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Abstract

We consider a class of stochastic control problems where the state process is
a probability measure-valued process satisfying an additional martingale condi-
tion on its dynamics, called measure-valued martingales (MVMs). We establish
the ‘classical’ results of stochastic control for these problems: specifically, we
prove that the value function for the problem can be characterised as the unique
solution to the Hamilton-Jacobi-Bellman equation in the sense of viscosity solu-
tions. In order to prove this result, we exploit structural properties of the MVM
processes. Our results also include an appropriate version of Itô’s formula for
controlled MVMs.

We also show how problems of this type arise in a number of applications,
including model-independent derivatives pricing, the optimal Skorokhod embed-
ding problem, and two player games with asymmetric information.
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1 Introduction
Recently there has been substantial interest in understanding stochastic control of
processes which take values in the set of probability measures. In particular, the
study of stochastic control problems where the underlying state variable is a proba-
bility measure have been studied in a number of contexts such as mean-field games,
and McKean-Vlasov dynamics. In this paper, we consider stochastic control problems
where the state process is a probability measure-valued process, satisfying an addi-
tional martingale condition which restricts the possible dynamics of the process. The
restrictions on the dynamics of the process provide enough regularity to prove the ‘clas-
sical’ theorems of stochastic control, specifically, dynamic programming, identification
of the value function as a solution (in an appropriate sense) to a Hamilton-Jacobi-
Bellman (HJB) equation and a verification theorem for ‘classical’ solutions. Under
stronger conditions, we are also able to prove comparison for the HJB equation, al-
lowing characterisation of the value function as the unique solution to this equation.

The probability measure-valued evolution we wish to study as our underlying state
variable is the class of measure-valued martingales, or MVMs, introduced in Cox and
Källblad (2017). A process (ξt)t≥0, taking values in the space of probability measures
on Rd is an MVM if ξt(ϕ) :=

∫
Rd ϕ(x)ξt(dx) is a martingale for every bounded con-

tinuous function ϕ ∈ Cb(Rd). Such processes arise naturally in a number of contexts,
and we outline some of these applications below.

In Cox and Källblad (2017), MVMs were introduced in the context of model-
independent pricing and hedging of financial derivatives. In this application, the mea-
sure µ has an interpretation as the implied distribution of the asset price ST given the
information at time t, ξt(A) = Q(ST ∈ A|Ft), where Q is the risk-neutral measure.
In the model-independent pricing literature, initiated by Hobson (1998), one typically
does not assume that the law of the process S is known, but rather one observes
market information in terms of the European call prices with maturity time T , and
tries to find bounds on the prices of exotic derivatives as the maximum/minimum
over all models which fit with the market information. In practice, since the mar-
ket prices of call options imply that the law of ST is known at time zero via the
Breeden-Litzenberger formula, (Breeden and Litzenberger, 1978), this turns out to be
equivalent to knowing ξ0, the starting point of the MVM from market information; the
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risk-neutral assumption additionally grants that the process ξ will then be an MVM
under any risk-neutral measure. Optimising over all models for S which have terminal
law ξ0 can be shown to be equivalent to optimising over the laws of MVMs which start
at ξ0 and satisfy an additional terminal condition. While increasing the complexity
of the optimisation problem by making the state variable infinite dimensional, this
avoids the tricky distributional constraint on the terminal law of the process. In Cox
and Källblad (2017) and Bayraktar et al. (2018), this connection was used to charac-
terise the model-independent bounds of Asian and American-type options. See also
e.g. Källblad (2017) for the use of MVMs to address distribution-constrained optimal
stopping problems.

Further related to this problem, although also of interest in its own right, is the
problem of finding optimal solutions to the Skorokhod Embedding Problem. Given
an integrable measure µ and a Brownian motion B, the Skorokhod Embedding prob-
lem (SEP) is to find a stopping time τ such that the process (Bt∧τ )t≥0 is uniformly
integrable, and Bτ ∼ µ. By introducing the conditioned, probability measure-valued
process ξt(A) := P(Bτ ∈ A|Ft), it follows that Bt∧τ =

∫
R xξt(dx). In this case, the

process ξt is evidently an MVM, and in fact, it can be shown that there is an equiva-
lence between solutions to the SEP and MVMs which terminate, that is, converge to a
(random) point mass (see Cox and Källblad (2017)). In many applications of the SEP,
one is interested in finding optimal solutions to the SEP (see Obłój (2004b); Beiglböck
et al. (2017)), and one approach is to reformulate this problem in terms of the MVM,
and to optimise over the class of MVMs. Approaches to the SEP using an MVM-like
perspective can be traced back (indirectly) to the construction of Bass (1983). More
recent developments in this direction include Eldan (2016) and Beiglböck et al. (2017).

A second class of problems in which MVMs naturally arise is in the setting of
two-player, zero sum games with asymmetric information. These games were initially
introduced in discrete time by Aumann and Maschler (1995), and subsequently have
been the subject of systematic investigation by Cardialiguet, Rainer and Grün, among
others (Cardaliaguet and Rainer (2009b,a); Cardaliaguet (2009); Cardaliaguet and
Rainer (2012); Gensbittel and Rainer (2018); Grün (2013)). In these games, the payoff
of the game depends on a parameter θ which is known at the outset to the first player,
but which is unknown to the second player, whose belief in the value of the parameter
is known to be some probability measure ξ0. In the game, both players act to optimise
their final reward, and the actions of the first player may inform the second player
about the value of the parameter. It follows that the posterior belief of the second
player at time t, ξt follows the dynamics of an MVM. Moreover, the strategies of the
first player can be reformulated into a control problem, where the state variable of
the problem is the posterior belief of the second player, ξt. Consequently, the game
formulation fits into the setup of a controlled MVM problem.

Our main results follow the classical approach to stochastic control. We will make
one major restriction to the full generality of the problem by assuming that we can
restrict our MVM to processes driven by a Brownian motion. In this framework, we
will postulate dynamics for the MVM in terms of an SDE where we are able to identify
a natural class of (function-valued) controls. Once this natural set of controls is estab-
lished, we are able to formulate the control problem for a controlled measure-valued
process. In this setting, we then proceed to establish a corresponding Hamilton-Jacobi-
Bellman (HJB) equation which we expect our value function to satisfy. In order to
uniquely characterise the value function, it is necessary to introduce an appropri-
ate sense of weak solution to the HJB equation, which we do using viscosity theory.
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Specifically, we introduce a notion of viscosity solution which, in our setting and under
appropriate conditions on the problem, allows us to show that the value function is
a viscosity solution to the HJB equation, and also prove a comparison result, under
which we further conclude that the value function is the unique such solution. Our
notion of viscosity solution will exploit the specific nature of the dynamics of the MVM
and allows to prove some of the viscosity results above, which are notoriously hard to
prove in the general setting of measure-valued processes.

Our results have connections with existing results in the literature. Broadly, there
are comparisons between MVMs and the evolution of densities arising in filtering prob-
lems. There is an existing literature on these problems, culminating with e.g. Fabbri
et al. (2017); Gozzi and Świȩch (2000). In comparison with our approach, this work
formulates the dynamics of the problem in terms of an (unnormalised) density func-
tion, which is embedded in an appropriate vector space. In comparison, we formulate
our problem directly in the underlying (metric) space of probability measures. More
recently, (Bandini et al., 2019) considered a related problem in metric space setting,
however their control problem arises in the context of partial observation of a diffusion,
and the two problems do not appear to be directly comparable.

More recently, there has been substantial interest in McKean-Vlasov equations,
including viscosity solutions for control problems where the state variables take values
in the space of probability measures. In particular, this involves obtaining Itô formulas
for probability measure-valued processes arising as the (conditional or unconditional)
laws of an underlying state process; see Chassagneux et al. (2014); Buckdahn et al.
(2017); Pham and Wei (2018); Carmona and Delarue (2018a,b); Burzoni et al. (2020);
Guo et al. (2020); Talbi et al. (2021). However, these probability measure-valued
processes are not MVMs except in degenerate instances, and these papers therefore
have limited bearing on the results we develop here.

The rest of the paper is structured as follows. In Section 2 we give a formal defi-
nition of an MVM and establish certain helpful properties, including giving a natural
notion of control of MVMs. In Section 3 we formally state our stochastic control
problem, and show the important, non-trivial fact that constant controls exist in our
formulation. In Section 4 we establish an appropriate differential calculus in our set-
ting, which enables us, in Section 5 to prove a version of Itô’s formula in our setting.
In Section 6 we state our main result, including our definition of a viscosity solution
and a verification result for classical solutions. The proofs of the main result are then
detailed in Sections 7, 8 and 9 where we prove the sub-, and super-solution proper-
ties, and a comparison principle; the proof of the dynamic programming principle is
deferred to the Appendix. Finally, in Section 10 we give some concrete examples of
solvable control problems, and also explain how our main results relate to the appli-
cations set out above.

Notation. The following notation will feature throughout the paper. We fix d ∈ N.

• P denotes the space of probability measures on Rd with the topology of weak
convergence. Pp for p ∈ [1,∞] denotes the probability measures whose p-th
moment is finite, endowed with the Wasserstein-p metric. We set P0 = P by
convention. All these spaces are Polish. Finally, Ps denotes the (closed) subset
of probability measures supported in one single point.

• Cb(Rd) and Cc(Rd) are the bounded continuous and compactly supported con-
tinuous functions on Rd, respectively. They are frequently abbreviated as Cb
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and Cc.

• For µ ∈ Pp and ϕ : Rd → R such that
∫
Rd |ϕ(x)|µ(dx) <∞ we set

µ(ϕ) :=

∫
Rd
ϕ(x)µ(dx).

When d = 1 we write M(µ) := µ(id) (if p ≥ 1), where id : x 7→ x is the identity
function, and Var(µ) :=

∫
Rd x

2µ(dx)− (µ(id))2 (if p ≥ 2). In addition, we write
the covariance under µ of two functions ϕ and ψ as Covµ(ϕ,ψ) := µ(ϕψ) −
µ(ϕ)µ(ψ) and similarly Varµ(ϕ) := Covµ(ϕ,ϕ). Note that Var(µ) = Varµ(id).

2 Measure-valued martingales
Definition 2.1. A measure-valued martingale (MVM) is a P-valued adapted stochas-
tic process ξ = (ξt)t≥0 such that ξ(ϕ) is a real-valued martingale for every ϕ ∈ Cb. We
say that an MVM is continuous if it has weakly continuous trajectories, or equivalently,
if ξ(ϕ) is continuous for every ϕ ∈ Cb.

Here ξ is defined on some filtered probability space (Ω,F , (Ft)t≥0,P), and the mar-
tingale property is understood with respect to this space. In this paper we will consider
weak formulations where the probability space is not fixed, but rather constructed as
needed. Note that there is a connection to the class of ‘martingale measures’ as de-
fined in e.g. Dawson (1993). However in contrast to the definition there, we make the
additional restriction that our processes remain as probability measures.

The following lemma shows that the martingale property of ξ(ϕ) extends beyond
bounded continuous functions. It applies to arbitrary MVMs with continuous trajec-
tories.

Lemma 2.2. Let ξ be a continuous MVM, and let ϕ be any nonnegative measurable
function such that E[ξ0(ϕ)] < ∞. Then ξ(ϕ) is a uniformly integrable continuous
martingale.

Proof. Let H be the set of all bounded measurable functions ϕ such that ξ(ϕ) is a
uniformly integrable continuous martingale. Let ϕn ∈ H, and assume that the ϕn in-
crease pointwise to a bounded function ϕ. In particular, since ξt(ϕ) = limn→∞ ξt(ϕn),
the process ξ(ϕ) is adapted. The stopping theorem yields E[ξτ (ϕn)] = E[ξ0(ϕn)] for
every stopping time τ and all n ∈ N, and sending n→∞ gives E[ξτ (ϕ)] = E[ξ0(ϕ)] by
monotone convergence. This implies that ξ(ϕ) is a uniformly integrable martingale.
Next, since ξ(ϕn) is a continuous martingale for every n, Doob’s inequality yields

P
(

sup
t≤T
|ξt(ϕm)− ξt(ϕn)| > ε

)
≤ 1

ε
E[|ξT (ϕm − ϕn)|]

≤ 1

ε
E[ξT (ϕ− ϕm∧n)]

for all T ≥ 0, m,n ∈ N, ε > 0. Keeping ε > 0 fixed, the dominated convergence
theorem implies that the right-hand side vanishes as m,n → ∞. Since ξ(ϕn) is con-
tinuous for each n, so is the limit ξ(ϕ). We have proved that ϕ ∈ H, and deduce
from the monotone class theorem that H consists of all bounded measurable ϕ. The
same argument as above with ϕn = ϕ ∧ n now shows that ξ(ϕ) is a uniformly in-
tegrable continuous martingale whenever ϕ is nonnegative, measurable, and satisfies
E[ξ0(ϕ)] <∞.
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Remark 2.3. Lemma 2.2 has several very useful consequences. Let ξ be a continuous
MVM.

(i) If ξ0 lies in Pp for some p ≥ 0 then, with probability one, so does ξt for all t ≥ 0,
and the trajectories of ξ are continuous in Pp. To see this, apply Lemma 2.2
with ϕ(x) = |x|p.

(ii) Any continuous MVM ξ has decreasing support in the sense that, with proba-
bility one,

supp(ξt) ⊆ supp(ξs) whenever t ≥ s. (2.1)

To see this, let I be the countable collection of all open balls in Rd with rational
centre and radius, and define I(µ) = {I ∈ I : µ(I) = 0} for µ ∈ P. Then
supp(µ) = Rd\

⋃
I∈I(µ) I. Now, for every I ∈ I, ξ(I) is a nonnegative martingale

that stops once it hits zero, at least off a nullset N that does not depend on I ∈ I.
Therefore, off N , I(ξs) ⊆ I(ξt) for all s ≤ t. This yields (2.1).

(iii) (De la Vallée-Poussin) For each a > 0 and each ϕ : Rd → R given by ϕ(x) :=
G(|x|) for some measurable function G : R+ → R+ with limt→∞G(t)/tp = ∞
the set

Kϕ
a := {µ ∈ Pp : µ(ϕ) ≤ a} (2.2)

is compact in Pp. Moreover, for each compact set K ⊂ Pp there is a function ϕ
as before such that K ⊆ Kϕ

a for some a > 0.

We provide a few details about these results. By Prohorov’s theorem we know
that a closed set K ⊆ Pp is compact if and only if for each ε > 0 there is a
compact set C ⊂ Rd such that

∫
Rd\C |x|

pµ(dx) < ε for all µ ∈ K. The criterion
of de la Vallée-Poussin then states that this condition is satisfied if and only if
there is a function ϕ as before such that

sup{µ(ϕ) : µ ∈ K} <∞.

In this case one can choose the function G to be continuous. Since Kϕ
a is closed

for each a > 0 by the monotone convergence theorem, the claim follows.

(iv) MVMs can be localised in compact sets. More specifically, if ξ is a continuous
MVM starting at ξ0 = µ̄ ∈ Pp, Remark 2.3(iii) (De la Vallée-Poussin) gives a
measurable function ϕ : Rd → R+ such that µ̄(ϕ) <∞ and the set Kϕ

n given by
(2.2) is a compact subset of Pp for each n ∈ N. With τn = inf{t ≥ 0: ξt(ϕ) ≥ n}
we have ξt ∈ Kϕ

n for all t < τn, and since ξ(ϕ) is a continuous process by
Lemma 2.2, we have that ξτn ∈ Kϕ

n for each n and τn →∞ as n→∞.

In this paper we are interested in MVMs driven by a single Brownian motion. More
specifically, our goal is to consider optimal control problems where the controlled state
is an MVM ξ given as a weak solution of the equation

ξt(ϕ) = ξ0(ϕ) +

∫ t

0

Covξs(ϕ, ρs)dWs (2.3)

in a sense to be made precise below, where ρ is a progressively measurable function
acting as the control.
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Remark 2.4. Although we will not use it directly in this paper, let us indicate how
this type of MVM can be derived from first principles. Suppose ξ is an MVM on a
space whose filtration is generated by a Brownian motion W . For any ϕ ∈ Cb, the
martingale representation theorem yields

ξt(ϕ) = ξ0(ϕ) +

∫ t

0

σs(ϕ)dWs (2.4)

for some progressively measurable process σ(ϕ) with
∫ t

0
σs(ϕ)2ds <∞ for all t. M. Yor

observed that in various cases of interest one has σt(ϕ) =
∫
ϕ(x)σt(dx) for a sin-

gle process σ = (σt)t≥0 that takes values among the signed measures and satisfies
σt(dx)� ξt(dx); see Yor (1985, 2012), where the context is filtration enlargement. In
such situations there is a progressively measurable function ρt(ω, x) such that, outside
a P⊗ dt-nullset, ξt(|ρt|) <∞ and

σt(ϕ) = ξt(ϕρt)− ξt(ϕ)ξt(ρt) for all ϕ ∈ Cb.1

Equation (2.4) then takes the form (2.3).
Let us finally mention a condition introduced by Jacod (1985), also in the context of

filtration enlargement: ξt(dx)� ξ0(dx). Under this condition there is a progressively
measurable function ft(ω, x) such that ξt(ϕ) = ξ0(ϕft), and in Brownian filtrations
one has a representation ft(x) = 1 +

∫ t
0
fs(x)gs(x)dWs. Without going into detail,

multiplying by ϕ(x), integrating against ξ0(dx), applying the stochastic Fubini theo-
rem, and comparing with (2.4), one finds that σt(ϕ) = ξt(ϕgt). Thus Jacod’s condition
implies Yor’s condition.

