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SUMMARY

The standard approach to pricing financial derivatives is to determine the discounted,

risk-neutral expected payoff under a model. This model-based approach leaves us prone

to model risk, as no model can fully capture the complex behaviour of asset prices in

the real world.

Alternatively, we could use the prices of some liquidly traded options to deduce

no-arbitrage conditions on the contingent claim in question. Since the reference prices

are taken from the market, we are not required to postulate a model and thus the

conditions found have to hold under any model.

In this thesis we are interested in the pricing of American put options using the

latter approach. To this end, we will assume that European options on the same

underlying and with the same maturity are liquidly traded in the market. We can then

use the market information incorporated into these prices to derive a set of no-arbitrage

conditions that are valid under any model. Furthermore, we will show that in a market

trading only finitely many American and co-terminal European options it is always

possible to decide whether or not the prices are consistent with a model. If they are

not there has to exist arbitrage in the market.
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Chapter 1

Introduction

Financial markets allow individuals or entities to raise capital, mitigate risk or spec-

ulate. One way of transferring risk is to purchase an option. Options are financial

derivatives which means that their value depends on the price of an underlying such

as a stock or an index. The holder of an option is protected from disadvantageous de-

velopments in the price of the underlying asset, as an option gives the holder the right

to either buy or sell the underlying at a certain date for a pre-specified price. Options

that permit the holder to buy the underlying are termed call options, whereas options

that allow the owner to sell the underlying are referred to as put options. Moreover, we

have to distinguish between American and European-style options. American options

can be exercised at any time up to expiration. European options, in contrast, only at

the expiration date.

Although options have been traded over-the-counter for many centuries, the mathe-

matical theory behind the pricing of options was not developed before the 20th century.

In his dissertation Bachelier [1900] first derived a pricing formula for European options.

The model he used was based on the assumption that the underlying was driven by

a Brownian motion with zero drift. His work, however, was largely ignored until its

rediscovery in the late 1950s.

A major problem of a model driven by Brownian motion is that the value of the

underlying has a positive probability of being negative. To resolve this issue Samuelson

[1965] suggested the use of geometric Brownian motion instead of ordinary Brownian

motion; that is, he assumed that the underlying price process is given by

St = S0 exp

{(

µ−
σ2

2

)

t + σWt

}

where S0 is the current price of the underlying, µ the drift, σ the volatility and Wt

a Brownian motion. In this setting Black and Scholes [1973] constructed a dynamic

and self-financing trading strategy to hedge financial derivatives and deduced that the

initial cost of the hedging portfolio had to be the no-arbitrage price. Despite the fact
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Chapter 1. Introduction

that some of the modelling assumptions (e.g. the ability to trade continuously and

without transaction costs) clearly do not apply to real world markets, the model has

been very successful as it provides simple, explicit pricing formulae for many finan-

cial derivatives. Extending the ideas of Black and Scholes, Harrison and Kreps [1979]

and Harrison and Pliska [1981] showed that the price for any contingent claim Φ can

be determined as the discounted expected payoff under the (risk-neutral) equivalent

martingale measure, that is

V (x) = Ex[e−rtΦ(St)].

Compared to European options it is much harder to find a fair price for American

options as the payoff of the option is path-dependent. An exception is the American

call option on a non-dividend paying asset for which early exercise is never optimal

as demonstrated for example in Björk [2009, p.111-112], implying that its price has to

equal the price of the corresponding European option. For the American put option

this is not the case and we are required to solve the optimal stopping problem

V (x) = sup
τ

Ex

[

e−rτ (K − Sτ )+
]

.

In the Black-Scholes model, an explicit solution to this problem for American put

options with infinite horizon can be derived, see for example Peskir and Shiryaev [2006,

p.377]. If the horizon is finite no closed-form solution is available and we have to resort

to numerical methods to find the price.

1.1 Robust pricing of derivatives

A major flaw of the model-based approach is that it exposes us to model risk; that is,

the risk that the model in use is not able to capture the real world behaviour of the

underlying correctly.

An alternative approach to the pricing of financial derivatives is to identify models

consistent with a set of observed prices. Since it is hard to determine the entire set of

models, one generally has to be content with finding extremal models. These can then

be used to provide upper and lower bounds on the prices of more exotic derivatives.

Moreover, we can ask if there exists arbitrage in case the prices are not consistent with

any model.

According to the work of Breeden and Litzenberger [1978] the marginal distribution

of the underlying at time T can be deduced from the prices of European call (or put)

options with maturity T (see Section 1.3 for details). Note further that unlike in the

model-based approach a change of measure is not required to price derivatives, as the

marginal distribution obtained is already given under the measure used by the market

3



Chapter 1. Introduction

for pricing. If we now denote the call prices as a function of the strike by Ec, then

Davis and Hobson [2007] showed that Ec has to satisfy the following conditions to

guarantee absence of arbitrage: Ec is non-negative, decreasing and convex, Ec(0) = S0,

E′
c(0+) ≥ −1 and limK→∞Ec(K) = 0, where S0 is the current price of the underlying.

Without any assumptions on the underlying model, we are able to determine the

prices for derivatives depending only on the marginal distribution at time T . For path-

dependent options the law, inferred by the call prices for a single maturity T , is not

enough to render a unique price. However, Hobson [1998] found that he could con-

struct model-independent upper and lower bounds on the prices of lookback options by

studying extremal models that were consistent with the given law at time T . Assuming

that the (discounted) price process is a martingale, the Dambis-Dubins-Schwarz Theo-

rem (see Section 1.3) implies that the candidate process is a time change of Brownian

motion and we are thus left to find a stopping time such that the stopped Brownian

motion has the law induced by the prices of call options at time T . The problem of

finding the stopping time at which a Brownian motion has a given law is referred to as

the Skorokhod embedding problem, as it was first introduced and solved by Skorokhod

[1965]. An extensive survey on the existing solutions of the Skorokhod embedding

problem is given in Ob lój [2004]. The connections between model-independent option

pricing and the Skorokhod embedding problem is discussed in detail in Hobson [2011].

Since Hobson [1998] suggested the use of Skorokhod embedding techniques for the

pricing of derivatives, the approach has been applied to a growing number of different

pricing problems. Brown et al. [2001] provided price bounds along with a hedging

strategy for one-sided barrier options. Davis and Hobson [2007] found no-arbitrage

conditions on European call prices for a fixed maturity date and extend the result

to the case where call prices for multiple maturities are known. In the papers by

Cox and Ob lój [2011b,a] robust prices on two-sided barrier options are given, whereas

Cox and Wang [2012, 2013] build on results by Dupire [2005] and Carr and Lee [2010]

to derive sub and super-hedging strategies for variance options.

The bounds obtained, even though mostly too wide to be used as prices, provide

some interesting insights. Oftentimes simple sub- and super-hedges that hold under

any model can be deduced from the construction of the bounds. Being semi-static

these trading strategies tend to have lower transaction costs than dynamic hedging

strategies. Moreover, we can use the bounds to evaluate portfolio positions in extreme

market situations in which it would be hard to argue that a specific model holds (see

Cox [2014]). It is also possible to deduce structural properties of the option prices from

their bounds. For example, in the case of American options the price for a co-terminal

European option with the same strike is a lower bound. The difference between the

prices then tells us how valuable the early exercise feature is under the current model.

4



Chapter 1. Introduction

1.2 Outline

This thesis is dedicated to the derivation of model-independent no-arbitrage conditions

on American put options.

Chapter 1.3. In the Preliminaries we discuss the connection between model-free

price bounds on derivatives and the Skorokhod embedding problem in detail. We in-

troduce the ’Chacon-Walsh’ solution to the Skorokhod embedding problem, which we

will use in Chapter 2 to argue that given prices are consistent with a model if certain

no-arbitrage conditions hold.

Chapter 2. The main result in this chapter concerns necessary and sufficient

conditions for the absence of arbitrage in markets trading American and co-terminal

European put options: specifically, we give four conditions which we show to be nec-

essary and sufficient. Since Davis and Hobson [2007] provide no-arbitrage conditions

for European put options, we are only interested in finding conditions on the prices of

American options in terms of the European prices.

In Section 2.2 simple trading strategies are used to prove the existence of arbitrage

whenever one of the conditions is violated. Moreover, we argue in Section 2.3 that these

conditions are also sufficient in the case where only finitely many American and Euro-

pean options are traded. To this end we develop a recursive algorithm that generates a

market model for any (finite) set of prices satisfying the no-arbitrage conditions. The

algorithm will divide the price functions in each iteration into two new pairs of functions

that can be interpreted as independent sets of American and co-terminal European op-

tion prices with a later start date. At the same time, we can extend the underlying

price process up to the current splitting time. Ultimately, the problem will be reduced

to a setting in which the price functions can be represented by a trivial model and we

obtain a price process that reproduces the given American and European option prices.

Chapter 3. Based on the result in Theorem 2.3.10 we know that the conditions

given in Lemma 2.2.1 and Theorem 2.2.3 guarantee the absence of model-independent

arbitrage in markets trading only in finitely many American and co-terminal European

put options. It is not enough, however, to determine whether these conditions are

satisfied by the piecewise linear interpolations between the prices of the traded options.

Thus we will address in Chapter 3 the problem of finding a suitable algorithm for

the construction of American and European price functions complying with the no-

arbitrage conditions. Moreover, we will be able to give explicit arbitrage portfolios

should the algorithm fail to produce admissible price functions.

5



Chapter 1. Introduction

1.3 Preliminaries

We begin with a more detailed discussion on the connection between the problem of

finding model-independent option price bounds and solutions to the Skorokhod em-

bedding problem. The following result on which this approach is based is due to

Breeden and Litzenberger [1978] and states that the marginal distribution at a fixed

time T can be computed from the European call option prices with maturity T .

Lemma 1.3.1. Suppose that European call options with maturity T are traded in the

market at any strike K ∈ (0,∞). Let us furthermore assume that their prices are

computed as the discounted expected payoff under the probability measure Q, that is,

for any K ∈ (0,∞)

C(K) = e−rTEQ [(ST −K)+] .

Then we have

Q(ST > K) = erT
∣

∣

∣

∣

∂

∂K
C(K+)

∣

∣

∣

∣

and under the assumption that C is twice differentiable

Q(ST ∈ dK) = erT
∂2

∂K2
C(K)

has to hold.

Under the assumption that the underlying price process is a martingale, the follow-

ing theorem implies that the candidate process for the underlying can be represented

as a time change of Brownian motion with a given distribution at a stopping time. For

a proof of this result we refer the reader to Karatzas and Shreve [1998, p.174-175].

Theorem 1.3.2. (Dambis-Dubins-Schwarz) Let M = {Mt,Ft; 0 ≤ t < ∞} be a

continuous local martingale that satisfies limt→∞〈M〉t = ∞ P-a.s. Define, for each

0 ≤ s < ∞, the stopping time T (s) = inf{t ≥ 0; 〈M〉t > s}.

Then the time-changed process

Bs = MT (s),G = FT (s); 0 ≤ s < ∞

is a standard one-dimensional Brownian motion. In particular, the filtration {G} sat-

isfies the usual conditions and we have P-a.s. Mt = B〈M〉t for 0 ≤ t < ∞.

From this we can conclude that 〈M〉T is a solution to the Skorokhod embedding

problem. More importantly, it is possible to use a solution τ to the Skorokhod embed-

ding problem, Bτ ∼ µ, to obtain a martingale

Mt = B t
T−t

∧τ

6



Chapter 1. Introduction

with MT ∼ µ.

1.3.1 The potential picture

One type of approach to generate solutions to the Skorokhod embedding problem is

to use the 1-1 correspondence between a probability measure with finite first moment

and its potential. For this purpose we define the potential, using the notation in Ob lój

[2004], and point out some immediate consequences of the definition.

Definition 1.3.3. Denote by M1 the set of probability measures on R with finite first

moment, that is µ ∈ M1 iff
∫

|x|µ(dx) < ∞. Let M1
m denote the subset of measures

with expectation equal to m. The one-dimensional potential operator U acting from M1

into the space of continuous, non-positive functions, U : M1 → C(R,R−), is defined

through Uµ(x) = −
∫

R
|x− y|µ(dy) and we will refer to Uµ as the potential of µ.

Moreover, we will use the notation µn ⇒ µ to indicate that the sequence of mea-

sures (µn)n∈N converges weakly to the measure µ. Following Ob lój [2004] we present

important properties of the potential, for which proofs can be found in Chacon [1977]

and Chacon and Walsh [1976].

Proposition 1.3.4. For a probability measure µ ∈ M1
m, m ∈ R, the potential of µ,

Uµ, satisfies the following properties:

(i) Uµ is concave and Lipschitz-continuous with parameter 1.

(ii) Uµ(x) ≤ Uδm(x) = −|x − m| and for ν ∈ M1 the inequality Uν ≤ Uµ implies

ν ∈ M1
m.

(iii) For µ, ν ∈ M1
m, lim|x|→∞ |Uµ(x) − Uν(x)| = 0.

(iv) For µn ∈ M1
m, n ∈ N, µn ⇒ µ if and only if Uµn(x) → Uµ(x) pointwise for all

x ∈ R.

(v) Consider a Brownian motion with initial law B0 ∼ ν. Denoting the exiting time

of an interval [a, b] by Ta,b = inf{t ≥ 0 : Bt /∈ [a, b]} and setting ρ ∼ BTa,b
it

follows that Uρ|(−∞,a]∪[b,∞) = Uν|(−∞,a]∪[b,∞) and that Uρ is linear on [a, b].

(vi) For any x ∈ R, µ((−∞, x]) = 1
2(1 − (Uµ)′(x+)) and µ((−∞, x)) = 1

2(1 −

(Uµ)′(x−)).

1.3.2 The Chacon-Walsh solution to the Skorokhod embedding prob-

lem

The results in the previous section were used by Chacon and Walsh [1976] to construct

the following solution to the Skorokhod embedding problem. Suppose we want to

7



Chapter 1. Introduction

embed a probability measure µ ∈ M1
m. The idea is to create a sequence of probability

measures (µn)n∈N with mean m such that their potentials converge pointwise to the

potential of µ. We can then conclude from (iv) in Proposition 1.3.4 that the measures

µn have to converge weakly to the measure µ and the stopping time embedding the

target distribution µ into Brownian motion will be given by a limiting procedure of the

stopping times embedding the distributions µn, n ∈ N.

Let us begin by pointing out that, according to Proposition 1.3.4 (ii), the potential

of µ has to satisfy the inequality Uµ(x) ≤ Uδm(x) for any x ∈ R. We can then choose

(for any non-trivial measure µ) an arbitrary x1 ∈ R for which Uµ(x1) < Uδm(x1) and

determine the tangent at x1 to the function Uµ (see Figure 1-1). This tangent, given

Uµ

Uµ1

a1 b1x1 m

Figure 1-1: Potential picture of Uδm, Uµ1 and Uµ.

by t1(x) = (Uµ)′(x1)(x − x1) + Uµ(x1), will intersect with the potential Uδm in two

points a1 and b1, say, where a1 < m < b1. Moreover, it allows us to define for any

x ∈ R a new potential

Uµ1(x) = Uδm(x)1{x∈(−∞,a1)∪(b1,∞)} + t1(x)1{x∈[a1,b1]}

belonging to a probability measure µ1 with mean m that satisfies Uµ(x) ≤ Uµ1(x) ≤

Uδm(x) for any x ∈ R. Since the potential Uµ1 is a piecewise linear function that

only has kinks at a1 and b1 we can conclude from Proposition 1.3.4 (vi) that the

corresponding measure µ1 consists only of two atoms, one at a1 and the other one

at b1. This distribution can be easily embedded into Brownian motion, as it can be

interpreted as the first exiting time of the interval [a1, b1] by a Brownian motion starting

in m at time zero.

In the next step we will choose a second point x2, x2 6= x1, at which we compute

the tangent t2 to the function Uµ. This time, however, we determine the points a2 and

b2 where t2 intersects with the potential Uµ1 instead of Uδm (see Figure 1-2). Note

8



Chapter 1. Introduction

Uµ

Uµ2

a1 b1a2 b2x1 x2m

Figure 1-2: Potential picture of Uδm, Uµ2 and Uµ.

that in the case where x2 > x1 we will have a2 < b1 < b2, while for x2 < x1 we find

that a2 < a1 < b2. As before, we can interpret the function

Uµ2(x) = Uµ1(x)1{x/∈[a2,b2] + t2(x)1{x∈[a2,b2]}

as the potential of a measure µ2. This measure will have 3 atoms and can be embedded

using the stopping time Ta1,b1 + Ta2,b2 · θTa1,b1
, where θ is the standard shift operator.

Iterating this procedure will yield a sequence of potentials (Uµn)n∈N that converges

pointwise to the potential Uµ, as any concave function can be represented as the

infimum over a countable set of linear functions (see Williams [2010, §6.6]). Moreover,

we know from Proposition 1.3.4 (iv) that the measures µn converge weakly to the

measure µ. The stopping time embedding the measure µ is therefore obtained as the

limit (as n → ∞) of

Ta1,b1 + Ta2,b2 · θTa1,b1
+ Ta3,b3 · θTa2,b2

+ ... + Tan,bn · θTan−1,bn−1
.

1.3.3 Connecting the potential of a measure to option prices

In this section we highlight the 1-1 correspondence between prices of European call

option with maturity T and the potential of the marginal distribution of the underlying

at time T .

Proposition 1.3.5. Suppose the prices for European call options with maturity T

are determined as the discounted expected payoff under the probability measure µ with

mean S0e
rT . Denoting the potential of the measure µ by Uµ and the current price of

the underlying by S0 the following equality

Uµ(x) = erT (S0 − 2C(x)) − x

9
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has to hold.

Proof. We begin by noting that

|x− y| = (x− y)+ + (y − x)+. (1.1)

Let us now replace the variable y by the random variable Y which we assume to

have distribution µ. Taking expectations and multiplying by −1 the equation in (1.1)

becomes

Uµ(x) = −

∫ x

−∞
(x− y)µ(dy) − C(x)erT

= −

∫ ∞

−∞
(x− y)µ(dy) −

∫ ∞

x
(y − x)µ(dy) − C(x)erT

= erT (S0 − 2C(x)) − x.

Due to Lemma 1.3.1 and Proposition 1.3.5 it is possible to use the call price picture

(see Figure 1-3) to construct solutions to the Skorokhod embedding problem whenever

the law is given by European call prices. This way we can construct solutions to the

Skorokhod embedding problem in a financial setting.

S0

S0e
rT0

C(K)

K

Figure 1-3: Call price picture with no-arbitrage bound (S0 −Ke−rT )+.

Moreover, put-call parity, a model-independent feature of European option prices

linking put prices P and call prices C via C(K) − P (K) = S0 − e−rTK, allows us to

generate solutions to the Skorokhod embedding problem in the put price picture. The

difference between the call and put picture being that the put prices are increasing in

10



Chapter 1. Introduction

K and that the lower no-arbitrage bound is given by (Ke−rT − S0)+.

1.3.4 Arbitrage in the model-free setting

Since we are interested in drawing conclusions about derivative prices that hold under

a wide class of models we do not specify a probability measure. This, in turn, implies

that we cannot use the standard definition of arbitrage any longer. It is therefore

necessary that we provide a different type of arbitrage, one that is independent of the

probability measure. For that purpose we will introduce model-independent arbitrage,

as defined in Davis and Hobson [2007]. To do that, we first have to explain what a

semi-static portfolio is.

Definition 1.3.6. A portfolio is semi-static if it involves a fixed position in traded

options at time zero and if the position in the underlying asset can only be modified at

finitely many times.

Definition 1.3.7. There is a model-independent arbitrage if we can form a semi-static

portfolio in the underlying asset and the options such that the initial portfolio value is

strictly negative, but all subsequent cash-flows are non-negative.

The lack of model-independent arbitrage, however, does not imply that there exists

a model consistent with given prices. To guarantee this, we require the absence of a

second type of arbitrage, termed weak arbitrage by Davis and Hobson [2007].

Definition 1.3.8. There is a weak arbitrage opportunity if there is no model-independent

arbitrage, but, given the null sets of the model, there is a semi-static portfolio such

that the initial portfolio value is non-positive, but all sub-sequent cash-flows are non-

negative, and the probability of a positive cash-flow is non-zero.

In the following example we will demonstrate the difference between model- inde-

pendent arbitrage and weak arbitrage.

Example 1.3.9. Suppose that European put options with strike Ki are traded at price

Pi, i = 1, 2 and that K1 < K2. If P1 > P2 there exists model-independent arbitrage,

as we can make an initial profit selling short a European option with strike K1 and

purchasing a European option with strike K2 while at maturity the payoff of the option

with strike K2 will dominate the payoff of the option with strike K1.

In the case where both options trade for the same price the portfolio no longer has

negative cost and thus a model-independent arbitrage portfolio does not exists. However,

in a model where P(ST < K2) > 0 the same portfolio has a non-zero probability of a

positive cash-flow. In a model where P(ST < K2) = 0 this portfolio has no chance of

giving a positive payoff, then again we can simply sell a European option with strike K1

to make a profit, as the option will not be exercised at maturity. We have thus shown

that there exists weak arbitrage if both options have the same price.

11



Chapter 2

Model-independent no-arbitrage

conditions on American put

options

(This work has appeared in Cox and Hoeggerl [2013])

We consider the pricing of American put options in a model-independent

setting: that is, we do not assume that asset prices behave according to

a given model, but aim to draw conclusions that hold in any model. We

incorporate market information by supposing that the prices of European

options are known.

In this setting, we are able to provide conditions on the American put

prices which are necessary for the absence of arbitrage. Moreover, if we fur-

ther assume that there are finitely many European and American options

traded, then we are able to show that these conditions are also sufficient.

To show sufficiency, we construct a model under which both American and

European options are correctly priced at all strikes simultaneously. In par-

ticular, we need to carefully consider the optimal stopping strategy in the

construction of our process.

2.1 Introduction

The standard approach to pricing contingent claims is to postulate a model and to

determine the prices as the discounted expected payoffs under some equivalent risk-

neutral measure. A major problem with this approach is that no model can capture

the real world behaviour of asset prices fully and this leaves us prone to model risk.

An alternative to the model-based approach is to try to ask: when are observed prices

consistent with some model? When there is no model which is consistent with observed

12
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prices, it can often then be shown that then there exists an arbitrage which works under

all models. Since these properties hold independently of any model, we shall refer to

such notions as being model-independent.

