q−M , q+M ),

we have XM
t = Xt for t < τM := inf{t : Xt /∈ (q−M , q+M )}. Since P(T ≥ τM ) → 0, both XM

T and XT1{T<τM}
converge to the same limit in distribution as M → ∞, and hence XT ∼ μ.

To see that the process Xt∧T is uniformly integrable, we note that this is equivalent to the process BAt∧T

being uniformly integrable. This is easy to see as a consequence of Proposition 18 of Cox [5], noting that since
our laws μn, μ are centred, uniform integrability and minimality are equivalent.

Finally, when only one of �μ−, �
μ
+ is infinite, say �μ+ = ∞, the procedure is analogous but we only truncate the

support of μ on one side, i.e. we look at μM = μ on (q−M ,∞). �

4. An analytic proof

In the previous section, we proved Theorem 3.1 using a probabilistic approach, characteristic of the work of
Bertoin and Le Jan [1]. However, study of generalised diffusions can be seen as a probabilistic counterpart of
the theory of strings, see [8]. Indeed the theory of strings and original results in [15] have played an important
role in the study of fine properties of generalised diffusions including the Lévy measures of their inverse local
times3, lower bounds on the spectrum of their infinitesimal generator, asymptotics of their transition densities
and first hitting times distributions see [12–14,16]. With this in mind our aim is to re-derive equation (3.1)
using analytic methods. As in Section 1.2 we begin with an expression for the resolvent in terms of the speed
measure of the diffusion, and then try to match this expression to the desired target law μ.

Let (Xt) be a generalised diffusion associated with a measure m as in equation (2.1). Recall that in the
notation of Kotani and Watanabe [14] X is associated to measure 2m. Let φ, ψ, h±(λ), h(λ) and u± be defined
as equations (3.1)–(3.4) in [14] (but with our normalisation of m):

φ(x, λ) =

{
1 + 2λ

∫ x+

0− (x− y)φ(y, λ)m(dy) : 0 ≤ x < �+

1 + 2λ
∫ 0−

x− (y − x)φ(y, λ)m(dy) : �− < x < 0

ψ(x, λ) =

{
x+ 2λ

∫ x+

0− (x− y)ψ(y, λ)m(dy) : 0 ≤ x < �+

x+ 2λ
∫ 0−

x− (y − x)ψ(y, λ)m(dy) : �− < x < 0

h+(λ) =
∫ 	+

0

1
φ(x, λ)2

dx = lim
x↑	+

ψ(x, λ)
φ(x, λ)

h−(λ) =
∫ 0

	−

1
φ(x, λ)2

dx = − lim
x↓	−

ψ(x, λ)
φ(x, λ)

1
h(λ)

=
1

h+(λ)
+

1
h−(λ)

u±(x, λ) = φ(x, λ) ∓ ψ(x, λ)
h±(λ)

·

These functions yield a direct representation (Eq. 3.5) therein:

gλ(x, y) = gλ(y, x) = h(λ)u+(x, λ)u−(y, λ), x ≥ y, (4.1)

3 Essentially Krein’s theorem provides a bijection between the set of strings and the set of their spectral measures. This is
equivalent with a bijection between generalised diffusions (Xt) with m2 ≡ 0, reflected in zero, with the set of subordinators given
by the inverse of the local time in zero of X.
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of the resolvent density gλ, defined by

E
x

[∫ ζ

0

e−λtf(Xt)dt

]
=

∫
(	−,	+)

2gλ(x, y)f(y)m(dy), x ∈ (−�−, �+) (4.2)

for continuous bounded functions f on the support of m.
In what follows we take λ = 1 and drop the λ argument. We have u±(0) = 1 and it can be checked

independently (or deduced from Eqs. (4.1)–(4.2) above) that u± are non-negative with u+ non-increasing, and
u− non-decreasing. Further we have u+(x) → 0 as x → �+ and u−(x) → 0 as x → �−. This is described in
detail, in the case of standard diffusion processes, in Theorem 5.13.3 in [10] (note that our u+ is the solution u
therein), see also [14] (p. 241) and [13] (p. 57). Furthermore, from their definitions, we have

u′′+(dx) = 2u+(x)m(dx), 0 < x < �+,

u′′−(dx) = 2u−(x)m(dx), �− < x < 0 . (4.3)