3 Control problem and dynamic programming
Let us first define what we mean by a weak solution of (2.3).

Definition 3.1. A weak solution of (2.3) is a tuple (Ω,F , (Ft)t≥0,P,W, ξ, ρ), where
(Ω,F , (Ft)t≥0,P) is a filtered probability space, W is a standard Brownian motion on
this space, ξ is a continuous MVM, and ρ is a progressively measurable function on
Ω× R+ × Rd such that for every ϕ ∈ Cb, P⊗ dt-a.e.,

ξt(|ρt|) <∞,
∫ t

0

Covξs(ϕ, ρs)
2ds <∞,

and (2.3) holds, that is,

ξt(ϕ) = ξ0(ϕ) +

∫ t

0

Covξs(ϕ, ρs)dWs.

To simplify terminology, we often call (ξ, ρ) a weak solution, without explicitly men-
tioning the other objects of the tuple.

1Equivalently, by replacing ρt(x) by ρt(x)− ξt(ρt), one gets σt(ϕ) = ξt(ϕρt) and ξt(ρt) = 0. This
is for instance done in Mansuy and Yor (2006); see the table of p. 34. We find it more convenient not
to use this convention, in order to avoid the constraint ξt(ρt) = 0.

7



We are interested in a specific class of controlled MVMs, specified as follows. Fix
p ≥ 0, q ∈ [0, p], and a Polish space H of measurable real-valued functions on Rd, the
set of actions. We make the standing assumption that the map H × Pp 3 (ρ, ξ) 7→
ξ(|ρ|) ∈ [0,∞] is measurable. The role of the parameter p will be to specify the state
space Pp of the controlled MVMs, while q will be related to the set of test functions
used in the definition of viscosity solution in Section 6.

Definition 3.2. An admissible control is a weak solution (ξ, ρ) of (2.3) such that

ρt( · , ω) ∈ H

and, P⊗ dt-a.e., ∫ t

0

(∫
Rd

(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

ds <∞. (3.1)

Here is a sufficient condition for (3.1) to hold.

Lemma 3.3. Fix r ∈ [0, p − q] and suppose that for each ρ ∈ H there is a constant
c such that ρ(x) ≤ c(1 + |x|r). Then (3.1) holds for any weak solution (ξ, ρ) of (2.3)
such that ξ0 ∈ Pp and ρt( · , ω) ∈ H.

Proof. Note that ξ takes values in Pp thanks to Remark 2.3(i). Observe that P⊗ds-a.e.∫
Rd

(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx)

≤ C
(∫

Rd
(1 + |x|q+r)ξs(dx) +

∫
Rd

(1 + |x|q)ξs(dx)

∫
Rd

(1 + |x|r)ξs(dx)

)
,

for some C ≥ 0. Since s 7→
∫
Rd(1 + |x|m)ξs(dx) is a continuous map for each m ≤ p,

condition (3.1) follows.

We consider the following control problem. In addition to the action space H, fix
a measurable cost function

c : Pp ×H→ R ∪ {+∞}

and a discount rate β ≥ 0. The value function is given by

v(µ) = inf

{
E
[∫ ∞

0

e−βtc(ξt, ρt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
(3.2)

for every µ ∈ Pp. Note that the value function depends on H through the definition
of admissible control. Because ξ0 = µ lies in Pp, so does ξt for all t. Thus c(ξt, ρt) is
well-defined. We will also want to ensure that the control problem is itself well-defined,
in the sense that the expectation appearing in the expression above is well-defined for
all admissible controls. To ensure this, we assume that∫ ∞

0

e−βtE [c(ξt, ρt)−] dt <∞ (3.3)

holds for every admissible control (ξ, ρ), where x− = max{0,−x} denotes the negative
part of x. This is trivially true if we suppose that c(ξ, ρ) is bounded below. More
generally, if there exists a non-negative, uniformly integrable martingale Mt such that
c(ξt, ρt)− ≤Mt, then (3.3) is satisfied.
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Remark 3.4. It would be natural to assume that c(µ, ρ) = c(µ, ρ′) for any µ ∈ Pp and
ρ, ρ′ ∈ H such that ρ−ρ′ is constant on supp(µ). This is natural because equation (2.3)
cannot detect any difference between ρ and ρ′, since Covµ(ϕ, ρ) = Covµ(ϕ, ρ′). It is
then reasonable that two such controls should produce the same cost. Our arguments
do not require this assumption however, so we do not impose it, and there are examples
where this additional flexibility is convenient.

Remark 3.5. In some of our applications it will be convenient to include an additional
state-dependent constraint on the controls. Specifically, it would be desirable to assume
in addition that the control ρt belongs to H(ξt), a state-dependent subset of H. Rather
than formulating this condition directly in the definition of an admissible strategy we
enforce the state dependence in a weak formulation. Specifically, suppose there is a set
A ⊆ Pp×H which we wish our process and the corresponding control to remain within,
for example, A = {(ξ, ρ) : ξ ∈ Pp, ρ ∈ H(ξ)}. Then it is natural to only optimise over
solutions for which

∫∞
0

1{(ξt,ρt)∈A}dt = 0 almost surely. This can be achieved in the
existing framework by ensuring that the cost function c takes the value +∞ on the set
A{. In the subsequent arguments, we will allow cost functions of this form, although
our main assumptions will impose some properties on A (typically that A is open).

The following result states that the value function satisfies a dynamic programming
principle. Let C(R+,Pp) be the set of continuous functions from R+ to Pp. We say
that τ is a stopping time on C(R+,Pp) if τ is a stopping time with respect to the
(raw) filtration generated by the coordinate process on C(R+,Pp). In this case, for
any admissible control (ξ, ρ), τ(ξ) is a stopping time with respect to the filtration of
the admissible control. The proof of the following result is given in the Appendix.

Theorem 3.6. Let τ be a bounded stopping time on C(R+,Pp). For any µ ∈ Pp, the
value function v defined in (3.2) satisfies

v(µ) = inf
(ξ,ρ)

E

[
e−βτ(ξ)v(ξτ(ξ)) +

∫ τ(ξ)

0

e−βtc(ξt, ρt)dt

]
where the infimum extends over all admissible controls (ξ, ρ) with ξ0 = µ.

To ensure that the control problem (3.2) is nontrivial, we need to confirm that for
any initial point µ ∈ Pp, there exists some admissible control. In the following result,
we prove this fact.

Theorem 3.7. For any measurable function ρ̄ : Rd → R and any µ ∈ P, there exists
a weak solution (ξ, ρ) of (2.3) such that ξ0 = µ and ρt = ρ̄ for all t.

Proof. Let Ω = C(R+,R) be the canonical path space of continuous functions. Let X
be the coordinate process, F the right-continuous filtration generated by X, F = F∞,
and Q the Wiener measure. Thus X is a standard Brownian motion under Q. For each
fixed x ∈ Rd, the process E(ρ(x)X) is geometric Brownian motion and in particular a
martingale. Define a strictly positive process Z by

Zt =

∫
Rd
E(ρ(x)X)tξ0(dx).

This is finite, because

E(ρ(x)X)t = exp

(
ρ(x)Xt −

1

2
ρ(x)2t

)
≤ exp

(
X2
t

2t

)
(3.4)
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for t > 0, independently of x. We now define the desired process ξ by

ξt(dx) =
1

Zt
E(ρ(x)X)tξ0(dx).

This is clearly probability measure valued, but it may not be an MVM. However, by
replacing Q with another probability measure P, we can turn ξ into an MVM with the
required properties. This is done in a number of steps.

Step 1. The conditional version of Tonelli’s theorem gives

EQ[Zt | Fs] =

∫
Rd

EQ[E(ρ(x)X)t | Fs]ξ0(dx) =

∫
Rd
E(ρ(x)X)sξ0(dx) = Zs

for all s ≤ t. Thus Z is a martingale with Z0 = 1. For each n ∈ N, define an equivalent
probability Pn ∼ Q|Fn on Fn by using Zn as Radon–Nikodym derivative. The Pn are
consistent in the sense that Pn+1|Fn = Pn for all n, and we have F =

∨
n≥1 Fn. A

standard argument now gives a probability measure P on F such that P|Fn = Pn for
all n; see (Karatzas and Shreve, 1991, Section 3.5A).

It is now clear that ξ is an MVM under P. Indeed, for ϕ ∈ Cb, the product Zξ(ϕ) =∫
Rd ϕ(x)E(ρ(x)X)ξ0(dx) is a martingale under Q. Therefore ξ(ϕ) is a martingale under
P, showing that ξ is an MVM.

Step 2. We claim that ∫ t

0

ξs(|ρ|)ds <∞ for all t, (3.5)

and that the process

Wt = Xt −
∫ t

0

ξs(ρ)ds (3.6)

is a Brownian motion under P. Suppose for now that (3.5) holds. Integration by parts
then gives

ZtWt = ZtXt −
∫ t

0

Zsξs(ρ)ds−
∫ t

0

(∫ s

0

ξu(ρ)du

)
dZs. (3.7)

Moreover, integration by parts and the stochastic Fubini theorem (Veraar, 2012, The-
orem 2.2) give

ZtXt =

∫
Rd
XtE(ρ(x)X)tξ0(dx)

=

∫
Rd

∫ t

0

(1 + ρ(x)Xs)E(ρ(x)X)sdXsξ0(dx)

+

∫
Rd

∫ t

0

ρ(x)E(ρ(x)X)sdsξ0(dx)

=

∫ t

0

∫
Rd

(1 + ρ(x)Xs)Zsξs(dx)dXs +

∫ t

0

Zsξs(ρ)ds,

(3.8)

and the first term on the right-hand side is a local martingale under Q. Note that
the use of the stochastic Fubini theorem will be justified in the next step. Combining
(3.7) and (3.8), we conclude that ZW is a local martingale under Q. Thus W is a
local martingale under P, hence Brownian motion under P, as claimed.
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Step 3. We must still prove (3.5) and justify our use of the stochastic Fubini theo-
rem. The latter amounts to checking that∫

Rd

∫ t

0

|ρ(x)|E(ρ(x)X)sdsξ0(dx) <∞ (3.9)

and ∫
Rd

(∫ t

0

(1 + ρ(x)Xs)
2E(ρ(x)X)2

sds

)1/2

ξ0(dx) <∞ (3.10)

for all t. Then (3.5) follows from (3.9) and the fact that infs∈[0,t] Zs > 0 for all t. We
now prove (3.9). The elementary inequality

|a| exp

(
ab− 1

2
a2s

)
≤
(
|b|
s

+
1

s1/2

)
exp

(
b2

2s

)
,

valid for all a, b ∈ R and s > 0, gives

|ρ(x)|E(ρ(x)X)s ≤
(
|Xs|
s

+
1

s1/2

)
exp

(
X2
s

2s

)
. (3.11)

The law of the iterated logarithm shows that for some δ ∈ (0, e−e) (depending on ω),
we have |Xs| ≤

√
3s log log(1/s) for all s < δ. We use this bound to get∫ δ

0

(
|Xs|
s

+
1

s1/2

)
exp

(
X2
s

2s

)
ds ≤

∫ δ

0

2

√
1

s
log log

1

s

(
log

1

s

)3/2

ds

=

∫ ∞
− log δ

2(log s)1/2s3/2e−s/2ds

<∞.

Since the right-hand side of (3.11) is continuous on [δ, t], the integral over this interval
is also finite. It follows that (3.9) holds.

We now verify (3.10). From (3.4) and (3.11), along with two applications of the
inequality (a+ b)2 ≤ 2a2 + 2b2, we get

(1 + ρ(x)Xs)
2E(ρ(x)X)2

s ≤
(

2 +
4X4

s

s2
+

4X2
s

s

)
exp

(
X2
s

s

)
.

Using the law of the iterated logarithm as above, we find that the integral of the
right-hand side over (0, t] is finite. Thus (3.10) holds.

Step 4. It remains to argue that (2.3) holds for all ϕ ∈ Cb. To this end, define
the measure-valued process ηt(dx) = E(ρ(x)X)tξ0(dx). Thus in particular, ξt(dx) =
ηt(dx)/ηt(1). Pick any ϕ ∈ Cb and 0 < s ≤ t. Using the stochastic Fubini theorem
(Veraar, 2012, Theorem 2.2) we get

ηt(ϕ)− ηs(ϕ) =

∫
Rd
ϕ(x) (E(ρ(x)X)t − E(ρ(x)X)s) ξ0(dx)

=

∫
Rd

∫ t

s

ϕ(x)ρ(x)E(ρ(x)X)udXuξ0(dx)

=

∫ t

s

∫
Rd
ϕ(x)ρ(x)E(ρ(x)X)uξ0(dx)dXu

=

∫ t

s

ηu(ϕρ)dXu.

11



The stochastic Fubini theorem is applicable because ϕ is bounded and since by (3.11)
it holds∫

Rd

∫ t

s

ρ(x)2E(ρ(x)X)2
uduξ0(dx) ≤ sup

u∈[s,t]

(
|Xu|
u

+
1

u1/2

)2

exp

(
X2
u

u

)
,

which is finite since s > 0. An application of Itô’s formula now gives

ξt(ϕ)− ξs(ϕ) =

∫ t

s

d

(
ηu(ϕ)

ηu(1)

)
=

∫ t

s

(ξu(ϕρ)− ξu(ϕ)ξu(ρ))(dXu − ξu(ρ)du)

=

∫ t

s

Covξu(ϕ, ρ)dWu, (3.12)

recalling the definition (3.6) of W . We now extend this to s = 0. Observe that∫ t

0

Covξu(ϕ, ρ)2du = lim
s↓0

∫ t

s

Covξu(ϕ, ρ)2du

= lim
s↓0

(
〈ξ(ϕ)〉t − 〈ξ(ϕ)〉s

)
= 〈ξ(ϕ)〉t <∞,

where we use that ξ(ϕ) is a continuous process that we have already shown to be a
martingale and we denote by 〈ξ(ϕ)〉 its quadratic variation process. The dominated
convergence theorem for stochastic integrals now allows us to send s to zero in (3.12)
and obtain (2.3).

4 Differential calculus
We now develop the differential calculus required to formulate Itô’s formula in Section 5
and the HJB equation in Section 6. The derivatives used here are essentially what is
called linear functional derivatives by Carmona and Delarue (2018a).

4.1 First order derivatives
Definition 4.1. Let p ≥ 0. A function f : Pp → R is said to belong to C1(Pp) if there
is a continuous function (x, µ) 7→ ∂f

∂µ (x, µ) from Rd×Pp to R, called (a version of) the
derivative of f , with the following properties.

• locally uniform p-growth: for every compact set K ⊆ Pp, there is a constant
cK such that for all x ∈ Rd and µ ∈ K,∣∣∣∣∂f∂µ (x, µ)

∣∣∣∣ ≤ cK(1 + |x|p), (4.1)

• fundamental theorem of calculus: for every µ, ν ∈ Pp,

f(ν)− f(µ) =

∫ 1

0

∫
Rd

∂f

∂µ
(x, tν + (1− t)µ)(ν − µ)(dx)dt. (4.2)
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Remark 4.2. This is called linear functional derivative by Carmona and Delarue
(2018a), Definition 5.43, although they require the stronger property that (4.1) hold
uniformly on bounded rather than compact subsets of Pp. Note that adding a function
of the form a(µ) to the derivative produces another version of the derivative. Modulo
additive terms of this form, the derivative is uniquely determined. Note also that if
f : Pp → R belongs to C1(Pp), it is automatically continuous.