The basis of the model-independent approach, which we follow and which can be

traced back to the insights of Breeden and Litzenberger [1978], is to suppose Euro-

pean call options are sufficiently liquidly traded that they are no longer considered

as being priced under a model, but are obtained exogenously from the market. Ac-

cording to Breeden and Litzenberger [1978] call prices for a fixed maturity date T can

then be used to recover the marginal distribution of the underlying at time T . This

way contingent claims depending only on the distribution at the fixed time T can be

priced without having made any assumptions on the underlying model. Hobson [1998]

first observed that, by considering the possible martingales which are consistent with

the inferred law, one can often infer extremal properties of the class of possible price

processes, and then use these to deduce bounds on the prices of other options on the

same underlying when using the European option prices as hedging instrument. This

approach has been extended in recent years to pricing various path-dependent options

using Skorokhod embedding techniques. Hobson [1998], for example, determined how

to hedge lookback options. Brown et al. [2001] showed how to hedge barrier options.

Davis and Hobson [2007] determined the range of traded option prices for European

calls, whereas Cox and Ob lój [2011a,b] found robust prices on double touch and no-

touch barrier options, and Cox and Wang [2012] have extended results of Dupire [2005]

and Carr and Lee [2010] regarding options on variance. We refer to Hobson [2011] for

an overview of this literature. Recently, Galichon et al. [2011] applied the Kantorovich

duality to transform the problem of superhedging under volatility uncertainty to an op-

timal transportation problem, where they managed to recover the results from Hobson

[1998] for lookback options.

In this paper, we will be interested in the prices of American put options, and

in particular, whether a given set of American put prices and co-terminal European

put prices are consistent with the absence of model-independent arbitrage. Our only

financial assumptions are that we can buy and sell both types of derivatives initially

at the given prices, and that we can trade in the underlying frictionlessly a discrete

number of times. Under these conditions, we are able to give a set of simple conditions

on the prices which, if violated, guarantee the existence of an arbitrage under any

model for the asset prices. In addition, we show that these conditions are sufficient in

the restricted setting where only finitely many European and American options trade.

Specifically, given prices which satisfy our conditions, we are able to produce a model

and a pricing measure that reproduce these prices. Clearly, the restriction to a finite

number of traded options is not a significant restriction for practical purposes.

Several authors have considered arbitrage conditions on American options in the

13
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model-free setting. Closely related to our work is the work of Ekström and Hobson

[2009], who determine a time-homogeneous stock price process consistent with given

perpetual option prices, and the subsequent generalisation to a wider class of optimal

stopping problems by Hobson and Klimmek [2011], however both these papers work

under the assumption that the price process lies in the class of time-homogenous dif-

fusions, an assumption that we do not make. Also of relevance is a working paper

of Neuberger [2009], who found arbitrage bounds for a single American option with a

finite horizon through a linear programming approach. Neuberger takes as given the

prices of European options at all maturities, rather than a single maturity as we do, and

is able to relate the range of arbitrage-free prices to solutions of a linear programming

problem. Although we only consider prices with a single common maturity date, the

conclusions we provide are more concrete. Finally, Shah [2006] has obtained an upper

and lower bound on an American put option with fixed strike from given American put

options with the same maturity, but different strikes. He does not consider the impact

of co-terminal European options, and his resulting conditions are therefore easily shown

to be satisfied by some model in a one-step procedure.

The main results in this paper therefore concern necessary and sufficient conditions

for the absence of arbitrage in quoted co-terminal European and American options:

specifically, we are able to give four conditions which we show are necessary and together

are sufficient. It is well known (e.g. Davis and Hobson [2007] or Carr and Madan

[2005]) which conditions must be placed on European put options for the absence of

model-independent arbitrage, so we are interested only in conditions on the American

options in terms of the European prices. Three of the conditions are not too surprising:

there are known upper and lower bounds, and the American prices must be increasing

and convex. However we also establish a fourth condition in terms of the value and the

gradient of the European and American options, which we have not found elsewhere

in the literature. This condition also has a natural representation in terms of the

Legendre-Fenchel transform.

To establish that our conditions are necessary for the absence of model-independent

arbitrage, we show that there exists a simple strategy that creates an arbitrage should

any of the conditions be violated. It turns out to be much harder to show that our

conditions are sufficient: to do this, it is necessary for us to specialise to the case where

there are only finitely many traded options, and in this setting, we are able to construct

a model under which all options are correctly priced. This requires us both to con-

struct a price process, and to keep track of the value function of an optimal stopping

problem. The description of this process will comprise a large amount of the content

of this chapter. While this approach is in spirit close to many of the papers which ex-

ploit Skorokhod embedding technologies (e.g. Cox and Ob lój [2011a,b], Cox and Wang

[2012], Hobson [1998]), there are also a number of differences: specifically, that we do
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not use a time-changed Brownian motion, nor do we attempt to construct an ‘extremal’

embedding; rather, the embedding step will form a fairly small part of the description

of our overall construction.

The construction of the process which attains a given set of prices is described by

means of an algorithm: from a set of possible American and European put prices, we

shall describe how the prices may be ‘split’ into two new pairs of functions, which can

then be considered as independent sets of European and American prices at a later

time. By repeated splitting, we are able to show that the problem eventually reduces

to a trivial model which we can describe easily. From this recursive procedure, we are

able to reconstruct a process which satisfies all our required conditions. It will turn

out that the price process we recover is fairly simple: the price will grow at the interest

rate until a non-random time, at which the price jumps to one of two fixed levels. This

splitting continues until the maturity date, when it jumps to a final position.

The conditions that we derive should be of interest both for theoretical and practical

purposes. They are important for market makers and speculators alike, as a violation

of the conditions represents a clear misspecification in the prices under any model,

allowing for arbitrage which can be realised using a simple semi-static trading strategy.

Our conditions also present simple consistency checks that can be applied to verify

that the output of any numerical procedure is valid, and to extrapolate prices which

are not quoted from existing market data. In addition, the results we present can

also be used as a mechanism to provide an estimate of model-risk associated with a

particular position in a set of American options.

The rest of the chapter is organised as follows. In Section 2.2 we discuss the nec-

essary conditions and show that a violation of any of these conditions leads to model-

independent arbitrage. In Section 2.3 we will then argue that for any given set of

prices A and E that satisfy the necessary conditions there exists a model and a viable

price process, hence the conditions also have to be sufficient for the absence of model-

independent arbitrage. The Appendix contains some additional proofs that would have

only impaired the reading fluency of the paper.

2.2 Necessary conditions for the American put price func-

tion A

Assume we are given an underlying asset S which does not pay dividends and which

may be traded frictionlessly. In addition, we may hold cash which accrues interest at

a constant rate r > 0. Furthermore, we will be able to trade options on the underlying

at given prices at time 0 only, and these options will always have a common maturity

date T .

As we are interested in model-independent behaviour we do not begin by specifying
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a model or probability measure. It is therefore not immediately clear what arbitrage

or the absence of arbitrage means. Along the lines of Davis and Hobson [2007], we say

that there exists model-independent arbitrage if we can construct a semi-static portfolio

in the underlying and the options that has strictly negative initial value and only non-

negative subsequent cashflows. Further we consider a portfolio to be semi-static if it

involves holding a position in the options and the underlying, where the position in

the options was fixed at the initial time and the position in the underlying can only be

altered finitely many times by a self-financing strategy.

There are situations where no model-independent arbitrage opportunities exist,

but where we still can find a semi-static portfolio such that the initial portfolio value is

non-positive, all subsequent cashflows are non-negative and the probability of a positive

cashflow is non-zero, if only the null sets of the underlying model are known. These

trading strategies were termed weak arbitrage in Davis and Hobson [2007].

We will consider two cases, one where we are given European put option prices

at a finite number of strikes and one where we are given a European price function

E for all strikes K ≥ 0. When there are only finitely many option prices given we

shall assume that the European Call prices satisfy the conditions given in Theorem 3.1

of Davis and Hobson [2007] — that is, that there is neither a model-independent, nor

a weak arbitrage. It follows from the absence of model-independent arbitrage that

Put-Call parity has to hold.

To obtain a European put price function E from the given option prices E(K1),

E(K2),..., E(Kn) we proceed as follows. First, we note that European put options with

strike zero have to satisfy E(0) = 0, as their payoff will always be zero. Furthermore,

we have that the given option prices satisfy E(Ki) ≥ e−rTKi − S0 for all i = 1, ..., n.

We will now argue that the case where E(Ki) > e−rTKi − S0 for all i = 1, ..., n can

be reduced to the case where E(Kn) = e−rTKn − S0 holds. To this end, let us assume

that E(Ki) > e−rTKi − S0 for all i = 1, ..., n. It is then possible to extend the set of

strikes by a final strike Kn+1 for which we set E(Kn+1) = e−rTKn+1−S0. In order for

the European option prices to satisfy the no-arbitrage conditions below, it is necessary

that the last strike Kn+1 is chosen such that

Kn+1 ≥
(E(Kn) + S0)Kn−1 − (E(Kn−1) + S0)Kn

E(Kn) − E(Kn−1) − e−rTKn + e−rTKn−1
,

where the term on the right hand-side is the strike at which the linear function

(E(Kn) − E(Kn−1))(K −Kn−1)/(Kn −Kn−1) + E(Kn−1)

intersects with the lower bound e−rTK − S0. We can therefore assume, without loss

of generality, that we are always given a set of European prices where the right-

most price lies on the lower bound e−rTK − S0. The European put option prices
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E(K0), E(K1), ..., E(Kn+1) can then be extended to a continuous function on the pos-

itive reals by interpolating linearly between the given option prices on [0,Kn+1] and

setting E(K) = e−rTK − S0 for any K ≥ Kn+1.

From Davis and Hobson [2007] we can then derive the following conditions on the

European put price function E that have to be satisfied for any positive strike K to

guarantee the absence of model-independent arbitrage.

Lemma 2.2.1. Suppose the prices of European put options with maturity T are given

for a finite number of strikes K1, ...,Kn. Denote the European put option prices as a

function of the strike K by E, where E is constructed as explained above. Then the

European put prices are free of model-independent and weak arbitrage opportunities if

and only if the following conditions are satisfied:

1. The European put price function E is increasing and convex in K.

2. The function (e−rTK − S0)+ is a lower bound for E.

3. The function e−rTK is an upper bound for E.

4. For any K ≥ 0 with E(K) > e−rTK − S0 we have E′(K+) < e−rT .

Here S0 is the current price of the underlying asset.

In the situation where European put prices are given for all positive strikes we can

replace the fourth condition of Lemma 2.2.1 by |E(K)− (e−rTK−S0)| → 0 as K → ∞

under the assumption that there is no weak free lunch without vanishing risk (for details

see Cox and Ob lój [2011a]).

Returning to the situation where there are finitely many strikes given we can con-

clude due to Breeden and Litzenberger [1978] that these conditions are sufficient to

imply the existence of a probability measure µ on R+ such that

E(K) =

∫

(e−rTK − x)+µ(dx).

In addition, the following result has to hold.

Lemma 2.2.2. If there exists a probability measure µ on R+ such that
∫

xµ(dx) = S0

and E(K) =
∫

(e−rTK − x)+µ(dx), then the European put price function E satisfies

the conditions of Lemma 2.2.1.

Proof. The first condition follows from the fact that µ is a probability measure and

that the integrand (e−rTK − x)+ of E is increasing and convex. The lower bound is

obtained by applying Jensen’s inequality to the convex function x 7→ (e−rTK − x)+,

whereas the upper bound follows from (e−rTK − x)+ ≤ e−rTK as µ is only defined on

R+.
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In the case of the fourth condition we will prove the contrapositive. Note that

E′(K+) = e−rT
∫

1[0,e−rTK](x)µ(dx). Since µ is a probability measure and we assume

that there exists a K∗ with E′(K∗+) ≥ e−rT we can conclude that µ([0, e−rTK∗]) = 1,

hence for any K ≥ K∗ we must have

E(K) =

∫

(e−rTK − x)µ(dx) = e−rTK − S0,

which completes the proof.

Under these assumptions we are now able to state the main result of this section,

Theorem 2.2.3, which will give us conditions on A that necessarily have to be fulfilled

for A to be an arbitrage-free American put price function, assuming we are given the

prices of co-terminal European put options satisfying the conditions above.

Theorem 2.2.3. If A is an arbitrage-free American put price function then it must

satisfy the following conditions:

(i) The American put price function A is increasing and convex in K.

(ii) For any K ≥ 0 we have

A′(K+)K −A(K) ≥ E′(K+)K − E(K).

(iii) The function max{E(K),K − S0} is a lower bound for A(K).

(iv) The function E(erTK) is an upper bound for A(K).

With the exception of (ii), these properties are not too surprising: it is well known

that the American put price must be convex and increasing, and it is also clear that the

price of the American option must dominate both the corresponding European option,

and its immediate exercise value. The upper bound given in (iv) appears to date back

to Margrabe [1978]. Although he works in the Black-Scholes setting, his arguments

hold also in the general case under consideration here.

Remark 2.2.4. (i) Recall that the Legendre-Fenchel transform of a function f : R →

R is given by f∗(k) = supx∈R{kx− f(x)}, so we can rewrite the second condition

of Theorem 2.2.3 as

A∗(A′(K+)) ≥ E∗(E′(K+)) (2.1)

for all K ≥ 0. This can be seen by rewriting f∗(k) = − infx∈R{f(x) − kx} and

noting that the function f is given for x ≥ 0, and is non-negative, increasing and

convex in our case.
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(ii) It follows directly from condition (ii) of Theorem 2.2.3 that the early exercise

premium A−E has to be increasing, as A′(K) −E′(K) ≥ A(K)−E(K)
K is positive.

However, these statements are not equivalent, and there exist examples where

the early-exercise premium is increasing, and the other necessary conditions are

satisfied, but condition (ii) of the theorem fails.

Proof of Theorem 2.2.3. We will prove each statement separately using model-inde-

pendent arbitrage arguments. To see that the American put price function A has to

be increasing in the strike K we will assume the contrary so that we have A(K1) >

A(K2) for any two positive strikes K1 < K2. We can then make an initial profit of

A(K1) − A(K2) by short selling an American put option with strike K1 and buying

an American put option with strike K2. To guarantee that any subsequent cashflow is

positive we only have to close out the long position when the American with strike K1 is

exercised, leaving us with K2 −K1 > 0. We can then conclude that the function A(K)

has to be increasing in K, since there would be an arbitrage opportunity otherwise.

As in the case before we will prove that the function A has to be convex by assuming

that αA(K1) + (1 − α)A(K2) < A(αK1 + (1 − α)K2) for some α ∈ [0, 1] and K1 < K2

holds. This way a portfolio consisting of a short position in an American put option

with strike αK1 + (1−α)K2 and a long position of α units in an American put option

with strike K1 and (1−α) units in an American put option with strike K2 has strictly

negative initial cost. If we close out the long positions when the counterparty in the

short contract exercises we have at the time of exercise, denoted τ , at least

α(K1 − Sτ ) + (1 − α)(K2 − Sτ ) + (Sτ − (αK1 + (1 − α)K2)) = 0.

Therefore absence of arbitrage implies that A(K) has to be convex in K.

As proved in Lemma 2.5.1 we have that the condition in (ii) is equivalent to

1

ǫ
(A(K + ǫ) −A(K)) −

1

K
A(K) ≥

1

ǫ
(E(K + ǫ) −E(K)) −

1

K
E(K) (2.2)

for all K ≥ 0 and any ǫ > 0. Suppose the condition in (2.2) is violated, then we can

make an initial profit by selling 1
ǫ units of E(K + ǫ) and K+ǫ

Kǫ units of A(K), while

buying 1
ǫ units of A(K + ǫ) and K+ǫ

Kǫ units of E(K).

Suppose now that the shorted American was exercised at time τ , where we then

also exercised the long American to obtain at maturity T a cashflow of

1

ǫ

[

(er(T−τ)(K + ǫ) − ST ) − (K + ǫ− ST )+

]

−
K + ǫ

Kǫ

[

(er(T−τ)K − ST ) − (K − ST )+

]

,
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which is equal to



















1
KST , ST ≥ K + ǫ

K+ǫ
Kǫ (ST −K) , ST ∈ [K,K + ǫ]

0 , ST ≤ K,

implying arbitrage. If the shorted American is not exercised, exercising the long Amer-

ican at maturity will cover the short position in the European.

To obtain the upper bound we suppose E(erTK) < A(K). We sell the American

option with strike K, and buy the European with strike erTK, making an initial profit

of A(K) − E(erTK). If the shorted American is not exercised we are guaranteed

a positive cashflow from the long position in the European. In the case where the

American is exercised at time τ it generates a cashflow (ST −Ker(T−τ)) at maturity.

Further we receive the amount (erTK − ST )+ from the European option. In the case

where ST < erTK we have

(erTK − ST ) + (ST −Ker(T−τ)) = erTK(1 − e−rτ ) > 0.

Whereas for ST ≥ erTK the European put E(erTK) has 0 payoff, but by the assumption

on K the American put now gives us (ST −Ker(T−τ)) > 0.

Analogously we can show that the lower bound has to hold and we have therefore

proved all the statements of the theorem.

Remark 2.2.5. The upper and lower bounds on the American put price, given in (iii)

and (iv) of Theorem 2.2.3 respectively, can also be seen to be tight, that is, there exist

models that attain the bounds as American put price function. In the case of the lower

bound the following underlying price process satisfies A(K) = max{(K − S0)+, E(K)}.

Set

St =







e−r(T−t)EY , t ∈ [0, T )

Y , t = T

where Y is an integrable random variable with distribution µ. This process grows at

the interest rate up to T , where it jumps to its final distribution Y . The discounted

price process e−rtSt is by definition a martingale with respect to its natural filtration

FS
t . As the process grows at the interest rate between the times 0 and maturity T we

know that the payoff obtained by exercising at time zero will always exceed the payoff

for exercising at any time t ∈ (0, T ), hence the only possible stopping times are 0 and

T , which gives A(K) = max{(K − S0)+, E(K)}.

In the case of the upper bound the following price process (St)t≥0 has E(erTK) as
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American price function. Set

St =







e−rTEY , t = 0

e−r(T−t)Y , t ∈ (0, T ]

where again r > 0 is the interest rate, T the maturity date and Y the integrable final

distribution. We consider the natural filtration generated by St and note that although

this does not satisfy the usual conditions, St is nevertheless a martingale with respect

to this filtration and if we consider the sequence of stopping times τn = 1
n , we get

A(K) ≥ lim
n→∞

e−rTE

[

(erT−r/nK − Y )+

]

= e−rTE
[

(erTK − ST )+
]

= E(erTK),

as required.

2.3 Sufficiency of the conditions on the American put

price function A

In order to show that the necessary conditions in Theorem 2.2.3 are also sufficient for

the absence of model-independent arbitrage it is enough to determine for any given

set of American and European put prices a market model such that the European and

American put option prices satisfy e−rTE(K − ST )+ = E(K) and

sup
0≤τ≤T

Ee−rτ (K − Sτ )+ = A(K), (2.3)

where the supremum is taken over all stopping times τ taking values between 0 and

T .∗ A market model consists of a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) and an

underlying price process (St)0≤t≤T where (e−rtSt)t≥0 is an Ft-martingale under P.

In general it appears to be a harder task to show that the conditions of Theo-

rem 2.2.3 are also sufficient, particularly if it is assumed that a continuum of option

strikes trade. Consequently, we shall consider a slightly restricted setup (although one

that is still practically very relevant): henceforth we will assume that we are given

American and European prices for a finite number of strikes, from which we can ex-

trapolate general functions A and E for which the conditions of Theorem 2.2.3 and

Lemma 2.2.1 hold.†

∗Karatzas [1988] showed that sup0≤τ≤T Ee−rτ (K − Sτ )+ is the fair price for an American option
with strike K and maturity T .

†Given a finite set of traded options which are derived from some model, it is not the case that
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Contrary to the embedding problem considered in Buehler [2006], Cousot [2007]

or Davis and Hobson [2007], where marginals for multiple fixed times are given, the

definition of the American put option requires us to incorporate the American prices

into (St)t≥0 at the unknown optimal stopping time τ∗ before the European prices are

embedded at maturity T .

Suppose the piecewise linear functions A and E satisfy the conditions of Theo-

rem 2.2.3 and Lemma 2.2.1 and are given as follows. In the case of the European price

function E we will use the 1-1 correspondence between European put options with

maturity T and the marginal distribution at time T given in Breeden and Litzenberger

[1978] to characterise E using µ = p1δKE
1

+ ... + pnδKE
n

with Eµ(X) = S0e
rT where

r > 0 is the interest rate.

The function A is given for a finite number of strikes KA
1 , ...,K

A
m and interpolated

linearly between them. Furthermore, we can assume without loss of generality that

American options with strike zero are traded at zero cost. Additionally, we know that

A(K) = K − S0 has to hold for (at least) all strikes K ≥ KE
n e−rT , as we have by the

definition of µ that the upper bound E(erTK) coincides for these strikes with the lower

bound given by K−S0. Thus we can conclude that the American price function lies on

the lower bound for all strikes above KE
n e−rT and therefore that the price for American

options with strike KA
m lies on the lower bound, i.e. that the price for American options

at the final strike KA
m satisfies A(KA

m) = KA
m − S0. We can then write the functions A

and E as

A(K) = max{0, sA1 (K − S1
d), ..., sAm−1(K − Sm−1

d ),K − S0}

E(K) = max{0, sE1 (K −KE
1 ) + d1, ..., s

E
n−1(K −KE

n−1) + dn−1, (2.4)

e−rTK − S0},

where the linear pieces are listed in the order they appear along the x-axis. In Figure 2-1

below the general setting is depicted, where the given European and American prices

as functions of the strike K are denoted by E and A respectively.

