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EMBEDDING LAWS IN DIFFUSIONS BY FUNCTIONS OF TIME

BY A. M. G. COX AND G. PESKIR

University of Bath and The University of Manchester

We present a constructive probabilistic proof of the fact that if B =
(Bt )t≥0 is standard Brownian motion started at 0, and µ is a given probability
measure on R such that µ({0}) = 0, then there exists a unique left-continuous
increasing function b : (0,∞) → R ∪ {+∞} and a unique left-continuous
decreasing function c : (0,∞) → R ∪ {−∞} such that B stopped at τb,c =
inf{t > 0|Bt ≥ b(t) or Bt ≤ c(t)} has the law µ. The method of proof relies
upon weak convergence arguments arising from Helly’s selection theorem
and makes use of the Lévy metric which appears to be novel in the context of
embedding theorems. We show that τb,c is minimal in the sense of Monroe
so that the stopped process Bτb,c = (Bt∧τb,c )t≥0 satisfies natural uniform in-
tegrability conditions expressed in terms of µ. We also show that τb,c has the
smallest truncated expectation among all stopping times that embed µ into B.
The main results extend from standard Brownian motion to all recurrent dif-
fusion processes on the real line.

1. Introduction. A classic problem in modern probability theory is to find
a stopping time τ of a standard Brownian motion B started at zero such that B

stopped at τ has a given law µ. The existence of a randomised stopping time τ

for centred laws µ was first derived by Skorokhod [22], and the problem is often
referred to as the Skorokhod embedding problem. A few years later Dubins [8]
proved the existence of a non-randomised stopping time τ of B that also holds for
more general laws µ. Many other solutions have been found in subsequent years
and we refer to the survey article by Obłój [15] for a comprehensive discussion
(see also [9] for financial applications and [11] for connections to the Cantelli
conjecture).

Solutions relevant to the present paper are those found by Root [19] in the set-
ting of B and Rost [20] in the setting of more general Markov processes and initial
laws. Root [19] showed that τ can be realised as the first entry time to a barrier,
and Rost [20] showed that τ can be characterised in terms of a filling scheme dating
back to Chacon and Ornstein [4] within ergodic theory (see also [7] for a closely
related construction). Subsequently Chacon [3] showed that a stopping time aris-
ing from the filling scheme coincides with the first entry time to a reversed barrier
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under some conditions. The proof of Root [19] relies upon a continuous mapping
theorem and compactness of barriers in a uniform distance topology. The methods
of Rost [20] and Chacon [3] rely on potential theory of general Markov processes.
Uniqueness of barriers was studied by Loynes [12]. He described barriers by func-
tions of space. Reversed barriers can also be described by functions of time. Based
on this fact McConnell [13] developed an analytic free-boundary approach relying
upon potential theoretic considerations of Rost [20] and Chacon [3]. He proved the
existence of functions of time (representing a reversed barrier) when µ has a con-
tinuous distribution function which is flat around zero. He also showed that these
functions are unique under a Tychonov boundedness condition.

In this paper we develop an entirely different approach to the embedding prob-
lem and prove the existence and uniqueness of functions of time for general target
laws µ with no extra conditions imposed. The derivation of τ is constructive and
the construction itself is purely probabilistic and intuitive. The method of proof re-
lies upon weak convergence arguments for functions of time arising from Helly’s
selection theorem and makes use of the Lévy metric which appears to be novel in
the context of embedding theorems. This enables us to avoid time-reversal argu-
ments (present in previous approaches) and relate the existence arguments directly
to the regularity of the sample path with respect to functions of time. The fact
that the construction applies to all target laws µ with no integrability/regularity as-
sumptions makes the resulting embedding rather canonical and remarkable in the
class of known embeddings. Moreover, we show that the resulting stopping time τ
is minimal in the sense of Monroe [14] so that the stopped process Bτ = (Bt∧τ )t≥0
satisfies natural uniform integrability conditions which fail to hold for trivial em-
beddings of any law (see, e.g., [18], Exercise 5.7, page 276). We also show that the
resulting stopping time τ has the smallest truncated expectation among all stop-
ping times that embed µ into B . The same result was derived by Chacon [3] for
stopping times arising from the filling scheme when their means are finite. A con-
verse result for stopping times arising from barriers was first derived by Rost [21].
The main results extend from standard Brownian motion to all recurrent diffusion
processes on the real line. Extending these results to more general Markov pro-
cesses satisfying specified conditions leads to a research agenda which we leave
open for future developments.

When the process is standard Brownian motion, then it is possible to check that
the sufficient conditions derived by Chacon ([3], page 47), are satisfied so that
the filling scheme stopping time used by Rost [20] coincides with the first entry
time to a reversed barrier. If µ has a continuous distribution function which is
flat around zero, then the uniqueness result of McConnell ([13], pages 684–690),
implies that this reversed barrier is uniquely determined under a Tychonov bound-
edness condition. When any of these conditions fails, however, then it becomes
unclear whether a reversed barrier is uniquely determined by the filling scheme
because in principle there could be many reversed barriers yielding the same law.
One consequence of the present paper is that the latter ambiguity gets removed
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since we show that the filling scheme does indeed determine a reversed barrier
uniquely for general target laws µ with no extra conditions imposed. Despite this
contribution to the theory of filling schemes (see [3] and the references therein), it
needs to be noted that the novel methodology of the present paper avoids the filling
scheme completely and focuses on constructing the reversed barrier by functions
of time directly.

2. Existence. In this section we state and prove the main existence result (see
also Corollary 8 below).

THEOREM 1 (Existence). Let B = (Bt )t≥0 be a standard Brownian motion
defined on a probability space (",F,P) with B0 = 0, and let µ be a probability
measure on (R,B(R)) such that µ({0}) = 0.

(I) If supp(µ) ⊆ R+, then there exists a left-continuous increasing function
b : (0,∞) → R such that Bτb ∼ µ where τb = inf{t > 0|Bt ≥ b(t)}.

(II) If supp(µ) ⊆ R−, then there exists a left-continuous decreasing function
c : (0,∞) → R such that Bτc ∼ µ where τc = inf{t > 0|Bt ≤ c(t)}.

(III) If supp(µ) ∩ R+ ≠ ∅ and supp(µ) ∩ R− ≠ ∅, then there exist a left-
continuous increasing function b : (0,∞) → R ∪ {+∞} and a left-continuous de-
creasing function c : (0,∞) → R∪ {−∞} such that Bτb,c ∼ µ where τb,c = inf{t >
0|Bt ≥ b(t) or Bt ≤ c(t)} (see Figure 1 below).

PROOF. We will first derive (I) + (II) since (III) will then follow by combin-
ing and further extending the construction and arguments of (I) + (II). This will

FIG. 1. An illustration of the reversed-barrier stopping time τb,c from Theorem 1 that embeds µ

into B when supp(µ) = [x1,0] ∪ [x2, x3] ∪ [x4,∞).
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enable us to focus more clearly on the subtle technical issues in relation to (a) the
competing character of the two boundaries in (III) and (b) the fact that one of them
can jump to infinity. Neither of these technical issues is present in (I) + (II) so that
the key building block of the construction is best understood by considering this
case first.

(I) + (II) One-sided support: Clearly it is enough to prove (I) since (II) then
follows by symmetry. Let us therefore assume that supp(µ) ⊆ R+ throughout.

1. Bounded support. Assume first that supp(µ) ⊆ [0,β] for some β < ∞.
Without loss of generality we can assume that β belongs to supp(µ). Let 0 = xn

0 <
xn

1 < · · · < xn
mn

= β be a partition of [0,β] such that max1≤k≤mn(x
n
k − xn

k−1) → 0
as n → ∞ (e.g., we could take a dyadic partition defined by xn

k = k
2n β for

k = 0,1, . . . ,2n, but other choices are also possible and will lead to the same re-
sult). Let X be a random variable (defined on some probability space) having the
law equal to µ, and set

Xn =
mn∑

k=1

xn
k I

(
xn
k−1 < X ≤ xn

k

)
(2.1)

for n ≥ 1. Then Xn → X almost surely, and hence Xn → X in law as n → ∞. De-
noting the law of Xn by µn, this means that µn → µ weakly as n → ∞. We will
now construct a left-continuous increasing function bn : (0,∞) → R taking val-
ues in {xn

1 , xn
2 , . . . , xn

mn
} such that τbn = inf{t > 0|Bt ≥ bn(t)} satisfies Bτbn

∼ µn

for n ≥ 1.

1.1. Construction: Discrete case. For this, set pn
k = P(xn

k−1 < X ≤ xn
k ) for

k = 1,2, . . . ,mn with n ≥ 1 given and fixed, and let k1 denote the smallest k in
{1,2, . . . ,mn} such that pn

k > 0. Consider the sequential movement of two sample
paths t ,→ Bt and t ,→ xn

k1
as t goes from 0 onwards. From the recurrence of B

it is clear that there exists a unique tn1 > 0 such that the probability of B hitting
xn
k1

before tn1 equals pn
k1

. Stop the movement of t ,→ xn
k1

at tn1 , and replace it with
t ,→ xn

k2
afterwards where k2 is the smallest k in {k1 + 1, k1 + 2, . . . ,mn} such

that pn
k > 0. Set bn(t) = xn

k1
for t ∈ (0, tn1 ], and on the event that B did not hit

bn on (0, tn1 ], consider the movement of t ,→ Bt and t ,→ xn
k2

as t goes from tn1
onwards. From the recurrence of B it is clear that there exists a unique tn2 > tn1
such that the probability of B hitting xn

k2
before tn2 equals pn

k2
. Proceed as be-

fore, and set bn(t) = xn
k2

for t ∈ (tn1 , tn2 ]. Continuing this construction by induction
until tni = ∞ for some i ≤ mn (which clearly has to happen) we obtain bn as
stated above. Note that bn(t) = xn

k1
for t ∈ (0, tn1 ] with xn

k1
→ α =: min supp(µ)

as n → ∞ and bn(t) = xn
mn

for t ∈ (tni−1,∞) since xn
mn

= β = max supp(µ) by
assumption.

1.2. Construction: Passage to limit. In this way we have obtained a sequence of
left-continuous increasing functions bn : (0,∞) → [α,β] satisfying bn(0+) → α
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as n → ∞ and bn(+∞) = β for n ≥ 1. We can formally extend each bn to (−∞,0]
by setting bn(t) = bn(0+) for t ∈ (−1,0] and bn(t) = 0 for t ∈ (−∞,−1] (other
definitions are also possible). Then {bn|n ≥ 1} is a sequence of left-continuous in-
creasing functions from R into R such that bn(−∞) = 0 and bn(+∞) = β for all
n ≥ 1. By Helly’s selection theorem (see, e.g., [1], pages 336–337) we therefore
know that there exists a subsequence {bnk |k ≥ 1} and a left-continuous increas-
ing function b : R → R such that bnk → b weakly as k → ∞ in the sense that
bnk (t) → b(t) as k → ∞ for every t ∈ R at which b is continuous. (Note that since
bn(t) = bn(0+) → α as n → ∞ for every t ∈ (−1,0] it follows that b(0) = α by
the increase and left-continuity of b.) Restricting b to (0,∞) and considering the
stopping time

τb = inf
{
t > 0|Bt ≥ b(t)

}
,(2.2)

we claim that Bτb ∼ µ. This can be seen as follows.