Remark 4.3. If q < p, then C1(Pq) ⊂ C1(Pp) in the sense that if g ∈ C1(Pq) and f
is the restriction of g to Pp, then f ∈ C1(Pp) and ∂f

∂µ (x, µ) = ∂g
∂µ (x, µ). Indeed, the

restriction is well-defined because Pp ⊂ Pq. Moreover, the topology on Pp is stronger
than that on Pq, so (x, µ) 7→ ∂g

∂µ (x, µ) remains continuous on Rd×Pp. If K is compact
in Pp it is also compact in Pq, and a q-growth bound implies a p-growth bound. This
gives the locally uniform p-growth condition. The fundamental theorem of calculus
carries over as well, as it is now only required for µ, ν in the smaller set Pp.

Consider a function f of the form

f(µ) = f̃(µ(ϕ1), . . . , µ(ϕn)), (4.3)

where n ∈ N, f̃ ∈ C1(Rn), and ϕ1, . . . , ϕn ∈ Cb(Rd). We refer to such a function as a
C1 cylinder function. A version of its derivative is

∂f

∂µ
(x, µ) =

n∑
i=1

∂if̃(µ(ϕ1), . . . , µ(ϕn))ϕi(x), (4.4)

where ∂if̃ denotes partial derivative with respect to the i-th variable.
Any C1 cylinder function belongs to C1(Pp) for every p. The following result

gives a kind of approximate converse: every function belonging to C1(Pp) can be
approximated by C1 cylinder functions. This is crucial in our proof of the Itô formula.

Theorem 4.4. Let f ∈ C1(Pp) for some p ≥ 0. Then there exist C1 cylinder functions
fn such that one has the pointwise convergence

fn(µ)→ f(µ) and
∂fn
∂µ

(x, µ)→ ∂f

∂µ
(x, µ) (4.5)

for all µ ∈ Pp, x ∈ Rd, and for every compact set K ⊂ Pp there is constant cK such
that

|fn(µ)| ≤ cK and
∣∣∣∣∂fn∂µ (x, µ)

∣∣∣∣ ≤ cK(1 + |x|p) (4.6)

for all µ ∈ Pp, x ∈ Rd, n ∈ N.

The proof relies on the following construction, which leads to a useful way of
‘discretising’ probability measures in Pp. Fix n ∈ N, and cover the compact ball
Bn := {x ∈ Rd : |x| ≤ n} by finitely many open sets of diameter at most 1/n, denoted
by Uni , i = 1, . . . , Nn. Append Un0 = Rd \ Bn to get an open cover of Rd. Finally, fix
points xni in Uni with minimal norm. We have achieved that

diam(Uni ) ≤ 1

n
, i = 1, . . . , Nn (4.7)

and
|xni | ≤ |x| for all x ∈ Uni , i = 0, . . . , Nn. (4.8)
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Now let {ψni } be a partition of unity subordinate to {Uni }: that is, each ψni is a
continuous function, supported on Uni , and such that

∑Nn
i=0 ψ

n
i (x) = 1 for all x ∈ Rd.

For any function ϕ on Rd, define a new function Tnϕ by

Tnϕ(x) =

Nn∑
i=0

ϕ(xni )ψni (x).

Observe that Tnϕ is always continuous. Moreover, taking ϕ(x) = h(|x|) for any
nonnegative increasing function h, we have from (4.8) that

Tnϕ(x) =

Nn∑
i=0

h(|xni |)ψni (x) ≤
Nn∑
i=0

h(|x|)ψni (x) = ϕ(x). (4.9)

In particular, if ϕ satisfies a p-growth bound on Rd of the form |ϕ(x)| ≤ c(1 + |x|p), it
follows that Tnϕ satisfies the same bound.

The operator Tn admits an ‘adjoint’ T ∗n that acts on probability measures by the
formula

T ∗nµ =

Nn∑
i=0

µ(ψni )δxni .

Note that T ∗nµ is again a probability measure. The terminology and notation is moti-
vated by the identity

µ(Tnϕ) =

Nn∑
i=0

ϕ(xni )µ(ψni ) = (T ∗nµ)(ϕ). (4.10)

In particular, applying this with ϕ(x) = |x|p and using (4.9) shows that T ∗n maps Pp
to itself.

Lemma 4.5. The operators Tn satisfy the following basic properties.

(i) if K ⊂ Pp is a compact set, one can find another compact set K ′ ⊂ Pp, containing
K, such that T ∗n maps K ′ into itself for all n,

(ii) if h : R→ R is a convex function, then h ◦ (Tnϕ) ≤ Tn(h ◦ ϕ),

(iii) if |x| ≤ n, then |Tnϕ(x)| ≤ sup{|ϕ(y)| : y ∈ Rd, |x− y| < 1/n},

(iv) if ϕ is continuous at x ∈ Rd, then Tnϕ(x)→ ϕ(x),

(v) if ϕ is continuous everywhere, then Tnϕ→ ϕ locally uniformly,

(vi) if ϕn → ϕ locally uniformly and ϕ is continuous at x ∈ Rd, then Tnϕn(x) →
ϕ(x),

(vii) T ∗nµ→ µ in Pp for every µ ∈ Pp,

Proof. (i): If K is compact, then there exists a positive increasing function h with
limt→∞ h(t)/(1 + tp) = ∞ such that the constant c = supµ∈K µ(ϕ) is finite, where
ϕ(x) = h(|x|). The set K ′ = {µ ∈ Pp : µ(ϕ) ≤ c} is then compact and contains K.
Moreover, (4.10) and (4.9) yield (T ∗nµ)(ϕ) = µ(Tnϕ) ≤ µ(ϕ), which shows that Tn
maps K ′ into itself.
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(ii): By definition of partition of unity, (ψn0 (x), . . . , ψnNn(x)) forms a vector of
probability weights for any fixed x ∈ Rd. Thus by Jensen’s inequality,

h(Tnϕ(x)) ≤
Nn∑
i=0

h(ϕ(xni ))ψni (x) = Tn(h ◦ ϕ)(x).

(iii): If x ∈ Bn then x ∈ Uni for some i 6= 0. These sets all have diameter at most
1/n, so

|Tnϕ(x)| ≤
Nn∑
i=1

|ϕ(xni )|ψni (x) ≤ sup{|ϕ(y)| : y ∈ Rd, |x− y| < 1/n}.

(iv): Let ωx(δ) be an increasing modulus of continuity for ϕ at x. Then |ϕ(xni )−
ϕ(x)| ≤ ωx(|xni − x|) ≤ ωx(n−1) whenever x lies in Uni and i 6= 0. Because x /∈ Un0 for
all large n, it follows that

|Tnϕ(x)− ϕ(x)| ≤
Nn∑
i=1

|ϕ(xni )− ϕ(x)|ψni (x) ≤ ωx(n−1)→ 0.

(v): Fix a compact set J ⊂ Rd and let ω(δ) be a uniform modulus of continuity
for ϕ on J . Because J and Un0 are disjoint for all large n, the same computation as
above gives |Tnϕ(x)− ϕ(x)| ≤ ω(n−1) for all x ∈ J .

(vi): Write |Tnϕn(x) − ϕ(x)| ≤ |Tn(ϕn − ϕ)(x)| + |Tnϕ(x) − ϕ(x)|, and denote
the two terms on the right-hand side by An and Bn, respectively. We have from (iii)
that An ≤ sup{|ϕn(y) − ϕ(y)| : y ∈ Rd, |x − y| < 1} for all large n, so that An → 0.
Moreover, thanks to (iv), Bn → 0.

(vii): Applying (i) with K = {µ} shows that the sequence {T ∗nµ : n ∈ N} is rela-
tively compact in Pp. Its only limit point is µ, because (iv) and the bounded conver-
gence theorem yield (T ∗nµ)(ϕ) = µ(Tnϕ)→ µ(ϕ) for all ϕ ∈ Cb.

Lemma 4.6. Suppose f belongs to C1(Pp) and define fn(µ) = f(T ∗nµ). Then fn is a
C1 cylinder function, and a version of its derivative is given by

∂fn
∂µ

(x, µ) = Tn
∂f

∂µ
( · , T ∗nµ)(x). (4.11)

Proof. We first show that fn is a C1 cylinder function. To this end, write fn(µ) =
f̃(µ(ψn0 ), . . . , µ(ψnNn)), where we define

f̃(p) = f(p0δxn0 + . . .+ pNnδxnNn ) (4.12)

for all p in the compact convex set

∆ = {(µ(ψn0 ), . . . , µ(ψnNn)) : µ ∈ Pp} ⊂ RNn . (4.13)

We now argue that f̃ satisfies a fundamental theorem of calculus. Pick any p, q ∈ ∆,
meaning that pi = µ(ψni ) and qi = ν(ψni ) for some µ, ν ∈ Pp and all i = 0, . . . , Nn.
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Using that f satisfies the fundamental theorem of calculus (4.2) by assumption, we
get

f̃(q)− f̃(p) = f(T ∗nν)− f(T ∗nµ)

=

∫ 1

0

∫
Rd

∂f

∂µ
(x, tT ∗nν + (1− t)T ∗nµ)(T ∗nν − T ∗nµ)(dx)dt (4.14)

=

∫ 1

0

Nn∑
i=0

∂f

∂µ
(xni , tT

∗
nν + (1− t)T ∗nµ)(qi − pi)dt

=

∫ 1

0

Nn∑
i=0

∂if̃(tq + (1− t)p)(qi − pi)dt,

where we define ∂if̃(p) = ∂f
∂µ (xni , p0δxn0 + · · ·+ pNnδxnNn ). Since f belongs to C1(Pp),

the functions ∂if̃ are continuous on ∆. This allows us to use Whitney’s extension
theorem to deduce that f̃ can be extended to a C1 function on all of RNn . This
confirms that fn is a C1 cylinder function. To verify (4.11), just use (4.10) to rewrite
(4.14) in the form

f(T ∗nν)− f(T ∗nµ) =

∫ 1

0

∫
Rd
Tn
∂f

∂µ
( · , T ∗n(tν + (1− t)µ))(x)(ν − µ)(dx)dt.

This is the defining identity for the derivative of fn, and confirms (4.11).

Proof of Theorem 4.4. Take fn(µ) = f(T ∗nµ), which are C1 cylinder functions due to
Lemma 4.6. We need to verify (4.5) and (4.6).

First, continuity of f and Lemma 4.5(vii) yield fn(µ) = f(T ∗nµ)→ f(µ). Next, to
simplify notation, write g(x, µ) = ∂f

∂µ (x, µ) and gn(x, µ) = ∂fn
∂µ (x, µ). Then for each

fixed µ ∈ Pp, Lemma 4.5(vii) and joint continuity of g imply that g( · , T ∗nµ)→ g( · , µ)
locally uniformly. Therefore, by the expression (4.11) and Lemma 4.5(vi), gn(x, µ) =
Tng( · , T ∗nµ)(x)→ g(x, µ) for every x ∈ Rd. We have proved (4.5).

To prove (4.6), let K ⊂ Pp be an arbitrary compact set. Lemma 4.5(i) gives a
possibly larger compact set K ′ such that T ∗nµ ∈ K ′ for all n and all µ ∈ K. Thus
|fn(µ)| = |f(T ∗nµ)| ≤ maxK′ |f | <∞ for µ ∈ K. Moreover, since f belongs to C1(Pp),
it satisfies the locally uniform p-growth bound∣∣∣∣∂f∂µ (x, T ∗nµ)

∣∣∣∣ ≤ cK′(1 + |x|p)

for some constant cK′ and all µ ∈ K and x ∈ Rd. Combining this with (4.11),
Lemma 4.5(ii) (with h(x) = |x|), and the fact that Tn preserves growth bounds, we
obtain ∣∣∣∣∂fn∂µ (x, µ)

∣∣∣∣ =

∣∣∣∣Tn ∂f∂µ ( · , T ∗nµ)(x)

∣∣∣∣ ≤ Tn ∣∣∣∣∂f∂µ ( · , T ∗nµ)

∣∣∣∣ (x) ≤ cK′(1 + |x|p)

for all µ ∈ K, x ∈ Rd. Setting cK = cK′ ∨maxK′ |f | gives (4.6).

4.2 Second order derivatives
Definition 4.7. Let p ≥ 0. A function f ∈ C1(Pp) is said to belong to C2(Pp) if
there is a continuous function (x, y, µ) 7→ ∂2f

∂µ2 (x, y, µ) from Rd × Rd × Pp to R, called
(a version of) the second derivative of f , with the following properties.
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• locally uniform p-growth: for every compact set K ⊂ Pp, there is a constant
cK such that for all x ∈ Rd and µ ∈ K,∣∣∣∣∂2f

∂µ2
(x, y, µ)

∣∣∣∣ ≤ cK(1 + |x|p + |y|p), (4.15)

• fundamental theorem of calculus: for every µ, ν ∈ Pp,

f(ν)− f(µ)−
∫
Rd

∂f

∂µ
(x, µ)(ν − µ)(dx)

=

∫ 1

0

∫ t

0

∫
Rd×Rd

∂2f

∂µ2
(x, y, sν + (1− s)µ)(ν − µ)⊗2(dx, dy)dsdt.

(4.16)

Remark 4.8. Adding a function of the form a(x, µ) + b(y, µ) to the second derivative
produces another version of the second derivative. Modulo additive terms of this form,
the second derivative is uniquely determined.

Remark 4.9. If q < p, then C2(Pq) ⊂ C2(Pp) in the sense described in Remark 4.3.
The reasoning for verifying this is the same.

Consider a function f of the form (4.3), now with f̃ ∈ C2(Rn). We refer to such a
function as a C2 cylinder function. A version of its first derivative is given by (4.4),
and a version of its second derivative is

∂2f

∂µ2
(x, y, µ) =

n∑
i,j=1

∂2
ij f̃(µ(ϕ1), . . . , µ(ϕn))ϕi(x)ϕj(y). (4.17)

Any C2 cylinder function belongs to C2(Pp) for every p. The following result extends
Theorem 4.4 in the case of C2 functions.

Theorem 4.10. Let f ∈ C2(Pp) for some p ≥ 0. Then there exist C2 cylinder
functions fn such that one has the pointwise convergence (4.5) as well as

∂2fn
∂µ2

(x, y, µ)→ ∂2f

∂µ2
(x, y, µ) (4.18)

for all µ ∈ Pp, x, y ∈ Rd, and for every compact set K ⊂ Pp there is constant cK such
that (4.6) holds along with∣∣∣∣∂2fn

∂µ2
(x, y, µ)

∣∣∣∣ ≤ cK(1 + |x|p + |y|p) (4.19)

for all µ ∈ Pp, x, y ∈ Rd, n ∈ N.

The proof is similar to that of Theorem 4.4. We give an outline, but do not
spell out the details. One uses the same functions fn(µ) = f(T ∗nµ) as in the proof of
Theorem 4.4, so only (4.18) and (4.19) need to be argued. Exactly as in Lemma 4.6, one
uses that f belongs to C2(Pp) to show that fn is a C2 cylinder function. Specifically,
one shows that the function f̃ in (4.12) satisfies the identity

f̃(q)− f̃(p)−
n∑
i=1

∂if̃(p)(qi − pi)

=

∫ 1

0

∫ t

0

n∑
i,j=1

∂2
ij f̃(sq + (1− s)p)(qi − pi)dsdt

(4.20)
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on the compact convex set ∆ in (4.13), for some continuous functions ∂if̃ and ∂ij f̃ .
This is enough to apply the C2 case of Whitney’s extension theorem to extend f̃ to a
C2 function on all of RNn , as required for C2 cylinder functions. Moreover, one can
use (4.20) to show that a version of the second derivative of f is given by

∂2fn
∂µ2

(x, y, µ) = T⊗2
n

∂2f

∂µ2
( · , · , T ∗nµ)(x, y).

Here T⊗2
n acts on any function (x, y) 7→ ϕ(x, y) of two variables by

T⊗2
n ϕ(x, y) =

Nn∑
i,j=0

ϕ(xni , x
n
j )ψni (x)ψni (y).

Using the identity µ⊗2(T⊗2
n ϕ) = (T ∗nµ)⊗2(ϕ) and properties of T⊗2

n analogous to
those in Lemma 4.5, one verifies (4.18) and (4.19) by arguments similar to those used
to establish (4.5) and (4.6) in the proof of Theorem 4.4.

5 Itô’s formula
We now establish the following Itô formula, which is a crucial tool in this paper. Most
importantly, it is used to prove the viscosity sub- and super-solution properties in
Sections 7 and 8.