Assume for simplicity that μ is a centred probability measure: x0 = 0, and put Uμ(x) = uμ(x) − |x|. Then
Theorem 3.1 is simply equivalent to showing that for λ = 1 and m given by equation (3.1), that is m(dx) = μ(dx)

Uμ(x) ,
we have g1(x, 0) = 1

2Uμ(x).
Observe now that Uμ(x) also solves equation (4.3) and Uμ(x) → 0 as |x| → ∞. Given that gλ solves equa-
tion (4.1) it follows that g(x) = g1(0, x) = cUμ(x) for some constant c. It remains to show that c = 1

2 . For this
we analyse the derivative at zero. On the one hand we have

U ′
μ(0−) − U ′

μ(0+) = 2μ([0,∞)) + 2μ((−∞, 0)) = 2

and on the other hand

g′(0−) − g′(0+) = h(λ)
(
u′−(0−) − u′+(0+)

)
= h(λ)

(
1

h−(λ)
+

1
h+(λ)

)
= 1,

from which it follows that c = 1
2 as required.

To end this section we check that the boundary behaviour of X at {�−, �+} is what we would expect it to
be. Consider for example �+. If μ({�+}) = 0 then we have

m((0, �+)) =
∫

(0,	+)

μ(dx)∫ 	+
x

(y − x)μ(dy)
≥

∫ 	+

	+−ε

μ(dx)∫ 	+
x

(y − x)μ(dy)

≥ 1
ε

∫ 	+

	+−ε

μ(dx)
μ([x, �+])

=
1
ε

(logμ([�+ − ε, �+]) − logμ({�+})) = ∞. (4.4)

In a similar manner we have

σm : =
∫

(0,	+)

m((0, x])dx =
∫ 	+

0

∫ x

0

μ(dy)dx∫ 	+
y (u− y)μ(du)

=
∫ 	+

0

(�+ − y)μ(dy)∫ 	+
y (u− y)μ(du)

≥
∫ 	+

0

(�+ − y)μ(dy)∫ 	+
y

(�+ − y)μ(du)
=

∫ 	+

0

μ(dy)
μ([y, �+])

= ∞. (4.5)

Hence, by definition, �+ is a natural boundary for (Xt) which can not be reached in finite time starting from
a point x < �+, see [10], Sections 5.11 and 5.16.
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Suppose μ({�+}) > 0. First note that �+ is a trap since m({�+}) = ∞ by the definition of m in equation (3.1),
and hence (Xt) is absorbed in �+ upon reaching it. Further we have

σm =
∫

(0,	+)

(�+ − y)μ(dy)∫ 	+
y

(u− y)μ(du)
≤

∫
(0,	+)

(�+ − y)μ(dy)∫ 	+
y+�+

2

(u− y)μ(du)

≤ 2
∫

(0,	+)

μ(dy)

μ([y+	+
2 , �+])

<∞. (4.6)

It follows that if �+ is the endpoint of a regular interval for (Xt), i.e. if m((�+ − ε, �+)) > 0 for all ε > 0 then
�+ is a regular or exit boundary and hence the process (Xt) can reach �+ in finite time. Finally, if �+ is an
isolated point in the support of μ, i.e. if μ((�+ − ε, �+]) = μ({�+}) for some ε > 0, then likewise it is an isolated
absorbing point in the state space of (Xt). It is easy to see that it can be reached in finite time with positive
probability by considering (Xt) reaching the point sup{x ∈ supp(μ) : x < �+} and behaving thereafter.

5. A more intuitive and direct proof

We have so far presented two methods of arriving at the representation (3.1) and Theorem 3.1. Both relied
on deep probabilistic or analytic results and neither method appears to give a strong insight into why the result
might be true. Consequently, one might want to have a more bare-handed proof, particularly if one wishes to
generalise the result to other settings. Our goal in this section is to give a direct proof of Theorem 3.1, using
a coupling and a construction of a martingale diffusion as a time-change of Brownian motion. The intuitive
picture on which we base our proofs exploits the fact that we can write a time-changed martingale diffusion as
a Brownian motion. In this picture, “locally”, the process would appear to stop according to an exponential
random variable, whose parameter would depend on the speed of the diffusion at that location; generalising
this idea, we propose modelling the choice of an exponential stopping time by a Poisson random measure on
R+ × R, where points are placed with intensity dum(dx), i.e. with more frequency in places where we expect
to stop more often. Then we stop the process at a point x, if there is a point at (u, x) in the Poisson random
measure, and if the local time of the Brownian motion at x reaches u, before the local time at any other x′