The idea now is to construct the process (St)t≥0 such that in each step a linear

piece of A is incorporated by assigning probability masses pd and pu to two suitably

chosen points Sd and Su, respectively. The order in which the pieces are incorporated

is determined by their critical times, which we will define below. For example, if, in

the first step, we incorporate the American prices, corresponding to the linear piece

sAj (K − Sj
d), at time t∗c , then the underlying price process will have as American put

their linear interpolation will satisfy the conditions of Theorem 2.2.3 and Lemma 2.2.1 automatically,
however it seems plausible that there should be some larger set of strikes which do. Indeed, we believe
that, given a set of traded option prices, either we can construct a piecewise linear extension satisfying
the conditions of Theorem 2.2.3 or there exists model-independent arbitrage. However, this is a non-
trivial result and we leave a formal proof to subsequent work.
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1 2 3 4

1
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3

0
0

P (

E(K)
A(K)

E(erTK)

K

Figure 2-1: An example of feasible American and European put prices as functions of
the strike. Also displayed is the upper bound E(erTK) and the functions (K − S0)+
and (e−rTK − S0)+.

price surface the function max{0, sAj (K − Sj
d),K − S0} if stopping is only allowed up

to the time t∗c . We will call this procedure of incorporating the linear pieces of the

American put price surface as embedding the linear pieces of the American. A similar

procedure will be used to embed the European prices. After we embedded a linear

piece of A in this manner we will consider two new pictures P1 and P2. These pictures

will portray prices for American and European options for any positive strike that start

at the last embedding time and mature at time T where the price of the underlying

asset at the starting time is assumed to be Sd or Su, respectively. In the sequel we

will refer to these new pictures as subpictures. The reason for this being that for each

fixed strike the prices for American options in the new pictures can be compounded

to yield the continuation value of the option in the original picture. In addition,

the marginal distribution at maturity T in the original picture can be recovered as

a weighted combination of the marginal distributions at time T in the subpictures,

where the respective weights are given by pd and pu. We can thus retrieve the prices

for European options in the original picture by summing up the weighted prices in

the subpictures as will be discussed in Proposition 2.3.5. Moreover, we will show that

the price functions in the subpictures satisfy again the conditions of Theorem 2.2.3 and

Lemma 2.2.1. Furthermore, the special choice of the critical times allows us to treat the

subpictures separately. Since the number of linear pieces remaining in the subpictures

P1 and P2 is reduced by one in each step and the European E can be embedded at

maturity T , we can argue inductively that the algorithm embeds A and E in finitely
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many steps.

2.3.1 Algorithm

In this section we outline the algorithm which embeds the functions A and E, where

each step will be explained in more detail in the subsequent sections.

Algorithm 1 Embedding algorithm

1: Set t∗old = 0, S0 = Eµ(e−rTST ).

2: Modify A beyond K̃ = inf{K ≥ 0 : A(K) = K − S0} by extending the linear piece

sAm−1(K − Sm−1
d ) up to the first atom of E where the necessary condition

A′(K+)K −A(K) ≥ E′(K+)K − E(K)

from Theorem 2.2.3 is violated. From this strike on A′(K+) is determined such

that this condition is fulfilled with equality. Denote this extension by Ã and the

number of linear pieces of Ã by NÃ.

3: Compute the critical time t∗c and the critical strike K∗, determining the linear piece

sAk (K − Sk
d ) of Ã, where k ∈ {1, ..., NÃ}, that should be embedded next.

4: Embed sAk (K − Sk
d ) by assigning probability mass pd to Sd and pu to Su at time

t∗ = t∗old + t∗c , where pd = ert
∗
c sAk , Sd = Sk

d , pu = 1 − pd, Su =
S0ert

∗
c−pdS

k
d

pu
. For

t∗old < t < t∗ set St = er(t−t∗
old

)S0. If t∗c = 0, replace the jump to S0 at time t∗ by

jumps to Sd and Su. Update t∗old = t∗.

5: Split µ into µ1 and µ2, the given European prices E into E1 and E2 and the given

function A into A1 and A2.

6: If A1 6= E1 ∨ (K − Sd)+ set A = A1, E = E1 and S0 = Sd then go to 2., otherwise

embed E1 at T .

7: If A2 6= E2 ∨ (K − Su)+ set A = A2, E = E2 and S0 = Su then go to 2., otherwise

embed E2 at T .

2.3.2 Existence and calculation of the critical time

In this section we will construct a method to determine the critical time t∗c , which will

tell us when to embed the next linear piece of the given function A. The actual jump

of S then occurs at t∗ = t∗old + t∗c , where t∗old is the time where the parent was embedded

or 0 in the first step.

As we want to interpret the function A for a fixed strike K ≥ 0 as the American put

option price on an unknown underlying price process S, we intend to split the function

A at t∗ into two independent functions A1 and A2 that can again be interpreted as

American put option prices, where the underlying price process then starts at time t∗

in Sd or Su respectively.
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It follows that the contract length for the European put price functions E1 and E2

has to be modified to (T − t∗). This directly affects the upper bound A given by

A(K, t) = E(er((T−t∗
old

)−t)K) (2.5)

for 0 ≤ t ≤ T − t∗old, which will play a crucial role in finding the critical time t∗c .

Furthermore, we have the problem that A only provides information on the under-

lying S up to the strike KA
m above which exercising A immediately is optimal. This

information is not enough to reconstruct A1 and A2 independently forcing us to gen-

erate additional information on the underlying S by extending A beyond KA
m. As long

as this extension still satisfies the necessary conditions in Theorem 2.2.3 this extension

will not affect the American put prices with respect to the underlying S, since K − S0

will dominate these payoffs for K ≥ KA
m.

By extending A linearly beyond KA
m, only correcting the slope A′(K+) when in an

atom of E, where the condition A′(K+)K−A(K) ≥ E′(K+)K−E(K) is violated, we

obtain

Ã(K) =































A(K) , 0 ≤ K ≤ KA
m

sAm−1(K − Sm−1
d ) ,KA

m ≤ K ≤ KE
p

Ã′(KE
i +)(K −KE

i ) + Ã(KE
i ) ,KE

i ≤ K ≤ KE
i+1

Ã′(KE
NE

+)(K −KE
NE

) + Ã(KE
NE

) ,K ≥ KE
NE

,

(2.6)

where i = p, ...,NE−1, Ã′(KE
i +) = E′(KE

i +)+
Ã(KE

i )−E(KE
i )

KE
i

and KE
p is the first atom

of E after KA
m where condition (ii) of Theorem 2.2.3 is violated (Fig. 2-2). Further set

NÃ = NA + NE − p.

Lemma 2.3.1. Suppose the functions A and E given by (2.4) satisfy the conditions

of Theorem 2.2.3 and Lemma 2.2.1. Then A can be extended as in (2.6) to Ã, where

Ã and E satisfy again the conditions of Theorem 2.2.3, except that Ã no longer has

K − S0 as lower bound.

Proof. Let us start by pointing out that the condition

Ã′(K+)K − Ã(K) ≥ E′(K+)K − E(K)

is trivially fulfilled for all K ≥ 0 by the choice of the extension Ã.

To see that Ã is bounded below by E remember that this is fulfilled up to KA
m

by the assumptions on A and E. Hence for E to exceed Ã between KA
m and KE

p we

would need E′(K+) > Ã′(K+) for some K which can be ruled out, since we know that

Ã′(K+)K − Ã(K) ≥ E′(K+)K−E(K) and Ã ≥ E holds in KA
m. For K ≥ KE

p we can

argue inductively for each of the intervals, since the condition already has to hold in
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E(erTK)

Ã(K)

K

Figure 2-2: Extension of the American price function A, given in Figure 2-1, to Ã

the respective left endpoint of the interval KE
i , i = p, ..., n − 1.

Next we will show that Ã(K) is bounded above by A(K, 0), which was defined

in (2.5). Note that A(K, 0) ≥ A(K) for all K ≥ 0 has to hold as we assumed that

the functions A and E satisfy the necessary conditions for t∗old = 0. We will now

show that we actually have Ã(K) ≤ A(K) for all K ≥ 0. Up to KE
p this is trivially

fulfilled by definition of A and Ã. From KE
p onwards we have that Ã′(K+)K− Ã(K) =

E′(K+)K − E(K) and therefore A′(K+)K − A(K) ≥ Ã′(K+)K − Ã(K) has to hold

for all K ≥ 0 by the assumptions on A and E in Theorem 2.2.3. Using the fact that

A(KE
p ) ≥ Ã(KE

p ) we can then conclude that we must have A′(KE
p +) ≥ Ã′(KE

p +).

This allows us now to argue inductively and in the same way as for the lower bound to

obtain that A(K, 0) ≥ Ã(K).

That Ã is increasing for all K ≥ 0 is an immediate consequence of the facts that

Ã ≥ E and that E′ ≥ 0 as

Ã′(KE
i +) = E′(KE

i +) +
Ã(KE

i ) −E(KE
i )

KE
i

≥ 0 (2.7)

for i ≥ p.

To prove that Ã is convex it is enough to show that the slope of Ã is increasing for

any strike K ≥ KE
p , as we know already that A is convex. Note that we can write

Ã(KE
i+1) = Ã′(KE

i +)(KE
i+1 −KE

i ) + Ã(KE
i )

E(KE
i+1) = E′(KE

i +)(KE
i+1 −KE

i ) + E(KE
i ),
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since both Ã and E are piecewise linear functions. Further we have that

E′(KE
i +)KE

i − E(KE
i ) = Ã′(KE

i +)KE
i − Ã(KE

i )

for strikes KE
i ≥ KE

p . Taking into account the definition of the slope of Ã given in

(2.7) we can then conclude that for i ≥ p we have

Ã′(KE
i+1+) = E′(KE

i+1+) +
Ã(KE

i+1) − E(KE
i+1)

KE
i+1

= Ã′(KE
i +) + (E′(KE

i+1+) −E′(KE
i +)),

where we furthermore used that

Ã(KE
i+1) = Ã′(KE

i +)(KE
i+1 −KE

i ) + Ã(KE
i )

and

E(KE
i+1) = E′(KE

i +)(KE
i+1 −KE

i ) + E(KE
i+1).

Since E′ is increasing it follows that Ã′ has to be increasing as well and thus Ã has to

be convex again.

To determine a suitable critical time t∗c , where the next linear piece of A is em-

bedded, we recall two important properties that we want to be fulfilled. First of all

the underlying price process S has to be a martingale and secondly we want the two

subpictures, obtained by splitting at time t∗ in the critical strike K∗, to be disjoint. In

this context we refer to the subpictures as being disjoint when the points Sd and Su

are being assigned the exact amount of mass required to embed all the linear pieces in

the respective subpicture at time t∗, allowing us to consider them separately.

We choose the critical time t∗c to be the first time t, where waiting any longer would

result in A(K, t + ǫ) < Ã(K) for some K > 0 and any ǫ > 0, where A(K, t) denotes

the upper bound on Ã (see Fig. 2-3 below). We will show in Lemma 2.3.2 that the

critical time t∗c exists and is finite. Furthermore, we will see that the aforementioned

properties are then satisfied.

Before we show the existence of the critical time t∗c note that the last linear piece

of A, given by K − s∗old (where s∗old is the starting point of the asset in the original

picture) is already incorporated in the model, since the underlying process S starts at

t∗old in s∗old. In particular, exercising the American option at time t∗old, when the process

is at s∗old will give payoff K − s∗old at time t∗old. Therefore the linear piece K − s∗old can

be omitted when looking for the critical time. Recall that, we will say that a linear

piece of the American is embedded whenever we incorporate the prices along the line
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into the model by jumping mass pd to Sd (and pu to Su).

1 2 3 4

1

2

3

0
0 K∗

E(K)
Ã(K)

A(K, t∗)

K

2 K∗

Figure 2-3: As t increases, the function A(K, t) = E(er((T−t∗
old

)−t)K) moves to the
right. In this example, the critical time t∗c , which embeds the next piece of A, occurs
at K∗ as A(K∗, t∗c) = Ã(K∗).

Lemma 2.3.2. Suppose the given functions A and E satisfy the necessary conditions

of Theorem 2.2.3 and Lemma 2.2.1, where A is extended to Ã as in (2.6) and the

European put price function E with contract length T − t∗old is given by the marginal

distribution µ = p1δKE
1

+ ... + pnδKE
n

with maturity T . Assume also that the upper

bound A is given by A(K, t) = E(er(T−t∗
old

−t)K).

Then we have that the critical time t∗c exists and is bounded by T−t∗old. It is attained

when a kink of the upper bound A first hits Ã and can be written as

t∗c = inf
i,j

ti,j (2.8)

= inf
i,j

inf{t ≥ 0 : A(ui, t) < fj(ui)},

where ui = KE
i e−r(T−t∗

old
−t), i ∈ {1, ..., n}, j ∈ {1, ..., NÃ} and fj is the j-th linear

piece of Ã.

Proof. It is a simple consequence of the convexity of the functions A and Ã that the

critical time t∗c , if it exists, occurs whenever a kink of the upper bound A intersects

with Ã. Hence the critical time t∗c , should it exist, is given by (2.8). Since we know
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that A(K, 0) ≥ Ã(K) ≥ E(K) and

A(K, t) = E(er((T−t∗
old

)−t)K) → E(K)

for all K ≥ 0, as t → (T − t∗old), the representation in (2.8) guarantees the existence of

an i and j such that ti,j ≤ T − t∗old given that Ã has not been embedded completely

yet.

It follows that the critical strike K∗, where we will split the picture, is given by the

time-t∗ value of the largest atom of A which intersects at the critical time t∗c with the

function Ã, i.e.

K∗ = sup{K ≥ 0 : A(K, t∗c) = Ã(K)}. (2.9)

The following lemma will give us now a simple way of determining infi t
i,j, where

i ∈ {1, ..., NE} and j ∈ {1, ..., NÃ}, thereby highlighting the close connection between

the necessary condition

Ã′(K+)K − Ã(K) ≥ E′(K+)K − E(K) (2.10)

and the embedding time t∗ for a fixed linear piece fj of Ã.

Proposition 2.3.3. Suppose the given functions A and E satisfy the necessary con-

ditions of Theorem 2.2.3 and Lemma 2.2.1, where A is extended to Ã as in (2.6) and

the European put price function E with contract length T − t∗old uses the marginal dis-

tribution µ = p1δKE
1

+ ... + pnδKE
n

with maturity T .

Consider the function fj(K) = sAj K − d appearing as the j-th linear piece of Ã

and assume that the European price function E coincides in [KE
i ,KE

i+1] with gi(K) =

sEi K − di then we have

inf
i
ti,j =

1

r
ln

(

sEi∗

sAj
+

d− di∗

sAj

1

KE
i∗

)

+ (T − t∗old), (2.11)

where i∗ = min{1 ≤ i ≤ n : f ′
j(K

E
i +)KE

i − fj(K
E
i ) < g′i(K

E
i +)KE

i − gi(K
E
i )} or

equivalently i∗ = min{1 ≤ i ≤ n : d < di}.

Proof. The i-th linear piece gt,i(K) of the upper bound A(K, t) at time t in the interval

[KE
i e−r((T−t∗

old
)−t),KE

i+1e
−r((T−t∗

old
)−t)] is given by

gt,i(K) = gi(e
r((T−t∗

old
)−t)K).

To determine for any fixed linear piece gt,i(K), i ∈ {1, ..., n} the time ti,j when the
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atom KE
i e−r((T−t∗

old
)−t) intersects with fj we rewrite gt,i(K) as follows

gt,i(K) = sEi e
r(T−t∗

old
)K − di − sEi (er(T−t∗

old
) − er((T−t∗

old
)−t))K,

which can then be interpreted as a clockwise rotation about the fixed point (0,−di), as

t increases. In addition we know the strike K̂ where the atom KE
i e−r((T−t∗

old
)−t) has to

hit fj, since the value of gt,i(K) remains unchanged in the atom KE
i e−r((T−t∗

old
)−t) over

time, as we have A(K, t) = E(er((T−t∗
old

)−t)K). This allows us to obtain the candidate

time

ti,j =
1

r
ln

(

sEi
sAj

+
d− di

sAj

1

KE
i

)

+ (T − t∗old)

by setting gt,i(K̂) = gi(K
E
i ) and solving for t.

This result now tells us that ti,j is a decreasing function of KE
i for d > di as sEi ,sAj ,

r and T are all positive constants, implying that for the two consecutive atoms KE
i

and KE
i+1, lying on the same linear piece gi, the right atom KE

i+1 will give a smaller

candidate time. As KE
i+1 is also the left-side endpoint of the next linear piece we can

conclude by induction that as long as a linear piece gk, k ≥ i, still satisfies d > dk its

right-side endpoint will attain a smaller candidate time than any atom before.

Analogously we see that for d < di the function ti,j is increasing in KE
i . Hence the

critical time has to be attained in the atom KE
i∗ , which is the rightmost atom still lying

on a linear piece gk satisfying d ≥ dk, but at the same time is the first atom lying on

a linear piece gk+1 where d < dk+1. The existence of this atom KE
i∗ is guaranteed by

the fact that dn = S0, whereas d < S0 for any linear piece of A that is not embedded

yet.

Remark 2.3.4. (i) This result implies that the critical time for a fixed linear piece

fi of A is attained when the kink of A meets Ã, where the kink corresponds to

the European strike at which the Legendre-Fenchel condition between fi and E is

violated for the first time. Note that this is not a contradiction to the Legendre-

Fenchel condition of Theorem 2.2.3, it simply means that the kink of A responsible

for the critical time lies to the right of the interval where A = fi.

(ii) As it is possible that the upper bound A intersects with Ã at the critical time t∗c in

a kink of Ã we need to specify which of the two linear pieces of Ã we will embed.

Proposition 2.3.3 tells us now that we have to take the right-hand side linear piece

given by Ã′(K∗+)(K −K∗) + Ã(K∗).
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2.3.3 The splitting procedure

After we determined the embedding time t∗ = t∗old+t∗c and the critical strike K∗ we will

divide the functions A and E into two separate parts A1, A2, and E1, E2 respectively,

such that Ai, Ei i ∈ {1, 2} satisfy again all the conditions in Theorem 2.2.3 and from

which it will be possible to recover the initial functions A and E.

Splitting of the European put option prices E

To obtain E1 and E2 from E we have to split µ, the marginal distribution given at

maturity T . Since the critical strike K∗ is given in time-t∗ value, the respective atom

of µ, where we have to split, is K∗er(T−t∗). The following lemma will show how to split

µ into µ1 and µ2 and how to recover E from E1 and E2.

Proposition 2.3.5. Assume the given functions A and E satisfy the necessary condi-

tions of Theorem 2.2.3 and Lemma 2.2.1, where A is extended to Ã as in (2.6) and the

European put price function E with contract length T − t∗old is given by the marginal

distribution µ = p1δKE
1

+ ... + pnδKE
n

with mean Eµ(X) = er(T−t∗
old

)S0 at maturity T .

Suppose further that the critical time t∗c is given by (2.8) and the associated critical

strike K∗ by (2.9). At the time t∗ = t∗old + t∗c the linear piece sAk (K − Sk
d ) of Ã is

embedded by assigning the probability mass pd to Sd and pu to Su, where pd, Sd, pu and

Su are given in Section 2.3.1. For the time between the jumps set the underlying price

process St = Eµ(X)e−r(T−t), where t∗old < t < t∗.

Then we can write µ = pdµ1 + puµ2, where µ1 and µ2 are given by

µ1 = p−1
d

[

µ∣
∣[KE

1 ,K∗er(T−t∗))
+ (pd − P(ST < K∗er(T−t∗)))δK∗er(T−t∗)

]

(2.12)

and

µ2 = p−1
u

[

(P(ST ≤ K∗er(T−t∗)) − pd)δK∗er(T−t∗) + µ∣
∣(K∗er(T−t∗),KE

n ]

]

, (2.13)

and satisfy Eµ1(e−r(T−t∗)X1) = Sd and Eµ2(e−r(T−t∗)X2) = Su. Dividing the distri-

bution µ into µ1 and µ2 the European put option E with maturity T can be written

as

Eµ(K) = e−rt∗c [pdE
µ1
1 (K) + puE

µ2
2 (K)] , (2.14)

where Eµ1
1 and Eµ1

2 are European put options starting at t∗, having maturity T and

satisfying the conditions in Lemma 2.2.1.

Proof. Firstly, let us show that the mass that is placed in K∗er(T−t∗) for either of the

two distributions µ1 and µ2 is non-negative. Without loss of generality we can assume
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that K∗er(T−t∗) is the l-th atom of µ and that the linear piece we just embedded

was fk = sAk (K − Sk
d ). If we set K̂1 = max{KE

l−1,K
A
k }, where KA

k = inf{K ≥ 0 :

Ã(K) = sAk (K−Sk
d )} then we have for the upper bound A, which is given by A(K, t) =

E(er((T−t∗
old

)−t)K) that

A(K∗, t∗c) = A
′
(K∗−, t∗c)(K

∗ − K̂1) + A(K̂1, t
∗
c)

and at the same time for the extended American Ã from (2.6) that

Ã(K∗) = Ã′(K∗−)(K∗ − K̂1) + Ã(K̂1).

By the definition of t∗c we see that A(K∗, t∗c) = Ã(K∗). Combining this with the fact

that we must have A(K̂1, t
∗
c) ≥ Ã(K̂1) at the critical time t∗c we can conclude that

Ã′(K∗−) ≥ A
′
(K∗−, t∗c). Then again, we can use that pd = ert

∗
c Ã′(K∗−) and that

A
′
(K∗−, t∗c) = E′(er((T−t∗

old
)−t∗c )K∗−)er((T−t∗

old
)−t∗c )

to see that pd ≥ E′(er((T−t∗
old

)−t∗c )K∗−)er((T−t∗
old

)) = P(ST < K∗er(T−t∗)). To show

the other inequality, set K̂2 = min{KE
l+1,K

A
k+1}, where KA

k+1 = sup{K ≥ 0 : Ã(K) =

sAk (K − Sk
d )}, and note that Ã′(K+) ≥ Ã′(K−) as Ã is convex. We can then argue

analogously to above that pd ≤ P(ST ≤ K∗er(T−t∗)), where the inequality turns around

as we have now K∗ ≤ K̂2.

By the martingale property of (St)t∗
old

≤t≤t∗ we have

Eµ(X) = S0e
r(T−t∗

old
) = S0e

rt∗c er(T−t∗) = (pdSd + puSu)er(T−t∗). (2.15)

At the same time we can write

Eµ(X) = pdE
µ1(X1) + puE

µ2(X2), (2.16)

since we clearly have µ = pdµ1 + puµ2. Equating now (2.15) and (2.16) we obtain

Eµ1(X1) = Sde
r(T−t∗) and Eµ2(X2) = Sue

r(T−t∗).