Theorem 5.1. Let (ξ, ρ) be a weak solution of (2.3), where ξ takes values in Pp for
some fixed p ≥ 0. Let q ∈ [0, p] and assume that, P⊗ dt-a.e.,∫ t

0

(∫
Rd

(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

ds <∞. (5.1)

Then, for every f in C2(Pq) we have the Itô formula

f(ξt) = f(ξ0) +

∫ t

0

∫
Rd

∂f

∂µ
(x, ξs)σs(dx)dWs

+
1

2

∫ t

0

∫
Rd×Rd

∂2f

∂µ2
(x, y, ξs)σs(dx)σs(dy)ds,

(5.2)

where we write σs(dx) = (ρs(x)− ξs(ρs))ξs(dx).

Remark 5.2. Note that (5.1) is the same as condition (3.1). A sufficient condition
for it to hold is given in Lemma 3.3.

The proof of Theorem 5.1 proceeds by first proving the result for C2 cylinder
functions and then for more general functions by an approximation argument. A
similar strategy was used by Guo et al. (2020) in the context of McKean–Vlasov
equations. The first step is straightforward and only requires real-valued Itô calculus.
The approximation argument is slightly more delicate, and builds on Theorem 4.10.
We begin with the first step.

Lemma 5.3. Let (ξ, ρ) be as in Theorem 5.1. Then Itô’s formula (5.2) holds for all
C2 cylinder functions.
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Proof. Let f(µ) = f̃(µ(ϕ1), . . . , µ(ϕn)) be a C2 cylinder function as in (4.3). Using
(2.3) and Itô’s formula for real-valued processes we get

df(ξt) =

n∑
i=1

∂if̃(ξt(ϕ1), . . . , ξt(ϕn))Covξt(ϕi, ρt)dWt

+
1

2

n∑
i,j=1

∂2
ij f̃(ξt(ϕ1), . . . , ξt(ϕn))Covξt(ϕi, ρt)Covξt(ϕj , ρt)dt

=

∫
Rd

n∑
i=1

∂if̃(ξt(ϕ1), . . . , ξt(ϕn))ϕi(x)σt(dx)dWt

+
1

2

∫
Rd×Rd

n∑
i,j=1

∂2
ij f̃(ξt(ϕ1), . . . , ξt(ϕn))ϕi(x)ϕj(y)σt(dx)σt(dy)dt,

where we write σt(dx) = (ρt(x) − ξt(ρt))ξt(dx). In view of the expressions (4.4) and
(4.17) for the derivatives of C2 cylinder functions, the above expression is precisely
(5.2).

We now proceed with the second step. Fix q ≥ 0. We consider triplets (f, g,H)
of measurable functions f : Pq → R, g : Rd × Pq → R, H : Rd × Rd × Pq → R that
satisfy the following growth bound: for every compact set K ⊂ Pq there is a constant
cK such that

|f(µ)| ≤ cK , |g(x, µ)| ≤ cK(1 + |x|q), |H(x, y, µ)| ≤ cK(1 + |x|q + |y|q)

for all µ ∈ K, x, y ∈ Rd. We define a notion of convergence for such triplets as follows.
We say that (fn, gn, Hn) → (f, g,H) in the sense of local b.p. (bounded pointwise)
convergence if the functions fn, gn, Hn converge pointwise to f, g,H, and the above
growth bounds hold uniformly in n; that is, for every compact set K ⊂ Pq there is a
constant cK such that

|fn(µ)| ≤ cK , |gn(x, µ)| ≤ cK(1 + |x|q), |Hn(x, y, µ)| ≤ cK(1 + |x|q + |y|q)

holds for all µ ∈ K, x, y ∈ Rd, and all n ∈ N. Given any collection A of such
triplets (f, g,H), the local b.p. closure of A is the smallest set that contains A and
is closed with respect to local b.p. convergence. Observe that the notions of local
b.p. convergence and closure depend on the parameter q, both through the domain
of definition of f, g,H, through the exponent in the growth bounds, and through the
meaning of compactness in Pq.

Lemma 5.4. Let p, q, and (ξ, ρ) be as in Theorem 5.1. Consider a collection A of
triplets as above (using the given q), and assume that

f(ξt) = f(ξ0) +

∫ t

0

∫
Rd
g(x, ξs)σs(dx)dWs

+
1

2

∫ t

0

∫
Rd×Rd

H(x, y, ξs)σs(dx)σs(dy)ds

(5.3)

holds for every (f, g,H) ∈ A, where we write σs(dx) = (ρs(x) − ξs(ρs))ξs(dx). Then
(5.3) also holds for all (f, g,H) in the local b.p. closure of A.
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Proof. It suffices to consider (fn, gn, Hn) ∈ A converging to some (f, g,H) in the local
b.p. sense, and show that (5.3) holds for any fixed t. By localisation we may assume
that the left-hand side of (5.1) is bounded by a constant, and in particular

E

[∫ t

0

(∫
Rd

(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

ds

]
<∞. (5.4)

By further localisation based on Lemma 2.2 and Remark 2.3(iv), we may additionally
assume that {ξs : s ∈ [0, t]} remains inside some compact set K ⊂ Pp. Since q ≤ p, K
is also a compact subset of Pq.

Clearly fn(ξt)→ f(ξt) and fn(ξ0)→ f(ξ0). Next, we claim that

E

[∫ t

0

(∫
Rd

(gn − g)(x, ξs)σs(dx)

)2

ds

]
→ 0. (5.5)

To see this, first observe that gn → g pointwise. Moreover, recall that σs(dx) =
(ρs(x)− ξs(ρs))ξs(dx) and note that

|(gn − g)(x, ξs)(ρs(x)− ξs(ρs))| ≤ 2cK(1 + |x|q)|ρs(x)− ξs(ρs)| (5.6)

since ξs remains inside K. Due to (5.4) we have, with probability one, that∫
Rd

(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx) <∞

for Lebesgue-a.e. s ∈ [0, t], so the dominated convergence theorem gives∫
Rd

(gn − g)(x, ξs)σs(dx)→ 0

for all such s. Moreover, using again (5.6) we have(∫
Rd

(gn − g)(x, ξs)σs(dx)

)2

≤ 4c2K

(∫
Rd

(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

,

which is P ⊗ ds-integrable thanks to (5.4). One more application of dominated con-
vergence now gives (5.5). With this in hand, we obtain

∫ t
0

∫
Rd gn(x, ξs)σs(dx)dWs →∫ t

0

∫
Rd g(x, ξs)σs(dx)dWs in L2(P), by use of the Itô isometry.
It only remains to argue that

E
[∣∣∣∣∫ t

0

∫
Rd×Rd

(Hn −H)(x, y, ξs)σs(dx)σs(dy)ds

∣∣∣∣]→ 0.

This follows from dominated convergence on noting that Hn → H pointwise, and
making use of the bounds

|Hn −H|(x, y, ξs) ≤ 2cK(1 + |x|q + |y|q)

and ∫
Rd×Rd

(1 + |x|q + |y|q)|ρs(x)− ξs(ρs)||ρs(y)− ξs(ρs)|ξs(dx)ξs(dy)

≤
(∫

Rd
(1 + |x|q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

,

which is P⊗ ds-integrable thanks to (5.4). All in all, we deduce that (5.3) carries over
from (fn, gn, Hn) to (f, g,H).
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Proof of Theorem 5.1. Define A = {(f, ∂f∂µ ,
∂2f
∂µ2 ) : f is a C2 cylinder function}. Ac-

cording to Lemmas 5.3 and 5.4, (5.3) holds for all elements of the local b.p. closure of
A. In particular, by Theorem 4.10, this closure contains all triplets (f, ∂f∂µ ,

∂2f
∂µ2 ) with

f in C2(Pq). This gives the result.

6 Viscosity solutions and HJB equation
Using the dynamic programming principle, we will prove that the value function (3.2)
is a viscosity solution of the following HJB equation.

βu(µ) + sup
ρ∈H
{−c(µ, ρ)− Lu(µ, ρ)} = 0, µ ∈ Pp \ Ps (6.1)

u(δx) = c(x)/β, δx ∈ Ps (6.2)

where
c(x) = inf

ρ∈H
c(δx, ρ)

and the operator L is given by

Lf(µ, ρ) =
1

2

∫
Rd×Rd

∂2f

∂µ2
(x, y, µ)σ(dx)σ(dy)

with σ(dx) = (ρ(x) − µ(ρ))µ(dx), for any f ∈ C2(Pq), µ ∈ Pp, and ρ ∈ L1(µ) such
that ∂2f

∂µ2 ( · , · , µ) belongs to L1(σ ⊗ σ). In all other cases we set Lf(µ, ρ) = +∞ by
convention.

Remark 6.1. The boundary condition (6.2) can be understood as follows. Since an
MVM starting at a Dirac measure δx stays there for all times, the value function (3.2)
must satisfy v(δx) = c(x)/β.

The following is the main result of this paper. The notion of viscosity solution
is defined precisely below. It will be convenient to introduce the notation Hc :=
H ∩ Cc(Rd). Recall also the standing assumptions in Section 3 placed on H, β, c.

Theorem 6.2. Assume that

(i) there is a constant R ∈ (0,∞) such that |ρ(x)| ≤ R(1 + |x|p) for all x ∈ Rd and
ρ ∈ Hc;

(ii) µ 7→ c(µ, ρ) is upper semi-continuous for every ρ ∈ Hc;

(iii) for every µ ∈ Pp and every f ∈ C2(Pq),

sup
ρ∈H
{−c(µ, ρ)− Lf(µ, ρ)} = sup

ρ∈Hc
{−c(µ, ρ)− Lf(µ, ρ)} .

Then the value function v : Pp → R given by (3.2) is a viscosity solution of (6.1)–(6.2).
If we additionally suppose that β > 0 and

(iv) v ∈ C(Pp);

(v) µ 7→ c(µ, ρ) is continuous on P({x1, ..., xN}) uniformly in ρ ∈ Hc for any N ∈ N
and x1, ..., xN ∈ Rd,
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then v is the unique continuous viscosity solution of (6.1) satisfying (6.2).

Proof. The first part of the conclusion follows by Theorem 7.1, Theorem 8.1 and
Remark 6.1, and the second part by Theorem 9.1. Note that condition (i) implies
condition (ii) of Theorem 9.1, after taking Hc in the theorem, in place of H.

The equation (6.1) above is a (degenerate) elliptic equation. To see this, write (6.1)
as

H(µ, u(µ),
∂2u

∂µ2
(µ)) = 0, µ ∈ Pp \ Ps

where the Hamiltonian H is defined for measures µ ∈ Pp, real numbers r ∈ R, and
functions ϕ : Rd × Rd → R by the formula

H(µ, r, ϕ) = βr + sup
ρ∈H

{
− c(µ, ρ)− 1

2

∫
Rd×Rd

ϕ(x, y)(ρ(x)− µ(ρ))

× (ρ(y)− µ(ρ))µ(dx)µ(dy)
}
,

whenever this is well-defined. The Hamiltonian is (degenerate) elliptic in the sense
that

ϕ � ψ =⇒ H(µ, r, ϕ) ≤ H(µ, r, ψ),

where the notation ϕ � ψ means that ϕ− ψ is a positive definite function, that is,∫
Rd×Rd

(ϕ− ψ)(x, y)ν(dx)ν(dy) ≥ 0

for any signed measure ν.
To avoid the need for any a priori regularity of the value function, we work with a

notion of viscosity solution that we now introduce. Motivated by the fact that MVMs
have decreasing support in the sense of (2.1), we define a partial order � on Pp by

µ � ν ⇐⇒ supp(µ) ⊆ supp(ν).

Thus Remark 2.3(ii) states that MVMs are decreasing with respect to this order. This
means that the effective state space for an MVM starting at a measure µ̄ ∈ Pp is the
set

Dµ̄ = {µ ∈ Pp : µ � µ̄}. (6.3)

This set is weakly closed, and hence also closed in Pp. Equipped with the subspace
topology inherited from Pp, Dµ̄ is a Polish space, and we may consider upper and
lower semicontinuous envelopes of functions defined on Dµ̄. In particular, for any
u : Pp → R, the restriction of u to Dµ̄ has semicontinuous envelopes given by

(u|Dµ̄)∗(µ) := lim sup
ν→µ, ν�µ̄

u(ν)

(u|Dµ̄)∗(µ) := lim inf
ν→µ, ν�µ̄

u(ν)

for all µ � µ̄.
With this in mind, we now state our definition of viscosity solution. To keep things

as transparent as possible, the definition is given without resorting to notation in-
volving Dµ̄ and semicontinuous envelopes. Still, it is possible and technically useful to
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recast the definition in this language, and we will do so momentarily; see the discussion
before Lemma 6.4 below. For any test function f ∈ C2(Pq), define H( · ; f) : Pp → R
by

H(µ; f) = βf(µ) + sup
ρ∈H
{−c(µ, ρ)− Lf(µ, ρ)} . (6.4)

We can now state the definition of viscosity solution.

Definition 6.3. Consider a function u : Pp → R.

• u is a viscosity subsolution of (6.1) if

lim inf
µ→µ̄, µ�µ̄

H(µ; f) ≤ 0

holds for all µ̄ ∈ Pp \ Ps and f ∈ C2(Pq) such that f(µ̄) = lim supµ→µ̄, µ�µ̄ u(µ)
and f(µ) ≥ u(µ) for all µ � µ̄.

• u is a viscosity supersolution of (6.1) if

lim sup
µ→µ̄, µ�µ̄

H(µ; f) ≥ 0

holds for all µ̄ ∈ Pp \ Ps and f ∈ C2(Pq) such that f(µ̄) = lim infµ→µ̄, µ�µ̄ u(µ)
and f(µ) ≤ u(µ) for all µ � µ̄.

• u is a viscosity solution of (6.1) if it is both a viscosity subsolution and a viscosity
supersolution.

An equivalent way of expressing the subsolution property of u is as follows: for any
µ̄ ∈ Pp and f ∈ C2(Pq), one has the implication

f(µ̄) = û(µ̄) and f |Dµ̄ ≥ û =⇒ Ȟ(µ̄; f) ≤ 0,

where û = (u|Dµ̄)∗ and Ȟ( · ; f) = (H( · ; f)|Dµ̄)∗. The analogous statement holds for
supersolutions. The following result shows that, as in finite-dimensional situations, it
is enough to consider test functions that are strictly larger than û away from µ̄.

Lemma 6.4. Assume that there is a constant R ∈ R+ such that

|ρ(x)| ≤ R(1 + |x|p) (6.5)

for all x ∈ Rd and ρ ∈ H. Consider a function u : Pp → R.

(i) u is a viscosity subsolution of (6.1) if and only if for any µ̄ ∈ Pp \ Ps and
f ∈ C2(Pq), one has the implication

f(µ̄) = û(µ̄) and f(µ) > û(µ) for all µ ∈ Dµ̄ \ {µ̄} =⇒ Ȟ(µ̄; f) ≤ 0,

where û = (u|Dµ̄)∗ and Ȟ( · ; f) = (H( · ; f)|Dµ̄)∗.

(ii) u is a viscosity supersolution of (6.1) if and only if for any µ̄ ∈ Pp \ Ps and
f ∈ C2(Pq), one has the implication

f(µ̄) = ǔ(µ̄) and f(µ) < ǔ(µ) for all µ ∈ Dµ̄ \ {µ̄} =⇒ Ĥ(µ̄; f) ≥ 0,

where ǔ = (u|Dµ̄)∗ and Ĥ( · ; f) = (H( · ; f)|Dµ̄)∗.
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Proof. Unpacking the definitions, one finds that the properties in the lemma are weaker
than the definitions of sub- and supersolution in Definition 6.3. Therefore it is enough
to prove the “if” statements. Consider (i), and assume u satisfies the given property.
Pick any µ̄ ∈ Pp \ Ps and f ∈ C2(Pq) such that f(µ̄) = lim supµ→µ̄, µ�µ̄ u(µ) and
f(µ) ≥ u(µ) for all µ � µ̄. We must show that lim infµ→µ̄, µ�µ̄H(µ; f) ≤ 0.

To this end, for any ε > 0 we consider the perturbed test function fε = f + εg,
where we define

g(µ) =
1

2

∫
Rd×Rd

e−(x−y)2/2(µ− µ̄)(dx)(µ− µ̄)(dy).

We start by establishing some properties of g. First, g belongs to C2(Pq) and its
second derivative is ∂2g

∂µ2 (x, y, µ) = e−(x−y)2/2. Next, using the identity

e−x
2/2 =

∫
R
eiθxγ(dθ) where γ(dθ) =

1√
2π
e−θ

2/2dθ,

we have for any finite signed measure ν that∫
Rd×Rd

e−(x−y)2/2ν(dx)ν(dy) =

∫
Rd×Rd

∫
R
eiθ(x−y)γ(dθ)ν(dx)ν(dy)

=

∫
R

∣∣∣ ∫
Rd
eiθxν(dx)

∣∣∣2γ(dθ).