1.3. Tightness. We claim that the sequence of generalised distribution func-
tions {bn|n ≥ 1} is tight (in the sense the mass of the Lebesgue–Stieltjes mea-
sure associated with bn cannot escape to infinity as n → ∞). Indeed, if ε > 0 is
given and fixed, then δε := µ((β − ε,β]) > 0 since β belongs to supp(µ). Set-
ting τβ = inf{t > 0|Bt ≥ β} we see that there exists tε > 0 large enough such
that P(τβ ≤ tε) > 1 − δε . Since bn ≤ β and hence τbn ≤ τβ this implies that
P(τbn ≤ tε) > 1 − δε for all n ≥ 1. From the construction of bn the latter inequality
implies that bn(tε) > β − ε for all n ≥ 1. Recalling the extension of bn to (−∞,0]
specified above where bn(−1) = 0, it therefore follows that

bn(tε) − bn(−1) > β − ε(2.3)

for all n ≥ 1. This shows that {bn|n ≥ 1} is tight as claimed. From (2.3) we see that
b(+∞) = β and b(−∞) = 0 so that the Lebesgue–Stieltjes measure associated
with b on R has a full mass equal to β like all other bn for n ≥ 1. Recalling
that b(0+) = α we see that the Lebesgue–Stieltjes measure associated with b on
(0,∞) has a full mass equal to β − α. For our purposes we only need to consider
the restriction of b to (0,∞).

1.4. Lévy metric and convergence. If b and c are left-continuous increasing
functions from R into R such that b(−∞) = c(−∞) = 0 and b(+∞) =
c(+∞) = β , then the Lévy metric is defined by

d(b, c) = inf
{
ε > 0|b(t − ε) − ε ≤ c(t) ≤ b(t + ε) + ε for all t ∈ R

}
.(2.4)

It is well known (see, e.g., [1], Exercise 14.5) that cn → b weakly if and only if
d(b, cn) → 0 as n → ∞. Defining functions

bε(t) := b(t − ε) − ε and bε(t) := b(t + ε) + ε(2.5)
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for t ∈ R, we claim that

τbε ↑ τb P-a.s.,(2.6)

τbε ↓ τb P-a.s.(2.7)

as ε ↓ 0, where in (2.6) we also assume that b(0+) > 0.

PROOF OF (2.6). Note first that bε′ ≤ bε′′ ≤ b so that τbε′ ≤ τbε′′ ≤ τb for ε′ ≥
ε′′ > 0. It follows therefore that τb− := limε↓0 τbε ≤ τb. Moreover by definition
of τbε we can find a sequence δn ↓ 0 as n → ∞ such that Bτbε+δn ≥ bε(τbε +
δn) = b(τbε − ε + δn) − ε for all n ≥ 1 with ε > 0. Letting n → ∞ it follows that
Bτbε

≥ b((τbε − ε)+)− ε ≥ b(τbε − ε)− ε ≥ b(τbε − ε0)− ε for all ε ∈ (0, ε0) with
ε0 > 0 given and fixed. Since b is left-continuous and increasing, it follows that b
is lower semicontinuous and hence by letting ε ↓ 0 in the previous identity, we find
that Bτb− ≥ lim infε↓0(b(τbε − ε0) − ε) ≥ b(lim infε↓0 τbε − ε0) = b(τb− − ε0) for
all ε0 > 0. Letting ε0 ↓ 0 and using that b is left-continuous, we get Bτb− ≥ b(τb−).
This implies that τb ≤ τb− , and hence τb− = τb as claimed in (2.6) above. !

PROOF OF (2.7). Note first that b ≤ bε′ ≤ bε′′
so that τb ≤ τbε′ ≤ τbε′′ for

ε′′ ≥ ε′ > 0. It follows therefore that τb ≤ τb+ := limε↓0 τbε . Moreover setting

σb = inf
{
t > 0|Bt > b(t)

}
,(2.8)

we claim that

τb = σb P-a.s.(2.9)

so that outside a P-null set we have Btn > b(tn) for some tn ↓ τb with tn > τb. Since
b is increasing, each tn can be chosen as a continuity point of b, and therefore there
exists εn > 0 small enough such that Btn > bεn(tn) = b(tn +εn)+εn > b(tn) for all
n ≥ 1. This shows that τb+ ≤ tn outside the P-null set for all n ≥ 1. Letting n → ∞
we get τb+ ≤ τb P-a.s. and hence τb+ = τb P-a.s. as claimed in (2.7) above. !

PROOF OF (2.9). Let us first introduce

τb+ε = inf
{
t > 0|Bt ≥ b(t) + ε

}
,(2.10)

and note that τb+ := limε↓0 τb+ε = σb as is easily seen from definitions (2.8)
and (2.10). Next introduce the truncated versions of (2.2) and (2.10) by setting

τ δ
b = inf

{
t > δ|Bt ≥ b(t)

}
,(2.11)

τ δ
b+ε = inf

{
t > δ|Bt ≥ b(t) + ε

}
(2.12)

with δ > 0 given and fixed. Note that τ δ
b ≤ τ δ

b+ε′ ≤ τ δ
b+ε′′ for ε′′ ≥ ε′ > 0. It follows

therefore that τ δ
b ≤ τ δ

b+ := limε↓0 τ δ
b+ε . To prove that

τ δ
b = τ δ

b+ P-a.s.(2.13)
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it is enough to establish that

P
(
τ δ
b+ > t

) ≤ P
(
τ δ
b > t

)
(2.14)

for all t > 0. Indeed, in this case we have E(τ δ
b+ ∧ N) = ∫ N

0 P(τ δ
b+ > t)dt ≤

∫ N
0 P(τ δ

b > t) dt = E(τ δ
b ∧ N) so that τ δ

b+ ∧ N = τ δ
b ∧ N P-a.s. for all N ≥ 1.

Letting N → ∞ we obtain (2.13) as claimed. Assuming that (2.13) is established,
note that

σb = τb+ = lim
ε↓0

τb+ε = lim
ε↓0

lim
δ↓0

τ δ
b+ε = lim

δ↓0
lim
ε↓0

τ δ
b+ε = lim

δ↓0
τ δ
b+

(2.15)
= lim

δ↓0
τ δ
b = τb P-a.s.,

where we use that ε ,→ τ δ
b+ε and δ ,→ τ δ

b+ε are decreasing as ε ↓ 0 and δ ↓ 0 so
that the two limits commute. Hence we see that the proof of (2.9) is reduced to
establishing (2.14). !

PROOF OF (2.14). Note by Girsanov’s theorem that

P
(
τ δ
b+ > t

) = P
(
lim
ε↓0

τ δ
b+ε > t

)
≤ lim

ε↓0
P
(
τ δ
b+ε > t

)

= lim
ε↓0

P
(
Bs < b(s) + ε for all s ∈ (δ, t])

= lim
ε↓0

P
(
Bs −

∫ s

0

ε

δ
I (0 ≤ r ≤ δ) dr < b(s) for all s ∈ (δ, t]

)
(2.16)

= lim
ε↓0

E
[EH ε

T

EH ε

T

I

(
Bs −

∫ s

0
H ε

r dr < b(s) for all s ∈ (δ, t]
)]

= lim
ε↓0

Ẽ
[ 1

EH ε

T

I
(
B̃s < b(s) for all s ∈ (δ, t])

]
,

where H ε
r = ε

δ I (0 ≤ r ≤ δ) and EH ε

T = exp(
∫ T

0 H ε
r dBr − 1

2
∫ T

0 (H ε
r )2 dr) so

that dP̃ = EH ε

T dP and 1/EH ε

T = exp(− ∫ T
0 H ε

r dBr + 1
2

∫ T
0 (H ε

r )2 dr) =
exp(− ∫ T

0 H ε
r dB̃r − 1

2
∫ T

0 (H ε
r )2 dr) = exp(− ε

δ B̃δ − 1
2

ε2

δ ) with B̃s = Bs − ∫ s
0 H ε

r dr

being a standard Brownian motion under P̃ for s ∈ [0, T ]. From (2.16) it therefore
follows that

P
(
τ δ
b+ > t

) ≤ lim
ε↓0

E
[
exp

(
−ε

δ
Bδ − 1

2
ε2

δ

)
I
(
Bs < b(s) for all s ∈ (δ, t])

]

(2.17)
= P

(
Bs < b(s) for all s ∈ (δ, t]) = P

(
τ δ
b > t

)

using the dominated convergence theorem since Eec|Bδ | < ∞ for c > 0. This com-
pletes the verification of (2.14), and thus (2.7) holds as well. [For a different proof
of (2.14) in a more general setting, see the proof of Corollary 8 below.] !
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1.5. Verification. To prove that τb from (2.2) satisfies Bτb ∼ µ, consider first the
case when b(0+) > 0. Recall that bnk → b weakly and therefore d(b, bnk ) → 0 as
k → ∞ where d is the Lévy metric defined in (2.4). To simplify the notation in
the sequel, let us set bk := bnk for k ≥ 1. This yields the existence of εk ↓ 0 as
k → ∞ such that bεk (t) ≤ bk(t) ≤ bεk (t) for all t > 0 and k ≥ 1 [recall that bεk

and bεk are defined by (2.5) above]. It follows therefore that τbεk
≤ τbk ≤ τbεk

for all k ≥ 1. Letting k → ∞ and using (2.6) and (2.7) above, we obtain τb =
limk→∞ τbεk

≤ lim infk→∞ τbk ≤ lim supk→∞ τbk ≤ limk→∞ τbεk = τb P-a.s. This
shows that τb = limk→∞ τbk P-a.s. and hence Bτb = limk→∞ Bτbk

P-a.s. Recalling
that Bτbk

∼ µk for k ≥ 1 and that µk → µ weakly as k → ∞, we see that Bτb ∼ µ
as claimed.

Consider next the case when b(0+) = 0. With δ > 0 given and fixed set bδ :=
b∨δ and bδ

n := bn ∨δ for n ≥ 1. Since bk → b weakly we see that bδ
k → bδ weakly,

and hence by the first part of the proof above [since bδ(0+) = δ > 0] we know that
τbδ

k
→ τbδ P-a.s. so that Bτ

bδ
k

→ Bτ
bδ P-a.s. as k → ∞. Moreover, since τbδ

k
→ τbk

and τbδ → τb as δ ↓ 0 we see that

Bτ
bδ
k

→ Bτbk
and Bτ

bδ → Bτb(2.18)

as δ ↓ 0. From the fact that the first convergence in P-probability is uniform over
all k ≥ 1 in the sense that we have

sup
k≥1

P(Bτ
bδ
k

≠ Bτbk
) ≤ sup

k≥1
µk

(
(0, δ]) ≤ µ

(
(0, δ]) → 0(2.19)

as δ ↓ 0, it follows that the limits in P-probability commute so that

Bτb = lim
δ↓0

Bτ δ
b

= lim
δ↓0

lim
k→∞

Bτ δ
bk

= lim
k→∞

lim
δ↓0

Bτ δ
bk

= lim
k→∞

Bτbk
.(2.20)

Recalling again that Bτbk
∼ µk for k ≥ 1 and that µk → µ weakly as k → ∞,

we see that Bτb ∼ µ in this case as well. Note also that the same arguments show
[by dropping the symbol B from the left-hand side of (2.19) above] that τb =
limk→∞ τbk in P-probability. This will be used in the proof of (III) below.