reaches u′ > 0 for some other point (u′, x′) of the Poisson random measure. By comparing these stopping
times Tm derived from different Poisson random measures, we are able to prove a monotonicity result. This
gives us a coupling argument from which we deduce the existence of a measure m with the desired stopping
distribution, i.e. BT m ∼ μ. Some simple calculations show that construction of a suitable generalised diffusion
follows. This new insight then allows us to give an intuitive justification of the explicit formula (3.1). Observe
that effectively we re-interpret the original problem as a new problem of finding a solution to the Skorokhod
embedding problem (cf. [19]) in a given class of stopping times Tm.

We fix the underlying Brownian motion (Bt) and the stopping times will be based on its local times Lx
t . We

think about the behaviour of the process in the context of the curve of the local times Lx
t of Bt as t is increasing.

More specifically, define

Rt = {(u, x) : Lx
t > u}

which is the set of points “inside” the local time curve. Now, given a measure m(dx), we suppose Δm is a
Poisson random measure on R+ ×R with intensity measure dum(dx), independent of the Brownian motion B.
We allow m(dx) to be infinite on some intervals. More precisely we assume that there exists a, possibly infinite,
interval I, containing the origin, such that m(Γ) < ∞ for any compact set Γ ⊂ I and that m|Ic ≡ ∞. This
agrees with equation (2.1). Formally the measure Δm decomposes into Δm = Δ̃ + Δ∞ where Δ̃ is a Poisson
random measure with intensity dum|I(dx) and Δ∞ =

∑
x/∈I δ(0,x). We adopt this convention from now on.

We define the stopping time
Tm = inf{t ≥ 0 : Δm(Rt) ≥ 1}. (5.1)
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Lx
t

x

Figure 1. (Color online) The curve on the left represents the local time Lx
t at time t. As time

increases, the curve moves outwards. The crosses are distributed according to Δ and T occurs
the first time the local time curve hits such a point.

Figure 1 shows a graphical representation of the construction. The idea now is to construct m such that
BT m ∼ μ and then time change with Am

t to obtain the desired generalised diffusion process as in equation (2.2).
This is explained in the following theorem.

Theorem 5.1. Given a centred probability distribution μ on R there exists a measure m such that Tm is
minimal 4 and embeds μ: BT m ∼ μ.
Furthermore, if (Xm

t ) is a generalised diffusion given via equation (2.2) then the stopping time

T̃m = A−1
T m (5.2)

is exponentially distributed, independently of X, and XT̃ m = BT m ∼ μ.
Remark 5.2. The above statement has two advantages in our opinion. Firstly, it provides an additional insight
into the relation between stopping times for X and B. Secondly, it can be proved using a fairly direct and
elementary arguments. We note however that it is poorer than Theorem 3.1 which not only gives existence of
m but also the explicit formula (3.1).

Proof. We prove the first part of the theorem in two steps: in Step 1 we assume that μ has bounded support
and in Step 2 we extend the result to arbitrary μ via a limiting procedure. Finally we prove the second part of
the theorem.

Whenever no ambiguity is possible we suppress the superscripts m.
Part I. Step 1. We assume that μ has bounded support and denote by [�−, �+] the smallest closed interval with
μ([�−, �+]) = 1. Define the set

Sμ = {m : ∀Γ ⊂ (�−, �+), P(BT m ∈ Γ) ≤ μ(Γ)} . (5.3)

4 Following [18], a stopping time T is minimal if S ≤ T a.s. and BS ∼ BT imply S = T a.s. Then if BT is a centred random
variable, and B0 = 0, minimality of T is equivalent to the uniform integrability of (Bt∧T , t ≥ 0).
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We will now show that this set has non-trivial elements. Fix ε > 0 and let mε = εμ on (�−, �+) and infinity
elsewhere. We have then Tmε ≤ H	− ∧ H	+ , where Ha = inf{t : Bt = a}, and thus ELx