This implies that g(µ) > 0 for every µ 6= µ̄, and we clearly have g(µ̄) = 0. Moreover,
the right-hand side is upper bounded by the squared total variation ‖ν‖2TV of ν. As a
consequence, writing σ(dx) = (ρ(x)− µ(ρ))µ(dx), we have

Lg(µ, ρ) =
1

2

∫
Rd×Rd

e−(x−y)2/2σ(dx)σ(dy) ≤ 1

2
‖σ‖2TV ≤ 2µ(|ρ|)2.

Since condition (6.5) is satisfied, it follows there is a constant R ∈ (0,∞) such that

sup
ρ∈H

Lg(µ, ρ) ≤ 2R2(1 + µ(| · |p))2.

We now return to proving that lim infµ→µ̄, µ�µ̄H(µ; f) ≤ 0. Using the perturbed
test function fε = f + εg we have

H(µ, fε) = βfε(µ) + sup
ρ∈H
{−c(µ, ρ)− Lfε(µ, ρ)}

≥ βf(µ) + sup
ρ∈H
{−c(µ, ρ)− Lf(µ, ρ)} − ε sup

ρ∈H
Lg(µ, ρ)

≥ H(µ; f)− 2εR2(1 + µ(| · |p))2.

Rearranging this gives

H(µ, f) ≤ H(µ, fε) + 2εR2(1 + µ(| · |p))2.

Now, fε satisfies fε(µ̄) = û(µ̄) and fε(µ) > û(µ) for all µ ≤ µ̄ different from µ̄.
Therefore, since u satisfies the given property in (i), we get

lim inf
µ→µ̄, µ�µ̄

H(µ, f) ≤ lim inf
µ→µ̄, µ�µ̄

H(µ, fε) + 2εR2(1 + µ̄(| · |p))2

≤ 2εR2(1 + µ̄(| · |p))2.
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Since ε > 0 was arbitrary, we obtain lim infµ→µ̄, µ�µ̄H(µ; f) ≤ 0 as required.
The corresponding argument in the supersolution case is completely analogous, but

uses the perturbed test function fε = f − εg instead.

We end this section by verifying that under our definition of viscosity solution,
every classical solutions is also a viscosity solution. The proof of this statement relies
on the following positive maximum principle.

Lemma 6.5. Fix µ̄ ∈ Pp, a measurable function ρ̄ : Rd → R, and f ∈ C2(Pq) such
that Lf(µ̄, ρ̄) <∞. Suppose that f(µ̄) = maxµ∈Dµ̄ f(µ). Then Lf(µ̄, ρ̄) ≤ 0.

Proof. Assume first that ρ̄ ∈ Cc(Rd) and let (ξ, ρ) be the weak solution of (2.3)
satisfying ξ0 = µ̄ and ρ ≡ ρ̄ given by Theorem 3.7. By Remark 2.3(ii) we know that
ξt ∈ Dµ̄ for each t almost surely. Since (5.1) is always satisfied for ρ ∈ Cc(Rd), an
application of Itô’s formula yields

f(ξt) = f(µ̄) +

∫ t

0

∫
Rd

∂f

∂µ
(x, ξs)σs(dx)dWs +

∫ t

0

Lf(ξs, ρ̄)ds,

where we write σs(dx) = (ρ̄(x) − ξs(ρ̄))ξs(dx). Following the proof of Lemma 2.3 in
Filipović and Larsson (2016), assume that Lf(µ̄, ρ̄) > 0, consider the random time

τ := inf{s ≥ 0: Lf(ξs, ρ̄) ≤ 0},

and note that the continuity of Lf( · , ρ̄) yields τ > 0. Letting (τn)n∈N be a localising
sequence for

∫ ·
0

∫
Rd

∂f
∂µ (x, ξs)σs(dx)dWs this implies

0 ≥ E[f(ξt∧τ∧τn)− f(µ̄)] = E
[ ∫ t∧τ∧τn

0

Lf(ξs, ρ̄)ds

]
> 0,

giving the necessary contradiction. A density argument allows us to extend this result
to compactly supported measurable ρ̄ first, and then to any measurable ρ̄ such that
Lf(µ̄, ρ̄) <∞.

We can now prove that classical solutions are viscosity solutions.

Proposition 6.6. Suppose that (6.1) is satisfied for some u ∈ C2(Pq). Assume that
for every µ ∈ Pp, Lu(ρ, µ) <∞ for each ρ ∈ H and for each f ∈ C2(Pq), Lf(ρ, µ) <∞
for some ρ ∈ H. Then u is a viscosity solution of (6.1).

Proof. We first prove that u is a viscosity subsolution. Fix µ̄ ∈ Pp\Ps and f ∈ C2(Pq)
such that f(µ̄) = lim supµ→µ̄, µ�µ̄ u(µ) = u(µ̄) and f(µ) ≥ u(µ) for all µ � µ̄. Fix
ρ ∈ H and note that u − f ∈ C2(Pq) and attains its maximum over Dµ̄ at µ̄. Since
Lu(ρ, µ̄) < ∞ for each ρ ∈ H, Lemma 6.5 yields Lu(µ̄, ρ) − Lf(µ̄, ρ) ≤ 0 for each
ρ ∈ H. Using that H(µ̄;u) = 0 we can thus compute

lim inf
µ→µ̄, µ�µ̄

H(µ; f) ≤ H(µ̄; f)−H(µ̄;u) ≤ sup
ρ∈H
{Lu(µ̄, ρ)− Lf(µ̄, ρ)} ≤ 0.

We now prove the supersolution property. Fix f as before, replacing f(µ) ≥ u(µ)
with f(µ) ≤ u(µ), for all µ � µ̄. Fix ρ̄ ∈ H such that Lf(ρ̄, µ̄) < ∞ and note that
Lemma 6.5 yields Lu(µ̄, ρ̄)− Lf(µ̄, ρ̄) ≥ 0. Using that

−(βu(µ̄)− c(µ̄, ρ̄)− Lu(µ̄, ρ̄)) ≥ 0,
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we can then compute

lim sup
µ→µ̄, µ�µ̄

H(µ; f) ≥ H(µ̄; f) ≥ Lu(µ̄, ρ̄)− Lf(µ̄, ρ̄) ≥ 0,

concluding the proof.

We conclude the section with a verification theorem for classical solutions.

Proposition 6.7. Consider a cost function c satisfying condition (3.3). Suppose that
(6.1)-(6.2) are satisfied for some u ∈ C2(Pq) and let v be the value function given in
(3.2). Suppose that for some ε > 0 it holds

E[sup
t≥0
|u(ξt)e

(ε−β)t|] <∞ (6.6)

for each admissible control (ξ, ρ). Then u ≤ v. Moreover, if for each µ ∈ Pp there
exists an admissible control (ξ∗, ρ∗) such that ξ∗0 = µ and

ρ∗s ∈ argmaxρ∈H {−c(ξ∗s , ρ)− Lf(ξ∗s , ρ)} , P⊗ dt− a.e.,

then (ξ∗, ρ∗) is an optimal control and u = v.

Proof. Fix an admissible control (ξ, ρ) of (2.3) with ξ0 = µ. Define

τn := inf

{
t ≥ 0:

∫ t

0

|Lu(ξs, ρs)|ds > n

}
and note that an application of the Itô formula yields

u(µ) =

∫ t

0

(βu(ξs)− Lu(ξs, ρs))e
−βsds+ e−βtu(ξt)

−
∫ t

0

∫
Rd

∂u

∂µ
(x, ξs)e

−βs(ρs(x)− ξs(ρs))ξs(dx)dWs.

Using (τn)n as localising sequence we obtain

u(µ) = E[e−β(t∧τn)u(ξt∧τn)] +

∫ t

0

E[(βu(ξs)− Lu(ξs, ρs))1{s≤τn}e
−βs]ds,

which sending t→∞ yields

u(µ) = E[e−βτnu(ξτn)] +

∫ ∞
0

E[(βu(ξs)− Lu(ξs, ρs))1{s≤τn}e
−βs]ds.

Using that u satisfies (6.1)-(6.2) we obtain

u(µ) ≤
∫ ∞

0

E[c(ξs, ρs)1{s≤τn}e
−βs]ds+ E[u(ξτn)e−βτn ]. (6.7)

Since c satisfies (3.3), u satisfies (6.6), and τn increases to infinity, the dominated
convergence theorem and the monotone convergence theorem yield

u(µ) ≤
∫ ∞

0

E[c(ξs, ρs)e
−βs]ds.

Since (ξ, ρ) was arbitrary, we can conclude that u(µ) ≤ v(µ). Using that the inequality
in (6.7) holds with equality for (ξ∗, ρ∗), the second claim follows as well.
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7 Viscosity subsolution property
Theorem 7.1. Assume that conditions (i)-(iii) of Theorem 6.2 are satisfied. Then
the value function is a viscosity subsolution of (6.1).

Proof. We argue by contradiction, and suppose the viscosity subsolution property fails.
Then, by conditions (i), (iii) and Lemma 6.4, there exist f ∈ C2(Pq) and µ̄ ∈ Pp \ Ps
such that

f(µ̄) = v̂(µ̄) and f(µ) > v̂(µ) for all µ ∈ Dµ̄ \ {µ̄}

and
Ȟ(µ̄; f) > 0,

where Dµ̄ is given by (6.3), v̂ = (v|Dµ̄)∗, and Ȟ( · ; f) = (H( · ; f)|Dµ̄)∗ with H( · ; f)
given by (6.4). In particular, we have H(µ̄; f) > 0. Therefore, due to condition (iii),
there exist ρ̄ ∈ H ∩ Cc(Rd) and κ > 0 such that

βf(µ̄)− c(µ̄, ρ̄)− Lf(µ̄, ρ̄) > κ. (7.1)

Define the set

U = {µ ∈ Pp \ Ps : βf(µ)− c(µ, ρ̄)− Lf(µ, ρ̄) > κ}.

Thanks to (7.1) and since f and Lf( · , ρ̄) are continuous and c( · , ρ̄) is upper semi-
continuous by condition (ii), the set U is an open neighbourhood of µ̄.

Choose measures µn ∈ Pp with µn → µ̄, µn � µ̄, and v(µn)→ v̂(µ̄). By discarding
finitely many of the µn, we may assume that µn ∈ U for all n. Since they form a
convergent sequence, the µn together with their limit µ̄ form a compact subset of
Pp. Remark 2.3(iii) (De la Vallée-Poussin) then gives the existence of a measurable
function ϕ : Rd → R+ such that

a = sup
n
µn(ϕ) ∈ (0,∞) (7.2)

and the set Kϕ
2a defined in (2.2) is a compact subset of Pp containing both µn and µ̄.

Since Dµ̄ is closed in Pp, the set Kϕ := Kϕ
2a ∩Dµ̄ is a compact subset of Dµ̄.

Fix n, and let (ξ, ρ) be an admissible control with ξ0 = µn and ρt ≡ ρ̄ (constant
in time); this exists by Theorem 3.7 and satisfies (3.1) because ρ̄ belongs to Cc(Rd).
Define the stopping time

τ = inf{t ≥ 0: ξt /∈ U or ξt(ϕ) ≥ 2a} ∧ 1.

Using the Itô formula, we get that

f(ξt∧τ )− f(µn)−
∫ t∧τ

0

Lf(ξs, ρ̄)ds

is a local martingale, and then so is

e−βt∧τf(ξt∧τ )− f(µn)−
∫ t∧τ

0

e−βs(Lf(ξs, ρ̄)− βf(ξs))ds. (7.3)
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In fact, (7.3) is a supermartingale because it is bounded from below. To see this, note
that ξs ∈ U for all s < τ , and that τ ≤ 1. Therefore,

e−β(t∧τ)f(ξt∧τ )−
∫ t∧τ

0

e−βs(Lf(ξs, ρ̄)− βf(ξs))ds

≥ e−β(t∧τ)f(ξt∧τ ) +

∫ t∧τ

0

e−βsc(ξs, ρ̄)ds+ κe−β(t ∧ τ).

(7.4)

Since µn � µ̄, and since MVMs are decreasing with respect to �, the process ξt∧τ takes
values in the compact set Kϕ. The right-hand side of (7.4) is therefore bounded below
by min(0, infµ∈Kϕ f(µ))−

∫∞
0
e−βsc(ξs, ρ̄)−ds, where the second term is integrable by

(3.3). This shows that (7.3) is bounded from below and hence a supermartingale, as
claimed.

The supermartingale property of (7.3) and the inequality (7.4) give

f(µn) ≥ E
[
e−βτf(ξτ )−

∫ τ

0

e−βs(Lf(ξs, ρ̄)− βf(ξs))ds

]
≥ E

[
e−βτf(ξτ ) +

∫ τ

0

e−βsc(ξs, ρ̄)ds+ κe−βτ

]
.

(7.5)

The definition of τ and the fact that ξτ � µ̄ imply that ξτ ∈ Kϕ \ U on the event
A = {τ < 1}∩{ξτ (ϕ) < 2a}. Since Kϕ \U is compact in Dµ̄ (and possibly empty, but
then so is A) and does not contain µ̄, and since f − v̂ is lower semicontinuous on Dµ̄,
nonnegative, and zero only at µ̄, it follows that the quantity

ε = inf
µ∈Kϕ\U

(f − v̂)(µ)

is strictly positive (infinite if Kϕ \ U is empty). We thus have

f(ξτ ) ≥ v̂(ξτ ) + ε ≥ v(ξτ ) + ε on A.

Moreover, f(µ) ≥ v(µ) for all µ � µ̄. Therefore, using again that ξτ � µ̄, we get

e−βτf(ξτ ) + κe−βτ ≥ e−βτv(ξτ ) + εe−β1A + κe−β1{τ=1}

≥ e−βτv(ξτ ) + (ε ∧ κ)e−β1{ξτ (ϕ)<2a}.
(7.6)

Combining (7.5) and (7.6) yields

f(µn) ≥ E
[
e−βτv(ξτ ) +

∫ τ

0

e−βsc(ξs, ρ̄)ds

]
+ (ε ∧ κ)e−βP(ξτ (ϕ) < 2a).

(7.7)

Using Markov’s inequality, the stopping theorem along with the fact that ξ(ϕ) is a
continuous martingale, and the choice of the constant a in (7.2), we get

P(ξτ (ϕ) ≥ 2a) ≤ 1

2a
E[ξτ (ϕ)] =

1

2a
µn(ϕ) ≤ 1

2
.

Combining this with (7.7) and the dynamic programming principle (Theorem 3.6), we
obtain

f(µn) ≥ v(µn) +
ε ∧ κ

2
e−β .

This holds for all n. Sending n to infinity yields v̂(µ̄) ≥ v̂(µ̄) + 1
2 (ε ∧ κ)e−β , which is

the required contradiction.
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8 Viscosity supersolution property
Theorem 8.1. Assume that conditions (i) and (iii) of Theorem 6.2 are satisfied. Then
the value function is a viscosity supersolution of (6.1).

Proof. We argue by contradiction, and suppose the viscosity supersolution property
fails. Then, by conditions (i), (iii) and Lemma 6.4, there exist f ∈ C2(Pq) and
µ̄ ∈ Pp \ Ps such that

f(µ̄) = v̌(µ̄) and f(µ) < v̌(µ) for all µ ∈ Dµ̄ \ {µ̄}

and, for some κ > 0,
Ĥ(µ̄; f) < −κ,

where Dµ̄ is given by (6.3), v̌ = (v|Dµ̄)∗, and Ĥ( · ; f) = (H( · ; f)|Dµ̄)∗ with H( · ; f)
given by (6.4). Define the set

U = {µ ∈ Dµ̄ \ Ps : Ĥ(µ; f) < −κ}.

This is an open neighborhood of µ̄ in Dµ̄ since Ĥ( · ; f) is upper semicontinuous on
Dµ̄. The inequality Ĥ( · ; f) ≥ H( · ; f) on Dµ̄ and the definition of H imply that

βf(µ)− c(µ, ρ)− Lf(µ, ρ) < −κ for all µ ∈ U and all ρ ∈ H. (8.1)

Choose measures µn ∈ U , n ∈ N, with µn → µ̄ and v(µn) → v̌(µ̄). As in the
proof of the subsolution property, Remark 2.3(iii) (De la Vallée-Poussin) then gives
the existence of a measurable function ϕ : Rd → R+ such that

a = sup
n
µn(ϕ) ∈ (0,∞)

and the set Kϕ := Kϕ
2a ∩Dµ̄ for Kϕ

2a as in (2.2) is a compact subset of Dµ̄ containing
both µn and µ̄.