2. Unbounded support. Consider now the case when sup supp(µ) = +∞. Let
X be a random variable (defined on some probability space) having the law
equal to µ, and set XN = X ∧ βN for some βN ↑ ∞ as N → ∞ such that
µ((βN −ε,βN ]) > 0 for all ε > 0 and N ≥ 1. Let N ≥ 1 be given and fixed. Denot-
ing the law of XN by µN we see that supp(µN) ⊆ [0,βN ] with βN ∈ supp(µN).
Hence by the previous part of the proof we know that there exists a left-continuous
increasing function bN : (0,∞) → R such that BτbN

∼ µN . Recall that this bN is
obtained as the weak limit of a subsequence of the sequence of simple functions
constructed by partitioning (0,βN). Extending the same construction to partition-
ing [βN,βN+1) while keeping the obtained subsequence of functions with values
in (0,βN), we again know by the previous part of the proof that there exists a left-
continuous increasing function bN+1 : (0,∞) → R such that BτbN+1

∼ µN+1. This
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bN+1 is obtained as the weak limit of a further subsequence of the previous sub-
sequence of simple functions. Setting tN = inf{t > 0|bN(t) = βN } it is therefore
clear that bN+1(t) = bN(t) for all t ∈ (0, tN ]. Continuing this process by induction
and noticing that tN ↑ t∞ as N → ∞, we obtain a function b : (0, t∞) → R such
that b(t) = bN(t) for all t ∈ (0, tN ] and N ≥ 1. Clearly b is left-continuous and in-
creasing since each bN satisfies these properties. Moreover we claim that t∞ must
be equal to +∞. For this, note that P(Bτb ≤ x) = P(BτbN

≤ x) for x < βN and
N ≥ 1. Letting N → ∞ and using that BτbN

∼ µN converges weakly to µ since
XN → X, we see that P(Bτb ≤ x) = P(X ≤ x) for all x > 0 at which the distri-
bution function of X is continuous. Letting x ↑ ∞ over such continuity points we
get P(Bτb < ∞) = 1. Since clearly this is not possible if t∞ is finite, we see that
t∞ = +∞ as claimed. Noting that bN = b ∧ βN on (0,∞) for N ≥ 1 it follows
that τbN = inf{t > 0|Bt ≥ bN(t)} = inf{t > 0|Bt ≥ b(t) ∧ βN } from where we see
that τbN → τb and thus BτbN

→ Bτb as N → ∞. Since XN → X and thus µN → µ
weakly as N → ∞, it follows that Bτb ∼ µ as claimed. This completes the proof
of (I).

(III) Two-sided support: This will be proved by combining and further extend-
ing the construction and arguments of (I) and (II). Novel aspects in this process
include the competing character of the two boundaries and the fact that one of
them can jump to infinite value.

3. Bounded support. As in the one-sided case assume first that supp(µ) ⊆
[γ ,β] for some γ < 0 < β . Without loss of generality we can assume that β and γ
belong to supp(µ). Let 0 = xn

0 < xn
1 < · · · < xn

mn
= β be a partition of [0,β] such

that max1≤k≤mn(x
n
k − xn

k−1) → 0 as n → ∞, and let 0 = yn
0 > yn

1 > · · · > yn
ln

= γ
be a partition of [γ ,0] such that max1≤j≤ln(y

n
j−1 − yn

j ) → 0 as n → ∞. Let X be
a random variable (defined on some probability space) having the law equal to µ,
and set

X+
n =

mn∑

k=1

xn
k I

(
xn
k−1 < X ≤ xn

k

)
and X−

n =
ln∑

j=1

yn
j I

(
yn
j ≤ X < yn

j−1
)

(2.21)

for n ≥ 1. Then X+
n + X−

n → X almost surely and hence X+
n + X−

n → X in
law as n → ∞. Denoting the law of X+

n + X−
n by µn and recalling that X

has the law µ, this means that µn → µ weakly as n → ∞. We will now con-
struct a left-continuous increasing function bn : (0,∞) → R taking values in
{xn

1 , xn
2 , . . . , xn

mn
,+∞} and a left-continuous decreasing function cn : (0,∞) → R

taking values in {yn
1 , yn

2 , . . . , yn
ln
,−∞} with bn(t) < +∞ or cn(t) > −∞ for

all t ∈ (0,∞) such that τbn,cn = inf{t > 0|Bt ≥ bn(t) or Bt ≤ cn(t)} satisfies
Bτbn,cn

∼ µn for n ≥ 1.

3.1. Construction: Discrete case. For this, set pn
k = P(xn

k−1 < X ≤ xn
k ) for k =

1,2, . . . ,mn and qn
j = P(yn

j ≤ X < yn
j−1) for j = 1,2, . . . , ln with n ≥ 1 given and
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fixed. Let k1 denote the smallest k in {1,2, . . . ,mn} such that pn
k > 0, and let j1

denote the smallest j in {1,2, . . . , ln} such that qn
j > 0. Consider the sequential

movement of three sample paths t ,→ Bt , t ,→ xn
k1

and t ,→ yn
j1

as t goes from 0
onwards. From the recurrence of B it is clear that there exists a unique tn1 > 0
such that the probability of B hitting xn

k1
before yn

j1
on (0, tn1 ] equals pn

k1
, or the

probability of B hitting yn
j1

before xn
k1

on (0, tn1 ] equals qn
j1

, whichever happens
first (including simultaneous happening). In the first case stop the movement of
t ,→ xn

k1
at tn1 and replace it with t ,→ xn

k2
afterwards where k2 is the smallest k in

{k1 +1, k1 +2, . . . ,mn} such that pn
k > 0 (if there is no such k then make no further

replacement). In the second case stop the movement of t ,→ yn
j1

at tn1 , and replace it
with t ,→ yn

j2
afterwards where j2 is the smallest j in {j1 + 1, j1 + 2, . . . , ln} such

that qn
j > 0 (if there is no such j then make no further replacement). In the third

case, when the first and second case happen simultaneously, stop the movement
of both t ,→ xn

k1
and t ,→ yn

j1
at tn1 , and replace them with t ,→ xn

k2
and t ,→ yn

j2
,

respectively (if there is no k2 or j2, then make no replacement, resp.). In all three
cases set bn(t) = xn

k1
and cn(t) = yn

j1
for t ∈ (0, tn1 ]. On the event that B did not

hit bn or cn on (0, tn1 ], in the first case consider the movement of t ,→ Bt , t ,→ xn
k2

and t ,→ yn
j1

, in the second case consider the movement of t ,→ Bt , t ,→ xn
k1

and
t ,→ yn

j2
, and in the third case consider the movement of t ,→ Bt , t ,→ xn

k2
, and

t ,→ yn
j2

as t goes from tn1 onwards. If there is no k2 or j2 we can formally set
xn
k2

= +∞ or yn
j2

= −∞, respectively (note, however, that either k2 or j2 will
always be finite). Continuing this construction by induction until tni = ∞ for some
i ≤ mn ∨ ln (which clearly has to happen) we obtain bn and cn as stated above.

3.2. Construction: Passage to limit. For n ≥ 1 given and fixed note that bn takes
value β on some interval, and cn takes value γ on some interval since both β and
γ belong to supp(µ). The main technical difficulty is that either bn can take value
+∞ or cn can take value −∞ from some time tζ onwards as well (in which case
the corresponding interval is bounded). In effect this means that the corresponding
function is not defined on (tζ ,∞) with values in R. To overcome this difficulty we
will set b̄n(t) = β and c̄n(t) = γ for t > tζ . Setting further b̄n = bn and c̄n = cn

on (0, tζ ] we see that b̄n and c̄n are generalised distribution functions on (0,∞).
Note that we always have either b̄n = bn or c̄n = cn (and often both). Note also
that b̄n ≠ bn if and only if bn takes value +∞ and c̄n ≠ cn if and only if cn takes
value −∞. Note finally that b̄n(+∞) = β and c̄n(+∞) = γ . Applying the same
arguments as in Part 1.2 above (upon extending b̄n and c̄n to R first) we know
that there exist subsequences {b̄nk |k ≥ 1} and {c̄nk |k ≥ 1} such that b̄nk → b̄ and
c̄nk → c̄ weakly as k → ∞ for some increasing left-continuous function b̄ and
some decreasing left-continuous function c̄.

3.3. Tightness. We claim that the sequences of generalised distribution func-
tions {b̄n|n ≥ 1} and {c̄n|n ≥ 1} are tight. Indeed, if ε > 0 is given and fixed,
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then δ′
ε := µ((β − ε,β]) > 0 and δ′′

ε := µ([γ ,γ + ε)) > 0 since β and γ be-
long to supp(µ). Setting δε := δ′

ε ∧ δ′′
ε and considering τβ = inf{t > 0|Bt ≥ β}

and τγ = inf{t > 0|Bt ≤ γ }, we see that there exists tε > 0 large enough such that
P(τβ ∨ τγ ≤ tε) > 1 − δε . Since τbn,cn ≤ τβ ∨ τγ , this implies that P(τbn,cn ≤ tε) >
1−δε for all n ≥ 1. From the construction of bn and cn the latter inequality implies
that bn(tε) > β −ε and cn(tε) < γ +ε for all n ≥ 1 (note that in all these arguments
we can indeed use unbarred functions). The tightness claim then follows using the
same arguments as in Part 1.3 above.