We can then conclude that Eµ(K) = e−rt∗c [pdE
µ1
1 (K) + puE

µ2
2 (K)], as we know

that µ = pdµ1 + puµ2 and that E1 and E2 have contract length (T − t∗). From the

last two statements and Lemma 2.2.2 it follows now directly that E1 and E2 satisfy

the conditions of Lemma 2.2.1.

Splitting of the American put option prices A

In the case of the European put option prices E the existence of a 1-1 correspondence

between E and µ allows us to split the function E by dividing µ. For the American

put option prices A this 1-1 correspondence to the marginal distribution at a fixed
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deterministic time does not exist, since the time when it is optimal to exercise the

option depends on the path of the underlying. We therefore need a different method to

split A that still allows us to recover the original function A from the two new functions

A1 and A2. The idea behind the specific choice of split in (2.19) is that we want to

separate the already embedded immediate exercise from the continuation value in each

step.

Proposition 2.3.6. Assume the given functions A and E satisfy the necessary condi-

tions of Theorem 2.2.3 and Lemma 2.2.1, where A is extended to Ã as in (2.6) and the

European put price function E with contract length T − t∗old is given by the marginal

distribution µ = p1δKE
1

+ ... + pnδKE
n

with mean Eµ(X) = er(T−t∗
old

)S0 at maturity T .

Suppose further that the time of the next jump t∗, the critical time t∗c and the associated

critical strike K∗ were determined as in Section 2.3.2 at which point the linear piece

sAk (K−Sk
d ) of Ã is embedded by jumping the mass pd to Sd and pu to Su, where pd, Sd,

pu and Su are given in Section 2.3.1. For the time between the jumps the underlying

price process is set to be St = Eµ(X)e−r(T−t), where t∗old < t < t∗.

Then the function A can be split into

A1(K) = ert
∗
cp−1

d max{0, f1, f2, ..., fk} (2.17)

and

A2(K) = ert
∗
cp−1

u

[

max{fk, fk+1, ..., fN
Ã
, e−rt∗cK − S0} − fk

]

, (2.18)

where fi = sAi (K −Si
d), i = 1, ..., NÃ, are the given piecewise linear functions of Ã and

A(K) = max{K − S0, e
−rt∗c (pdA1(K) + puA2(K))}. (2.19)

The functions A1 and E1 as well as the functions A2 and E2 will then satisfy the

necessary conditions of Theorem 2.2.3 again.

Proof. To see that (2.19) is satisfied we note that for 0 ≤ K ≤ K∗ we have A2(K) = 0

and therefore by the definition of A we have A(K) = max{K − S0, e
−rt∗cpdA1(K)} in

that interval. For K ≥ K∗ we have A1(K) = ert
∗
cp−1

d fk(K) and

A2(K) = ert
∗
cp−1

u ((Ã(K) ∨ (e−rt∗cK − S0)) − fk(K))

and therefore

A(K) = max{K − S0, Ã ∨ (e−rt∗cK − S0)} (2.20)

= max{K − S0, e
−rt∗c (pdA1(K) + puA2(K))},
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which holds true by the definition of A and Ã and the fact that K − S0 dominates

e−rt∗cK − S0 for all K ≥ 0.

We then have to check that the necessary conditions from Theorem 2.2.3 are satisfied

in the left hand-side picture P1, where our new American is now A1 and the new

European is E1. To see that A1 has to be increasing, we can argue that the linear

extension of an increasing function is again increasing and the multiplication by a

positive constant does not change that. Also we have that A1 has to be a convex

function as it is the maximum over linear functions.

Let us now show that A1 and E1 satisfy

A′
1(K+)K −A1(K) ≥ E′

1(K+)K − E1(K) (2.21)

for all K ≥ 0. In the case where K ≤ K∗ we have A1(K) = ert
∗
cp−1

d A(K) and

E1(K) = ert
∗
cp−1

d E(K). Since the original functions A and E satisfy this condition and

ert
∗
cp−1

d > 0 the functions A1 and E1 inherit this property.

Next we show that the condition (2.21) also holds for K ≥ K∗. From Lemma 2.5.2

in the appendix we know that it is enough to check the condition for the atoms of E1.

Starting out with the last atom K∗er(T−t∗) of E1 we have

A′
1(K

∗er(T−t∗)+)K∗er(T−t∗) −A1(K∗er(T−t∗)) = A′
1(K∗+)K∗ −A1(K

∗)

= K∗ −A1(K∗),

where the fact that A1 is linearly extended beyond K∗ gives the first equality and

the fact that A′
1(K∗+) = ert

∗
cp−1

d f ′
k = 1 gives the second equality. Then again, since

A1(K∗) = E1(K
∗er(T−t∗)) and E′

1(K∗er(T−t∗)+) = e−r(T−t∗) we see that

K∗ −A1(K
∗) = E′

1(K∗er(T−t∗)+)K∗er(T−t∗) −E1(K∗er(T−t∗)).

This shows that the condition is fulfilled for K = K∗er(T−t∗), but since E1 is a convex

function it follows that E′
1(K+)K − E1(K) is increasing in K, which readily implies

for K∗ ≤ K ≤ K∗er(T−t∗)

E′
1(K+)K − E1(K) ≤ E′

1(K∗er(T−t∗)+)K∗er(T−t∗) − E1(K∗er(T−t∗))

≤ A′
1(K∗er(T−t∗))+)K∗er(T−t∗) −A1(K

∗er(T−t∗))

= A′
1(K+)K −A1(K),

where the last equality is due to the fact that A1 is linear beyond K∗. Hence we must

have A′
1(K+)K −A1(K) ≥ E′

1(K+)K − E1(K) for all K ≥ 0.

To see that E1 is a lower bound on A1 we use that E1(K) = ert
∗
cp−1

d E(K) and

A1(K) = ert
∗
cp−1

d A(K) for 0 ≤ K ≤ K∗. As ert
∗
cp−1

d is positive and we have A(K) ≥
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E(K) in the original picture we obtain A1(K) ≥ E1(K) for 0 ≤ K ≤ K∗. For K ≥ K∗

we know already that the condition A′
1(K+)K − A1(K) ≥ E′

1(K+)K − E1(K) has

to hold. Combined with the fact that A1(K∗) ≥ E1(K∗) we obtain that A′
1(K

∗+) ≥

E′
1(K

∗+), which then implies that we must have A1(K) ≥ E1(K) for as long as the

slope of E1 does not change. By induction on the atoms of µ1 to the right of K∗ we

obtain that E1 is a lower bound on A1 for all strikes K ≥ 0.

To show that A1(K, t∗c) = E1(e
r(T−t∗)K) is an upper bound on A1 we distinguish the

two cases 0 ≤ K ≤ K∗ and K ≥ K∗. In the first case we can use again that E1(K) =

ert
∗
cp−1

d E(K) and that A1(K) = ert
∗
cp−1

d A(K), which then only has to be combined

with E(er(T−t∗)K) ≥ A(K) to obtain the result. The second case follows using the

definition of the time t∗, where we have E(er(T−t∗)K) ≥ A(K) and E(er(T−t∗)K∗) =

A(K∗) implying E1(e
r(T−t∗)K∗) = A1(K∗). Since the last atom of µ1 is K∗er(T−t∗)

we can conclude that E′
1(K+) = e−r(T−t∗) for any K ≥ K∗er(T−t∗). Then again

A
′
1(K, t∗c) = E′

1(e
r(T−t∗)K)er(T−t∗), which is 1 and therefore coincides with A′

1(K) for

K ≥ K∗. Hence we showed that A1(K, t∗c) ≥ A1(K) for all strikes K ≥ 0.

To be able to split the initial picture into the two subpictures P1 and P2 we have to

show that the necessary conditions from Theorem 2.2.3 also hold in the right hand-side

picture P2. To see that A2 is an increasing function we note that max{fk, ..., fm−1}

is increasing, since each linear piece fi with i = 1, ...,m − 1 is increasing. Sub-

tracting fk, does not affect the monotonicity since we have f ′
k ≤ f ′

i for all i =

k, ...,m − 1 as they are ordered by appearance. To obtain A2 we only have to con-

sider ert
∗
cp−1

u max{max{0, fk+1− fk, ..., fm+n−p− fk}, e
−rt∗cK−S0− fk}, which is again

increasing as the maximum over increasing functions. Further it follows immediately

that A2 has to be convex, since it is the maximum over linear functions multiplied by

the positive constant ert
∗
cp−1

u . It only remains to show that the condition

A′
2(K+)K −A2(K) ≥ E′

2(K+)K − E2(K) (2.22)

holds for all K ≥ 0. For 0 ≤ K ≤ min{K∗er(T−t∗),KA
m}, where KA

m = inf{K ≥

0 : A(K) = K − S0}, the condition is trivially fulfilled, since the left hand-side is

non-negative by the monotonicity and convexity of A2 and E2 is constantly 0 there.

Lemma 2.5.3 shows that the condition is also fulfilled for K ≥ KA
m as Â is the exten-

sion of A2 from (2.6), which leaves the case min{K∗er(T−t∗),KA
m} < K ≤ KA

m. For

min{K∗er(T−t∗),KA
m} < K ≤ KA

m we can write A2(K) = p−1
u (ert

∗
cA(K) − pdA1(K))

and E2(K) = p−1
u (ert

∗
cE(K) − pdE1(K)). Hence the condition (2.22) simplifies to

ert
∗
c (A′(K+)K −A(K)) − pd(A′

1(K+)K −A1(K))

≥ ert
∗
c (E′(K+)K − E(K)) − pd(E′

1(K+)K − E1(K)). (2.23)

Then again we know from the necessary conditions on A and E that A′(K+)K−A(K) ≥
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E′(K+)K − E(K). Combining this with the fact that for K ≥ K∗er(T−t∗) we have

A1(K) = K − Sd and E1(K) = e−r(T−t∗)K − Sd we obtain A′
1(K+)K − A1(K) =

E′
1(K+)K − E1(K) = Sd. Therefore the condition has to hold for all strikes K ≥ 0.

We still have to show that E2 is a lower bound on A2. Consider first the case

0 ≤ K ≤ er(T−t∗)K∗, where we know that E2(K) = 0 as the support of µ2 begins in

er(T−t∗)K∗. Since A2 is given as the maximum over finitely many linear functions and 0

we can immediately conclude that we must have A2(K) ≥ E2(K) for all strikes 0 ≤ K ≤

er(T−t∗)K∗. In the case where K ≥ er(T−t∗)K∗ we know already that A2(er(T−t∗)K∗) ≥

E2(e
r(T−t∗)K∗) and since we showed that A′

2(K+)K − A2(K) ≥ E′
2(K+)K − E2(K)

has to hold for all K ≥ 0 we can conclude that A′
2(e

r(T−t∗)K∗+) ≥ E′
2(er(T−t∗)K∗+).

Hence we have A2(K) ≥ E2(K) for all strikes where the right hand-side derivative of

E2 remains unchanged. This way we can show by induction on the atoms of E2 that

we must have A2(K) ≥ E2(K) for all strikes K ≥ 0.

Finally we are left with showing that A2, given by A2(K) = E2(er(T−t∗)K) is an

upper bound on A2. As this is trivially fulfilled for K < K∗ it is enough to consider

K ≥ K∗. To this end we note that we must have

A2(K, 0) = p−1
u (ert

∗
cA(K, t∗c) − pdA1(K, 0))

by the definition of A2 and the representation of E by E1 and E2 in Proposition 2.3.5.

We can then rewrite A2 ≥ A2 as

p−1
u (ert

∗
cA(K, t∗c) − pdA1(K, 0)) ≥

ert
∗
cp−1

u (max{fk, fk+1, ..., fN
Ã
, e−rt∗cK − S0} − fk). (2.24)

We can now use the fact that A1(K, 0) = E1(e
r(T−t∗)K) and since we have K ≥ K∗

we obtain further that pdA1(K, 0) = K − Sd, which equals exactly ert
∗
cfk. Hence the

inequality in (2.24) reduces to

A(K, t∗c) ≥ max{fk, fk+1, ..., fm+n−p, e
−rt∗cK − S0}

or equivalently A(K, t∗c) ≥ max{Ã, e−rt∗cK−S0}, which has to hold as we know that A

is an upper bound on Ã with

A(K, t∗c) = E(er(T−t∗)K)

= A(Ke−rt∗c , 0)

≥ Ke−rt∗c − S0.

where the last inequality is because A is initially an upper bound on A. Hence A2 is

an upper bound on A2 for all strikes K ≥ 0.
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This result shows that the initial picture can be divided into the two subpictures

P1 and P2, where each of these pictures satisfies again the necessary conditions of

Theorem 2.2.3. Note that the splitting of the function Ã as in (2.19) can be interpreted

as separating the immediate exercise from the continuation value. The additional term

(e−rt∗cK − S0) − fk in A2 represents the immediate payoff in Su at time t∗, since

e−rt∗cK − S0 − fk = e−rt∗cK − S0 − e−rt∗cpd(K − Sd)

= e−rt∗cpu(K − Su),

where the last equality is obtained by using the definition of Su.

Remark 2.3.7. It is possible that two or more kinks of the function A(K, t) intersect

with different linear pieces of Ã at the same critical time. From the definition of the

critical strike K∗ in (2.9) it follows that the algorithm will embed the rightmost linear

piece first by jumping mass to, say, Sold
d and Sold

u . In the left hand-side subpicture the

critical time for at least one linear piece of Ã then has to be zero. To embed that piece

we need to jump immediately to Snew
d and Snew

u . This is done by removing the jump to

Sold
d at the critical time and replacing it by jumps to Snew

d and Snew
u . The underlying

price process can then jump to Snew
d , Snew

u or Sold
u at the critical time. In this way any

finite number of linear pieces can be embedded at once, if necessary.

The representation in (2.19) then has to be extended to allow the embedding of

multiple linear pieces at once. Suppose the algorithm embeds k linear pieces, where the

j-th linear piece is embedded by jumping mass pjd to Sj
d and pju to Sj

u for j = 1, ..., k.

The representation for A(K) is then given by

A(K) = max{K − S0, e
−rt∗c (p̃kdA

k
1(K) +

k
∑

j=1

p̃juA
j
2(K))}, (2.25)

where p̃kd =
∏k

i=1 p
i
d and p̃ju = pju

∏j−1
i=1 p

i
d for j = 1, ..., k.

2.3.4 Convergence of the Algorithm

After having defined the splitting procedure we are now able to state the following

proposition, which will then allow us to argue that the embedding algorithm only

needs a finite number of steps to produce an admissible price process that has A and

E as its American and European put option prices respectively.

Proposition 2.3.8. Assume the functions A and E are given by (2.4) and satisfy the

necessary conditions of Theorem 2.2.3 and Lemma 2.2.1, where A is extended to Ã as

in (2.6) and the European put price function E is given by the marginal distribution

µ = p1δKE
1

+ ... + pnδKE
n

at maturity T . Suppose that of the NÃ linear pieces of Ã
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the linear pieces added to the American put price function A by (2.6) are given by fi,

i = m, ...,NÃ, then fi, i = m, ...,NÃ are all embedded together at maturity T .

Proof. Let us assume, without loss of generality, that for the rightmost linear piece

fm−1 of the original American A there exists at least one strike K ∈ [KA
m−1,K

A
m] for

which f ′
m−1(K+)K−fm−1(K) > E′(K+)K−E(K), otherwise consider the first linear

piece of A to the left of fm−1 where this condition is satisfied with respect to the

correct interval. This assumption ensures that fm−1 is not embedded together with

the pieces fi, i = m, ...,m + n − p at maturity. By the definition of Ã we have for

i = m, ...,m + n− p− 1 that

f ′
i(K

E
i +)KE

i − fi(K
E
i ) = E′(KE

i +)KE
i − E(KE

i ),

but

f ′
i(K

E
i+1+)KE

i+1 − fi(K
E
i+1) < E′(KE

i+1+)KE
i+1 − E(KE

i+1),

where we have to consider the last linear piece of A separately. Combined with Re-

mark 2.3.4 we can then conclude that the linear pieces fi, i = m−1, ...,m+n−p−1, of

Ã attain their critical time in the right-side endpoint KE
i+1 of their respective interval,

as it is the first European strike at which the Legendre-Fenchel condition does not hold

anymore.

Then again we know from the definition of Ã and A that the linear piece of A on

which KE
i e−rT and KE

i+1e
−rT lie will coincide with fi for any i = m, ...,m + n− p− 1

at its critical time t∗c , as the two linear functions agree for the strikes K = 0 and

K = KE
i+1e

−r(T−t∗c ). Hence the critical time attained in KE
i+1 will coincide with the

time obtained by KE
i . The convexity of Ã then guarantees that the linear piece fi−1

will have a smaller critical time than fi for all i = m, ...,m + n− p− 1, as A(KE
i , t) —

the kink in A responsible for the critical time of fi — will hit fi−1 before hitting fi.

Analogously, we obtain that the last linear piece of A will be embedded the last.

Suppose for now that we are embedding fm−1 as first linear piece of A then the

American A2 in P2 has to coincide with the European E2, as the strikes where the

slopes change are K = KE
p , ...,KE

m+n−p for both functions and Lemma 2.5.3 from the

appendix ensures that we have

A′
2(K+)K −A2(K) = E′

2(K+)K − E2(K)

for all K ≥ 0.

Finally we still have to rule out that embedding another linear piece fk, k < m− 1,

first could cause us to embed fi, i > m − 1, before fm−1. This can be achieved by

using Lemma 2.5.3, noting that the extension of A2 is obtained by transforming Ã as
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in (2.18) omitting to take the maximum with e−rt∗K − S0. The extension will then

again be convex by Proposition 2.3.6 allowing us to conduct the same line of argument

as above.

This proposition allows us now to determine how the left and right hand-side subpic-

tures must appear after we have embedded the last linear piece of the original function

A that did not coincide (partially) with a linear piece of E. By the definition of the al-

gorithm in Section 2.3.1 and Proposition 2.3.8 we know that only pieces of the original

function A are passed down to the left hand-side picture, since none of the linear pieces

of the extension are embedded before maturity T . Hence we have A1 = E1∨(K−Sd)+,

where E1 appears as the American and European prices could coincide on an interval.

Similarly we obtain A2 = E2 ∨ (K − Su)+ for the right hand-side picture: having

embedded the last linear piece of the original A that did not coincide with a linear

piece of E, we are only left with the linear pieces added by step 2 of the algorithm in

Section 2.3.1 or a piece coinciding with a linear piece of E. Then again, Lemma 2.5.3

guarantees that all these linear pieces satisfy A′(K+)K − A(K) = E′(K+)K − E(K)

for any K ≥ 0 and that the linear pieces of A and E change at the same strikes implying

that they have to coincide. Therefore we have A2 = E2 ∨ (K − Su)+.

The following corollary to Proposition 2.3.8 will provide us with an upper bound

on the number of steps necessary to embed the given functions A and E.

Corollary 2.3.9. Suppose the given functions A and E satisfy the necessary conditions

of Theorem 2.2.3 and Lemma 2.2.1 and that the number of linear pieces of A is given

by NA, then the total number of steps necessary to embed A and E is bounded above by

2NA + 1.

Proof. Using Proposition 2.3.8 we know that after NA steps we finished embedding all

the original linear pieces of A and are left with at most NA+1 subpictures. We also see

that all the new linear pieces added to Ã are embedded at maturity by the reasoning

above. In each of the subpictures we therefore either have A1 = E1 ∨ (K − Sd)+ or

A2 = E2 ∨ (K − Su)+. Hence we are only left with embedding linear pieces of E,

which can be done in a single step at maturity T for each of the NA + 1 subpictures.

Therefore we can conclude that the whole algorithm has to terminate after at most

2NA + 1 steps.

We are now able to state the major theorem of this paper, which will show that the

conditions given in Theorem 2.2.3 are not only necessary for the absence of arbitrage,

but indeed sufficient.

Theorem 2.3.10. Suppose we are given American and European price functions that

are piecewise linear and satisfy the conditions given in Theorem 2.2.3 and Lemma 2.2.1.

Using Algorithm 1 a model (Q, (St)t∈[0,T ]) can be constructed such that the discounted
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underlying price process (e−rtSt)t∈[0,T ] is a martingale with e−rTEQ(K−ST )+ = E(K)

and sup0≤τ≤T EQ[e−rτ (K − Sτ )+] = A(K) for all strikes K ≥ 0 and stopping times τ

taking values in [0, T ].

Proof. By construction, the underlying S is a martingale, since in each step where we

are embedding a linear piece of A we choose the upper node Su by the martingale

property and the process S grows between the jumps at the interest rate. Further we

know from Proposition 2.3.5 that Eµ1(e−r(T−t∗)X) = Sd and Eµ2(e−r(T−t∗)X) = Su,

guaranteeing that the martingale property is preserved in the last embedding step in

each subpicture.

To see that the European put option prices on the underlying S coincide with

the given prices E we recall from Proposition 2.3.5 that the sum of the marginal

distributions at maturity T in the subpictures coincides with the distribution implied

by E at maturity T .

Finally we still need to show that the American put option prices on the underlying

S agree with the given prices A. To this end we first show that it cannot be optimal to

exercise between jumps. For a fixed path of the underlying S we have for t1 < t < t2,

where t1 and t2 are jump-times for this path, that e−rt1K > e−rtK, and as e−rt1St1 =

e−rtSt we obtain e−rt1(K − St1)+ ≥ e−rt(K − St)+. Hence optimal exercise can only

occur at the actual jump times tj .

If we represent a node m by m = a1a2...ak, where ai ∈ N and k ∈ N then we obtain

the j-th child of m by n = mj. Let us then denote the time at which the child n is

created by t(n). The number of children of the node m will be denoted by c(m) and

the asset price at that node is s(m). We can also find the height h(n) which is the

maximum number of splits possible to reach maturity. This can be defined by

h(m) =







0 , if t(m) = T

1 + maxk≤c(m){h(mk)} , otherwise

and corresponds to the maximum number of embedding steps needed after node m.