Fix n ∈ N, and let (ξ, ρ) be an arbitrary admissible control with ξ0 = µn and such
that

∫ 1

0
(c(ξs, ρs))+ ds is integrable; in particular, (3.1) is satisfied. Such controls exist

since by assumption v(µn) <∞ for sufficiently large n. Define the stopping time

τ = inf{t ≥ 0: ξt /∈ U or ξt(ϕ) ≥ 2a} ∧ 1.

Using the Itô formula, we get that

e−βt∧τf(ξt∧τ )− f(µn)−
∫ t∧τ

0

e−βs(Lf(ξs, ρs)− βf(ξs))ds (8.2)

is a local martingale. In fact, (8.2) is a submartingale because it is bounded from
above by an integrable random variable. To see this, note that ξs ∈ U for all s < τ
and that τ ≤ 1. Therefore, due to (8.1),

e−βt∧τf(ξt∧τ )−
∫ t∧τ

0

e−βs(Lf(ξs, ρs)− βf(ξs))ds

≤ e−βt∧τf(ξt∧τ ) +

∫ t∧τ

0

e−βsc(ξs, ρs)ds− κe−β(t ∧ τ).

(8.3)
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Since ξt∧τ takes values in the compact set Kϕ, the right-hand side is bounded above
by

max(0, sup
µ∈Kϕ

f(µ)) +

∫ 1

0

(c(ξs, ρs))+ ds.

The first term is finite since Kϕ is compact and f is continuous, and the second term
is finite in expectation by our assumption on the chosen control. This shows that (8.2)
is a submartingale, as claimed.

The submartingale property of (8.2) and the inequality (8.3) give

f(µn) ≤ E
[
e−βτf(ξτ )−

∫ τ

0

e−βs(Lf(ξs, ρs)− βf(ξs))ds

]
≤ E

[
e−βτf(ξτ ) +

∫ τ

0

e−βsc(ξs, ρs)ds− κe−βτ
]
.

(8.4)

Moreover, the same reasoning that lead to (7.6), but now using lower semicontinuity
on Dµ̄ of v̌ − f , gives

e−βτf(ξτ )− κe−βτ ≤ e−βτv(ξτ )− (ε ∧ κ)e−β1{ξτ (ϕ)<2a} (8.5)

where
ε = inf

µ∈Kϕ\U
(v̌ − f)(µ) ∈ (0,∞].

We also have, as before, the bound P(ξτ (ϕ) < 2a) ≥ 1
2 . Combining this with (8.4) and

(8.5) yields

f(µn) ≤ E
[
e−βτv(ξτ ) +

∫ τ

0

e−βsc(ξs, ρs)ds

]
− ε ∧ κ

2
e−β .

Taking the infimum over all admissible controls (ξ, ρ) with ξ0 = µn, and using the
dynamic programming principle (Theorem 3.6), we obtain

f(µn) ≤ v(µn)− ε ∧ κ
2

e−β .

This holds for all n. Sending n to infinity yields v̌(µ̄) ≤ v̌(µ̄)− 1
2 (ε ∧ κ)e−β , which is

the required contradiction.

Remark 8.2. An inspection of the proof shows that the assumptions of Theorem 8.1
can be relaxed to the assumptions of Lemma 6.4.

9 Comparison principle
Theorem 9.1. Let β > 0, and suppose that the cost function c and the action space
H satisfy the following conditions:

(i) µ 7→ c(µ, ρ) is continuous on P({x1, ..., xN}) uniformly in ρ ∈ H for any N ∈ N
and x1, ..., xN ∈ Rd;

(ii) the set {ρ(x)− ρ(0) : ρ ∈ H} is a bounded subset of Rd for every x ∈ Rd.

Let u, v ∈ C(Pp) be a viscosity sub- and supersolution of (6.1), respectively. If u ≤ v
on Ps, then u ≤ v on Pp.
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The proof of Theorem 9.1 proceeds by reducing the problem to a comparison result
for a PDE on a finite-dimensional space. We now describe this reduction. For any
N ∈ N, denote the standard (N − 1)-simplex in RN by

∆N−1 = {(p1, . . . , pN ) ∈ [0, 1]N : p1 + · · ·+ pN = 1}.

We also define
∆N−1
◦ = ∆N−1 \ {e1, . . . , eN},

where ei is the i-th canonical unit vector in RN . GivenN points x1, . . . , xN ∈ Rd, there
is a natural bijection between measures µ ∈ P({x1, . . . , xN}) and points p ∈ ∆N−1,
given by

µ = p1δx1
+ · · ·+ pNδxN .

In particular, any given function u : Pp → R induces a function ũ : ∆N−1 → R defined
by

ũ(p1, . . . , pN ) = u(p1δx1
+ · · ·+ pNδxN ). (9.1)

If u is a viscosity solution of (6.1), it turns out that ũ is a viscosity solution of a certain
equation on the simplex. To specify this, for ρ ∈ H and p ∈ ∆N−1, let

c̃(p, ρ) = c(p1δx1
+ · · ·+ pNδxN , ρ).

Further, for ρ ∈ H, let ρ̃ = (ρ(x1), . . . , ρ(xN )), and consider the operator L̃ defined for
f̃ ∈ C2(RN ) by

L̃f̃(p, ρ) =
1

2

N∑
i,j=1

∂2f̃

∂pi∂pj
(p)(ρ̃i − p · ρ̃)(ρ̃j − p · ρ̃)pipj ,

where p ∈ ∆N−1 and p · ρ̃ is the inner product between the two vectors. One readily
verifies that L̃f̃1(p, ρ) = L̃f̃2(p, ρ) if f̃1(x) = f̃2(x) for each x ∈ ∆N−1.

Lemma 9.2. Let u ∈ C(Pp) be a viscosity subsolution (resp. supersolution) of (6.1).
Let N ∈ N and let x1, ..., xN be distinct points in Rd. Define ũ ∈ C(∆N−1) by (9.1).
Then ũ is a classical viscosity sub (resp. super) solution of the equation

βũ(p) + sup
ρ∈H

{
− c̃(p, ρ)− L̃ũ(p, ρ)

}
= 0, p ∈ ∆N−1

◦ . (9.2)

Proof. We consider only the subsolution case. Pick any point p̄ ∈ ∆N−1
◦ and a function

f̃ ∈ C2(RN ) such that f̃(p̄) = ũ(p̄) and f̃ ≥ ũ on ∆N−1
◦ ; we need to show that

lim inf
p→p̄, p∈∆N−1

βf̃(p) + sup
ρ∈H

{
− c̃(p, ρ)− L̃f̃(p, ρ)

}
≤ 0.

Define a C2 cylinder function by

f(µ) = f̃(µ(ϕ1), . . . , µ(ϕN )), µ ∈ P,

where the ϕi ∈ Cb are chosen so that ϕi(xi) = 1 and ϕi(xj) = 0 for j 6= i. Define also
the measure

µ̄ = p̄1δx1
+ · · ·+ p̄NδxN ∈ P \ Ps.

Any µ � µ̄ is then an element of P({x1, . . . , xN}) and therefore of the form µ =
p1δx1

+ · · ·+pNδxN with p = (p1, . . . , pN ) ∈ ∆N−1. Note that f(µ) = f̃(p). Moreover,
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in view of the expression (4.17) for the derivative of a C2 cylinder function, we have
that

∂2f

∂µ2
(xi, xj , µ) =

∂2f̃

∂pi∂pj
(p1, . . . , pN ), i, j = 1, . . . , N ;

hence, Lf(µ, ρ) = L̃f̃(p, ρ), ρ ∈ H. Since the Wasserstein distance is equivalent to the
Euclidian distance on ∆N−1, we thus obtain

lim inf
p→p̄, p∈∆N−1

βf̃(p) + sup
ρ∈H

{
− c̃(p, ρ)− L̃f̃(p, ρ)

}
≤ lim inf
µ→µ̄, µ�µ̄

H(µ; f). (9.3)

Finally, for any µ � µ̄, with p as above, we have that

f(µ) = f̃(p) ≥ ũ(p) = u(µ);

in particular, f(µ̄) = u(µ̄). Using that u = û, the fact that u is a viscosity subsolution
of (6.1), and the inequality (9.3), we easily conclude.

Lemma 9.3. Suppose that the assumptions of Theorem 9.1 hold. Let N ∈ N and let
x1, ..., xN be distinct points in Rd. Then the comparison principle holds for the PDE
(9.2). Specifically, if ũ, ṽ ∈ C(∆N−1) are viscosity sub- and supersolutions of (9.2),
respectively, and if ũ ≤ ṽ on {e1, . . . , eN}, then ũ ≤ ṽ on ∆N−1.

Proof. Equation (9.2) can equivalently be written as

H̃
(
p, ũ(p), D2ũ(p)

)
= 0, p ∈ ∆N−1

◦ , (9.4)

where we define, for any p ∈ ∆N−1, r ∈ R and symmetric N ×N -matrix P ,

H̃(p, r, P ) = βr + sup
ρ∈H

{
− c̃(p, ρ)− 1

2
z(p, ρ)TPz(p, ρ)

}
,

with z(p, ρ) ∈ RN given by z(p, ρ)i = pi(ρ̃i − p · ρ̃), i = 1, ..., N , where we write
ρ̃ = (ρ(x1), . . . , ρ(xN )) for all ρ ∈ H.

For any p, q ∈ ∆N−1 and ρ ∈ H we have

‖z(p, ρ)− z(q, ρ)‖2 ≤ 2
(
‖ρ̃‖2‖p− q‖2 + ‖(p · ρ̃)p− (q · ρ̃)q‖2

)
≤ 4

(
‖ρ̃‖2‖p− q‖2 + ‖(p · ρ̃)(p− q)‖2 + ‖((p− q) · ρ̃)q‖2

)
≤ 12 ‖ρ̃‖2‖p− q‖2.

Since z(p, ρ) is invariant with respect to parallel shifts of ρ, and thanks to assumption
(ii) of Theorem 9.1, this implies

‖z(p, ρ)− z(q, ρ)‖2 ≤ 12 ‖ρ̃− ρ(0)‖2‖p− q‖2 ≤ κ‖p− q‖2

for some constant κ > 0. In consequence, given α > 0, p, q ∈ ∆N−1, and symmetric
N ×N -matrices P,Q such that

z(p, ρ)TPz(p, ρ)− z(q, ρ)TQz(q, ρ) ≤ 3α‖z(p, ρ)− z(q, ρ)‖2, for all ρ ∈ H, (9.5)

it holds that for each r ∈ R that

H̃(q, r,Q)− H̃(p, r, P )

≤ sup
ρ∈H

{
c̃(p, ρ)− c̃(q, ρ) +

1

2

(
z(p, ρ)TPz(p, ρ)− z(q, ρ)TQz(q, ρ)

)}
≤ ω(‖p− q‖) + 3κα‖p− q‖2, (9.6)
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where ω is a modulus of continuity which only depends on c. Such a modulus ex-
ists thanks to condition (i) of Theorem 9.1. A similar set of arguments gives that
(p, r, P ) 7→ H̃(p, r, P ) is continuous; in particular, for any f̃ ∈ C2(RN ),

lim inf
p→p̄, p∈∆N−1

H̃
(
p, f̃(p), D2f̃(p)

)
= H̃

(
p̄, f̃(p̄), D2f̃(p̄)

)
.

Let now ũ, ṽ ∈ C(∆N−1) be viscosity sub- and supersolutions of (9.4), respectively,
with ũ ≤ ṽ on {e1, . . . , eN}. For any α > 0, define

Mα = sup
∆N−1×∆N−1

(
ũ(p)− ṽ(q)− α

2
‖p− q‖2

)
;

since ũ− ṽ is continuous and ∆N−1 is compact, Mα <∞ is attained for some (pα, qα).
Suppose now, contrary to the claim, that there exists some p̄ ∈ ∆N−1

◦ with ũ(p̄) > ṽ(p̄).
Then there exists δ > 0 such that, for all α > 0,

Mα ≥ ũ(p̄)− ṽ(p̄) > δ.

Moreover, by use of Lemma 3.1 in Crandall et al. (1992), we obtain that α‖pα−qα‖2 →
0 as α→∞, and that (pα, qα) ∈ ∆N−1

◦ ×∆N−1
◦ for α large. In turn, applying Theorem

3.2 in Crandall et al. (1992) and using that ũ and ṽ are viscosity sub- and supersolutions
of (9.4), we deduce the existence of two symmetric N ×N -matrices Pα, Qα such that
(recall that H̃ is continuous and cf. Remark 2.4 in Crandall et al. (1992))

H̃ (pα, ũ(pα), Pα) ≤ 0 ≤ H̃ (qα, ṽ(qα), Qα) , (9.7)

and such that (cf. the upper bound in equation (3.10) in Crandall et al. (1992))
property (9.5) holds with (p, q, P,Q) = (pα, qα, Pα, Qα). For each α > 0, using that
Mα > δ, (9.7) and, in turn, (9.6), we then obtain

βδ ≤ β (ũ(pα)− ṽ(qα)) = H̃ (pα, ũ(pα), Pα)− H̃ (pα, ṽ(qα), Pα)

≤ H̃ (qα, ṽ(qα), Qα)− H̃ (pα, ṽ(qα), Pα)

≤ ω(‖pα − qα‖) + 3κα‖pα − qα‖2,

and sending α→∞ yields the desired contradiction.

Proof of Theorem 9.1. Let u, v ∈ C(Pp) be a viscosity sub- and supersolution of (6.1),
respectively, such that u ≤ v on Ps. It suffices to argue that u(µ) ≤ v(µ) for any
finitely supported µ ∈ Pp. Indeed, since the finitely supported measures are dense
in Pp, for an arbitrary µ ∈ Pp, we can pick a sequence of finitely supported µn with
µn → µ, and then use the continuity of u and v to obtain

(u− v)(µ) = lim
n→∞

(u− v)(µn) ≤ 0.

Let therefore µ ∈ P({x1, . . . , xN}) for some distinct points x1, . . . , xN ∈ Rd, N ∈ N.
By Lemma 9.2, the functions ũ, ṽ ∈ C(∆N−1) defined by

ũ(p1, . . . , pN ) = u(p1δx1
+ · · ·+ pNδxN ),

ṽ(p1, . . . , pN ) = v(p1δx1
+ · · ·+ pNδxN ),

are viscosity sub- and supersolutions of (9.2), respectively. Moreover, they satisfy
ũ ≤ ṽ on {e1, . . . , eN}. Thus, by Lemma 9.3, ũ ≤ ṽ on ∆N−1, or equivalently, u ≤ v
on P({x1, . . . , xN}). Hence u(µ) ≤ v(µ) and we conclude.
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10 Applications
We here give some concrete examples of solvable control problems which can be ad-
dressed using the framework set out in this article. In particular, we explain how our
main results relate to the applications which were described in the introduction.

10.1 An abstract control problem
The goal of this subsection is to illustrate the proposed optimal control problem by
means of two toy examples that we solve explicitly. We rely on several results pro-
vided in this paper including the verification theorem (Proposition 6.7), the existence
theorem (Theorem 3.7), and the comparison principle (Theorem 9.1). The claims are
proved at the end of the subsection as applications of a comprehensive technical result,
Theorem 10.3.

Example 10.1. Fix q = 0, a constant C > 0, a set of actions H such that |ρ(x)| ≤
C(1 + |x|p/2) for each ρ ∈ H and x ∈ Rd, a discount rate β > 0, and two functions
ϕ ∈ Cb(Rd) and ρ̄ ∈ H. For some α ≥ 0 define

c(µ, ρ) := µ(ϕ)2 + αVarµ(ρ̄− ρ)− 1

β
Covµ(ϕ, ρ)2. (10.1)

Then the corresponding stochastic optimal problem can be solved explicitly. The
corresponding value function is the unique continuous viscosity solution of (6.1)-(6.2)
and is given by

1

β
µ(ϕ)2 = inf

{
E
[∫ ∞

0

e−βtc(ξt, ρt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
.

Moreover, there exists an optimal control (ξ∗, ρ∗) satisfying ρ∗s = ρ̄ for a.e. s ≥ 0. The
three terms of the cost function (10.1) can be interpreted as follows.

• µ(ϕ)2: If ϕ is nonnegative this term penalises controls ξ putting mass on regions
where ϕ is large. For a general ϕ this term would be an incentive in choosing
controls ξ which are balanced with respect to ϕ. For example, for d = 1, choosing
ϕ(x) = x penalises non-centered controls ξ.