3.4. Verification. Applying the same arguments as in Part 1.4 above we know
from Part 1.5 above that setting b̄k := b̄nk for k ≥ 1, we have τb̄k

→ τb̄ and τc̄k → τc̄

in P-probability as k → ∞. Setting tbk = sup{t > 0|bk(t) = β} and tck = sup{t >

0|ck(t) = γ } by the construction above, we know that either tbk = ∞ or tck = ∞
for all k ≥ 1. If there exists k0 ≥ 1 such that both tbk = ∞ and tck = ∞ for all
k ≥ k0, then bk = b̄k and ck = c̄k for all k ≥ k0 so that τbk,ck = τbk ∧ τck = τb̄k

∧
τc̄k → τb̄ ∧ τc̄ = τb̄,c̄ = τb,c in P-probability as k → ∞ where we set b := b̄ and
c := c̄. This implies that Bτbk,ck

→ Bτb,c in P-probability and thus in law as well
while Bτbk,ck

∼ µk with µk → µ weakly as k → ∞ then shows that Bτb,τc ∼ µ
as required. Suppose therefore that there is no such k0 ≥ 1. This means that we
have infinitely many tbk < ∞ or infinitely many tck < ∞ for k ≥ 1. Without loss of
generality assume that the former holds. Then we can pass to a further subsequence
such that tbkl

< ∞ for all l ≥ 1 and tbkl
→ tb∞ ∈ (0,∞] as l → ∞. Set b(t) = b̄(t)

for t ∈ (0, tb∞] and b(t) = ∞ for t ∈ (tb∞,∞). Set also c(t) = c̄(t) for t > 0, and
note that ckl = c̄kl for all l ≥ 1. To simplify the notation set further bl := bkl , b̄l :=
b̄kl , cl := ckl , and c̄l := c̄kl for l ≥ 1. Then τb̄l

→ τb̄ in P-probability and hence
τb̄l

I (τb̄ < tb∞) → τb̄I (τb̄ < tb∞) in P-probability as l → ∞. Using definitions of
barred functions and the fact that tbkl

→ tb∞, one can easily verify that the previous
relation implies that τbl I (τb < tb∞) → τbI (τb < tb∞) in P-probability as l → ∞.
Since P(τb < tb∞) = 1 it follows that τbl ∧τcl → τb ∧τc in P-probability as l → ∞.
This implies that Bτbl ,cl

→ Bτb,c in P-probability as l → ∞ and hence Bτb,c ∼ µ
using the same argument as above. This completes the proof in the case when
supp(µ) is bounded.

4. Half bounded support. Consider now the case when sup supp(µ) = +∞ and
inf supp(µ) =: γ ∈ (−∞,0); see Figure 1 above. Let X be a random variable (de-
fined on some probability space) having the law equal to µ, and set XN = X ∧ βN

for some βN ↑ ∞ as N → ∞ such that µ((βN − ε,βN ]) > 0 for all ε > 0
and N ≥ 1. Let N ≥ 1 be given and fixed. Denoting the law of XN by µN we
see that supp(µN) ⊆ [γ ,βN ] with βN and γ belonging to supp(µN). Hence by
Parts 3.1–3.4 above we know that there exist a left-continuous increasing func-
tion bN : (0,∞) → (0,βN ] ∪ {+∞} and a left-continuous decreasing function
cN : (0,∞) → [γ ,0) ∪ {−∞} such that BτbN ,cN

∼ µN .
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4.1. Construction. Recall that these bN and cN are obtained as the weak lim-
its of subsequences of the sequences of simple functions constructed by parti-
tioning (γ ,0) and (0,βN). Extending the same construction to partitioning (γ ,0)
and [βN,βN+1) while keeping the obtained subsequence of functions with val-
ues strictly smaller than βN , we again know by Parts 3.1–3.4 above that there
exist a left-continuous increasing function bN+1 : (0,∞) → (0,βN+1] ∪ {+∞}
and a left-continuous decreasing function cN+1 : (0,∞) → [γ ,0) ∪ {−∞} such
that BτbN+1,cN+1

∼ µN+1. These bN+1 and cN+1 are obtained as the weak limits
of further subsequences of the previous subsequences of simple functions. Set-
ting tN = inf{t > 0|bN(t) = βN } it is therefore clear that bN+1(t) = bN(t) and
cN+1(t) = cN(t) for all t ∈ (0, tN ]. Continuing this process by induction and
noticing that tN ↑ t∞ as N → ∞, we obtain a left-continuous increasing function
b : (0, t∞) → R and a left-continuous decreasing c : (0, t∞) → R∪ {−∞} such that
b(t) = bN(t) and c(t) = cN(t) for all t ∈ (0, tN ] and N ≥ 1. Note that b is finite
valued on (0, t∞) with b(t∞−) = +∞.

4.2. Verification. To verify that b and c are the required functions, consider
first the case when t∞ = ∞. If c is finite valued, then τb,c < ∞ P-a.s. and
hence τbN ,cN → τb,c P-a.s. as N → ∞. If c is not finite valued, then c = cN

and hence P(Bτb,c < βN) = P(BτbN ,cN
< βN) = 1 − µ([βN,∞)) for all N ≥ N0

with some N0 ≥ 1. Letting N → ∞ and using that µ([βN,∞)) → 0, we find
that P(τb,c < ∞) = 1 and hence τbN ,cN → τb,c P-a.s. Thus the latter relation al-
ways holds and hence BτbN ,cN

→ Bτb,c P-a.s. as N → ∞. Since BτbN ,cN
∼ µN and

XN → X so that µN → µ weakly as N → ∞ it follows that Bτb,c ∼ µ as required.
Consider next the case when t∞ < ∞. To extend the function c to [t∞,∞) when

c(t∞−) > γ (note that when c(t∞−) = γ then clearly c must remain equal to γ
on [t∞,∞) as well) set tcN = sup{t > 0|cN(t) = γ } and define c̄N (t) = cN(t) for
t ∈ (0, tcN ] and c̄N (t) = γ for t ∈ (tcN ,∞) whenever tcN < ∞ for N ≥ 1. Applying
the same arguments as in Parts 1.2 and 1.3 above, we know that there exists a sub-
sequence {c̄Nk |k ≥ 1} and a left-continuous function c̄ such that c̄Nk → c̄ weakly
as k → ∞. Applying the same arguments as in Part 1.4 above we know from
Part 1.5 above that setting c̄k := c̄Nk for k ≥ 1 we have τc̄k → τc̄ in P-probability
as k → ∞. Moreover, we claim that tcN → ∞ as N → ∞. For this, suppose that
tcNl

≤ T < ∞ for l ≥ 1. Fix ε > 0 small and set cε(t) = c(t) for t ∈ (0, t∞ − ε)
and cε(t) = c(t∞ − ε) for t ∈ [t∞ − ε, T ]. Setting bl := bNl and cl := cNl we
then have µ([γ ,βNl )) = P(Bτbl ,cl

∈ [γ ,βNl )) ≤ P(τb,cε ≤ T ) for all l ≥ 1. Let-
ting l → ∞ and using that µ([γ ,βNl )) → 1, we see that P(τb,cε ≤ T ) = 1 which
clearly is impossible since b is not defined beyond t∞. Thus tcN → ∞ as N → ∞
and hence tcNk

→ ∞ as k → ∞. Setting c := c̄ and ck := cNk for k ≥ 1 and
using the same arguments as in Part 3.4 above, we can therefore conclude that
τck I (τc < ∞) → τcI (τc < ∞) in P-probability as k → ∞. Since P(τc < ∞) = 1
this shows that τck → τc in P-probability as k → ∞. Setting bk := bNk and not-
ing that τbk → τb on {τb < ∞}, we see that τbk,ck → τb,c in P-probability as
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k → ∞ and hence Bτb,c ∼ µ using the same argument as above. The case when
sup supp(µ) ∈ (0,+∞) and inf supp(µ) = −∞ follows in exactly the same way
by symmetry.

5. Fully unbounded support. Consider finally the remaining case when both
sup supp(µ) = +∞ and inf supp(µ) = −∞. Let X be a random variable (defined
on some probability space) having the law equal to µ, and set XN = γN ∨ X ∧ βN

for some βN ↑ ∞ and γN ↓ −∞ as N → ∞ such that µ((βN − ε,βN ]) > 0 and
µ([γN,γN + ε)) > 0 for all ε > 0 and N ≥ 1. Let N ≥ 1 be given and fixed.
Denoting the law of XN by µN we see that supp(µN) ⊆ [γN,βN ] with βN and
γN belonging to supp(µN). Hence by Parts 3.1–3.4 above we know that there
exist a left-continuous increasing function bN : (0,∞) → (0,βN ] ∪ {+∞} and
a left-continuous decreasing function cN : (0,∞) → [γN,0) ∪ {−∞} such that
BτbN ,cN

∼ µN .

5.1. Construction. Recall that these bN and cN are obtained as the weak lim-
its of subsequences of the sequences of simple functions constructed by par-
titioning (γN,0) and (0,βN). Extending the same construction to partitioning
(γN+1,γN ] and [βN,βN+1) while keeping the obtained subsequence of func-
tions with values strictly smaller than βN and strictly larger than γN , we again
know by Parts 3.1–3.4 above that there exist a left-continuous increasing func-
tion bN+1 : (0,∞) → (0,βN+1] ∪ {+∞} and a left-continuous decreasing func-
tion cN+1 : (0,∞) → [γN+1,0) ∪ {−∞} such that BτbN+1,cN+1

∼ µN+1. These
bN+1 and cN+1 are obtained as the weak limits of further subsequences of the
previous subsequences of simple functions. Setting tbN = inf{t > 0|bN(t) = βN }
and tcN = inf{t > 0|cN(t) = γN } it is therefore clear that bN+1(t) = bN(t) and
cN+1(t) = cN(t) for all t ∈ (0, tN ] where we set tN := tbN ∧ tcN for N ≥ 1. Contin-
uing this process by induction and noticing that tN ↑ t∞ as N → ∞, we obtain a
left-continuous increasing function b : (0, t∞) → R and a left-continuous decreas-
ing c : (0, t∞) → R such that b(t) = bN(t) and c(t) = cN(t) for all t ∈ (0, tN ] and
N ≥ 1.

5.2. Verification. To verify that b and c are the required functions, consider first
the case when t∞ = ∞. Then since b(tN) ≤ βN and c(tN) ≥ γN for any A ∈ B(R),
we have P(Bτb,c ∈ A∩ (c(tN ), b(tN))) = P(BτbN ,cN

∈ A∩ (c(tN ), b(tN))) = µ(A∩
(c(tN), b(tN))) for all N ≥ 1. Letting N → ∞ and using that b(tN) ↑ ∞ and
c(tN) ↓ −∞, we see that P(Bτb,c ∈ A) = µ(A), and this shows that Bτb,c ∼ µ as
required.