Let A(K, t(n), n) be the price which is obtained by following the transformation of

A by the algorithm in Section 2.3.1 up to the subpicture, where we just jumped to the

node n. If we can show now that the value of the American put option in each node n

and for each strike K, denoted by

v(K, t(n), n) = sup
0≤τ≤T−t(n)

E[e−rτ (K − Sτ )+|St(n) = s(n)] (2.26)
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coincides with the price given by A(K, t(n), n), then we will have shown that

sup
0≤τ≤T

E[e−rτ (K − Sτ )+] = A(K) (2.27)

has to hold. By the Dynamic Programming Principle (Theorem 21.7 in Björk [2009]),

the optimal stopping problem in (2.26) can be rewritten as the Bellman equation

v(K, t(n), n) = max{(K − s(n))+,

c(n)
∑

k=1

e−r(t(nk)−t(n))pk(n)v(K, t(nk), nk)}, (2.28)

where pk(n) is the probability of being at s(nk) at time t(nk) given we are at node n.

Using (2.28) we can now prove that

v(K, t(n), n) = A(K, t(n), n) (2.29)

by induction on the height of the node n. For a node of height 1 we know from step 6,

or 7 resp., of the algorithm in Section 2.3.1 that A(K, t(n), n) = (K − s(n))+ ∨ E(K),

where E is the European with contract length (T − t(n)) and marginal distribution

given by the direct children of the node n and their transition probabilities. Hence

the value of E agrees with the second expression on the right hand-side of (2.28) and

therefore we have that for nodes of height 1 the equation in (2.29) is satisfied.

Suppose now that we know v(K, t(n), n) = A(K, t(n), n) for all nodes up to a height

h. Then again, we must have v(K, t(n), n) = A(K, t(n), n) for nodes n of height h + 1,

as the definition of the given prices for nodes of height h+ 1 in (2.25) is the maximum

over the immediate exercise at that node, (K − s(n))+, and

e−r(t(n1)−t(n))(p1(n)v(K, t(n1), n1) + ... + pc(n)(n)v(K, t(nc(n)), nc(n))).

This coincides with the continuation value in the Bellman equation, as each node has

by construction exactly c(n) direct children. Hence we conclude by induction that the

American put option prices on the underlying S have to coincide with the given prices

A.

2.4 Conclusion

In this paper we presented no-arbitrage conditions on American put option prices in a

model-independent setting, where our only financial assumptions were that we can buy

and sell both types of derivatives initially at the given prices, and that we can trade in

the underlying frictionlessly at a discrete number of times.

Any violation of the conditions of Theorem 2.2.3 implies the existence of a simple

arbitrage strategy. More importantly, we also showed that there always exists a model

41



Chapter 2. Model-independent no-arbitrage conditions on American put options

under which the discounted expected payoffs coincide with the given American and

European prices whenever all the conditions are satisfied.

We believe that the results of this paper can be applied in many different ways.

Market makers and speculators alike could use the conditions of Theorem 2.2.3 to find

misspecifications in the market prices. Simple trading strategies, provided in the proof

of Theorem 2.2.3, can then be used to generate arbitrage. Furthermore the necessary

conditions present a way of verifying the plausibility of prices obtained by numerical

procedures or to extrapolate non-quoted prices from existing market data. Additionally,

the results presented in this paper can be used to get an estimate for the model-risk

associated with a particular position in the set of American options.

Lastly we think that the results of this paper lead to the following interesting and

unanswered questions. Are the conditions of Theorem 2.2.3 also sufficient in a gener-

alised setting where the American and European prices are given as continuous (and

convex) functions? What conclusions can be made about the range of prices for portfo-

lios consisting of long and short positions in American put options with different strikes?

Is it possible to say something about the exercise behaviour of the long positions with

respect to the exercise behaviour of the short positions (c.f. Henderson et al. [2013],

who consider a related problem for portfolios of American put options)? What are

conditions for the absence of model-independent arbitrage in a market trading Ameri-

can and European put options, where European option prices are known for different

maturity dates? How do the conditions on the option prices change if the underlying

is allowed to pay dividends?

2.5 Appendix

Lemma 2.5.1. Suppose the given functions A and E satisfy the necessary conditions

(i), (iii) and (iv) of Theorem 2.2.3 and Lemma 2.2.1, then the following conditions are

all equivalent:

(i) ∀K ≥ 0 : ∀ǫ > 0 :

A(K + ǫ) −A(K)

ǫ
K −A(K) ≥

E(K + ǫ) − E(K)

ǫ
K − E(K). (2.30)

(ii) There exists an ǫ̃ = ǫ̃(K) such that (2.30) holds for all positive ǫ less than ǫ̃.

(iii) ∀K ≥ 0 : A′(K+)K −A(K) ≥ E′(K+)K − E(K).

Remark. Any of the conditions in Lemma 2.5.1 above implies that for traded strikes
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KE
j ≤ KA

i ≤ KE
j′ ≤ KA

i′ the discretized version

A(KA
i′ ) −A(KA

i )

KA
i′ −KA

i

KA
i −A(KA

i ) ≥
E(KE

j′ ) − E(KE
j )

KE
j′ −KE

j

KE
j − E(KE

j ) (2.31)

has to hold. The market exhibits model-independent arbitrage whenever the condition

is violated. This follows from the convexity of the function A.

Proof of Lemma 2.5.1. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivially ful-

filled, since the set of ǫ for which we consider the inequality is in each case a subset of

the set of ǫ from the statement above.

We then only have to show (iii) ⇒ (i) to prove equivalence between the 3 state-

ments. Note further that it is enough to consider the case K > 0, since for K = 0 we

have A(K) = E(K) = 0. If we suppose now that the condition A′(K+)K − A(K) ≥

E′(K+)K − E(K) holds for K > 0 then we can show that A(K)−E(K)
K has to be in-

creasing on any compact interval [a, b] ⊂ (0,∞). To prove this we use Theorem 1 from

Miller and Vyborny [1986] implying that it is enough to show that A(K)−E(K)
K is con-

tinuous on [a, b] and that for all K ∈ (a, b) the right sided derivative exists and is non

negative. Since we know that A and E are convex functions on (0,∞) we know that

their right sided derivatives exist and that A(K)−E(K)
K is continuous on any subinterval

[a, b] ⊂ (0,∞). Let us consider now the right side derivative of A(K)−E(K)
K given by

∂+
A(K) − E(K)

K
= lim

ǫ↓0

1

ǫ

(

(A(K + ǫ) − E(K + ǫ))

K + ǫ
−

(A(K) − E(K))

K

)

=
1

K2
(A′(K+)K −A(K)) − (E′(K+)K − E(K)),

which is non-negative as we have A′(K+)K − A(K) ≥ E′(K+)K − E(K). Hence
A(K)−E(K)

K is increasing and we can therefore write

ǫ
A(K) − E(K)

K
≤

∫ K+ǫ

K

A(u) − E(u)

u
du

≤

∫ K+ǫ

K
(A′(u+) − E′(u+))du

= A(K + ǫ) − E(K + ǫ) − (A(K) − E(K)),

where the integral in the second line is well defined as a convex function is differentiable

almost everywhere. The inequality in the second line is obtained by the assumption

A′(K+)K−A(K) ≥ E′(K+)K−E(K). We have therefore shown that A(K+ǫ)−A(K)
ǫ K−

A(K) ≥ E(K+ǫ)−E(K)
ǫ K − E(K) has to hold for any ǫ > 0 and K ≥ 0.

Lemma 2.5.2. Assume the piecewise linear functions A and E satisfy the necessary

conditions (i),(iii) and (iv) of Theorem 2.2.3 and Lemma 2.2.1. Suppose further
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that their kinks are in KA
1 , ...,K

A
m and KE

1 , ...,KE
n respectively. Then the condition

A′(K+)K − A(K) ≥ E′(K+)K − E(K) holds for all strikes K ≥ 0 if and only if it

holds in the kinks of E.

Proof. We only have to show that it is enough to have the condition fulfilled in all

strikes KE
i , i = 1, ...,m, since the other implication is trivially fulfilled. Suppose now

the condition is fulfilled in KE
i and choose a strike K ∈ [KE

i ,KA], where KA =

minj=1,...,m{K
A
j : KE

i < KA
j < KE

i+1}. This way we have

A′(K+)K −A(K) ≥ A′(KE
i +)K −A(K)

= A′(KE
i +)K −A′(KE

i +)(K −KE
i ) −A(KE

i )

= A′(KE
i +)KE

i −A(KE
i )

≥ E′(KE
i +)KE

i − E(KE
i ),

where the first inequality holds since A′(KA+) ≥ A′(KA−). To obtain the equality

in the second line we simply use the fact that for any K in that interval we can write

A(K) = A′(KE
i +)(K −KE

i ) + A(KE
i ) and for the last inequality that the condition is

known to hold in KE
i . But then again we can rewrite

E′(KE
i +)KE

i − E(KE
i ) = E′(KE

i +)K − E′(KE
i +)(K −KE

i ) − E(KE
i )

= E′(K+)K − E(K).

Hence we have A′(K+)K−A(K) ≥ E′(K+)K−E(K). This leaves us to show that for

any strike K ∈ (KA,KE
i+1) the condition is fulfilled, but we can use the same argument

now, inductively on the kinks of A between KA and KE
i+1, we have that the condition

has to hold for any strike K ∈ [KE
i ,KE

i+1). Since the strike KE
i was taken arbitrarily

we know that the condition has to hold for all strikes K ∈ [KE
1 ,∞). Then again for any

strike prior to KE
1 the condition is trivially fulfilled, since we know that A is increasing

and convex and therefore has to satisfy A′(K+)K −A(K) ≥ 0.

Lemma 2.5.3. Assume the functions A and E given by (2.4) satisfy the necessary

conditions of Theorem 2.2.3 and Lemma 2.2.1, where A is extended to Ã as in (2.6)

and the European put price function E with contract length (T − t∗old) is given by the

marginal distribution µ = p1δKE
1

+ ... + pnδKE
n

with mean Eµ(X) = er(T−t∗
old

)S0 at

maturity T . Suppose further that the time of the next jump t∗ and the associated

critical strike K∗ were determined as in Section 2.3.2 at which point the linear piece

sAk (K − Sk
d ) of Ã, denoted by fk, is embedded.

Moreover we assume that E2 is given by Proposition 2.3.5 and define Â(K) =

ert
∗
cp−1

u

(

max{fm, ..., fN
Ã
} − fk

)

then it follows that

Â′(K+)K − Â(K) = E′
2(K+)K − E2(K)

44
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for K ≥ KE
p , where KE

p and NÃ are defined in Section 2.3.1.

Remark. The result of Lemma 2.5.3 shows that we obtain the extension in the right

hand-side sub-picture P2 by transforming the extension in the original picture P , as

the functions Â and Ã2 coincide in KE
p and the Legendre-Fenchel condition is satisfied

with equality for K ≥ KE
p .

Proof of Lemma 2.5.3. We know already from Lemma 2.5.2 that it is enough to check

the condition in the atoms of E2, which by the definition of E2 in Proposition 2.3.5

coincide with the ones of E. Consider therefore KE
j , where j ∈ {p, ..., n} and assume,

without loss of generality, that the American A to the right of KE
j is given by fi then

we have

Â′(KE
j +)KE

j − Â(KE
j ) =

ert
∗
cp−1

u [(f ′
j(K

E
j +)KE

j − fj(K
E
j )) − (f ′

k(KE
j +)KE

j − fk(KE
j ))].

Furthermore we can use Proposition 2.3.5 to write

E2(KE
j ) = p−1

u (ert
∗
cE(KE

j ) − pdE1(K
E
j )),

since Proposition 2.3.3 guarantees that we have KE
j ≥ K∗er(T−t∗). As we are only

considering strikes where A′(K+)K − A(K) = E′(K+)K − E(K) holds, we get that

the equation Â′(KE
j +)KE

j − Â(KE
j ) = E′

2(K
E
j +)KE

j − E2(KE
j ) reduces to

ert
∗
c (f ′

k(KE
j +)KE

j − fk(KE
j )) = pd(E′

1(KE
j +)KE

j − E1(K
E
j )).

This equality has to hold though, since we know that fk(K) = e−rt∗cpd(K − Sd) and

E1(K) = e−r(T−t∗)K − Sd for K ≥ K∗er(T−t∗).
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Chapter 3

Arbitrage situations in markets

trading American and

co-terminal European options

We consider a market in which American and co-terminal European

put options are traded for finitely many strikes. From the given prices

it is then either possible to construct American and European put price

functions satisfying the conditions given in Theorem 2.2.3 of Chapter 2 or

to construct a portfolio generating model-independent arbitrage.

3.1 Problem setting

Suppose that both American put options and co-terminal European put options are

each traded at finitely many strikes in the market. We are then interested in investi-

gating arbitrage opportunities in this market that hold under any model.

In the paper by Davis and Hobson [2007] no-arbitrage conditions for markets trad-

ing only in European call options are provided. These can be translated into the

following conditions for the absence of arbitrage in markets trading in European put

options as has been pointed out already in Section 2.2.

Lemma 3.1.1. Suppose the prices of European put options with maturity T are given

for a set of finitely many strikes KE
0 and extended to the European put price function E

as in Lemma 2.2.1 in Chapter 2. The current price of the underlying asset is denoted

by S0. Then the European put prices are free of model-independent and weak arbitrage

opportunities if and only if the following conditions are satisfied:

1. The European put price function E is increasing and convex in the strike K.

2. The function (e−rTK − S0)+ is a lower bound for E.
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3. The function e−rTK is an upper bound for E.

4. For any K ≥ 0 with E(K) > e−rTK − S0 we have E′(K+) < e−rT .

Given that the European put option prices are free of arbitrage, the price function

for co-terminal American put options needs to comply with the following conditions to

guarantee absence of arbitrage according to Theorem 2.3.10 in Chapter 2.

Theorem 3.1.2. Suppose we are given American and European price functions A and

E that are piecewise linear and that each of the corresponding options has maturity T .

If the European price function satisfies the conditions given in Lemma 3.1.1 while the

American price function satisfies

(i) A is increasing and convex in K,

(ii) For all K ≥ 0 we have

A′(K+)K −A(K) ≥ E′(K+)K − E(K),

(iii) The function max{E(K),K − S0} is a lower bound for A(K),

(iv) The function A(K) := E(erTK) is an upper bound for A(K),

then there exists a model (Q, (St)t∈[0,T ]) such that the discounted underlying price pro-

cess (e−rtSt)t∈[0,T ] is a martingale with e−rTEQ(K − ST )+ = E(K) and

sup
0≤τ≤T

EQ[e−rτ (K − Sτ )+] = A(K)

for all strikes K ≥ 0 and stopping times τ taking values in [0, T ].

It is not enough, however, to determine whether the conditions of Lemma 3.1.1 and

Theorem 3.1.2 are satisfied by the functions Alin and Elin, obtained by interpolating

linearly between the traded option prices, as more sophisticated functions A and E

may exist that satisfy them. Thus we will address in the sequel the problem of finding

a suitable algorithm for the construction of American and European price functions

complying with the no-arbitrage conditions. Moreover, we will show that there exists

arbitrage in the market should the algorithm fail to produce admissible price functions.

As we consider markets where American and European options are traded at (pos-

sibly) different strikes, we will replace condition (ii) of Theorem 3.1.2 by the following

equivalent condition: for any combination of strikes Ki,Ki′ ∈ KA
0 and Kj ,Kj′ ∈ KE

0

with Kj < Kj′ , Ki < Ki′ , Kj ≤ Ki and Kj′ ≤ Ki′ we must have

A(Ki′) −A(Ki)

Ki′ −Ki
Ki −A(Ki) ≥

E(Kj′) − E(Kj)

Kj′ −Kj
Kj − E(Kj). (3.1)
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That the two conditions are equivalent follows immediately from Lemma A.1 in Chap-

ter 2 together with the convexity of the price functions A and E. Furthermore, Propo-

sition 3.10.1 in the appendix provides an arbitrage portfolio, consisting only of traded

options, if (3.1) is violated.

We will refer to the second condition in Theorem 3.1.2 subsequently as the Legendre-

Fenchel condition, since it can be expressed using the homonymous transform. To see

this, recall that the Legendre-Fenchel transform of a convex function f : R → R is given

by f∗(k) = supx∈R{kx − f(x)}. We can thus rewrite the condition as A∗(A′(K+)) ≥

E∗(E′(K+)). Moreover, we would like to point out that we will frequently use the

term convex conjugate to refer to the Legendre-Fenchel transform.

Before we continue, we will make some assumptions on the market and its partici-

pants. The first assumption is mild and related to the behaviour of market participants.

Assumption 3.1.3. Any market participant prefers more money to less and will act

accordingly.

In particular, we will use the argument that no one would purchase an American

put option for more than its immediate exercise value if he or she intended to sell it off

immediately again.

In the remaining assumptions we will restrict ourselves to a subset of the markets

trading American and co-terminal European put options.∗

Assumption 3.1.4. There exists at least one in-the-money American put option in

the market that trades at its intrinsic value.

Assumption 3.1.5. There exists at least one European put option in the market that

trades at its non-zero lower bound. That is, European options for some strike K >

erTS0 are traded in the market at e−rTK − S0, assuming that the current value of the

underlying is given by S0.

Notation 3.1.6. The set of markets trading in American and co-terminal European

put options satisfying Assumption 3.1.3, Assumption 3.1.4 and Assumption 3.1.5 will

be denoted by M.

Using this notation the result we are interested in showing can be written as follows.

Theorem 3.1.7. Suppose finitely many American and co-terminal European put op-

tions are traded in the market and that their prices are given by P∗
0 ∈ M. Then either

the algorithm provided in Section 3.5 will construct American and European price func-

tions satisfying the no-arbitrage conditions of Lemma 3.1.1 and Theorem 3.1.2 or there

exists arbitrage in the market.

∗This restriction is not necessary and by a slight modification of the algorithm the result can be
extended to general markets. However, the proof of the result for general markets is considerably more
technical.
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We will further improve the presentation by introducing the following notation.

Notation 3.1.8. The functions we consider are piecewise linear, thus the slope between

two neighbouring strikes xk and xk+1, where xk+1 > xk, is constant and given by

f ′(xk+) = (f(xk+1)− f(xk))/(xk+1 − xk). Let us denote the y-intercept of the tangent

by cc(f, xk, xk+1), that is

cc(f, xk, xk+1) = f ′(xk+)(0 − xk) + f(xk) (3.2)

and note that cc(f, xk, xk+1) = −f∗(f ′(xk+)).

Notation 3.1.9. This notation can further be extended to the linear interpolation

between the prices of two different functions f and g at the strikes xk and xk+1, respec-

tively. For that purpose we write

cc(f, g, xk, xk+1) = f(xk) − xk(g(xk+1) − f(xk))/(xk+1 − xk).

The rest of this chapter is organised as follows. In Section 3.2 we discuss the setup

in more detail and introduce some notation. We continue in Section 3.3 by deriving no-

arbitrage bounds on the prices of individual options. These bounds are then used in the

next section to construct price functions. In addition, possible price-misspecifications

are highlighted and corrections are suggested. The final algorithm is then presented in

Section 3.5. In Section 3.6 we proceed by identifying the different situations in which

the algorithm is unable to construct admissible price functions and show that in each of

these situations there has to exist arbitrage in the market. Section 3.7 is dedicated to

proving that a set of prices that is admissible up to a strike ξi can be extended by the

algorithm to a set of prices admissible up to the next strike ξi+1 if the algorithm does

not stop due to an arbitrage. In Section 3.8 we argue that the algorithm converges and

that either the resulting price functions satisfy the conditions given in Lemma 3.1.1

and Theorem 3.1.2 or that there exists arbitrage in the market. Section 3.9 concludes

the chapter.

3.2 Setup

Suppose now that American options trade for a finite set of strikes 0 < KA
1 < KA

2 <

... < KA
m1

< ∞ and that the price for an American option with strike KA
i , i ∈

{1, ...,m1}, is denoted by âi. Similarly, we assume that European options are traded

in the market for a finite set of strikes 0 < KE
1 < KE

2 < ... < KE
m2

< ∞ and we denote

the price for a European option with strike KE
j , j ∈ {1, ...,m2}, by êj. Note further

that a put option with strike zero cannot have a positive payoff and thus its price has

to be 0. Hence, we can always assume that both American and European options with
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strike zero are traded in the market at price 0. Using KA
0 = KE

0 = 0, we introduce the

ordered set of prices

P∗
0 = {(0,KA

0 ), (â1,K
A
1 ), ..., (âm1 ,K

A
m1

); (0,KE
0 ), (ê1,K

E
1 ), ..., (êm2 ,K

E
m2

)}

and the sets of strikes

KA(P∗
0 ) = {KA

0 ,K
A
1 ,K

A
2 , ...,K

A
m1

},

KE(P∗
0 ) = {KE

0 ,KE
1 ,KE

2 , ...,KE
m2

},

K(P∗
0 ) = KA(P∗

0 ) ∪KE(P∗
0 ).

As we aim to provide price functions satisfying the no-arbitrage conditions we will

keep track of their construction using sets like

P = {PA;PE} (3.3)

= {(a0,
AK0), ..., (an1 ,

AKn1); (e0,
EK0), ..., (en2 ,

EKn2)},

that no longer consist only of the prices of traded options. Without loss of generality we

furthermore assume that the strikes in P are ordered, that is AK0 <
AK1 < ... < AKn1

and EK0 <
EK1 < ... < EKn2 . Moreover, we write

KA(P) = {AK0,
AK1, ...,

AKn1},

KE(P) = {EK0,
EK1, ...,

EKn2}

and

K(P) = KA(P) ∪KE(P).

In addition, we will denote the largest strike at which the price of an American

option exceeds its intrinsic value by Kl1(P) where

l1(P) = arg max
0≤i≤n1

{ai >
AKi − S0}. (3.4)

Analogously, we denote the largest strike at which the price of a European option

exceeds the lower bound e−rTK − S0 by Kl2(P) where

l2(P) = arg max
0≤j≤n2

{ej >
EKje

−rT − S0}. (3.5)

Note that for P ∈ M, we must have l1(P) < n1 and l2(P) < n2.

To obtain price functions we will interpolate linearly between the respective prices
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in P, that is, we define for any strike K ≥ 0

A(K,P) =







(K − AKn1) + an1 , if K ≥ AKn1

ai+1−ai
AKi+1−AKi

(K − AKi) + ai, if K ∈ [AKi,
AKi+1]

(3.6)

where i ∈ {0, 1, ..., n1 − 1} and analogously for any strike K ≥ 0

E(K,P) =







(K − EKn2) + en1 , if K ≥ EKn2

ej+1−ej
EKj+1−EKj

(K − EKj) + ej, if K ∈ [EKj ,
EKj+1]

(3.7)

where j ∈ {0, 1, ..., n2 − 1}. Note that the price functions are extended like this be-

yond the respective final strike to accommodate the fact that both the American and

European price function will coincide with its respective lower bound for large strikes.