• αVarµ(ρ̄− ρ): This term penalises controls ρ which deviate from a given target
ρ̄. Deviations in regions where the corresponding MVM ξ is more concentrated
are penalised more severely.

• − 1
βCovµ(ϕ, ρ)2: Since − 1

βCovµ(ϕ, ρ)2 = − 1
βCorrµ(ϕ, ρ)2Varµ(ϕ)Varµ(ρ), we

can see that this term penalises uncorrelation between ϕ and ρ and incentives
the variance of ρ with respect to ξ.

This example can be generalised by letting ρ̄ depend on µ and requiring (ξ, ρ̄ξ)
to be an admissible control for some continuous MVM ξ. The optimal control (ξ, ρ)
would satisfy ρs = ρ̄ξs . It is also possible to relax the boundedness condition on ϕ by
imposing a lower bound on the parameter p.

Example 10.2. Fix d = 1, p ≥ 4, q = 1, a state dependent set of actions

H(µ) := {ρ ∈ H : Varµ(ρ) ≤ Var(µ)}
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for some H such that id ∈ H, and a discount rate β > 0. Define

c(µ) := 2Var(µ)2 − βM(µ)2.

Then the corresponding stochastic optimal problem can be solved explicitly and the
corresponding value function is given by

−M(µ)2 = inf

{
E
[∫ ∞

0

e−βtc(ξt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
.

Moreover, the optimal control (ξ∗, ρ∗) satisfies ρ∗t = id ξ∗t ⊗ dt-almost surely.
We observe that the MVM we construct here was previously constructed by (El-

dan, 2016, Lemma 2.2). This example provides a natural optimality criterion for this
construction.

To show the results of the previous two examples we prove a comprehensive tech-
nical theorem.

Theorem 10.3. Fix q ≤ p, β ≥ 0 and a set of actions H. Fix then v ∈ C2(Pq),
c1 : Pp ×H→ R ∪ {+∞}, and for µ ∈ Pp and ρ ∈ H set

h(µ) := sup
ρ∈H
{−c1(µ, ρ)− Lv(µ, ρ)} and c(µ, ρ) := βv(µ) + c1(µ, ρ) + h(µ).

Suppose that c satisfies condition (3.3) and that for each admissible control (ξ, ρ) one
has the inequality E[supt≥0 |v(ξt)e

(ε−β)t|] <∞ for some ε > 0. Then

v(µ) ≤ inf

{
E
[∫ ∞

0

e−βtc(ξt, ρt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
. (10.2)

If for each µ ∈ Pp there exists an admissible control (ξ∗, ρ∗) with ξ∗0 = µ and

ρ∗s ∈ argmaxρ∈H {−c1(ξ∗s , ρ)− Lv(ξ∗s , ρ)} , P⊗ dt− a.e.,

then (ξ∗, ρ∗) is an optimal control and (10.2) holds with equality.

Proof. Observe that in this context equation (6.1) reads

βu(µ)− βv(µ)− h(µ) + sup
ρ∈H
{−c1(µ, ρ)− Lu(µ, ρ)} = 0,

which is satisfied by u = v. Moreover, for each x ∈ Rd and ρ ∈ H we have Lv(δx, ρ) = 0
and thus

1

β
inf
ρ∈H

c(δx, ρ) =
1

β
inf
ρ∈H

(
βv(δx) + c1(δx, ρ) + h(δx)

)
= v(δx),

which shows that (6.2) is satisfied by u = v as well. The claim then follows by
Proposition 6.7.

Proof of Example 10.1. Observe that setting v(µ) := 1
βµ(ϕ)2 we have that v is a

bounded map in C2(P) and Lv(µ, ρ) = 1
βCovµ(ϕ, ρ)2. We claim that the conditions

of Theorem 10.3 are satisfied for

c1(µ, ρ) = αVarµ(ρ̄− ρ)− 1

β
Covµ(ϕ, ρ)2 and h(µ) = 0.
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Observe that Jensen inequality yields

Covξt(ϕ, ρt)
2 ≤ 4 sup

Rd
|ϕ|2ξt(|ρt|2) ≤ 8C sup

Rd
|ϕ|2ξt(1 + | · |p).

Since the latter is a martingale, c satisfies condition (3.3). Finally, for each µ ∈ Pp
let (ξ∗, ρ∗) be the weak solution of (2.3) with ξ∗0 = µ and ρ∗t = ρ̄ for all t provided by
Theorem 3.7. By Lemma 3.3 (ξ∗, ρ∗) is an admissible control. Since

ρ̄ ∈ argmaxρ∈H{−αVarξ∗s (ρ̄− ρ)} = argmaxρ∈H {−c1(ξ∗s , ρ)− Lu(ξ∗s , ρ)} ,

P-a.s. for almost every s, the claim follows.
Since the conditions of Proposition 6.6 and Theorem 9.1 are satisfied, we can

conclude that v is the unique continuous viscosity solution of (6.1)-(6.2).

Proof of Example 10.2. Observe that including the state constraint in the cost function
as explained in Remark 3.5, the cost function of Example 10.2 is of the form described
in Theorem 10.3 for v(µ) = −M(µ)2, c1(µ, ρ) =∞1{Varµ(ρ)>Var(µ)} and

h(µ) = sup
ρ∈H

{
−∞1{Varµ(ρ)>Var(µ)} + 2Covµ(id, ρ)2

}
.

Indeed, by the Cauchy-Schwarz inequality, we observe that

|Covµ(id, ρ)|2 ≤ Var(µ)Varµ(ρ),

so that h(µ) = 2Var(µ)2, with equality if and only if ρ = id µ-a.s.
It thus suffices to verify the conditions of Theorem 10.3. To this end, we first

check that E[supt≥0 |v(ξt)|] <∞ for each admissible control. Since (Mt)t≥0 is a square
integrable martingale by the Doob inequality we have that

E[ sup
t∈[0,T ]

M(ξt)
2] ≤ CE[M(ξT )2] ≤ CE[ξT (( · )2)] = Cµ(( · )2).

Letting T go to infinity, the claim follows by the monotone convergence theorem. The
same calculation also shows that c satisfies condition (3.3). Finally, for each µ ∈ Pp
let (ξ∗, ρ∗) be the weak solution of (2.3) with ξ∗0 = µ and ρ∗t = id for all t provided by
Theorem 3.7. Since (ξ∗, ρ∗) satisfies condition (3.1) and

id ∈ argmaxρ∈H(ξ∗s ){−2Covξ∗s (id, ρ)2} = argmaxρ∈H {−c1(ξ∗s , ρ)− Lu(ξ∗s , ρ)} ,

P-a.s. for almost every s, the claim follows.

10.2 Optimal Skorokhod Embedding Problems
Skorokhod Embedding Problems and MVMs

Given µ ∈ P1(R) which is centered around zero, the classical Skorokhod embedding
problem (SEP) is to find a (minimal) stopping time τ such that Bτ ∼ µ where B is
a Brownian motion. Since the solution is non-unique one typically looks for solutions
with specific optimality properties; we refer to Obłój (2004a) for the history of the
problem and an overview of various solutions and to Beiglböck et al. (2017) for the
current state of the art.
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The idea of connecting the SEP with MVMs goes back to Eldan (2016). To specify
the connection, we define as follows: we say that an MVM ξ is terminating in finite
time, if

τs := inf{t > 0 : ξt ∈ Ps} <∞, a.s. (10.3)

Via the correspondences

ξt =̂ L(Bτ |Ft), t ≥ 0, and τ =̂ τs,

there is then a one-to-one correspondence between solutions τ to SEP(µ) and finitely
terminating MVMs ξ with ξ0 = µ and M(ξt) = Bt, t < τs, where we write M(µ) :=
µ(id).

Formulating SEPs as stochastic control problems

Here, given a cost function, our aim is to search for solutions to the SEP which are
optimal within our class of controlled MVMs. Specifically, we assume that µ ∈ P2(R),
take q = 2, and consider admissible controls which in addition satisfy the following
state-constraint for some κ ∈ (0, 1):

ρt ∈ H(ξt), t < τs, with H(µ) = {ρ ∈ H : Covµ(id, ρ) ∈ (1− κ, 1 + κ)} ; (10.4)

we note that such state-constraints can be handled within our framework by adding a
corresponding penalisation term to the cost function.

MVMs which satisfy this state-constraint notably terminate in finite time. Indeed,
Var(ξt) + M(ξt)

2 = ξt(id
2) is a martingale since ξ0 ∈ P2. Letting 〈M(ξ·)〉 denote the

quadratic variation process of M(ξ·) and using that d〈M(ξ·)〉t = Covξt(id, ρt)dt we
thus obtain

(1− κ)E [t ∧ τs] ≤ E [〈M(ξ·)〉t∧τs ] = Var(ξ0)− E [Var (ξt∧τs)] , (10.5)

from which it follows that τs <∞ a.s. Any admissible control thus characterises a so-
lution to the SEP for there is a unique time-change transforming any such MVM
into a terminating one whose average evolves as a Brownian motion.2 A similar
time-change argument, combined with Theorem 3.7, ensures that the above class of
state-constrained controls is non-empty. The corresponding optimisation problem is
therefore well posed.

Remark 10.4. Given a (minimal) stopping time τ , the MVM ξt = L(Wτ |Ft) satisfies
M(ξt) = Wt, t ≥ 0. Moreover, if the filtration is Brownian, it is natural to expect ξ to
satisfy (2.3) and thus also (10.4). However, if τ is not a stopping time in the Brownian
filtration itself, even ifWτ ∼ µ, it need not hold that L(Wτ |FW0 ) = µ. The fact that we
here consider Brownian MVMs which satisfy both ξ0 = µ and (10.4), effectively imply
that we are looking at ‘non-randomised’ stopping times. Additional randomisation can
be incorporated in our Brownian framework if one allows for controls for which M(ξ)

2Equivalently, one can consider the following scaled version of (2.3):

dξt(ϕ) =
Covξt (ϕ, ρt)
Covξt (id, ρt)

dWt, for all ϕ ∈ Cb, t < τs;

the embedding in Eldan (2016) was notably constructed by solving this equation for ρt ≡ id, recall
also Example 10.2.
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may be constant; the Brownian motion is also then obtained by a time-change but its
conditional distribution will feature a jump which is equivalent to the incorporation
of additional information. To formalise this one needs to work with a different state-
constraint (there are alternative conditions ensuring termination) or work with non-
constrained solutions to (2.3) and include a penalisation term or some alternative
convention adapted to the problem at hand.

An illustrating example: the Root and Rost problems

To illustrate how our control theory can be put to use, let f : R+ → R be a non-
decreasing convex function and consider the problem of finding a (minimal) stopping
time τ , with Bτ ∼ µ, minimising E[f(〈B〉τ )]. It is well known that the general solution
to this problem is given by the Root embedding; Root (1969) (see also Kiefer (1972);
Rost (1976)). The corresponding problem where one maximises this expression is
solved by the Röst embedding (see Obłój (2004a)).

Here, we are then looking for an admissible control, with ξ0 = µ, which minimises
E[f(〈M(ξ·)〉τs)] among all such controls (since the quadratic variation is invariant
with respect to time-changes, it does not matter that the average of our MVMs do
not necessarily evolve as a Brownian motion). It is clear that there is a trade-off
between how much quadratic variation one has accumulated so far and how much of
the terminal law that remains to be embedded; we define the value function associated
with the conditional problem as follows:

v(t, q, µ) := inf
(ξ,ρ): ξt=µ

E
[
f

(
q +

∫ τs

t

Covξs(id, ρs)
2ds

)]
,

where the infimum is taken over the state-constrained admissible controls. It is clear
that v is in fact independent of t.

Compared to our standard framework, there is now an additional stochastic factor
appearing in the value function, and the associated domain and boundary conditions
are of a modified form. We expect, nevertheless, results parallel to our previous ones
to hold; the associated HJB-equation takes the following form:

− inf
ρ∈H(µ)

{
Covµ(id, ρ)2 ∂v

∂q
(q, µ) + Lv(q, ·)(µ, ρ)

}
= 0, v(q, µ) = f(q), µ ∈ Ps. (10.6)

In the particular case f = id, we have that v(q, µ) = q + Var(µ); indeed, for any
admissible control with ξ0 = µ, E[〈M(ξ·)〉τs ] = Var(µ) (cf. (10.5)). Hence, ∂v/∂q = 1,
∂2v/∂µ2(x, y) = −2xy and Lv(µ, ρ) = −Covµ(id, ρ)2. As expected, the infimum in
(10.6) is therefore attained for each ρ ∈ H(µ).

10.3 Robust Pricing Problems
Robust price bounds and MVMs

In mathematical finance, a central problem is to derive so-called robust price bounds.
While classical approaches to option pricing rely on the specification of a market
model, robust approaches acknowledge that a true model is not known. Meanwhile,
there is consensus that fundamental no-arbitrage principles imply that the underlying
asset prices should be martingales in any sensible (risk neutral) model. In addition,
it is natural to restrict to models for which the prices of liquidly traded call options
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match actual market prices. Based on an old observation by Breeden and Litzenberger,
the latter implies that the underlying price processes should fit certain marginal con-
straints.

Put together, given an exotic (path-dependent) option specified by a payoff function
Ψ : C([0, T ],R) → R, and a fixed marginal constraint µ ∈ P (derived from market
prices), a natural bound on the price of Ψ is obtained by maximising

E [Ψ ((St)t≤T )] , (10.7)

over probability spaces (Ω,H, (Ht)t∈[0,T ],P) satisfying the usual conditions and sup-
porting a càdlàg martingale (St)t≤T with ST ∼ µ; we refer to Hobson (2011) for further
motivation and an overview of some well-known bounds.

The study of this problem dates back to Hobson (1998) where it was solved for
so-called lookback options depending on the past maximum of the underlying; the
approach relied on the observation that since such payoffs are invariant with respect
to time-changes, the pricing problem is equivalent to a certain optimal SEP. In Cox
and Källblad (2017) it was observed that the problem can be reformulated as an opti-
misation problem over MVMs starting off in µ and terminating at T . The equivalence
rests on the following correspondences:

ξt =̂ L(ST |Ht) and St =̂ M(ξt), t ≤ T.

The reformulation allows the problem to be addressed by use of dynamic programming
arguments and the method thus requires neither time-invariance nor convexity of the
payoff. Here, the aim is to formulate this MVM-version of the pricing problem as a
stochastic control problem within our framework.

Formulating robust pricing problems as stochastic control problems

To put the problem into our framework, we choose to view it as a stochastic control
problem on an (artificial) time-scale, say r ≥ 0, on which two factor processes evolve:
(Tr)r≥0 governing current real time and (ξr)r≥0 governing the law which currently
remains to be embedded. The associated price process (St)t∈[0,T ] is then defined via
the correspondence

STr =̂ M(ξr).

More precisely, we consider tuples consisting of a filtered probability space (Ω,F ,F,P),
a Brownian motion W , a continuous MVM ξ taking values in P, a real-valued process
T , and two progressively measurable processes ρ and λ taking values in H and [0, 1],
respectively, such that for r < τs := inf {r > 0 : Tr ≥ T or ξr ∈ Ps}, the following
relations hold:

dTr = λrdr, ρr ∈ H(ξr), (10.8)

and

dξr(ϕ) =
√

1− λr Covξr (ϕ, ρr) dWr, ϕ ∈ Cb. (10.9)

Given such a control, using the right-continuous inverse of T , we define St = M(ξ·)T−1
t

;
we employ the convention that if ξτs 6∈ Ps then S realises a jump at t = T , and if
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Tτs < T then S stays constant on (τs, T ]. Due to the state-constraint, τs <∞ a.s., and
each admissible control thus defines a feasible price process (St)t∈[0,T ]. The problem
of optimising over this class of price processes is therefore non-trivial and well posed.
Put into words, the controlled MVM governs how the conditional distribution of the
process’ terminal value – ST – evolves. The presence of λ allows however for a separate
control of a time-change; this is convenient for it enables disentangling the control of
the direction in which the MVM moves (controlled by ρ) from the speed at which
it evolves (controlled by λ) with the extreme cases λ = 0 and λ = 1, respectively,
corresponding to movement in the MVM only (the underlying realising a jump) or
real time only (the underlying staying constant).