Consider next the case when t∞ < ∞, and assume first that either {tbN |N ≥ 1}
or {tcN |N ≥ 1} is not bounded (we will see below that this is always true). With-
out loss of generality we can assume (by passing to a subsequence if needed)
that tcN → ∞ so that tbN ↑ t∞ < ∞ as N → ∞. To extend the function c to
[t∞,∞) we can now connect to the final paragraph of Part 4 above. Choosing
M ≥ 1 large enough so that γM < c(t∞−), we see that we are in the setting of
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that paragraph with γ = γM , and hence there exists a left-continuous decreas-
ing function cM : (0,∞) → [γM,0) such that Bτb,cM

∼ X ∨ γM . Recall that this
cM is obtained as the weak limit of a subsequence of the sequence of functions
embedding B into [γM,βN ] for N ≥ 1, and note that cM coincides with c on
(0, t∞). Extending the same construction to embedding B into [γM+1,βN ] for
N ≥ 1 while keeping the subsequence of functions obtained previously, we again
know by the final paragraph of Part 4 above that there exists a left-continuous
decreasing function cM+1 : (0,∞) → [γM+1,0) such that Bτb,cM+1

∼ X ∨ γM+1.
This cM+1 is obtained as the weak limit of a further subsequence of the previous
sequence of functions. Setting tcM = inf{t > 0|cM(t) = γM} it is therefore clear
that cM+1(t) = cM(t) for t ∈ (0, tcM). Continuing this process by induction we
obtain a left-continuous decreasing function c : (0,∞) → R that coincides with
the initial function c on (0, t∞). Setting tcM = inf{t > 0|c(t) = γM} we see that
c(tcM) = γM ↓ −∞ as M → ∞. Hence for any A ∈ B(R) we see that P(Bτb,c ∈
A ∩ (c(tcM),∞)) = P(Bτb,cM

∈ A ∩ (c(tcM),∞)) = µ(A ∩ (c(tcM),∞)) → µ(A)

as M → ∞ from where it follows that P(Bτb,c ∈ A) = µ(A). This shows that
Bτb,c ∼ µ as required. Moreover we claim that this is the only case we need to
consider since if both {tbN |N ≥ 1} and {tcN |N ≥ 1} are bounded, then without
loss of generality we can assume (by passing to a subsequence if needed) that
tcN → tc∞ < ∞ with tc∞ > t∞ first so that tbN ↑ t∞ as N → ∞. In this case we can
repeat the preceding construction and extend c to [t∞, tc∞) so that we again have
Bτb,c ∼ µ by the same argument. If tc∞ = t∞, however, then the same argument
as in the case of t∞ = ∞ above shows that the latter relation also holds. Thus
in both cases we have tbN ≤ T and tcN ≤ T for all N ≥ 1 with T := tc∞ so that
µ((γN,βN)) = P(Bτb,c ∈ (γN,βN)) = P(Bτb,c ∈ (c(tcN), b(tbN))) ≤ P(τb,c ≤ T ) for
all N ≥ 1. Letting N → ∞ and using that µ((γN,βN)) → 1, we get P(τb,c ≤ T ) =
1 which clearly is impossible since T < ∞. It follows therefore that Bτb,c ∼ µ in
all possible cases and the proof is complete. !

REMARK 2. Note that b from (I) and c from (II) are always finite valued
since otherwise µ(R+) < 1 or µ(R−) < 1, respectively. Note also that either b or
c from (III) can formally take value +∞ or −∞, respectively, from some time
onwards; however, when this happens to either function, then the other function
must remain finite valued [note that (I) and (II) can be seen as special cases of (III)
in this sense too]. Note finally that the result and proof of Theorem 1 including the
same remarks remain valid if B0 ∼ ν where ν is a probability measure on R such
that supp(ν) ⊆ [−p,q] with µ([−p,q]) = 0 for some p > 0 and q > 0.

REMARK 3. Since the arguments in the proof of Theorem 1 can be repeated
over any subsequence of {bn|n ≥ 1} or {cn|n ≥ 1} [when constructed with no upper
or lower bound on the partitions of supp(µ) as well] it follows that Bτbn,cn

not only
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converges to Bτb,c over a subsequence P-a.s., but this convergence also holds for
the entire sequence in P-probability. Indeed, if this would not be the case, then
for some subsequence no further subsequence would converge P-a.s. The initial
argument of this remark combined with the uniqueness result of Theorem 10 below
would then yield a contradiction. The fact that Bτbn,cn

always converges to Bτb,c in
P-probability as n → ∞ makes the derivation fully constructive and amenable to
algorithmic calculations described next.

REMARK 4. The construction presented in the proof above yields a simple al-
gorithm for computing bn and cn, which in turn provide numerical approximations
of b and c. Key elements of the algorithm can be described as follows. Below we
let ϕ(x) = (1/

√
2π)e−x2/2 and -(x) = (1/

√
2π)

∫ x
−∞ e−y2/2 dy for x ∈ R denote

the standard normal density and distribution function, respectively.
In the one-sided case (I) when supp(µ) ⊆ R+ recall the well-known expressions

(cf. [2])

P(Bt ∈ dx, τy > t) = 1√
t

[
ϕ

(
x√
t

)
− ϕ

(
x − 2y√

t

)]
dx

(2.22)
=: f (t, x, y) dx,

P(τy ≤ t) = 2
[
1 − -

(
y√
t

)]
=: g(t, y)(2.23)

for t > 0 and x < y with y > 0 where we set τy = inf{t > 0|Bt = y}. Using sta-
tionary and independent increments of B (its Markov property), we then read from
Part 1.1 of the proof above that the algorithm runs as follows:

gk(t) :=
∫ xn

k−1

−∞
g
(
t, xn

k − y
)
fk−1(y) dy,(2.24)

tnk := tnk−1 + inf
{
t > 0|gk(t) = pn

k

}
,(2.25)

fk(x) :=
∫ xn

k−1

−∞
f

(
tnk − tnk−1, x − y, xn

k − y
)
fk−1(y) dy(2.26)

for k = 1,2, . . . ,mn where we initially set t0 := 0, x0 := 0 and f0(x) dx := δ0(dx).
This yields the time points tn1 , tn2 , . . . , tnmn

which determine bn by the formula

bn(t) =
mn∑

k=1

xn
k I

(
tnk−1 < t ≤ tnk

)
(2.27)

for t ≥ 0. The algorithm is stable and completes within a reasonable time frame;
see Figure 2 below for the numerical output when the target law µ is exponentially
distributed with intensity 1.
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FIG. 2. Functions bn and cn calculated using the algorithm from the proof of Theorem 1 as de-
scribed in Remark 4. The first row corresponds to the target law µ which is exponentially distributed
with intensity 1 for n = 20, 100, 500, respectively, with equidistant partition of R+ having the step
size equal to 1/n and the number of time points mn equal to n. The second row corresponds to the
target law µ which is normally distributed with mean 1 and variance 1 for n = 10, 50, 250, respec-
tively, with equidistant partition of R having the step size equal to 1/n and the number of time points
mn + ln equal to 2n.

In the two-sided case (III) when supp(µ) ⊆ R recall the well-known expressions
(cf. [2])

P(Bt ∈ dx, τy,z > t)

= 1√
t

∞∑

n=−∞

[
ϕ

(
x + 2n(y − z)√

t

)
− ϕ

(
x + 2n(y − z) − 2y√

t

)]
dx(2.28)

=: f (t, x, y, z) dx,

P(τy < τz, τy,z ≤ t)

= 2
∞∑

n=0

[
-

(
(2n + 1)(y − z) − z√

t

)
− -

(
(2n + 1)(y − z) + z√

t

)]
(2.29)

=: g(t, y, z),

P(τz < τy, τy,z ≤ t)

= 2
∞∑

n=0

[
-

(
(2n + 1)(y − z) + y√

t

)
− -

(
(2n + 1)(y − z) − y√

t

)]
(2.30)

=: h(t, y, z)

for t > 0 and z < x < y with z < 0 < y where we set τw = inf{t > 0|Bt = w}
for w ∈ {y, z} and τy,z = τy ∧ τz. Using stationary and independent increments



EMBEDDING LAWS IN DIFFUSIONS BY FUNCTIONS OF TIME 2497

of B (its Markov property), we then read from Part 3.1 of the proof above that the
algorithm runs as follows:

gk(t) :=
∫ x̄n

k−1

ȳn
k−1

g
(
t, x̄n

k − z, ȳn
k − z

)
fk−1(z) dz,(2.31)

hk(t) :=
∫ x̄n

k−1

ȳn
k−1

h
(
t, x̄n

k − z, ȳn
k − z

)
fk−1(z) dz,(2.32)

tnk := tnk−1 + (
inf

{
t > 0|gk(t) = p̄n

k

} ∧ inf
{
t > 0|hk(t) = q̄n

k

})
,(2.33)

fk(x) :=
∫ x̄n

k−1

ȳn
k−1

f
(
tnk − tnk−1, x − z, x̄n

k − z, ȳn
k − z

)
fk−1(z) dz(2.34)

for k = 1,2, . . . ,mn + ln where we initially set t0 := 0, x̄n
0 := 0, ȳn

0 := 0, x̄n
1 := xn

1 ,
ȳn

1 := yn
1 , f0(x) dx := δ0(dx) and denoting the first infimum in (2.33) by In

k and
the second infimum in (2.33) by Jn

k , this is then continued as follows: if In
k > Jn

k ,
then x̄n

k+1 := inf{xl|xl > x̄n
k }, ȳn

k+1 := ȳn
k , p̄n

k+1 := p(x̄n
k+1), q̄n

k+1 := q̄n
k − hk(I

n
k );

if Jn
k > In

k , then ȳn
k+1 := sup{yl|yl < ȳn

k }, x̄n
k+1 := x̄n

k , q̄n
k+1 := q(ȳn

k+1), p̄n
k+1 :=

p̄n
k − gk(J

n
k ); if In

k = Jn
k , then x̄n

k+1 := inf{xl|xl > x̄n
k }, ȳn

k+1 := sup{yl |yl < ȳn
k },

p̄n
k+1 := p(x̄n

k+1), q̄n
k+1 := q(ȳn

k+1) where we set p(x) = pn
k for x = xn

k and
q(y) = qn

k for y = yn
k . This yields the time points tn1 , tn2 , . . . , tnmn+ln

which deter-
mine bn and cn by the formulae

bn(t) =
mn+ln∑

k=1

x̄n
k I

(
tnk−1 < t ≤ tnk

)
and

(2.35)

cn(t) =
mn+ln∑

k=1

ȳn
k I

(
tnk−1 < t ≤ tnk

)

for t ≥ 0. The algorithm is stable and completes within a reasonable time frame;
see Figure 2 above for the numerical output when the target law µ is normally
distributed with mean 1 and variance 1.

REMARK 5. Note that τb from (I) could also be defined by

τb = inf
{
t > 0|Bt = b(t)

}
(2.36)

and that Bτb = b(τb). This is easily verified since b is left-continuous and increas-
ing. The same remark applies to τc from (II) and τb,c from (III) with Bτb,c being
equal to b(τb,c) or c(τb,c). From (2.8) and (2.9) we also see that these inequalities
and equalities in the definitions of the stopping times can be replaced by strict in-
equalities and that all relations remain valid almost surely in this case. Similarly, in
all these definitions we could replace left-continuous functions b and c with their
right-continuous versions defined by b(t) := b(t+) and c(t) := c(t+) for t > 0,
respectively. All previous facts in this remark remain valid in this case too.
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REMARK 6. If µ({0}) =: p > 0 in Theorem 1, then we can generate a ran-
dom variable ζ independently from B such that ζ takes two values 0 and ∞ with
probabilities p and 1 −p, respectively. Performing the same construction with the
stopped sample path t ,→ Bt∧ζ yields the existence of functions b and c as in The-
orem 1 with Bζ = (Bt∧ζ )t≥0 in place of B = (Bt≥0)t≥0. The resulting stopping
time may be viewed as randomised through the initial condition.