Furthermore, it follows from the definition A(K,P) = E(KerT ,P) that the upper

bound is given as the linear interpolation between the prices aj at EKje
−rT , where

aj = ej and 0 ≤ j ≤ n2.

3.3 No-arbitrage bounds on option prices

To guarantee that the price functions we construct are admissible the prices have to

lie within the range implied by the no-arbitrage conditions. Let us start by examining

the bounds on the European price function provided by convexity. Suppose we want

to find the upper bound on the price of a European option with strike K given the set

of prices PE , then for 0 ≤ K < EKn2 there exists j = arg max0≤j′≤n2
{EKj′ ∈ KE(P) :

EKj′ ≤ K} and the upper bound is given by

Eub(K,P) =
ej+1 − ej

EKj+1 − EKj
(K − EKj) + ej. (3.8)

In the absence of any restriction on the upper price for a European option with strike

K ≥ EKn2 , we set Eub(K,P) = e−rTK − S0.

Consider now the lower bound on a European option implied by convexity. In this

case we obtain two individual bounds, one from each side. Let us first discuss the left

hand-side lower bound given the set of prices PE . As we need to know at least the

prices of two European options to the left, the left hand-side lower bound is not defined

on [EK0,
EK1), however, we know that the price for a European put option cannot be

negative and we can therefore use 0 on that interval. For any strike K ≥ EK1 there

exists j1 = arg max1≤j′≤n2
{EKj′ ∈ KE(P) : EKj′ ≤ K} and we write

Elhs
lb (K,P) =

ej1 − ej1−1

EKj1 −
EKj1−1

(K − EKj1) + ej1 . (3.9)
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Similarly, we obtain for K ≤ EKn2−1 the right hand-side lower bound

Erhs
lb (K,P) =

ej2+1 − ej2
EKj2+1 − EKj2

(K − EKj2) + ej2 . (3.10)

where j2 = arg min1≤j′≤n2−1{
EKj′ ∈ KE(P) : EKj′ > K}. For any strike K ≥ EKn2−1

we will use the universal lower bound e−rTK − S0.

Since we can only rule out a violation of convexity if both these bounds hold, we

can conclude that the lower bound on the price of a European option with strike K is

given by

Elb(K,P) = max{Elhs
lb (K,P), Erhs

lb (K,P)}. (3.11)

Analogously, we can deduce from the convexity of the American price function that

the option prices have to lie between the following no-arbitrage bounds. The upper

bound on the price of an American option with strike K ∈ [AK0,
AKn1) is given by

Aub(K,P) =
ai+1 − ai

AKi+1 − AKi
(K − AKi) + ai, (3.12)

where i = arg max0≤i′≤n1
{AKi′ ∈ KA(P) : AKi′ ≤ K}. For the price of an American

option with strike K ≥ AKn1 the upper bound is set to be Aub(K,P) = K − S0.

The left hand-side lower bound on the price of an American option with strike K

is either given by 0 for any strike K ∈ [AK0,
AK1) or by

Alhs
lb (K,P) =

ai1 − ai1−1
AKi1 −

AKi1−1
(K − AKi1) + ai1 , (3.13)

for K ≥ AK1 where i1 = arg max1≤i′≤n1
{AKi′ ∈ KA(P) : AKi′ ≤ K}. Likewise,

the convexity provides the following right hand-side lower bound on the price of an

American option with strike K ∈ [AK0,
AKn1−1)

Arhs
lb (K,P) =

ai2+1 − ai2
AKi2+1 − AKi2

(K − AKi2) + ai2 . (3.14)

where i2 = arg min1≤i′≤n1−1{
AK ′

i ∈ KA(P) : AKi′ > K}. For any strike K ≥ AKn1−1

we can use the universal lower bound K − S0. The lower bound is then defined to be

Alb(K,P) = max{Alhs
lb (K,P), Arhs

lb (K,P)}. (3.15)

The second condition in Theorem 3.1.2, the Legendre-Fenchel condition, yields

an additional constraint on the upper bound of European option prices. For that

purpose let us assume that the Legendre-Fenchel condition, provided in (3.1), holds

with equality. Suppose, moreover, that AKi,
AKi′ ∈ KA(P) and EKj,

EKj′ ∈ KE(P)
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satisfy EKj = EKj′−1,
EKj = AKi and EKj′ = AKi′ , then we obtain

Elf (EKj′ ,P) = aj′ −
EKj′

EKj′−1
[aj′−1 − ej′−1]. (3.16)

for EKj′−1 > 0. In the case where the strike EKj′−1 = 0 the Legendre-Fenchel condition

does not provide additional information and thus we will set Elf (EKj′ ,P) = aj′ which

always has to hold.

Likewise, the Legendre-Fenchel condition gives the following lower bound on the

price of an American option with strike AKi′

Alf (AKi′ ,P) = ei′ +
AKi′

AKi′−1
[ai′−1 − ei′−1]. (3.17)

whenever AKi′−1 > 0 and we will set Alf (AKi′ ,P) = ei′ for AKi′−1 = 0.

To guarantee that condition (iv) of Theorem 3.1.2 holds an additional right hand-

side lower bound on the price of an American option with strike K has to be introduced.

Setting i1 = min{1 ≤ i′ ≤ n1 : AKi′ > K}, the convexity of the American price function

implies that

A(K,P) ≥
A(Kq,P) − ai1
Kq − AKi1

(K − AKi1) + ai1

for any Kq ∈ (AKi1 ,
AKi1+1], where 1 ≤ i1 ≤ n1 and AKn1+1 = ∞. As we mentioned

already, the upper bound A will be piecewise linear by construction and we can therefore

conclude that it is enough to consider the lower bounds obtained by the kinks of A.

We will see below that the number of lower bounds can be reduced further to the ones

implied by the kinks in A at strikes of the type EKje
−rT ∈ (AKi1 ,

AKi1+1], where

0 ≤ j ≤ m2, 1 ≤ i1 ≤ n1 and AKn1+1 = ∞. Denoting this set of strikes by Si1 , the

following ancillary lower bound for the price of an American put option with strike

K ∈ (AKi1−1,
AKi1), 1 ≤ i1 ≤ n1, is obtained

AA,r
lb (K,P) = max

1≤j≤m2

KE
j e−rT∈Si1

{

aj − ai1

KE
j e−rT − AKi1

(K − AKi1) + ai1

}

(3.18)

where we set AA,r
lb (K,P) = −∞ if Si1 = ∅ or K ≥ AKn1 . Analogously, we obtain the

left hand-side lower bound for American options with strike K. For that purpose we

set i2 = max{1 ≤ i′ ≤ n1 : AKi′ ≤ K}. We can then write

AA,l
lb (K,P) = max

1≤j≤m2

KE
j e−rT∈Si2−1

{

ai2 − aj
AKi2 −KE

j e−rT
(K − AKi2) + ai2

}

, (3.19)
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where we again set AA,l
lb (Kp,P) = −∞ if Si2−1 = ∅ or K ≤ AK1. Combining these two

bounds we get

AA
lb(K,P) = max{AA,l

lb (K,P), AA,r
lb (K,P)}. (3.20)

3.4 Construction of the price functions

We aim to generate piecewise linear price functions A and E that satisfy the no-

arbitrage conditions and that are consistent with a given set of finitely many option

prices P∗
0 ∈ M. To do this, we move along the strikes in K(P∗

0 ) and compute the price

of either the American or European option with that strike. We will keep track of the

computed option prices by gradually extending the initial set P∗
0 . In particular, having

calculated the price for the non-traded option with strike Kp, p ≥ 1, we define the set

of prices P0,p to be given by

P0,p =



















(PA
0,p−1 ∪ (ap,Kp);PE

0,p−1), if Kp ∈ KE(P∗
0 )\KA(P∗

0 )

(PA
0,p−1;P

E
0,p−1 ∪ (ep,Kp)), if Kp ∈ KA(P∗

0 )\KE(P∗
0 )

P0,p−1, if Kp ∈ KA(P∗
0 ) ∩KE(P∗

0 ).

where P0,0 = P∗
0 . Note that this has the effect that the first p strikes of KA(P0,p) and

KE(P0,p) coincide.

3.4.1 Computation of the prices for strikes in K(P∗
0 )

To ensure that the algorithm successfully constructs American and European price

functions when the market is free of arbitrage, the prices have to be computed so as to

yield the widest possible no-arbitrage bounds for the remaining prices. For that purpose

we consider the upper and lower bounds derived in the previous section and make the

following observations. According to (3.9), the initial left hand-side lower bound for

European option prices between two traded strikes will decrease when the prices in the

previous interval are increased. To see this consider the strikes EKl−1,
EKl ∈ K(P0,l)

with EKl ∈ KE(P∗
0 ). If we assume that the strike EKl corresponds to KE

j ∈ KE(P∗
0 ),

we can conclude from (3.9) that an increase in the price el−1 yields a decreased left

hand-side lower bound Elhs
lb between the two strikes KE

j and KE
j+1. Moreover, the

upper bound A is maximised by maximising E. In addition, the definition of the

upper bound Elf in (3.16) shows that decreasing A or increasing E, respectively, in the

previous strike results in an increase of Elf in the current strike. Analogously, we see

that the lower bound Alf , given by (3.17), will decrease whenever A is decreased or E

is increased, respectively, in the previous strike.

Taking all these considerations into account, we conclude that the widest possible
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no-arbitrage bounds are obtained by maximising the European price function E while

minimising the American price function A. We will therefore compute the prices as

follows. For Kp ∈ KA(P∗
0 )\KE(P∗

0 ) the price of a European option with strike Kp is

ep = min
{

Eub(Kp,P0,p−1), Elf (Kp,P0,p−1)
}

,

and for Kp ∈ KE(P∗
0 )\KA(P∗

0 ) the price of an American option with strike Kp is given

by

ap = max
{

Alb(Kp,P0,p−1), A
A
lb(Kp,P0,p−1), Alf (Kp,P0,p−1)

}

.

3.4.2 Price-misspecifications and their corrections

Computing the prices for American and European put options like this does not guaran-

tee that ep ≥ Elb(Kp,P
∗
0 ), ap ≤ Aub(Kp,P0,p−1) or A(Kpe

−rT ,P0,p) ≤ ap, respectively.

We thus need to argue that either a violation of any of these conditions can be resolved

or there exists arbitrage in the market.

Suppose first that at strike Kp ∈ K(P∗
0 )\KE(P∗

0 ) the price for a European option

with strike Kp is determined to be ep and that ep < Elb(Kp,P
∗
0 ). In order to obtain a

European price function complying with the no-arbitrage conditions the price ep has to

be increased to at least Elb(Kp,P
∗
0 ). This, however, will cause a violation of the upper

bound Elf (Kp,P0,p−1). To allow the algorithm to choose a valid price we are therefore

required to amend the computed prices prior to the strike Kp. For that purpose we

will introduce a second algorithm that will start in the strike Kp and work backwards

computing revised prices ank and enk for k ≤ p. In particular, the algorithm begins with

the revised option prices anp = ap and enp = Elb(Kp,P
∗
0 ) and the price set

Prev = ((anp ,Kp); (enp ,Kp)).

It then determines the prices of non-traded options to the left such that the Legendre-

Fenchel condition holds with equality between neighbouring strikes. Since the Legendre-

Fenchel condition is a transitive property, according to Proposition 3.10.2, we can com-

pute the option prices using anq = aq and

enq = anq −
Kq

Kp
[anp − enp ]

for Kq ∈ K(P∗
0 )\KE(P∗

0 ) and enq = eq and

anq = enq +
Kq

Kp
[anp − enp ]

for Kq ∈ K(P∗
0 )\KA(P∗

0 ). The price set Prev is then extended in each step to Prev =
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Prev ∪ ((anq ,Kq); (enq ,Kq)). From this set of prices the revised price functions An and

En are readily obtained by

An(K,Prev) =
ani+1 − ani

Ki+1 −Ki
(K −Ki) + ani

for K ∈ [Ki,Ki+1] where Ki,Ki+1 ∈ KA(Prev) and by

En(K,Prev) =
enj+1 − enj

Kj+1 −Kj
(K −Kj) + enj

for K ∈ [Kj ,Kj+1] where Kj ,Kj+1 ∈ KE(Prev). The reason for this choice of prices is

that it not only ensures that the Legendre-Fenchel condition holds between the revised

price functions, but at the same time it allows us to construct an arbitrage portfolio in

case the correction of the price functions is not successful.

The revision algorithm will stop in one of two situations: Either a revised price

violates a no-arbitrage bound or we arrived at a strike Kq ∈ K(P∗
0 )\KA(P∗

0 ) at which

it is possible to introduce an additional price constraint (anq ,Kq) that guarantees that

the algorithm can continue with the construction of the price functions beyond Kp. In

the first case there exists arbitrage in the market as we will see in Section 3.6. In the

second case the algorithm is restarted in strike zero using the new initial set of prices

P∗
0 = ((P∗

0 )A ∪ (anq ,Kq); (P∗
0 )E).

Similarly, we can apply the second algorithm to decide whether or not it is possible

to correct a violation of ap ≤ Aub(K,P0,p−1). Note first that Remark 3.10.43 guarantees

that a violation of convexity can be ruled out for strikes Kp > KA
m1

. Consider thus the

situation where Kp ∈ [0,KA
m1

]∩KE(P∗
0 )\KA(P∗

0 ) and the price for an American option

with strike Kp is computed to be ap with ap > Aub(K,P0,p−1). Contrary to the situation

where ep < Elb(Kp,P
∗
0 ) we now have to choose the initial starting prices for the second

algorithm depending on the type of the strike Kp−1 ∈ K(P∗
0 ). If Kp−1 ∈ KA(P∗

0 ),

the upper bound is given by the prices of two traded options and we use enp = ep

and anp = Aub(Kp,P
∗
0 ) as starting prices, since Aub(Kp,P

∗
0 ) is the maximal price an

American option with strike Kp can assume. Then again, if Kp−1 ∈ KE(P∗
0 )\KA(P∗

0 ),

we are no longer guaranteed that the upper bound Aub(Kp,P0,p−1) is given by the prices

of two traded options. If it is not, we need to resort to the Legendre-Fenchel condition

to find suitable initial prices that allow the construction of arbitrage portfolios in the

cases where the price functions cannot be amended. Specifically, we will set

anp =
âi − cc(E;Kp−1,Kp)

KA
i

(Kp −KA
i ) + âi

where i = arg min1≤i′≤n1−1{K
A
i′ ∈ KA(P∗

0 ) : KA
i′ > Kp} and enp = ep. The second

algorithm is then executed with the appropriate prices anp and enp .
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Finally, we will discuss the situation where a violation of A(Kpe
−rT ,P0,p) ≤ ap oc-

curs. We will deduce from the convexity of the American and European price functions

that the upper bound holds as long as al ≥ A(Kle
−rT ,P0,l) for any strike Kl ∈ K(P∗

0 ).

Moreover, we will see below that it suffices to ensure that A(KE
j e−rT ,P0,j) ≤ aj for

KE
j ∈ KE(P∗

0 ) to guarantee that the American price function computed by the algo-

rithm complies with the upper bound A.

In order to explain how a violation of the upper bound can be corrected, we will

introduce the concept of a support function, akin to the definition in Davis and Hobson

[2007].

Definition 3.4.1. Suppose S = {(yi, xi), i = 0, 1, ..., n} is a set of ordered pairs of

non-negative real numbers and increasing in each component. The support function

f : [x0, xn] → R+ of S is then defined to be the largest increasing and convex function

such that f(xi) ≤ yi, i = 0, 1, ..., n.

Suppose now that KE
j = min{Kj′ ∈ KE(P∗

0 ) : A(Kj′e
−rT ,P0,j′) > aj′} and that

KE
j e−rT ∈ [Kq,Kq+1], where Kq,Kq+1 ∈ K(P∗

0 ), then it is possible to correct a viola-

tion of aj ≥ A(KE
j e−rT ,P0,j) by replacing the American price function A on [Kq,Kq+1]

by the support function of the set

S = {(aq,Kq), (aq+1,Kq+1)} ∪
⋃

j′:KE
j′
e−rT∈[Kq,Kq+1],

KE
j′
∈KE(P∗

0 )

(aj′ ,K
E
j′ e

−rT ). (3.21)

To do this, we will use a third algorithm that determines

Kq̃ = arg min
KE

v e−rT∈(Kq,Kq+1],

KE
v ∈KE(P∗

0 )

av − aq

KE
v e−rT −Kq

.

We can then update the initial set of prices P∗
0 to

(P∗
0 )′ = ((P∗

0 )A ∪ (aq̃,Kq̃); (P∗
0 )E).

Since a violation of the upper bound is corrected by replacing the linear interpola-

tion between the two neighbouring prices by the support function described in (3.21)

the prices outside the interval (Kq,Kq+1) are unaffected. We can therefore refrain from

restarting the algorithm as long as the price sets P0,s+1 are being updated to

(P0,s+1)′ = ((P0,s)
A ∪ (aq̃,Kq̃); (P0,s)

E ∪ (Eub(Kq̃,P0,q),Kq̃))

for any s ∈ {q, ..., p}.
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3.4.3 Expansion of the initial set of prices

In general, we may have to introduce several auxiliary price constraints before the al-

gorithm succeeds in constructing price functions satisfying the no-arbitrage conditions.

This implies that the algorithm may have to be restarted repeatedly and thus we will

need to be able to distinguish between the different initial sets. Henceforth, we will

denote the initial set for the i-th iteration of the algorithm by P∗
i . Furthermore, the

algorithm will start with the set of traded option prices P∗
0 in the first iteration, that is

P∗
1 = P∗

0 . This guarantees that the set of traded option prices P∗
0 remains unchanged

throughout the construction.

Note further that the auxiliary price constraints are not necessarily introduced at

traded strikes when correcting a violation of the upper bound. Since we keep intro-

ducing new constraints to the set of initial prices, we need to distinguish between the

strikes of the different iterations. To this end, we will denote the j-th strike of K(P∗
i ) by

Ki,j. Moreover, we obtain Kaux(P∗
i ), the set of auxiliary strikes for the i-th iteration,

by Kaux(P∗
i ) = KA(P∗

i )\KA(P∗
0 ).

We will further denote the strike at which a violation of convexity occurs during

the i-th iteration by Kvc
i . Further we will use Kaux

i to denote the strike at which the

algorithm stops revising option prices and introduces an auxiliary price constraint to

correct the violation of convexity at Kvc
i .

In addition, we will use Kaux
1 (P∗

i ) to denote the set of auxiliary strikes at which

constraints were introduced to correct violations of convexity in the first i−1 iterations

of the algorithm. Similarly, we use Kaux
2 (P∗

i ) for the set of auxiliary strikes at which

constraints were introduced to correct violations of the upper bound in the first i

iterations.

3.4.4 Computation of the prices for strikes in K(P∗
i )

Due to the introduction of additional strikes to the initial set the computation of the

prices for non-traded options has to be extended to auxiliary strikes. Given the initial

set of prices P∗
i , the algorithm will thus move along the strikes in K(P∗

i ) and calculate

option prices as follows. For Ki,p ∈ K(P∗
i )\KE(P∗

i ) the price of a European option

with strike Ki,p is

ei,p = min
{

Elf (Ki,p,Pi,p−1), Eub(Ki,p,Pi,p−1)
}

, (3.22)

and for Ki,p ∈ K(P∗
i )\KA(P∗

i ) the price of an American option with strike Ki,p is given

by

ai,p = max
{

Alb(Ki,p,Pi,p−1), A
A
lb(Ki,p,Pi,p−1), Alf (Ki,p,Pi,p−1)

}

. (3.23)
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3.4.5 Modification to the price corrections

The possible violations of the no-arbitrage conditions in the i-th iteration are now given

by ei,p < Elb(Ki,p,P
∗
0 ), ai,p > Aub(Ki,p,Pi,p−1) or A(Ki,pe

−rT ,Pi,p) > ai,p. To correct a

violation of convexity, we start with the price set Prev
i = ((ani,p,Ki,p); (eni,p,K

n
i,p)), where

ani,p and eni,p are described in Section 3.4.2, and move backwards along the strikes in

K(P∗
i ) computing the revised prices ani,q = ai,q and

eni,q = ani,q −
Ki,q

Ki,p
[ani,p − eni,p] (3.24)

for Ki,q ∈ K(P∗
i )\KE(P∗

i ) or the prices eni,q = ei,q and

ani,q = eni,q +
Ki,q

Ki,p
[ani,p − eni,p] (3.25)

for Ki,q ∈ K(P∗
i )\KA(P∗

i ). In each step the price set Prev
i is then updated to Prev

i =

Prev
i ∪ ((ani,q,Ki,q); (eni,q,Ki,q)). From this set of prices the revised price functions An

and En are readily obtained by

An(K,Prev
i ) =

ani,j+1 − ani,j

Ki,j+1 −Ki,j
(K −Ki,j) + ani,j (3.26)

for K ∈ [Ki,j,Ki,j+1] where Ki,j,Ki,j+1 ∈ KA(Prev
i ), ani,j,a

n
i,j+1 ∈ (Prev)A and by

En(K,Prev) =
eni,j+1 − eni,j

Ki,j+1 −Ki,j
(K −Ki,j) + eni,j (3.27)

for K ∈ [Ki,j,Ki,j+1] where Ki,j,Ki,j+1 ∈ KE(Prev
i ), eni,j, e

n
i,j+1 ∈ (Prev

i )E .