Remark 10.5. Since càdlàg martingales can be written as time-changed Brownian
motions, the robust pricing problem (10.7) can be shown to be equivalent to an op-
timisation problem over time-changes and MVMs satisfying ξ0 = µ. In general, the
filtration needed for this is however bigger than the Brownian filtration itself. The
fact that we here consider solutions to (10.8) – (10.9) with ξ0 = µ, effectively means
that we consider a class of potential market models for which the Brownian filtration
does suffice for this procedure. In Cox and Källblad (2017), it was argued that for
Asian options this restriction will not affect the robust price bounds; we expect similar
arguments to apply also to other options. Additional randomisation can however be
incorporated within our Brownian framework by allowing for more general MVMs; see
Remark 10.4.

An illustrating example: the Asian option

To illustrate how our control theory can be used to address this problem, we here
specify the argument for the so-called Asian option. For a finitely supported µ, this
problem was solved by use of MVMs in Cox and Källblad (2017) and the equations
below are continuous analogues of the results derived therein.

Given a function F : R→ R, the payoff of an Asian option is given by

Ψ
(
(St)t∈[0,T ]

)
= F

(∫ T

0

Stdt

)
;

it is notably not invariant with respect to time-changes. In order to obtain a Markovian
structure, it is convenient to introduce a state-variable governing the accumulated
average. Hence, we introduce a factor-process A with dynamics

dAr = λrM(ξr)dr, r < τs.

The problem then amounts to maximise E[F (Aτs + M(ξτs)(T − τs))] over the class of
admissible controls defined by (10.8) – (10.9). The associated value function is given
by

v(r, t, a, µ) := sup
(ξ,ρ,T,λ):

(Tr,Ar,ξr)=(t,a,µ)

E
[
F
(
Aτs + M(ξτs)(T − τs)

)]
;

we note that it is independent of r and simply write v(t, a, µ). In analogy to our
previous results, we expect this value function to be linked to the equation

− sup
(ρ,λ)∈H(µ)×[0,1]

{
λ

(
∂v

∂t
+ M(µ)

∂v

∂a

)
(t, a, µ) + (1− λ)Lv(t, a, ·)(µ, ρ)

}
= 0,
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which, in turn, can be re-written as follows: 0 = −max

{(
∂v

∂t
+ M(µ)

∂v

∂a

)
(t, a, µ) , sup

ρ∈H(µ)

Lv(t, a, ·)(µ, ρ)

}
,

v(t, a, µ) = F (a+ M(µ)(T − t)) , µ ∈ Ps or t = T .

(10.10)

We see that for the case of Asian options, the supremum is always attained for
λ ∈ {0, 1} which implies that market models attaining the price bound will be constant
over certain intervals and then feature jumps. This is due to the particular structure
of the Asian option and need in general not be the case.

10.4 Zero-sum Games with Incomplete Information
Our results are also closely related to results on certain two-player zero-sum games
which feature asymmetry in the information available to the players. The study of such
problems dates back to Aumann and Maschler (1995). In Cardaliaguet and Rainer
(2009a, 2012), such games were studied in a continuous time setup and linked to opti-
misation problems featuring MVMs; we briefly recall their setup. At the beginning of
the game, the payoff function is randomly chosen – according to a given distribution
– among a family of parameter-dependent payoff functions; the outcome is communi-
cated only to the first player while the second only knows the probability distribution
it was drawn from. One player is then trying to minimise and the other to maximise
the expected payoff (which depends on the players’ actions). Since the actions are vis-
ible to both players, the uninformed player will try to deduce information about the
actual payoff function from the actions of the first player; she will then act optimally
based on this information. Since the first player is aware of this, it turns out that the
problem can be formulated as an optimisation problem over the second player’s beliefs
about the game. In effect, the first player is controlling the game by choosing how
much information to reveal in order to optimally steer the second player’s beliefs. The
problem is thus equivalent to an optimisation problem over the process representing
the belief of the second player processes – which are measure-valued martingales.

Specifically, it was shown in Theorem 3.2 in Cardaliaguet and Rainer (2012) that
the value of the game admits the following equivalent formulation (see also Theorem 3.1
in Cardaliaguet and Rainer (2009a) for the case of finitely many payoff functions and
thus atomic MVMs):

inf
MVMs (ηt)t≥0 : η0 = µ

E
[ ∫ T

0

h(t, ηt)dt
]
,

where

h(t, µ) := inf
u∈U

sup
v∈V

µ
(
l(·, t, u, v)

)
; (10.11)

here l is the given (parameter-dependent) payoff function and U and V are the state-
spaces of the respective players’ controls. These results require the Isaacs assumption,
that is, the infimum and supremum in (10.11) can be interchanged.

It is of course possible to formulate this problem within our stochastic control
framework, provided we restrict to beliefs processes represented via time-changes and
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solutions to our SDE; that is, MVMs η which admit the representation

ηt = ξT−1
t
, t ∈ [0, T ],

where T· and ξ· are given by (10.8) and (10.9) for some admissible control (λ, ρ).
Optimising (in a weak sense) over such controls, yields the following HJB-type equation
(closely related to (10.10); see also Section 4 of Cardaliaguet and Rainer (2012)) for
the associated value function:

min

{
∂v

∂t
(t, µ) + h(t, µ), inf

ρ∈H(µ)
Lv(t, ·)(µ, ρ)

}
= 0, v(T, µ) = 0, µ ∈ P.

We stress that our arguments do not require convexity of the value-function and in
contrast to the results in Cardaliaguet and Rainer (2012), they should thus apply also
to generalisations of the game leading to non-convex value functions. We briefly out-
line one possible such extension here (although we leave details to subsequent work).
Suppose in the framework of the game above, the informed player were further incen-
tivised not to reveal information to the uninformed player through an additional cost
relating to the strength of the control exerted in the uninformed player’s belief process.
Assuming that the analysis of Cardaliaguet and Rainer (2009a) and Cardaliaguet and
Rainer (2012) carries through in much the same manner, one might end up considering
the optimisation problem:

inf
MVMs (ηt)t≥0 : η0 = µ

E
[ ∫ T

0

(h(t, ηt) + c(ρt)) dt
]
,

where ρ is the control of the MVM η, and c represents the cost to the informed player
of controlling the MVM in the direction ρ. This would formally give rise to the HJB
equation

∂v

∂t
(t, µ) + h(t, µ) + inf

ρ∈H(µ)
{Lv(t, ·)(µ, ρ) + c(ρ)} = 0, v(T, µ) = 0, µ ∈ P.

The addition of the cost term in the second half of the HJB equation means that the
value function is no longer required to be convex.

A The Dynamic Programming Principle
In this appendix we establish the dynamic programming principle for our problem of
study (cf. Theorem 3.6); following e.g. El Karoui and Tan (2013a,b); Žitković (2014),
see also Nutz and van Handel (2013) or Neufeld and Nutz (2013), we acknowledge
that it is often easier to prove the DPP by working on a canonical path space and
concatenate measures rather than processes. Recall that we have fixed p ≥ 0, q ∈ [0, p],
and a Polish space H of measurable real functions on Rd that satisfies the standing
assumption that the map H×Pp 3 (ρ, ξ) 7→ ξ(|ρ|) ∈ [0,∞] is measurable. Writing M
for the set of Borel measures on R+ ×H, we define

M = {m ∈M : m(ds,du) = m̃(s,du)ds for some kernel m̃}

and

M0 =
{
m ∈M : m(ds,du) = δρ̃(s)(du)ds for some measurable function ρ̃

}
;
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we equip M with the topology of Remark 1.4 in El Karoui and Tan (2013b) rendering
it a Polish space. The canonical path space is now given by the Polish space

Ω := C(R+,R)× C(R+,Pp)×M.

The set of all Borel probability measures on Ω is denoted by P and under the weak
convergence topology it is a Polish space too. A generic element of Ω is denoted by
ω = (B, ξ,m) and we use the same notation for the canonical random element. We note
that since H is Polish, it is isomorphic to a Borel subset of [0, 1]; we let ψ : H→ [0, 1]
be the bijection between H and ψ(H) ⊆ [0, 1] and define χ : R→ H by

χ(x) =

{
ψ−1(x) x ∈ ψ(H)
ρ̄ x 6∈ ψ(H),

where ρ̄ is some fixed element of H. In turn, let ρ : Ω→ B(R+,H) be given by

ρt := χ

(
∂

∂t

∫ t

0

∫
H
ψ(u)m(ds,du)

)
, t ≥ 0,

where the derivative is taken as the lim inf of differences from the left. If m ∈ M0,
and thus of the form m(ds,du) = δρ̃(s)(du)ds for some ρ̃ ∈ B(R+,H), then ρ· = ρ̃(·)
Lebesgue-a.e. We denote by F0 = (F0

t )t≥0 the canonical filtration given by

F0
t := σ

{
Br, ξr,

∫ r

0

∫
H
φ(u)m(ds,du) : φ ∈ Cb(H,R+), r ≤ t

}
.

For µ ∈ Pp, we then define Pµ to be the set of measures Q ∈ P which satisfy the
following properties. Let C∞0 (R×R) denote the set of smooth functions in C(R×R)
vanishing at infinity.

(i) Q-a.s., ξ0 = µ and m ∈M0, and thus m(ds,du) = δρ(s)(du)ds;

(ii) Q⊗ dt-a.s. ξt(|ρt|) <∞ and∫ t

0

(∫
Rd

(1 + |x|q) |ρs(x)− ξs(ρs)| ξs(dx)

)2

ds <∞; (A.1)

(iii) for every f ∈ C∞0 (R×R) and ϕ ∈ Cb(Rd), the following process is a (F0,Q)-local
martingale, where σt = (1, σt(ϕ))T with σt(ϕ) = Covξt(ϕ, ρt):

f (Bt, ξt(ϕ))−
∫ t

0

1

2

2∑
i,j=1

∂2f

∂xi∂xj
(Bs, ξs(ϕ))

(
σsσ

T
s

)
ij

ds, t ≥ 0. (A.2)

Our control problem then admits the following equivalent representation:

Lemma A.1. For the value function v defined in (3.2), it holds that

v(µ) = inf
Q∈Pµ

EQ
[∫ ∞

0

e−βtc(ξt, ρt)dt

]
, µ ∈ Pp. (A.3)
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Proof. First, by use of Theorem 5.1, we immediately obtain that any admissible control
(Ω,F , (Ft)t≥0,P,W, ξ, ρ), with ξ0 = µ, P-a.s., induces a measure Q ∈ Pµ.

Conversely, given Q ∈ Pµ, define Ω0 = C(R+,R)×C(R+,Pp)×M0, F = B(Ω)∩Ω0

and let F = (Ft)t≥0 be the Q-augmentation of F0. On the filtered probability space
(Ω0,F ,F,Q), ρ then defines a progressively measurable H-valued stochastic process.
To show that the tuple (Ω0,F ,F,Q, B, ξ, ρ) is an admissible control, it only remains
to show that B is a Brownian motion and that (2.3) holds. To this end, note that the
(local) martingale property is preserved when considering the augmented filtration.
Hence, with σt(ϕ) = Covξt(ϕ, ρt), the process given in (A.2) is a (F,Q)-local martin-
gale. It follows that d〈B〉t = dt, d〈B, ξ(ϕ)〉t = σt(ϕ)dt and d〈ξ(ϕ)〉t = σt(ϕ)2dt, where
〈B〉 and 〈ξ(ϕ)〉 denote the quadratic variation process of B and ξ(ϕ), respectively, and
〈B, ξ(ϕ)〉 denotes the corresponding quadratic covariation process. In particular, B is
a Brownian motion. Further, defining

Xϕ
t := µ(ϕ) +

∫ t

0

σs(ϕ)dBs, ϕ ∈ Cb(Rd),

it holds that (Xϕ
t − ξt(ϕ))

2 is a local martingale. Hence, Xϕ and ξ(ϕ) are indistin-
guishable which completes the proof.

To obtain the DPP we first establish some properties of the sets Pµ, µ ∈ Pp.

Lemma A.2. The graph {(µ,Q) : µ ∈ Pp,Q ∈ Pµ} is a Borel set in Pp ×P.

Proof. We may consider each property separately and show that the subset of pairs
(µ,Q) in Pp ×P for which the property holds is a Borel set.

(i): We have that M0 is a Borel subset of M; see e.g. the Appendix of El Karoui
et al. (1988). In analogy to the above, denote by ψ̃ and χ̃ the bijection and its inverse
between Pp and the set ψ̃(Pp) ⊂ [0, 1]. Note that

{(µ,Q) : Q(ξ0 = µ) = 1}
=
{

(µ,Q) : VarQ
[
ψ̃(ξ0)

]
= 0
}
∩
{

(µ,Q) : EQ[ψ̃(ξ0)
]

= ψ̃(µ)
}
.

Since Q 7→ χ̃(EQ[ψ̃(ξ0)]) is a measurable function, its graph is a Borel set. In conse-
quence, so is {(µ,Q) ∈ Pp ×P : m ∈M0 and ξ0 = µ, Q-a.s.}.

(ii): The mapping (ω, t) 7→ ξt(ω)(|ρt(ω)|) defines an extended-valued measurable
function on Ω× [0,∞); hence

A =
⋂
r∈Q

{
Q ∈ P : Q

(∫ r

0

1{ξs(|ρs|)=∞}ds = 0

)
= 1

}
is a Borel set. In consequence, so is

⋂
r∈Q

{
Q ∈ A : Q

(∫ r

0

(∫
Rd

(1 + |x|q) |ρs(x)− ξs(ρs)| ξs(dx)

)2

ds <∞

)
= 1

}
.

Hence, the subset of measures in P for which (ii) holds is a Borel set.
(iii): Given that property (ii) holds, for (ϕn) converging in the bounded pointwise

sense to ϕ, it holds that E[
∫ t

0
Covξs(ϕn−ϕ, ρs)2ds]→ 0; since Cb(Rd) has a countable

dense subset in the sense of bounded pointwise convergence, it suffices to check (iii)
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for ϕ in a countable subset of Cb(Rd). There is also a countable subset of C∞0 (R×R)
(dense with respect to pointwise convergence of the first and second order derivatives)
such that if (iii) holds for any f within that set, then it holds for any f ∈ C∞0 (R×R).

Denote now the continuous process in (A.2) by (ω, t) 7→ Mϕ,f
t (ω), and note that

H±n = inf{s ≥ 0 : |Mϕ,f
s | ≥ n} is an F0-stopping time by continuity of the paths of

Mϕ,f . For ϕ ∈ Cb(Rd), f ∈ C∞0 (R× R), r ≤ s, A ∈ F0
r and n ∈ N, it then holds that{

Q ∈ P : EQ
[(
Mϕ,f
s∧H±n −M

ϕ,f
r∧H±n

)
1A

]
= 0
}

is a Borel set. In consequence, so is the intersection of such sets when ϕ and f range
through the above-mentioned countable subsets, r, s and n through the rationals, and
A through a countable algebra generating F0

r ; this is sufficient to ensure property
(iii).

We call a collection (Qµ)µ∈P such that µ 7→ Qµ is universally measurable and
Qµ ∈ Pµ, µ ∈ Pp, an admissible kernel. Given Q ∈ P and an admissible kernel
(Qµ)µ∈P , writing

(ω ⊗t ω′)(s) =

{
ω(s) s < t
ω′(s− t) s ≥ t , ω, ω′ ∈ Ω,

we define for any random time τ : Ω→ R+,

(Q⊗τ Q·)(A) =

∫
Ω×Ω

1A
(
ω ⊗τ(ω) ω

′)Qξτ (ω)(dω
′)Q(dω), A ∈ B(Ω).

Our family (Pµ)µ∈Pp is then stable under disintegration and concatenation in the
following sense; the proof is similar to that of Lemma 3.3 in El Karoui and Tan
(2013b) or Proposition 2.5 in Žitković (2014) and we omit the details:

Lemma A.3. Let τ be a finite F0-stopping time, µ̄ ∈ Pp and Q ∈ Pµ̄. Then,

(i) there exists an admissible kernel (Qµ)µ∈Pp such that Q = Q⊗τ Q·;

(ii) conversely, given an admissible kernel (Qµ)µ∈Pp , it holds that Q⊗τ Q· ∈ Pµ̄.

By use of Lemmas A.2 and A.3 the following result can now be easily derived; we
refer e.g. to the proof of Theorem 2.1 in El Karoui and Tan (2013b) or Theorem 2.4
in Žitković (2014) for an outline of the argument.

Theorem A.4. For any F0 stopping time τ , it holds that

v(µ) = inf
Q∈Pµ

EQ
[∫ τ

0

e−βtc(ξt, ρt)dt+ e−βτv(ξτ )

]
, µ ∈ Pp.

We conclude by noticing that Theorem 3.6 is an immediate consequence of the
above result and (the proof of) Lemma A.1.
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