REMARK 7. Two main ingredients in the proof of Theorem 1 above are
(i) embedding in discrete laws and (ii) passage to the limit from discrete to gen-
eral laws. If the standard Brownian motion B is replaced by a continuous (time-
homogeneous) Markov process X, we see from the proof above that (i) can be
achieved when

t ,→ Px(τy < τz, τy,z ≤ t) and t ,→ Px(τz < τy, τy,z ≤ t)(2.37)

are continuous on R+ and Px(τy,z > t) ↓ 0 as t ↑ ∞ for all −∞ ≤ z < x < y ≤ ∞
with |z| ∧ |y| < ∞ and Px(X0 = x) = 1 where we set τw = inf{t > 0|Xt = w} for
w ∈ {y, z} and τy,z = τy ∧ τz. We also see from the proof above that (ii) can be
achieved when

τb = σb P0-a.s. and τc = σc P0-a.s.,(2.38)

where the first equality holds for any left-continuous increasing function b with
τb = inf{t > 0|Xt ≥ b(t)} and σb = inf{t > 0|Xt > b(t)}, and the second equality
holds for any left-continuous decreasing function c with τc = inf{t > 0|Xt ≤ c(t)}
and σc = inf{t > 0|Xt < c(t)}. In particular, by verifying (2.37) and (2.38) in the
proof of Corollary 8 below we will establish that the result of Theorem 1 extends
to all recurrent diffusion processes X in the sense of Itô and McKean [10] (see [2],
Chapter II, for a review). This extension should also hold for nonrecurrent diffu-
sion processes X and “admissible” target laws µ (cf. [16]) as well as for more gen-
eral standard Markov processes X satisfying suitable modifications of (2.37) and
(2.38) in the admissible setting. We leave precise formulations of these more gen-
eral statements and proofs as informal conjectures open for future developments.

COROLLARY 8. The result of Theorem 1 remains valid if the standard Brow-
nian motion B is replaced by any recurrent diffusion process X.

PROOF. As pointed out above the proof can be carried out in the same way
as the proof of Theorem 1 if we show that (2.37) and (2.38) are satisfied. Note
that Px(τy,z > t) ↓ 0 as t ↑ ∞ for all −∞ ≤ z < x < y ≤ ∞ with |z| ∧ |y| < ∞
since X is recurrent. Recall also that all recurrent diffusions are regular (see [2],
Chapter II, for definitions).

1. We first show that the functions in (2.37) are continuous. Clearly by symme-
try it is enough to show that the first function is continuous. For this, set F(t) =
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Px(τy < τz, τy,z ≤ t) for t ≥ 0 where −∞ ≤ z < x < y < ∞ are given and fixed.
Since t ,→ F(t) is increasing and right-continuous we see that it is enough to dis-
prove the existence of t1 > 0 such that F(t1)−F(t1−) = Px(τy < τz, τy = t1) > 0.
Since this implies that Px(τy = t1) > 0 we see that it is enough to show that the
distribution function t ,→ Px(τy ≤ t) is continuous for x < y in R given and fixed.
For this, let p denote the transition density of X with respect to its speed measure
m in the sense that Px(Xt ∈ A) = ∫

A p(t;x, y)m(dy) holds for all t > 0 and all
A ∈ B(R). It is well known (cf. [10], page 149) that p may be chosen to be jointly
continuous (in all three variables). Next note that for any s > 0 given and fixed
the mapping t ,→ Ex[PXs (τy ≤ t)] = ∫

R Pz(τy ≤ t)p(s;x, z)m(dz) is increasing
and right-continuous on (0,∞) so that G(t, s) := Ex[PXs (τy = t)] = ∫

R Pz(τy =
t)p(s;x, z)m(dz) = 0 for all t ∈ (0,∞)\Cs where the set Cs is at most countable.
Setting C := ⋃

s∈Q+ Cs where Q+ denotes the set of rational numbers in (0,∞),
we see that the set C is at most countable and G(t, s) = 0 for all t ∈ (0,∞) \ C
and all s ∈ Q+. Since each z ,→ p(s;x, z) is a density function integrating to 1
over m(dz), and s ,→ p(s;x, z) is continuous on (0,∞), we see by Scheffé’s the-
orem (see, e.g., [1], page 215) that G(t, sn) → G(t, s) as sn → s in (0,∞) for
any t > 0 fixed. Choosing these sn from Q+ for given s > 0 it follows therefore
that G(t, s) = 0 for all t ∈ (0,∞) \ C and all s > 0. By the Markov property
we moreover see that Px(τy = t + s) ≤ Px(τy ◦ θs = t) = G(t, s) = 0 and hence
Px(τy = t + s) = 0 for all t ∈ (0,∞) \ C and all s > 0. Since the set C is at most
countable it follows that Px(τy = t) = 0 for all t > 0. This implies that F is con-
tinuous, and the proof of (2.37) is complete.

2. We next show that the equalities in (2.38) are satisfied. Clearly by symme-
try it is enough to derive the first equality. Note that replacing B by X in the
proof of (2.9) above and using exactly the same arguments yields the first equality
in (2.38), provided that (2.14) is established for X in place of B . This shows that
the first equality in (2.38) reduces to establishing that

P0
(
σ δ

b > t
) ≤ P0

(
τ δ
b > t

)
(2.39)

for all t > 0 where σ δ
b = inf{t > δ|Xt > b(t)} and τ δ

b = inf{t > δ|Xt ≥ b(t)} for
δ > 0 given and fixed. Observe that σ δ

b coincides with τ δ
b+ := limε↓0 τ δ

b+ε where
τ δ
b+ε = inf{t > δ|Xt ≥ b(t)+ ε} as is easily seen from the definitions so that (2.39)

is indeed equivalent to (2.14) as stated above.
To establish (2.39) consider first the case when b is flat on some time interval

I ⊆ (δ,∞), and denote the joint value of b on I by y meaning that b(t) = y for all
t ∈ I . Consider the stopping times τ := inf{t > δ|Xt = y} and σ := inf{t > τ |Xt >
y}. Since X is recurrent we know that both τ and σ are finite valued under P0. Note
that σ = τ +ρ ◦ θτ where ρ := inf{t > 0|Xt > y} is a stopping time. By the strong
Markov property of X applied at τ , we thus have P0(σ = τ ) = P0(ρ ◦ θτ = 0) =
PXτ (ρ = 0) = Py(ρ = 0) = 1 where the final equality follows since X is regular
(cf. [2], page 13). Hence we see that Xτ+t > y for infinitely many t in each (0, ε]
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for ε > 0 with P0-probability one. In particular, this shows that on the set {σ δ
b > t}

with t > 0 given and fixed the sample path of X stays strictly below b on the time
interval I \ sup(I ) with P0-probability one for each time interval I ⊆ (δ, t) on
which b is flat. Since (δ, t) can be written as a countable union of disjoint intervals
on each of which b is either flat or strictly increasing, we see that the previous
conclusion implies that

P0
(
σ δ

b > t
) ≤ P0

(
Xs < b(s + h) for all s ∈ (δ, t)

)

≤ P0
(
Xr−h < b(r) for all r ∈ (δ + h, t + h)

)
(2.40)

≤ P0
(
Xr−h < b(r) for all r ∈ (δ + h0, t]

)

for any h ∈ (0, h0) where h0 ∈ (0, δ/2) is given and fixed. By the Markov property
and Scheffé’s theorem applied as above, we find that

P0
(
Xr−h < b(r) for all r ∈ (δ + h0, t]

)

= E0
[
PXδ/2−h

(
Xr−δ/2 < b(r) for all r ∈ (δ + h0, t]

)]

=
∫

R
Py

(
Xr−δ/2 < b(r) for all r ∈ (δ + h0, t]

)
p(δ/2 − h;0, y)m(dy)

(2.41)
−→

∫

R
Py

(
Xr−δ/2 < b(r) for all r ∈ (δ + h0, t]

)
p(δ/2;0, y)m(dy)

= E0
[
PXδ/2

(
Xr−δ/2 < b(r) for all r ∈ (δ + h0, t]

)]

= P0
(
Xr < b(r) for all r ∈ (δ + h0, t]

)

as h ↓ 0. Combining (2.40) and (2.41) we get

P0
(
σ δ

b > t
) ≤ P0

(
Xr < b(r) for all r ∈ (δ + h0, t]

)
(2.42)

for all h0 ∈ (0, δ/2). Letting h0 ↓ 0 in (2.42) we find that

P0
(
σ δ

b > t
) ≤ P0

(
Xr < b(r) for all r ∈ (δ, t]) = P0

(
τ δ
b > t

)
(2.43)

for all t > 0. This establishes (2.39) and hence τb = σb P0-a.s. as explained above.
The proof of (2.38) is therefore complete. !

Note that the claims of Remarks 2–6 extend to the setting of Corollary 8 with
suitable modifications in Remark 4 since the process no longer has stationary and
independent increments and some of the expressions may no longer be available
in closed form.

In the setting of Theorem 1 or Corollary 8, let Fµ denote the distribution func-
tion of µ. The following proposition shows that (i) jumps of b or c correspond
exactly to flat intervals of Fµ (i.e., no mass of µ), and (ii) flat intervals of b or c
correspond exactly to jumps of Fµ (i.e., atoms of µ). In particular, from (i) we see
that if Fµ is strictly increasing on R+, then b is continuous, and if Fµ is strictly
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increasing on R−, then c is continuous. Similarly, from (ii) we see that if Fµ is
continuous on R+, then b is strictly increasing, and if Fµ is continuous on R−,
then c is strictly decreasing.

PROPOSITION 9 (Continuity). In the setting of Theorem 1 or Corollary 8 we
have:

b(t+) > b(t) if and only if µ
((

b(t), b(t+)
)) = 0,(2.44)

b(t) = b(t − ε) for some ε > 0 if and only if µ
({

b(t)
})

> 0,(2.45)

c(t+) < c(t) if and only if µ
((

c(t+), c(t)
)) = 0,(2.46)

c(t) = c(t − ε) for some ε > 0 if and only if µ
({

c(t)
})

> 0,(2.47)

for any t > 0 given and fixed.

PROOF. All statements follow from the construction and basic properties of b

and c derived in the proof of Theorem 1. !

3. Uniqueness. In this section we state and prove the main uniqueness result.
Note that the result and proof remain valid in the more general case addressed at
the end of Remark 2, and the method of proof is also applicable to more general
processes (cf. Remark 7).

THEOREM 10 (Uniqueness). In the setting of Theorem 1 or Corollary 8 the
functions b and c are uniquely determined by the law µ.

PROOF. To simplify the exposition we will derive (I) in full detail. It is clear
from the proof below that the same arguments can be used to derive (II) and (III).