T mε ≤ 2 	+|	−|
	+−	−

. Let
Γ ⊂ (�−, �+) and define:

RΓ
t = {(u, x) : Lx

t > u, x ∈ Γ}.
Then we deduce:

P(BT mε ∈ Γ) ≤ P

(
Δmε(RΓ

H�−∧H�+
) ≥ 1

)
(5.4)

≤ E
[
Δmε(RΓ

H�−∧H�+
)
]

= ε

∫
Γ

ELy
H�−∧H�+

μ(dy) (5.5)

≤ 2ε�+|�−|
�+ − �−

μ(Γ). (5.6)

In consequence, for ε < (2�+|�−|/(�+ − �−))−1, mε ∈ Sμ. We want to take the maximal element of Sμ and the
following lemma describes the key property for our proof.

Lemma 5.3. Suppose that m1,m2 ∈ Sμ. Then the measure5 m = max{m1,m2} is also an element of Sμ.

The proof of the lemma, perhaps the most interesting element of the proof of Theorem 3.1, is postponed.
Using the lemma we can conclude that there exists a maximal element mmax ∈ Sμ. We claim that BT mmax ∼ μ.
Suppose the contrary and let ν ∼ BT mmax . As mmax is an element of Sμ, ν is dominated by μ on (�−, �+) and
with our assumption there exists Γ ⊂ (�−, �+) such that ν(Γ) < μ(Γ). Let f be the Radon-Nikodym derivative
of ν with respect to μ on (�−, �+). Then there exists an ε > 0 and Γ′ ⊆ Γ such that f < 1 − ε on Γ′ and
μ(Γ′) > 0. Let m′ = mmax + γμ1Γ′ with γ = ε(�+ − �−)/(4�+|�−|) and let ρ ∼ BT m′ . The measure m′ involves
extra stopping in Γ′, when compared with m, so that necessarily there is less chance in stopping off Γ′. Hence,
ρ ≤ ν ≤ μ on (�−, �+) \ Γ′. Moreover, using arguments as above we see that ρ ≤ ν + ε/2 ≤ μ on Γ′ and thus
m′ ∈ Sμ which contradicts maximality of mmax. Finally, Tmmax

is minimal since it is smaller than H	− ∧H	+ .

Part I. Step 2. Consider μ any centred probability measure and write �−, �+ respectively for the lower and the
upper bound of the support of μ. We have just treated the case when both �−, �+ are finite so we suppose that
at least one of them is infinite. Let a(n), b(n) be two sequences with a(n) ↘ �−, b(n) ↗ �+, as n → ∞, such
that the measure

μn = μ((−∞, a(n)])δa(n) + μ|(a(n),b(n)) + μ([b(n),∞))δb(n)

is centred. This measure can be embedded using Tmn where mn = mmax is the maximal element of Sμn .
Clearly mk ∈ Sμn for all k ≥ n and thus (mn) is a decreasing sequence. It thus converges to a limit denoted
m = infnmn, which is a measure (see e.g. Section III.10 in [6]).

Let Δ and Δ̃n, n ≥ 1, be independent Poisson measures with intensities respectively m and (mn −mn+1),
n ≥ 1. Consider Δn = Δ +

∑
k≥n Δ̃k which is again a Poisson point measure with intensity m+

∑
k≥n(mk −

mk+1) = mn. With Tmn = inf{t : Δn(Rt) ≥ 1} as previously, we have that BT mn ∼ μn. Furthermore, as
Δn(Γ) ≥ Δn+1(Γ) ≥ . . . we have that Tmn ≤ Tmn+1 ≤ . . . so that Tmn ↗ T = Tm as n → ∞. To show that
Tm <∞ a.s. we recall that |Bt| − L0

t is a martingale. As Tmn ≤ Ha(n),b(n) we have that

EL0
T mn = E|BT mn | ≤

∫ ∞

−∞
|x|μ(dx).