Observe further that, according to Proposition 3.10.41, each auxiliary price con-

straint introduced by the algorithm corresponds to the price of a super-replicating

portfolio for the American option with the respective strike. We thus have to take the

following additional no-arbitrage bounds into account when revising option prices in

the i-th iteration. Consider first the bounds implied by auxiliary price constraints of

type 1. For K ∈ [KA
u ,K

A
u+1) with 0 ≤ u < m1 and KA

m1+1 = ∞ we obtain

At1,r
lb (K,P∗

i ) = max
1≤s≤m1

Ks∈(KA
u+1,K

A
u+2)∩K

aux
1 (P∗

i )

{

as − âu+1

Ks −KA
u+1

(K −KA
u+1) + âu+1

}

as right hand-side lower bound. We will further set At1,r
lb (K,P∗

i ) = −∞ whenever

(KA
u+1,K

A
u+2) ∩Kaux

1 (P∗
i ) = ∅. Analogously, the left hand-side lower bound for Ameri-
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can options with strike K ∈ (KA
u ,K

A
u+1] with 1 ≤ u ≤ m1 is given by

At1,l
lb (K,P∗

i ) = max
1≤s≤m1

Ks∈(KA
u−1,K

A
u )∩Kaux

1 (P∗
i )

{

âu − as

KA
u −Ks

(K −KA
u ) + âu

}

where we again set At1,l
lb (K,P∗

i ) = −∞ if (KA
u−1,K

A
u )∩Kaux

1 (P∗
i ) = ∅. Combining these

two bounds we get

At1
lb (K,P∗

i ) = max{At1,l
lb (K,P∗

i ), At1,r
lb (K,P∗

i )}.

Similarly, a lower bound with respect to the auxiliary prices of type 2 could be defined.

Note, however, that this bound is always dominated by AA
lb as (KA

u−1,K
A
u )∩Kaux

2 (P∗
i ) ⊂

Su−1 and thus we will refrain from using this bound entirely.

The algorithm then stops in one of the following situations: Either a revised price

violates a no-arbitrage condition and there exists arbitrage as we will see in Section 3.6

or the algorithm comes across a strike Ki,q ∈ K(P∗
i )\KA(P∗

i ) at which it is possible

to introduce an auxiliary price constraint (ani,q,Ki,q). In the latter case the algorithm

is restarted with the new initial set P∗
i+1 = ((P∗

i )A ∪ (ani,q,Ki,q); (P∗
0 )E). Moreover, if

the algorithm reaches Ki,q ∈ Kaux(P∗
i ) it removes the previously introduced auxiliary

constraint, computes a revised price and proceeds correcting prices as described above.

In the situation where ai,p < A(Ki,pe
−rT ,Pi,p) and Ki,pe

−rT ∈ (Ki,q,Ki,q+1] for

Ki,q,Ki,q+1 ∈ K(P∗
i ), the algorithm determines

Ki,q̃ = arg min
KE

v e−rT∈(Ki,q ,Ki,q+1],

KE
v ∈KE(P∗

1 )

av − ai,q

KE
v e−rT −Ki,q

(3.28)

and updates the initial set of prices P∗
i to

(P∗
i )′ = ((P∗

i )A ∪ (ai,q̃,Ki,q̃); (P∗
i )E). (3.29)

Having introduced the auxiliary price constraint (ai,q̃,Ki,q̃) we also have to update the

price sets Pi,s+1 to

(Pi,s+1)
′ = ((Pi,s)

A ∪ (ai,q̃,Ki,q̃); (Pi,s)
E ∪ (Eub(Ki,q̃,Pi,q))) (3.30)

for any s ∈ {q, ...p}. We then continue the algorithm by computing the price for

non-traded options with strike Ki,p+2.
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3.5 Algorithm

We will now present the algorithm that either constructs admissible price functions

or highlights an arbitrage opportunity in the market. To this end, we will start the

algorithm with the initial price set P∗
1 by setting i = 1. Moreover, we set Kaux

1 (P∗
1 ) = ∅

and Kaux
2 (P∗

1 ) = ∅. Note also that we provide a flowchart of the following algorithm in

Section 3.11 of the appendix.

Algorithm 2 Option pricing algorithm

1: % Initialisation step
2: Set p = 1.
3:

4: % Computation of option prices
5: if Ki,p ∈ K(P∗

i )\KA(P∗
i ) then

6: Compute ai,p as in (3.23).
7: Set Pi,p = (PA

i,p−1 ∪ (ai,p,Ki,p);PE
i,p−1).

8: else if Ki,p ∈ KA(P∗
i ) then

9: Compute ei,p as in (3.22).
10: if Ki,p ∈ K(P∗

i )\KE(P∗
i ) then

11: Set Pi,p = (PA
i,p−1;PE

i,p−1 ∪ (ei,p,Ki,p)).
12: end if

13: end if

14:

15: % Check whether a necessary condition is violated
16: if Ki,p ∈ KA(P∗

i ) and ei,p < Erhs
lb (Ki,p,P

∗
0 ) then

17: Stop. Start Algorithm 3 using eni,p = Erhs
lb (Ki,p,P

∗
0 ), ani,p = ai,p and

Prev
i = ((ani,p,Ki,p); (eni,p,Ki,p)).

18: else if Ki,p ∈ K(P∗
i )\KA(P∗

i ) and ai,p > Aub(Ki,p,P
∗
0 ) then

19: Stop. Start Algorithm 3 using ani,p = Aub(Ki,p,P
∗
0 ), eni,p = ei,p and

Prev
i = ((ani,p,Ki,p); (eni,p,Ki,p)).

20: else if Ki,p ∈ K(P∗
i )\KA(P∗

i ) and ai,p > Aub(Ki,p,Pi,p−1) then

21: Stop. Start Algorithm 3 using

ani,p =
âj − cc(E;Ki,p−1,Ki,p;Pi,p)

KA
j

(Ki,p −KA
j ) + âj,

where j = arg min1≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ > Ki,p}, eni,p = ei,p and
Prev
i = ((ani,p,Ki,p); (eni,p,Ki,p)).

22: else if Ki,p ∈ K(P∗
i ) and A(Ki,pe

−rT ,Pi,p) > ai,p then

23: Start Algorithm 4.
24: end if
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25: % Repeat these steps for the other strikes
26: If Ki,p < KE

m2
: Set p = p + 1 and go to line 5.

Algorithm 3 Correction of A > Aub or E < Erhs
lb

1: % Initialisation step
2: Set q = p− 1.
3:

4: % Backwards calculation of option prices
5: if Ki,q ∈ K(P∗

i )\KE(P∗
i ) then

6: Set eni,q = ai,q −
Ki,q

Ki,p
[ani,p − eni,p], a

n
i,q = ai,q and

Prev
i = Prev

i ∪ ((ani,q,Ki,q); (eni,q,Ki,q)).

7: else if Ki,q ∈ KE(P∗
i ) then

8: Set ani,q = ei,q +
Ki,q

Ki,p
[ani,p − eni,p], e

n
i,q = ei,q and

Prev
i = Prev

i ∪ ((ani,q,Ki,q); (eni,q,Ki,q)).

9: end if

10:

11: % Check for arbitrage
12: if ani,q < Alb(Ki,q,P

∗
0 ) then

13: Stop, arbitrage!
14: else if ani,q < AA

lb(Ki,q,P
∗
0 ) then

15: Stop, arbitrage!
16: else if ani,q < At1

lb (Ki,q,P
∗
i ) then

17: Stop, arbitrage!
18: else if ani,q < 0 then

19: Stop, arbitrage!
20: else if eni,q > Eub(Ki,q,P

∗
0 ) then

21: Stop, arbitrage
22: end if

23:

24: % Stopping condition
25: if (ai,q = Alhs

lb (Ki,q,Pi,q−1) and Alhs
lb (Ki,q,Pi,q−1) > Alf (Ki,q,Pi,q−1)) or Ki,q ∈

Kaux
1 (P∗

i ) then

26: if Ki,q ∈ Kaux
1 (P∗

i ) then

27: Remove (ai,q,Ki,q) from P∗
i and Ki,q from Kaux

1 (P∗
i ).

28: end if

29: Set j = 1.
30: while (Ki,q−j /∈ KA(P∗

i )) do

31: j = j + 1.
32: end while
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33: for s = 0 : j − 1 do

34: if cc(A,An;Ki,q−j ,Ki,q−s;Pi,p) ≤ cc(E;Ki,q−s−1,Ki,q−s;Pi,p) then

35: Stop! Set Kaux
1 (P∗

i+1) = Kaux
1 (P∗

i ) ∪Ki,q−s.
36: Set Kaux

2 (P∗
i+1) = Kaux

2 (P∗
i ).

37: Restart Algorithm 2 using i′ = i + 1 and

P∗
i′ = ((P∗

i )A ∪ (ani,q−s,Ki,q−s); (P∗
0 )E).

38: else

39: if s < j − 1 then

40: Set eni,q−s−1 = ei,q−s−1,

ani,q−s−1 = ei,q−s−1 +
Ki,q−s−1

Ki,q−s
[ani,q−s − eni,q−s],

and

Prev
i = Prev

i ∪ ((ani,q−s−1,Ki,q−s−1); (eni,q−s−1,Ki,q−s−1)).

41: else

42: Set eni,q−j = ai,q−j −
Ki,q−j

Ki,q−s
[ani,q−s − eni,q−s].

43: Stop, there exists arbitrage as eni,q−j > Eub(Ki,q−j ,P
∗
0 ).

44: end if

45: end if

46: end for

47: end if

48:

49: % Repeat these steps
50: Set q = q − 1 and go to line 5.

Algorithm 4 Correction of A > A

1: % Initialisation step
2: Set q1 = arg max1≤j′≤p{Ki,j′ ∈ K(P∗

i ) : Ki,j′ < Ki,pe
−rT } and

Ki,q2 = arg min
Ki,ve−rT∈(Ki,q1

,Ki,q1+1]∩KE(P∗
i )e

−rT

ai,v − ai,q1
Ki,ve−rT −Ki,q1

.

3: % Introduction of additional constraint
4: Update the initial set of prices P∗

i to

(P∗
i )′ = ((P∗

i )A ∪ (ai,q2,Ki,q2); (P∗
0 )E)

and set

(Pi,s+1)
′ = ((Pi,s)

A ∪ (ai,q2 ,Ki,q2); (Pi,s)
E ∪ (Eub(Ki,q2 ,Pi,q1),Ki,q2))

for any s ∈ {q1, ..., p}.
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5: Set Kaux
2 ((Pi∗)′) = Kaux

2 (P∗
i ) ∪Ki,q2 .

6:

7: % Exit
8: Resume Algorithm 2 with P∗

i = (P∗
i )′.

3.6 Arbitrage situations

In this section we will identify the arbitrage portfolios for the different situations in

which the algorithm is unable to construct admissible price functions. As the options

violating the no-arbitrage conditions are not necessarily traded in the market, we are

required to find suitable sub- and super-replicating strategies for these situations first.

3.6.1 Sub- and super-replicating strategies

Let us start by giving the definition of semi-static sub- and super-replicating portfolios

as found in Hobson [2011, p.9].

Definition 3.6.1. The portfolio P1 is a semi-static super-replicating portfolio for the

portfolio P2 if P1 is a semi-static portfolio and P1 ≥ P2 almost surely. Analogously,

the portfolio P1 is a semi-static sub-replicating portfolio for the portfolio P2 if P1 is a

semi-static portfolio and P1 ≤ P2 almost surely.

We can then distinguish between the strategies that exploit either the convexity of

the price functions or the Legendre-Fenchel condition.

Convexity-based strategies

In the situation where the European price function violates convexity, the following well-

known sub- and super-replicating portfolios exist (see for example Laurent and Leisen

[2000, p.8]).

Lemma 3.6.2. Consider the three strikes K1, K2 and K3, where K1 < K2 < K3.

Suppose further that European put options with maturity T are traded at the strikes K1

and K3 for ê1 and ê3, respectively. Then the portfolio PE
1 (K2;K1,K3), consisting of

• K3−K2
K3−K1

units of the European option with strike K1

• K2−K1
K3−K1

units of the European option with strike K3,

super-replicates a co-terminal European put option with strike K2 at cost α1 · ê1 + (1−

α1) · ê3, where α1 = (K3 −K2)/(K3 −K1).

Proof. To see that portfolio PE
1 (K2;K1,K3) super-replicates the payoff of a European

option with strike K2 it suffices to compare their payoffs at maturity T . Depending on
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the terminal value of the underlying the portfolio PE
1 (K2;K1,K3) pays



















0, if ST ≥ K3

K2−K1
K3−K1

· (K3 − ST ), if ST ∈ [K1,K3]

K2 − ST , if ST ≤ K1,

Since this payoff dominates (K2 − ST )+, we can conclude that PE
1 (K2;K1,K3) super-

replicates the European put option with strike K2 (see Figure 3-1).

Moreover, we know that the price for European options with strike K1 is given by

ê1, while we have to pay ê3 for a European options with strike K3. We can therefore

conclude that the portfolio PE
1 (K2;K1,K3) can be purchased for α1 · ê1 + (1−α1) · ê3,

where α1 = (K3 −K2)/(K3 −K1).

0
ST

K1

K2

K2
K3

K2 − ST

Figure 3-1: Payoffs of the super-replicating strategy PE
1 (K2;K1,K3) and the European

put option with strike K2.

Remark 3.6.3. As the price of the portfolio PE
1 (K2;K1,K3) is given by α1 · ê1 + (1−

α1) · ê3, where α1 ∈ (0, 1), it follows that the price of the super-replicating portfolio is

obtained by interpolating linearly between the given prices ê1 and ê3.

If we suppose in addition that the European option with strike K2 is traded for ê2,

where ê2 > α1 · ê1 + (1−α1) · ê3, then it is possible to generate arbitrage by purchasing

a butterfly spread. That is, we go long the super-replicating portfolio PE
1 (K2;K1,K3)

while short selling the European option with strike K2.

Similarly, the sub-replicating portfolios for European put options are obtained by

linear extrapolation.
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Lemma 3.6.4. Consider the three strikes K1, K2 and K3, where K1 < K2 < K3.

Suppose further that European put options with maturity T are traded at the strikes K1

and K2 for ê1 and ê2, respectively, then the portfolio PE
2 (K3;K1,K2), consisting of

• −K3−K2
K2−K1

units of the European option with strike K1

• K3−K1
K2−K1

units of the European option with strike K2.

sub-replicates a co-terminal European put option with strike K3 at cost α2 · ê1 + (1 −

α2) · ê2, where α2 = −(K3 −K2)/(K2 −K1).

If we assume instead that European put options with maturity T are traded at the

strikes K2 and K3 for ê2 and ê3, resp., then the portfolio PE
3 (K1;K2,K3), consisting

of

• K3−K1
K3−K2

units of the European option with strike K2

• −K2−K1
K3−K2

units of the European option with strike K3.

sub-replicates a co-terminal European put option with strike K1 at cost α3ê2 +(1−α3) ·

ê3, where α3 = (K3 −K1)/(K3 −K2).

Proof. Comparing the payoff of portfolio PE
2 (K3;K1,K2) given by



















0, if ST ≥ K2

K3−K1
K2−K1

· (K2 − ST ), if ST ∈ [K1,K2]

K3 − ST , if ST ≤ K1,

to (K3 − ST )+, the payoff of the European option with strike K3, we see that the

portfolio PE
2 (K3;K1,K2) is a sub-replicating portfolio (see Figure 3-2).

Similarly, we conclude that the portfolio PE
3 (K1;K2,K3) with payoff



















0, if ST ≥ K3

−K2−K1
K3−K2

· (K3 − ST ), if ST ∈ [K2,K3]

K1 − ST , if ST ≤ K2,

sub-replicates the European put option with strike K1 (see Figure 3-2). It follows,

moreover, without further ado that the prices of the sub-replicating portfolios are given

by α2 · ê1 + (1 − α2) · ê2 and α3ê2 + (1 − α3) · ê3, respectively.

In contrast to European options, we have to take the early exercise feature into

account when super-replicating American options. We are therefore required to sup-

ply (at least) one specific exercising strategy that guarantees a payoff dominating the

option’s payoff irrespective of the option’s exercise time. To this end, we will adjust

portfolio PE
1 to the current setting and provide a suitable exercising strategy.

66



Chapter 3. Arb. situations in markets trading American and co-terminal European options

0

t∗

STK1 K2

K3

K3

K3 − ST

0
ST

K1

K1 K2 K3

K1 − ST

Figure 3-2: Comparison of the payoff of a European option with the respective sub-
replicating portfolios PE

2 (K3;K1,K2) and PE
3 (K1;K2,K3).

Corollary 3.6.5. Consider the three strikes K1, K2 and K3, where K1 < K2 < K3.

Suppose further that American put options with maturity T are traded at the strikes

K1 and K3 for â1 and â3, respectively. Then the portfolio PA
1 (K2;K1,K3), consisting

of

• K3−K2
K3−K1

units of the American option with strike K1

• K2−K1
K3−K1

units of the American option with strike K3,

super-replicates a co-terminal American put option with strike K2 if it is exercised si-

multaneously with the American option with strike K2. Moreover, the super-replicating

portfolio PA
1 (K2;K1,K3) can be purchased in the market for α · â1 + (1−α) · â3, where

α = (K3 −K2)/(K3 −K1).

Proof. To see that the portfolio PA
1 (K2;K1,K3) super-replicates an American option

with strike K2, we consider the payoff of the auxiliary portfolio P (K1,K2,K3), consist-

ing of a long position in the portfolio PA
1 (K2;K1,K3) and a short position of 1 unit of

the American option with strike K2, at the time of exercise τ . If τ < T then the payoff

is given by































0, if Sτ ≥ K3

K2−K1
K3−K1

· (K3 − Sτ ), if Sτ ∈ [K2,K3]

K3−K2
K3−K1

· (Sτ −K1), if Sτ ∈ [K1,K2]

0, if Sτ ≤ K1,

which is non-negative regardless of the evolution of the underlying price process. Sim-

ilarly we can conclude from Proposition 3.6.2 that PA
1 (K2;K1,K3) has to be non-

negative whenever the American options where not exercised prior to maturity T . It

follows that the portfolio PA
1 (K2;K1,K3) super-replicates an American option with

strike K2 if exercised correctly. The cost of the super-replicating portfolio is then given

by αâ1 + (1 − α) · â3.
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Remark 3.6.6. Note that it is not possible to sub-replicate American options applying

the analog modifications to the portfolios in Lemma 3.6.4. This is due to the fact that

the payoff of a sub-replicating portfolio has to be dominated by the American option no

matter the exercise strategies used. In particular, the portfolios in Lemma 3.6.4 each

contain a short position in American options for which the choice of exercising is not

ours.

LF-based strategies

The following super-replicating portfolios are closely related to the Legendre-Fenchel

condition and will play an important role in creating the arbitrage strategies in the

following sections.

Proposition 3.6.7. Suppose European put options with strike K1 and strike K2 and

maturity T are traded in the market at ê1 and ê2, respectively. Moreover, co-terminal

American options with strike K2 are traded for â2. The portfolio PLF
1 (K1,K2), con-

sisting of

• 1 unit of European with strike K1

• K1
K2

units of the American with strike K2

• −K1
K2

units of the European with strike K2,

then super-replicates the American put option with strike K1 at cost ê1 + K1
K2

[â2 − ê2]

if the position in the American option with strike K2 is exercised simultaneously with

the American option with strike K1.

Similarly, we can assume that American put options with strike K1 and K2 are

traded in the market for â1 and â2, respectively. Suppose further that co-terminal

European put options with strike K1 are traded in the market for ê1. The portfolio

PLF
2 (K1,K2), consisting of

• K2
K1

units of European with strike K1,

• −K2
K1

units of American with strike K1

• 1 unit of American options with strike K2

then super-replicates the European put option with strike K2 at cost â2 −
K2
K1

[â1 − ê1]

if we exercise the American option with strike K2 simultaneously with the American

option at strike K1.

Proof. In the first case we consider the payoff of the auxiliary portfolio P1(K1,K2),

consisting of a long position in the super-replicating portfolio PLF
1 (K1,K2) and a short
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position of one American option with strike K1. If the American with strike K1 is

exercised at the time τ , where τ < T , then the payoff is given by



















(1 − K1
K2

) · ST , if ST ≥ K2

ST −K1, if ST ∈ [K1,K2]

0, if ST ≤ K1.

Otherwise the American option with strike K1 is not exercised prior to maturity and

its payoff is matched by the payoff of the European option with strike K1. Analogously,

the American option with strike K2 is not exercised before maturity, according to the

exercise strategy. Hence, the value of the portfolio at time T is zero. Since the payoff is

non-negative regardless of both the value of the underlying at time T and the time of

exercise, we can conclude that the portfolio PLF
1 (K1,K2) super-replicates the American

option with strike K1.

Similarly, we note that the payoff of the portfolio P2(K1,K2), given by a long

position in the super-replicating portfolio PLF
2 (K1,K2) and a short position in the

European option with strike K2 is given by



















(K2
K1

− 1) · ST , if ST ≥ K2

(ST

K1
− 1) ·K2, if ST ∈ [K1,K2]

0, if ST ≤ K1

when the exercise time for the American options is strictly before maturity, otherwise

the payoff is zero. Since the payoff is non-negative, we can conclude that the portfolio

PLF
2 (K1,K2) can be used to super-replicate a European option with strike K2. Addi-

tionally, we see immediately that the cost of the super-replicating portfolios is given

by â1 and ê2, respectively.

The next result shows how to derive a super-replicating strategy using the Legendre-

Fenchel condition between three strikes.

Proposition 3.6.8. Consider the three strikes K1, K2 and K3, where K1 < K2 < K3.

Suppose European options with strike K1 and strike K2 and maturity T are traded in

the market at ê1 and ê2, respectively. Moreover, co-terminal American options with

strike K3 are traded for â3. Then the portfolio PLF
3 (K2;K1,K2,K3), consisting of

• K2
K3

· K3−K2
K2−K1

units of European options with strike K1

• −K1
K3

· K3−K2
K2−K1

units of European options with strike K2

• K2
K3

units of American options with strike K3,
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super-replicates the payoff of an American option with strike K2 if the position in

American options with strike K3 is exercised simultaneously with the American option

with strike K2.

Moreover, the cost of the portfolio is given by α · cc(E;K1,K2) + (1−α) · â3, where

cc(E;K1,K2) = ê1 −
ê2 − ê1

K2 −K1
K1

and α = 1 −K2/K3.

Proof. Consider the payoff of the auxiliary portfolio P (K1,K2,K3), consisting of a long

position in the super-replicating portfolio PLF
3 (K2;K1,K2,K3) and a short position in

the American option with strike K2. If the American option with strike K2 is exercised

at time τ , where τ < T , the total payoff at maturity is given by



















(1 − K2
K3

) · ST , if ST ≥ K2

K2
K3

· K3−K2
K2−K1

· (ST −K1), if ST ∈ [K1,K2]

0, if ST ≤ K1.