1. Let us assume that b1 : (0,∞) → R+ and b2 : (0,∞) → R+ are left-
continuous increasing functions such that Xτb1

∼ µ and Xτb2
∼ µ where τb1 =

inf{t > 0|Xt ≥ b1(t)} and τb2 = inf{t > 0|Xt ≥ b2(t)}. We then need to show that
b1 = b2. For this, we will first show that b := b1 ∧ b2 also solves the embedding
problem in the sense that Xτb ∼ µ where τb = inf{t > 0|Xt ≥ b(t)}. The proof of
this fact can be carried out as follows.

2. Let A = {x ∈ supp(µ)|µ({x}) > 0} and for any given x ∈ A set ℓi (x) =
inf{t ∈ (0,∞)|b1(t) = x} and ri(x) = sup{t ∈ (0,∞)|b1(t) = x} when i = 1,2.
By (2.45) we know that [ℓi(x), ri(x)] is a nonempty interval. Moreover, note that
the functions ℓi and ri are also well defined on supp(µ) \ A (with the conven-
tion inf∅ = sup∅ = +∞) in which case we have ℓi = ri for i = 1,2. With this
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notation in mind consider the sets

G1,1 = {
x ∈ supp(µ) \ A|ℓ1(x) < ℓ2(x)

}
,(3.1)

G1,2 = {
x ∈ A|r1(x) < r2(x)

}
,(3.2)

G1,3 = {
x ∈ A|ℓ1(x) < ℓ2(x) and r1(x) = r2(x)

}
,(3.3)

G2,1 = {
x ∈ supp(µ) \ A|ℓ2(x) ≤ ℓ1(x)

}
,(3.4)

G2,2 = {
x ∈ A|r2(x) < r1(x)

}
,(3.5)

G2,3 = {
x ∈ A|ℓ2(x) < ℓ1(x) and r1(x) = r2(x)

}
,(3.6)

G2,4 = {
x ∈ A|ℓ1(x) = ℓ2(x) and r1(x) = r2(x)

}
.(3.7)

Set G1 := G1,1 ∪ G1,2 ∪ G1,3 and G2 := G2,1 ∪ G2,2 ∪ G2,3 ∪ G2,4. Note that G1
and G2 are disjoint and supp(µ) = G1 ∪ G2. Setting τ1 := τb1 and τ2 := τb2 we
claim that

P(Xτ1 ∈ G1,Xτ2 ∈ G2) = 0.(3.8)

Indeed, if Xτ1 ∈ G1, then Xτ1 = b1(τ1) ≥ b2(τ1) so that τ2 ≤ τ1, while if Xτ2 ∈ G2,
then Xτ2 = b2(τ2) ≥ b1(τ2) so that τ1 ≤ τ2. Since G1 and G2 are disjoint, this
shows that the set in (3.8) is empty and thus has P-probability zero as claimed.
From (3.8) we see that

P(Xτ1 ∈ G1) = P(Xτ1 ∈ G1,Xτ2 ∈ G1).(3.9)

Since Xτ1 ∼ Xτ2 this is further equal to

P(Xτ2 ∈ G1) = P(Xτ2 ∈ G1,Xτ1 ∈ G1) + P(Xτ2 ∈ G1,Xτ1 ∈ G2)(3.10)

from where we also see that

P(Xτ1 ∈ G2,Xτ2 ∈ G1) = 0.(3.11)

It follows therefore that

P(Xτ1 ∈ G2) = P(Xτ1 ∈ G2,Xτ2 ∈ G2).(3.12)

From (3.9) and (3.12) we see that the sets "1 = {Xτ1 ∈ G1,Xτ2 ∈ G1} and "2 =
{Xτ1 ∈ G2,Xτ2 ∈ G2} form a partition of " with P-probability one. Moreover, note
that for ω ∈ "1 we have Xτ1(ω) ∈ G1 so that τ2(ω) ≤ τ1(ω) and hence τb(ω) =
τ2(ω), and for ω ∈ "2 we have Xτ2(ω) ∈ G2 so that τ1(ω) ≤ τ2(ω) and hence
τb(ω) = τ1(ω). This implies that for every C ∈ B(supp(µ)) we have

P(Xτb ∈ C)

= P
({Xτ2 ∈ C} ∩ "1

) + P
({Xτ1 ∈ C} ∩ "2

)

= P(Xτ1 ∈ G1,Xτ2 ∈ C ∩ G1) + P(Xτ1 ∈ C ∩ G2,Xτ2 ∈ G2)(3.13)

= P(Xτ2 ∈ C ∩ G1) + P(Xτ1 ∈ C ∩ G2)

= µ(C ∩ G1) + µ(C ∩ G2) = µ(C),

where we also use (3.11) in the third equality. This shows that Xτb ∼ µ as claimed.
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3. To complete the proof we can now proceed as follows. Since b ≤ bi we see
that Xτb ≤ Xτbi

for i = 1,2. Moreover, since Xτb ∼ Xτbi
from the latter inequality,

we see that Xτb = Xτbi
P-a.s. for i = 1,2. As clearly this is not possible if for

some t > 0 we would have b1(t) ≠ b2(t), it follows that b1 = b2 and the proof is
complete. !

4. Minimality. In this section we show that the stopping time from Theorem 1
or Corollary 8 is minimal in the sense of Monroe; see [14], page 1294.

PROPOSITION 11 (Minimality). In the setting of Theorem 1 or Corollary 8 let
τ = τb,c with c = −∞ if supp(µ) ⊆ R+ and b = +∞ if supp(µ) ⊆ R−. Let σ be
any stopping time such that

Xσ ∼ Xτ ,(4.1)

σ ≤ τ P-a.s.(4.2)

Then σ = τ P-a.s.

PROOF. Since
∫ N

0 P(σ ≥ t) dt = E(σ ∧ N) ≤ E(τ ∧ N) = ∫ N
0 P(τ ≥ t) dt for

all N ≥ 1 by (4.2) above, we see that it is enough to show that P(σ ≥ t) ≥ P(τ ≥ t)
or equivalently

P(σ < t) ≤ P(τ < t)(4.3)

for all t > 0. For this, note that from (4.1) and (4.2) combined with the facts that
b and c are left-continuous increasing and decreasing functions, respectively, it
follows that

P(σ < t) = P
(
σ < t,Xσ ∈ (

c(t), b(t)
)) + P

(
σ < t,Xσ /∈ (

c(t), b(t)
))

≤ P
(
Xσ ∈ (

c(t), b(t)
)) + P

(
σ < t, τ ≤ σ,Xσ /∈ (

c(t), b(t)
))

= P
(
Xτ ∈ (

c(t), b(t)
)) + P

(
σ < t, τ = σ,Xσ /∈ (

c(t), b(t)
))

(4.4)

≤ P
(
τ < t,Xτ ∈ (

c(t), b(t)
)) + P

(
τ < t,Xτ /∈ (

c(t), b(t)
))

= P(τ < t)

for all t > 0, proving the claim. !

COROLLARY 12 (Uniform integrability). In the setting of Theorem 1 let τ =
τb,c with c = −∞ if supp(µ) ⊆ R+ and b = +∞ if supp(µ) ⊆ R−.

If
∫

xµ(dx) = 0, then {Bt∧τ |t ≥ 0} is uniformly integrable.(4.5)

If 0 <
∫

xµ(dx) < +∞, then {B+
t∧τ |t ≥ 0

}
is uniformly integrable.(4.6)

If −∞ <
∫

xµ(dx) < 0, then {B−
t∧τ |t ≥ 0

}
is uniformly integrable.(4.7)
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PROOF. Statement (4.5) follows by combining Proposition 11 above and The-
orem 3 in [14], page 1294. Statements (4.6) and (4.7) follow by combining Propo-
sition 11 above and Theorem 3 in [5], page 397. This completes the proof. !

PROPOSITION 13 (Finiteness). In the setting of Theorem 1 suppose that
supp(µ) ∩ R+ ≠ ∅ and supp(µ) ∩ R− ≠∅.

If sup supp(µ) < ∞, then there exists T > 0 such that b(t) = +∞
(4.8)

for all t > T if and only if −∞ ≤ ∫
xµ(dx) < 0.

If inf supp(µ) > −∞, then there exists T > 0 such that c(t) = −∞
(4.9)

for all t > T if and only if 0 <
∫

xµ(dx) ≤ +∞.

PROOF. It is enough to prove (4.8) since (4.9) then follows by symmetry. For
this, suppose first that b(t) = +∞ for all t > T with some minimal T > 0. Since
sup supp(µ) < ∞ we know that b(T ) < ∞. Set b1(t) = b(t) for t ∈ (0, T ] and
b1(t) = b(T ) for t > T . Set c1(t) = c(t) for t ∈ (0, T ] and c1(t) = c(T ) for t > T
(recall that c must be finite valued). Then |Bt∧τb1,c1

| ≤ b(T )∨ (−c(T )) < ∞ for all
t ≥ 0 so that {Bt∧τb1,c1

|t ≥ 0} is uniformly integrable and hence EBτb1,c1
= 0. Note

that Bτb,c ≤ Bτb1,c1
and moreover Bτb,c < Bτb1,c1

on the set of a strictly positive
P-measure where B hits b1 after T before hitting c1. This implies that EBτb,c <
EBτb1,c1

= 0 as claimed in (4.8) above.
Conversely, suppose that EBτb,c < 0, and consider first the case when c(t) =

−∞ for t > T with some T > 0 at which c(T ) > −∞. Set c1(t) = c(t) for t ∈
(0, T ] and c1(t) = c(T ) for t > T . Since Bτb,c1

≤ sup supp(µ) < ∞ when b is
finite valued we see that |Bt∧τb,c1

| ≤ sup supp(µ) ∨ (−c(T )) < ∞ for all t ≥ 0
so that {Bt∧τb,c1

|t ≥ 0} is uniformly integrable and hence EBτb,c1
= 0. Note that

Bτb,c ≥ Bτb,c1
so that EBτb,c ≥ 0, and this contradicts the hypothesis. Next consider

the case when c(t) > −∞ for all t ≥ 0. Set cn(t) = c(t) for t ∈ (0, n] and cn(t) =
−∞ for t > n with n ≥ 1. Set dn(t) = c(t) for t ∈ (0, n] and dn(t) = c(n) for
t > n with n ≥ 1. Then as above EBτb,dn

= 0 and since Bτb,cn
≥ Bτb,dn

, it follows
that EBτb,cn

≥ 0 for all n ≥ 1. Moreover, since Bτb,cn
≤ sup supp(µ) < ∞ for all

n ≥ 1 when b is finite valued by Fatou’s lemma, we get

EBτb,c = E lim
n→∞Bτb,cn

≥ lim sup
n→∞

EBτb,cn
≥ 0,(4.10)

and this contradicts the hypothesis. Thus in both cases we see that b cannot be
finite valued, and this completes the proof. !