5 See the proof of Lemma 5.3 for a detailed definition of m.
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The left hand side converges to EL0
T m which is thus finite and in particular Tm < ∞ a.s. Finally, since

m ∈ Sμn for all n, the law of BT m is dominated by μ on R and is thus simply equal to μ. The uniform
integrability of (Bt∧T m : t ≥ 0) follows from standard arguments (e.g. Proposition 18 of [5]).

Part II. To show that T̃m is exponentially distributed, we recall the above definitions. Then for t > s:

P

(
T̃m ≥ t|T̃m ≥ s

)
= P

(
A−1

T m ≥ t|A−1
T m ≥ s

)
= P (Tm ≥ At|Tm ≥ As)
= P (Δ(RAt−) = 0|Δ(RAs−) = 0)
= P (Δ(RAt− \RAs−) = 0)
= P (Δ(RAt \RAs) = 0)

where for the last equality we use the fact that local times are continuous in t. However, conditional on Bt, we
know Δ(RAt\RAs) is Poisson with parameter

∫ ∞

−∞
(Lx

At
− Lx

As
)m(dx) = ΦAt − ΦAs = t− s

where we used ΦAt = t since Φt is continuous. Clearly XT̃ m = BT m . Finally a similar calculation to the ones
above shows that P(T̃m > t|σ(Xu : u ≤ t)) = P(T̃m > t) and T̃m is independent of X . This completes the proof
of Theorem 5.1. �

Proof of Lemma 5.3. Note that the measure m is well defined. More precisely let m3 = m1 + m2 and f1 and
f2 the Radon-Nikodym derivatives respectively of m1 and m2 with respect to m3. The measure m is defined
via its Radon-Nikodym derivative f = f1 ∨ f2 with respect to m3. Likewise, the measure m = min{m1,m2} is
well defined. We write νm for the law of BT m∧Ha∧Hb

. Note that by construction νm(Γ) ≤ νm1(Γ) ≤ μ(Γ) and
hence m ∈ Sμ.

Consider the signed measure (m1 −m2) and let F1 be the support of its positive part and F2 the support
of its negative part. Then we may decompose Δ associated with m into three independent Poisson Random
Measures, Δ∧ with intensity dum(dx), Δ1 with intensity du (m1(dx)−m2(dx))1{F1}(x) and Δ2 with intensity
du (m2(dx) − m1(dx))1{F2}(x). We know that the stopping times generated by the measures Δ∧ + Δ1 and
Δ∧ + Δ2 both lead to measures which are dominated by μ on (a, b). We wish to deduce the same about
Δ∧ +Δ1 +Δ2. We show this by considering the coupling implied by Figure 2. Given a set Γ ⊂ (a, b), we need to
show that νm(Γ) ≤ μ(Γ). However by considering Γ ⊆ F1, it is clear that νm(Γ) ≤ νm1(Γ) since adding adding
extra marks according to Δ2 can only reduce the probability of stopping in F1, as it will not produce any new
“points” in this set. Similarly, for Γ ⊆ F2, we will have νm(Γ) ≤ νm2(Γ). Finally, for Γ ⊆ (a, b) \ (F1 ∪ F2) we
have νm(Γ) ≤ νm(Γ). It now follows from m1,m2,m ∈ Sμ that m ∈ Sμ. �

We have thus proved existence of a suitable measure m such that the generalised diffusion (Xt) associated
to m satisfies XT ∼ μ for an independent exponential time T . We have also seen that this is equivalent to
finding m such that BT m ∼ μ, where Tm is stopping time defined in equation (5.1). We can use this new
interpretation to recover the formula (3.1) for m, using an argument similar to that in Section 1.2. Indeed, from
the construction of Tm, intuitively we have

P(BT m ∈ dx) = m(dx) × E (time spent in {x} by (Bt : t ≤ Tm)) .
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Lx
t

x

F1

F2

Figure 2. (Color online) Representation of the Poisson random measure Δ in terms of Δ∧,Δ1

and Δ2, represented by ×,+ and � respectively.

The time spent in {x} by (Bt : t ≤ Tm) is simply Lx
T m and E[Lx

T m ] = E|BT m − x| − |x|. Hence, if we are to
have BT m ∼ μ we have to have

μ(dx) = m(dx) ×
(∫

|x− y|μ(dy) − |x|
)

= m(dx) × (uμ(x) − |x|) ,

which is exactly equation (3.1).
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