5. Optimality. In this section we show that the stopping time from Theorem 1
has the smallest truncated expectation among all stopping times that embed µ into
B . The same optimality result for stopping times arising from the filling scheme
when their means are finite was derived by Chacon ([3], page 34), using a dif-
ferent method of proof. The proof we present below is based on a recent proof
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of Rost’s optimality result [21] given by Cox and Wang [6], Section 5. The ver-
ification technique we employ avoids stochastic calculus and invokes a general
martingale/Markovian result to describe the supermartingale structure. This tech-
nique applies in the setting of Corollary 8 as well and should also be of interest in
other/more general settings of this kind.

THEOREM 14. In the setting of Theorem 1 or Corollary 8 let τ = τb,c with
c = −∞ if supp(µ) ⊆ R+ and b = +∞ if supp(µ) ⊆ R−. If σ is any stopping
time such that Bσ ∼ Bτ , then we have

E(τ ∧ T ) ≤ E(σ ∧ T )(5.1)

for all T > 0.

PROOF. Let Pt,x denote the probability measure under which Pt,x(Xt = x) =
1, and consider the function H defined by

H(t, x) = Pt,x(τ ≤ T )(5.2)

for (t, x) ∈ [0, T ] × R with T > 0 given and fixed. Extend H outside [0, T ] by
setting H(t, x) = 0 for t > T and x ∈ R. Define the (right) inverse ρ of b and c by
setting

ρ(x) = inf
{
t > 0|b(t) ≥ x

}
if x ≥ b(0+)

(5.3)
= inf

{
t > 0|c(t) ≤ x

}
if x ≤ c(0+).

Then x ,→ ρ(x) is right-continuous and increasing on [b(0+),∞) and left-
continuous and decreasing on (−∞, c(0+)]. Set D = (−∞, c(0+)]∪ [b(0+),∞)
to denote the domain of ρ, and note that ρ(x) ≥ 0 for all x ∈ D.

1. For x ∈ D such that ρ(x) ≤ T and t ≤ ρ(x), we have H(s, x) = 1 for all
s ∈ [t,ρ(x)]. Hence we see that the following identity holds

ρ(x) − t =
∫ ρ(x)

t
H(s, x) ds(5.4)

whenever t ≤ ρ(x) ≤ T . Since H ≤ 1, we see that this identity extends as

ρ(x) − t ≤
∫ ρ(x)

t
H(s, x) ds(5.5)

for ρ(x) < t ≤ T . Since ρ(x)− t = (T − t)+ − (T −ρ(x))+ for t ∨ρ(x) ≤ T and
H(s, x) = 0 for s > T , it is easily verified using the same arguments as above that
(5.4) and (5.5) yield

(T − t)+ ≤
∫ ρ(x)∧T

t
H(s, x) ds + (

T − ρ(x)
)+(5.6)



2506 A. M. G. COX AND G. PESKIR

for all t ≥ 0 and x ∈ D. Let us further rewrite (5.6) as follows:

(T − t)+ ≤ F(t, x) + G(x),(5.7)

where the functions F and G are defined by

F(t, x) =
∫ T

t
H(s, x) ds,(5.8)

G(x) = (
T − ρ(x)

)+ −
∫ T

ρ(x)∧T
H(s, x) ds(5.9)

for t ≥ 0 and x ∈ D.

2. It is easily seen from definitions of τ and ρ (using that b and c are in-
creasing and decreasing, resp.) that ρ(Xτ ) ≥ τ . Combining this with the fact that
H(s, x) = 1 for all s ∈ [t,ρ(x) ∧ T ] and x ∈ D, we see that equality in (5.6) is
attained at (τ,Xτ ). Since (5.7) is equivalent to (5.6), it follows that

(T − τ )+ = F(τ,Xτ ) + G(Xτ ).(5.10)

We now turn to examining (5.7) for other stopping times.

3. To understand the structure of the function F from (5.8), define

Dt = {
(s, x) ∈ R+ × R|x ≥ b(t + s) or x ≤ c(t + s)

}
,(5.11)

and note by time-homogeneity of X that

H(t, x) = Pt,x(τ ≤ T ) = Px(τt ≤ T − t)(5.12)

for (t, x) ∈ [0, T ] × R where we set

τt = inf{s > 0|Xs ∈ Dt+s}(5.13)

with respect to the probability measure Px under which Px(X0 = x) = 1. Hence
we see that

F(t, x) =
∫ T

t
H(s, x) ds =

∫ T

t
Px(τs ≤ T − s) ds

(5.14)

=
∫ T −t

0
Px(τT −s ≤ s) ds = Ex

∫ T −t

0
Zs ds

for (t, x) ∈ [0, T ] × R where we set

Zs = I (τT −s ≤ s)(5.15)

for s ∈ [0, T − t]. Noting that each Zs is Fs-measurable where Fs = σ (Xr |0 ≤
r ≤ s), we can now invoke a general martingale/Markovian result and conclude
that

Mt := F(t,Xt) +
∫ t

0
Zs ds(5.16)
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is a martingale with respect to Ft for t ∈ [0, T ]. Indeed, for this note that by the
Markov property of X, we have

Ex(Mt+h|Ft ) = Ex

(
F(t + h,Xt+h) +

∫ t+h

0
Zs ds

∣∣∣Ft

)

= Ex

(
EXt+h

(∫ T −t−h

0
Zs ds

)
+

∫ t+h

0
Zs ds

∣∣∣Ft

)

= Ex

(
Ex

(∫ T −t−h

0
Zs ds ◦ θt+h

∣∣∣Ft+h

)
+

∫ t+h

0
Zs ds

∣∣∣Ft

)

= Ex

(∫ T

0
Zs ds

∣∣∣Ft

)
= Ex

(∫ T

t
Zs ds

∣∣∣Ft

)
+

∫ t

0
Zs ds(5.17)

= Ex

(∫ T −t

0
Zs ds ◦ θt

∣∣∣Ft

)
+

∫ t

0
Zs ds

= EXt

(∫ T −t

0
Zs ds

)
+

∫ t

0
Zs ds

= F(t,Xt) +
∫ t

0
Zs ds = Mt

for all 0 ≤ t ≤ t +h ≤ T , showing that (5.16) holds as claimed. Extend the martin-
gale M to (T ,∞) by setting Mt = MT for t > T . Since F(t, x) = 0 for t > T and
x ∈ R, this is equivalent to setting Zs = 0 for s > T in (5.16) above. Since Zs ≥ 0
for all s ≥ 0 we see from (5.16) that F(t,Xt) is a supermartingale with respect to
Ft for t ≥ 0.

4. We next note that
∫ t∧τ

0
Zs ds = 0(5.18)

for all t ≥ 0. Indeed, this is due to the fact that τT −s = inf{r > 0|Xr ∈ DT −s+r} ≥
inf{r > 0|Xr ∈ D0} = τ for all s ∈ [0, τ ∧T ) since b is increasing and c is decreas-
ing. Hence from (5.15) we see that Zs = 0 for all s ∈ [0, τ ), and this implies (5.18)
as claimed. Combining (5.16) and (5.18) we see that F(t ∧τ,Xt∧τ ) is a martingale
with respect to Ft∧τ for t ≥ 0.

5. Taking now any stopping time σ such that Xσ ∼ Xτ it follows by (5.10),
(5.18), (5.16) and (5.7) using the optional sampling theorem that

E(T − τ )+ = EF(τ,Xτ ) + EG(Xτ ) = EMτ + EG(Xσ )
(5.19)

= EMσ + EG(Xσ ) ≥ EF(σ,Xσ ) + EG(Xσ ) ≥ E(T − σ )+.

Noting that E(T − τ )+ = T − E(τ ∧ T ) and E(T − σ )+ = T − E(σ ∧ T ), we see
that this is equivalent to (5.1), and the proof is complete. !
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REMARK 15. In the setting of Theorem 1 if
∫

x2µ(dx) < ∞, then EB2
τ < ∞

and hence Eτ < ∞ since τ is minimal (Section 4). If moreover Eσ < ∞, then by
Itô’s formula and the optional sampling theorem, we know that Eσ = Eτ . When∫

x2µ(dx) = ∞, however, it is not clear a priori whether the “expected waiting
time” for τ compares favourably with the “expected waiting time” for any other
stopping time σ that embeds µ into B . The result of Theorem 14 states the remark-
able fact that τ has the smallest truncated expectation among all stopping times σ

that embed µ into B (note that this fact is nontrivial even when Eτ and Eσ are fi-
nite). It is equally remarkable that this holds for all laws µ with no extra conditions
imposed.

The optimality result of Theorem 14 extends to more general concave functions
using standard techniques.

COROLLARY 16 (Optimality). In the setting of Theorem 1 or Corollary 8, let
τ = τb,c with c = −∞ if supp(µ) ⊆ R+ and b = +∞ if supp(µ) ⊆ R−, and let
F : R+ → 5R be a concave function such that EF(τ ) exists. Then we have

EF(τ ) ≤ EF(σ )(5.20)

for any stopping time σ such that Xσ ∼ Xτ .

PROOF. By (5.1) we know that
∫ t

0
P(τ > s)ds ≤

∫ t

0
P(σ > s)ds(5.21)

for all t ≥ 0. It is easy to check using Fubini’s theorem that for any nonnegative
random variable ρ we have

EF(ρ) = F(0) −
∫ ∞

0

∫ t

0
P(ρ > s)dsF ′(dt)(5.22)

whenever F is a concave function satisfying tF ′(t) → 0 as t ↓ 0 and F ′(t) → 0
as t → ∞ where F ′ denotes the right derivative of F . Applying (5.22) to τ and σ ,
respectively, recalling that F ′(dt) defines a negative measure, and using (5.21) we
get (5.20) for those functions F . The general case then follows easily by tangent
approximation (from the left) and/or truncation (from the right) using monotone
convergence. !

REMARK 17. In addition to the temporal optimality of b and c established
in (5.20), there also exists their spatial optimality arising from the optimal stopping
problem

sup
0≤τ≤T

E
(
|Bτ | − 2

∫ Bτ

0
Fµ(x) dx

)
,(5.23)
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where Fµ denotes the distribution function of µ. Indeed McConnell ([13], Sec-
tion 5), shows that (under his conditions) the optimal stopping time in (5.23) equals

τ∗ = inf
{
t ∈ [0, T ]|Bt ≥ b(T − t) or Bt ≤ c(T − t)

}
,(5.24)

where b and c are functions from Theorem 1 (compare (5.23) with the optimal
stopping problem derived in [17]). This can be checked by the Itô–Tanaka formula
and the optional sampling theorem from the local time reformulation of (5.23) that
reads

sup
0≤τ≤T

E
(∫

R
ℓx
τ ν(dx) −

∫

R
ℓx
τµ(dx)

)
,(5.25)

where ℓ is the local time of B , and ν is a probability measure on R such that
supp(ν) ⊆ [−p,q] with µ([−p,q]) = 0 for some p > 0 and q > 0. Since the
existence and uniqueness result of Theorems 1 and 10 with B0 ∼ ν remain valid
in this case as well (recall Remark 2 and the beginning of Section 3), we see
that McConnell ([13], Section 5), implies that (under his conditions) the resulting
stopping time (5.24) is optimal in (5.25).
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