In the case where the American options were not exercised prior to maturity the payoff

of the portfolio is given by































0, if ST ≥ K3

K2
K3

· (K3 − ST ), if ST ∈ [K2,K3]

K2
K3

· K3−K2
K2−K1

· (ST −K1), if ST ∈ [K1,K2]

0, if ST ≤ K1.

As, in both cases, the payoff is non-negative regardless of the value of the underlying at

maturity T , we can conclude that the portfolio PLF
3 (K2;K1,K2,K3) super-replicates

the American option with strike K2. Furthermore, we see that the cost for this portfolio

is given by α · cc(E;K1,K2) + (1 − α) · ê3.

3.6.2 Situation I: Violation of the no-arbitrage conditions by the

prices of traded options

The first type of arbitrage opportunities that we would like to discuss arises when the

prices of traded options violate any of the no-arbitrage conditions.

Proposition 3.6.9. Suppose we are given a set of traded prices P∗
0 ∈ M and that the

price functions A(K,P∗
0 ) and E(K,P∗

0 ) up to KA
m1

and KE
m2

are given by (3.6) and

(3.7), respectively. In addition, we assume that the current price of the underlying is

given by S0. Then there exists either model-independent or weak arbitrage if any of the
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following conditions is violated:

(i) The function E(K,P∗
0 ) satisfies the conditions of Lemma 3.1.1 on [0,∞).

(ii) The function A(K,P∗
0 ) is increasing and convex on [0,∞).

(iii) For any strike KA
i ∈ KA(P∗

0 ) we have âi ≥ KA
i − S0 and A′(KA

i +,P∗
0 ) ≤ 1. In

particular, A′(KA
i +,P∗

0 ) < 1 has to hold whenever the strike KA
i ≤ Kl1(P∗

0 )
.

(iv) For strikes KA
i ,K

A
i′ ∈ KA(P∗

0 ) and KE
j ,KE

j′ ∈ KE(P∗
0 ), with KE

j < KE
j′ , K

A
i <

KA
i′ , K

E
j ≤ KA

i and KE
j′ ≤ KA

i′ the Legendre-Fenchel condition holds (see (3.1)).

(v) For any strike KE
j ∈ [0,KA

m1
] ∩KE(P∗

0 ) we have

aj ≥ max{Alb(K
E
j e−rT ,P∗

0 ),KE
j e−rT − S0}.

(vi) For any strike KA
i ∈ [0,KE

m2
] ∩KA(P∗

0 ) the inequality âi ≥ Elb(K
A
i ,P

∗
0 ) holds.

(vii) For any strike KE
j ∈ [0,KA

m1
] ∩KE(P∗

0 ) we must have A(KE
j ,P∗

0 ) ≥ êj.

(viii) For any strike KA
i ∈ [0,KE

m2
e−rT ]∩KA(P∗

0 ) the inequality A(KA
i ,P

∗
0 ) ≥ âi holds.

(ix) For KA
i ∈ KA(P∗

0 ) and KE
j ∈ KE(P∗

0 ) with KE
j e−rT ∈ [0,KA

i ) we must have

âi − aj

KA
i −KE

j e−rT
≤ 1.

Proof. Due to Lemma 2.2.1 in Chapter 2 we know that there either exists model-

independent or weak arbitrage if (i) does not hold. Similarly, we can use Theorem 2.2.3

in Chapter 2 to argue that A has to be increasing and convex and that K − S0 is a

lower bound on the price for American options with strike K. We now want to argue

that A′(KA
i +,P∗

0 ) ≤ 1 for KA
i ∈ KA(P∗

0 ). Suppose for contradiction that the slope

between the strikes KA
i and KA

i+1 is given by

âi+1 − âi

KA
i+1 −KA

i

> 1, (3.31)

then the portfolio PA
sl (K

A
i ,K

A
i+1), consisting of KA

i+1−KA
i units of cash and one unit of

American option with strike KA
i , can be used to super-replicate the payoff of an Amer-

ican option with strike KA
i+1. To see this, we consider a long position in PA

sl (K
A
i ,K

A
i+1)

while shorting an American option with strike KA
i+1. At maturity T the total payoff is

then at least

(erT − er(T−τ))(KA
i+1 −KA

i ) (3.32)
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in the case where the shorted American with strike KA
i+1 is exercised at time τ < T ,

as we will exercise the American with strike KA
i simultaneously. In the case where the

options have not been exercised prior to maturity the American options can only be

exercised at maturity and the payoff depending on the value of the underlying is given

by



















erT (KA
i+1 −KA

i ), for ST ≥ KA
i+1

(erT − 1)(Ki+1A −KA
i ) + (ST −KA

i ), for ST ∈ [KA
i ,K

A
i+1]

(erT − 1)(KA
i+1 −KA

i ), for ST ≤ KA
i ,

(3.33)

This implies that the difference between the payoff of the portfolio PA
sl (K

A
i ,K

A
i+1) and

the payoff of an American option with strike KA
i+1 is non-negative. Since the cost of

purchase of a long position in the portfolio PA
sl (K

A
i ,K

A
i+1) and a short position in the

American option with strike KA
i+1 is strictly negative we can conclude that there has

to exist model-independent arbitrage whenever (3.31) holds.

Consider now the special case where KA
i ≤ Kl1(P∗

0 )
and âi+1 − âi = KA

i+1 − KA
i .

It then follows immediately that âi+1 > KA
i+1 − S0 has to hold. Moreover, the cost of

the super-replicating portfolio PA
sl (K

A
i ,K

A
i+1) coincides with the cost of the American

option with strike KA
i+1. Hence, the cost of the arbitrage portfolio consisting of a long

position in PA
sl (K

A
i ,K

A
i+1) and a short position in an American option with strike KA

i+1

is zero. To see that there exists model-independent arbitrage in this case we are thus

required to show that all subsequent cash-flows are strictly positive. Observe, however,

that according to (3.32) we can only guarantee a non-negative payoff if the American

options are exercised at τ = 0. Then again, immediate exercise can be ruled out as

an American option with a price strictly larger than the lower bound will never be

exercised immediately according to the Assumption 3.1.3. Hence, there exists model-

independent arbitrage in the market if âi+1 − âi = KA
i+1 −KA

i for KA
i ≤ Kl1(P∗

0 )
. We

can therefore conclude that A′(KA
i +,P∗

0 ) ≤ 1 has to hold for any strike KA
i ∈ KA(P∗

0 ).

In addition, we showed that A′(KA
i +,P∗

0 ) < 1 holds whenever the strike KA
i ≤ Kl1(P∗

0 )
.

A proof that there exists arbitrage in the market if condition (iv) is violated can be

found in Proposition 3.10.1.

Next we will argue that condition (v) has to hold in any market free of arbitrage.

Let us first consider the situation where KE
j e−rT ∈ KA(P∗

0 ) and KE
j ∈ KE(P∗

0 ). In that

case we can make an initial profit by selling an American option with strike KE
j e−rT ,

while buying a European option with strike KE
j . As the European option with strike

KE
j super-replicates the payoff of the American option with strike KE

j e−rT we are

furthermore guaranteed that this portfolio has a non-negative payoff and we have thus

shown that there has to exist arbitrage in the market.

Let us now assume that the lower bound for American options with strike KE
j e−rT
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is given by Alhs
lb (KE

j e−rT ,P∗
0 ) which is induced by the prices âi and âi+1. Suppose

for a moment that American options with strike KE
j e−rT are traded in the market

at price aj, then the American price function cannot be convex between the strikes

KA
i , KA

i+1 and KE
j e−rT . We could therefore generate arbitrage by holding the super-

replicating portfolio PA
1 (KA

i+1;KA
i ,K

E
j e−rT ) while shorting an American option with

strike KA
i+1 as the cost of the arbitrage portfolio is strictly negative. According to

Theorem 2.2.3 in Chapter 2, it is, moreover, possible to super-replicate an American

option with strike KE
j e−rT using the traded European option with strike KE

j . Replacing

the position in American options with strike KE
j e−rT in the arbitrage portfolio above

by an equivalent position in European options with strike KE
j we can conclude that

there has to exist arbitrage in the market whenever there is a strike KE
j e−rT with

aj < Alhs
lb (KE

j e−rT ,P∗
0 ). An analogous argument shows that the market cannot be free

of arbitrage if aj < Arhs
lb (KE

j e−rT ,P∗
0 ) for KE

j e−rT ∈ [0,KA
m1−1].

We are thus left to show that there exists arbitrage whenever KE
j e−rT −S0 > aj for

some KE
j ∈ KE(P∗

0 ). Since aj = êj, this inequality implies that the European option

with strike KE
j is below its lower bound and we can thus conclude from Lemma 3.1.1

that there has to exist arbitrage. Analogously, we conclude that a violation of condition

(vi) implies the existence of an arbitrage, as an American option can be used to super-

replicate the corresponding European option.

Suppose next that condition (vii) is violated, then there exists a strike KE
j ∈

[0,KA
m1

] ∩ KE(P∗
0 ) such that A(KE

j ,P∗
0 ) < êj. If we assume that KE

j ∈ KE(P∗
0 ) ∩

KA(P∗
0 ), then a portfolio consisting of one American option with strike KE

j and a short

position of one European option with strike KE
j has strictly negative cost and can be

used to generate arbitrage. To offset the payment of the short position we only have

to hold the American option until maturity where it is exercised whenever the price of

the underlying is below the strike.

Consider now the situation where KE
j ∈ KE(P∗

0 )\KA(P∗
0 ) and suppose that

A(KE
j ,P∗

0 ) =
âl+1 − âl

KA
l+1 −KA

l

(KE
j −KA

l ) + âl

for some l ∈ {0, ...,m1}. In this situation we can super-replicate an American op-

tion with strike KE
j using portfolio PA

1 (KE
j ;KA

l ,K
A
l+1) from Corollary 3.6.5. At the

same time we know that a European option with strike KE
j will sub-replicate the

American option with strike KE
j . Holding a portfolio consisting of a long position in

PA
1 (KE

j ;KA
l ,K

A
l+1) and a shorted European option with strike KE

j is thus guaranteed to

have a non-negative payoff regardless of the price development of the underlying. Since

we assumed that A(KE
j ,P∗

0 ) < êj , this portfolio will have strictly negative initial cost

and we thus showed that there exists model-independent arbitrage in the market when-

ever condition (vii) is violated. In the same way, we can show that condition (viii) has
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to hold for KA
i ≤ KE

m2
, as an American option with strike KA

i can be super-replicated

using a European option with strike KA
i e

rT , which in turn can be super-replicated

at cost A(KA
i ,P

∗
0 ) using portfolio PE

1 (KA
i e

rT ;KE
j ,KE

j+1) for KA
i ∈ [KE

j ,KE
j+1] and

j ∈ {0, ...,m2 − 1}.

We are thus left to argue that condition (ix) has to hold. Let us assume for the

moment that American options with strike KE
j e−rT are traded. It then follows that

âi −A(KE
j e−rT ,P∗

0 )

KA
i −KE

j e−rT
> 1

has to hold and according to (iii) there would exist model-independent arbitrage in the

market. Although American options with strike KE
j e−rT are not necessarily traded

in the market, there still has to exist arbitrage if KE
j ∈ KE(P∗

0 ) as we have seen

in Theorem 2.2.3 of Chapter 2 that an American option with strike KE
j e−rT can be

super-replicated using a European option with strike KE
j .

We can therefore conclude that a violation of any of the condition above means

that there has to exist arbitrage in the market.

Definition 3.6.10. A set of prices P complying with the conditions of Proposition 3.6.9

is said to satisfy the Standing Assumptions.

Notation 3.6.11. Suppose we are given a set of prices P ∈ M satisfying the Standing

Assumptions, then we will write P ∈ M.

The following result is a direct consequence of condition (ix) of the Standing As-

sumptions.

Corollary 3.6.12. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. The price

for American put options with strike K ∈ (KE
m2

e−rT ,∞) ∩ KA(P∗
0 ) is then given by

K − S0.

3.6.3 Situation II: Violation of ei,p ≥ Erhs
lb (Ki,p,P

∗
0 )

In this section we will discuss the arbitrage situations that occur when the algorithm

fails to correct a violation of ei,p < Erhs
lb (Ki,p,P

∗
0 ) at the strike Ki,p ∈ K(P∗

i )\KE(P∗
i )

using Algorithm 3. In that case there exists either a strike Ki,q ∈ K(P∗
i )\KE(P∗

i ) with

eni,q > Eub(Ki,q,P
∗
0 ) or a strike Ki,q ∈ KE(P∗

i ) with

ani,q < max{Alb(Ki,q,P
∗
0 ), AA

lb(Ki,q,P
∗
0 )}.

Generally, the construction of the arbitrage portfolios is based on the idea of finding

a sub- and a super-replicating strategy for the non-traded option with strike Ki,q.
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Since the convexity property of the corresponding price function is violated, the sub-

replicating portfolio will be more expensive than the super-replicating portfolio and we

could generate arbitrage by taking a long position in the super-replicating portfolio,

while short selling the sub-replicating portfolio.

However, not all the positions in the arbitrage portfolio will be traded options and

we are thus required to replace the long positions by a super-replicating portfolio and

the short positions by a sub-replicating portfolio. If the sub- and super-replicating

portfolios have the same price as the portfolio they replace, we can conclude that the

modified portfolio has negative cost of purchase and non-negative terminal value and

thus generates arbitrage in the market.

In particular, we will use the fact that the Legendre-Fenchel condition holds with

equality between the strikes Ki,q and Ki,p to replace the position in the non-traded

option with strike Ki,q by a portfolio consisting of the traded option with strike Ki,q

as well as a long position in American options with strike Ki,p and a short position of

European options with strike Ki,p. The short position in the European options with

strike Ki,p can then be sub-replicated using the portfolio PE
3 and we obtain a portfolio

consisting only of traded options.

Note, moreover, that we are restricted to the portfolios of Section 3.6.1 during the

construction of the arbitrage portfolio and thus it is important to find a suitable initial

portfolio. It is this restriction that makes the derivation of the arbitrage portfolios in

some cases seem slightly artificial.

In the following proposition, the strikes Ki,q and Ki,p correspond to KA
u1

∈ KA(P∗
0 )

and KA
u2

∈ KA(P∗
0 )\KE(P∗

0 ), respectively.

Proposition 3.6.13. Suppose that American and co-terminal European options are

traded in the market and that their prices are provided by P∗
0 ∈ M. Then we can

generate model-independent arbitrage in the market if there exist strikes KA
u1

∈ KA(P∗
0 )

and KA
u2

∈ KA(P∗
0 )\KE(P∗

0 ) with KA
u1

< KA
u2
, such that

âu1 −
KA

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] > Eub(K
A
u1
,P∗

0 ).

Specifically, if we set v = arg min1≤j′≤m2−1{K
E
j′ ∈ KE(P∗

0 ) : KE
j′ ≥ KA

u2
} and

w = arg max0≤j′≤m2
{KE

j′ ∈ KE(P∗
0 ) : KE

j′ ≤ Ki,q}, then we can generate arbitrage

using the portfolio P (Elb, Eub;K
A
u2
,KA

u1
,P∗

0 ), consisting of a long position of

•
KE

w+1−KA
u1

KE
w+1−KE

w
units of the European option with strike KE

w ,

•
KA

u1
−KE

w

KE
w+1−KE

w
units of the European option with strike KE

w+1,

•
KA

u1

KA
u2

units of the American option with strike KA
u2
,
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•
KA

u1

KA
u2

·
KE

v −KA
u2

KE
v+1−KE

v
units of the European option with strike KE

v+1

and a short position of

• 1 unit of the American option with strike KA
u1
,

•
KA

u1

KA
u2

·
KE

v+1−KA
p

KE
v+1−KE

v
units of the European option with strike KE

v .

if the position in the American option with strike KA
u2

is exercised simultaneously with

the American option with strike KA
u1
.

Proof. Let us assume for the moment that both European options with strike KA
u1

and

KA
u2

are traded in the market and that their prices are given by

âu1 −
KA

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )]

and Erhs
lb (KA

u2
,P∗

0 ), respectively. This would imply that the Legendre-Fenchel condition

holds with equality between the strikes KA
u1

and KA
u2

. We could then super-replicate a

European option with strike KA
u2

for Erhs
lb (KA

u2
,P∗

0 ) using the portfolio PLF
2 (KA

u1
,KA

u2
).

Moreover, it is possible to sub-replicate a European option with strike KA
u2

using the

portfolio PE
3 (KA

u2
;KE

v ,KE
v+1) at cost Erhs

lb (KA
u2
,P∗

0 ). Hence, we are interested in taking

a long position in the super-replicating portfolio PLF
2 (KA

u1
,KA

u2
) while short selling the

sub-replicating portfolio PE
3 (KA

u2
;KE

v ,KE
v+1).

Since European options with strike KA
u1

are not actually traded, we have to replace

their long position by a super-replicating portfolio. According to Proposition 3.6.2,

we can use the portfolio PE
1 (KA

u1
;KE

w ,KE
w+1) costing Eub(K

A
u1
,P∗

0 ) to do so. As we

assumed that

âu1 −
KA

u1

KA
u2

· [âi,p − Erhs
lb (KA

u2
,P∗

0 )] > Eub(K
A
u1
,P∗

0 ),

we can conclude that the portfolio P (Elb, Eub;K
A
u2
,KA

u1
;P∗

0 ) generates arbitrage if ex-

ercised correctly.

We continue by investigating the situation where an American option with strike

Ki,q ∈ KE(P∗
0 ), can be super-replicated for less than Alb(Ki,q,P

∗
0 ). To this end,

we assume that the strikes Ki,q and Ki,p correspond to KE
u1

∈ KE(P∗
0 ) and KA

u2
∈

KA(P∗
0 )\KE(P∗

0 ), respectively.

Proposition 3.6.14. Suppose that American and co-terminal European options are

traded in the market and that their prices are provided by P∗
0 ∈ M. Then we can

generate model-independent arbitrage in the market if there exist strikes KE
u1

∈ KE(P∗
0 )
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and KA
u2

∈ KA(P∗
0 )\KE(P∗

0 ) with KE
u1

< KA
u2
, such that

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] < Alhs
lb (KE

u1
,P∗

0 ). (3.34)

Specifically, if we set v = arg min1≤j′≤m2−1{K
E
j′ ∈ KE(P∗

0 ) : KE
j′ ≥ KA

u2
} and

w = arg max0≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ ≤ KE
u1
}, then we can generate arbitrage

using the portfolio P (Elb, A
lhs
lb ;KA

u2
,KE

u1
;P∗

0 ), consisting of a long position of

•
KE

u1
−KA

w

KE
u1

−KA
w−1

units of American options with strike KA
w−1,

•
KA

w−KA
w−1

KE
u1

−KA
w−1

units of European options with strike KE
u1
,

•
KE

u1

KA
u2

·
KA

w−KA
w−1

KE
u1

−KA
w−1

units of American options with strike KA
u2
,

•
KE

u1

KA
u2

·
KA

w−KA
w−1

KE
u1

−KA
w−1

·
KE

v −KA
u2

KE
v+1−KE

v
units of European option with strike KE

v+1

and a short position of

• 1 unit of the American option with strike KA
w ,

•
KE

u1

KA
u2

·
KA

w−KA
w−1

KE
u1

−KA
w−1

·
KE

v+1−KA
u2

KE
v+1−KE

v
units of European option with strike KE

v ,

if we exercise the positions in the American options with strike KA
w−1 and KA

u2
simul-

taneously with the American option with strike KA
w .

Similarly, if

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] < Arhs
lb (KE

u1
,P∗

0 )

then we can generate arbitrage using the portfolio P (Elb, A
rhs
lb ;KA

u2
,KE

u1
;P∗

0 ), consisting

of a long position of

•
KA

w+2−KA
w+1

KA
w+2−KE

u1

units of European options with strike KE
u1
,

•
KA

w+1−KE
u1

KA
w+2−KE

u1

units of American options with strike KA
w+2

•
KE

u1

KA
u2

·
KA

w+2−KA
w+1

KA
w+2−KE

u1

units of American options with strike KA
u2

•
KE

u1

KA
u2

·
KA

w+2−KA
w+1

KA
w+2−KE

u1

·
KE

v −KA
u2

KE
v+1−KE

v
units of European option with strike KE

v+1

and a short position of

• 1 unit of the American option with strike KA
w+1,
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•
KE

u1

KA
u2

·
KA

w+2−KA
w+1

KA
w+2−KE

u1

·
KE

v+1−KA
u2

KE
v+1−KE

v
units of European option with strike KE

v ,

if the positions in the American options with strike KA
w+2 and KA

u2
are exercised simul-

taneously with the American option at strike KA
w+1.

Proof. Let us assume for now that American options with strike KE
u1

are traded in the

market for the price

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )].

We could then super-replicate an American option with strike KA
w using the portfolio

PA
1 (KA

w ;KA
w−1,K

E
u1

) at cost

α · âw−1 + (1 − α) ·

[

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )]

]

,

where α = (KE
u1

−KA
w )/(KE

u1
−KA

w−1). Hence, we would obtain an arbitrage portfolio

by holding PA
1 (KA

w ;KA
w−1,K

E
u1

) while short selling an American option with strike KA
w ,

as the set-up cost is given by

α · âw−1 + (1 − α) ·

[

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )]

]

− âw

which is strictly negative due to (3.34).

Since American options with strike KE
u1

are not actually traded in the market, this

arbitrage portfolio cannot be generated. We will therefore super-replicate an American

option with strike KE
u1

at cost

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )]

in two steps. Suppose for the moment that European options with strike KA
u2

are traded

in the market at Erhs
lb (KA

u2
,P∗

0 ), then we can purchase the super-replicating portfolio

PLF
1 (KE

u1
,KA

u2
) for êu1 +

KE
u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] in the market.

However, as European options with strike KA
u2

are not traded, it follows that the

portfolio PLF
1 (KE

u1
,KA

u2
) contains a short position in those options that cannot be

acquired. To ensure that we can super-replicate the payoff of an American option with

strike KE
u1

, we thus have to find a sub-replicating portfolio for the European option

with strike KA
u2

. According to Proposition 3.6.4, the portfolio PE
3 (KA

u2
;KE

i,v,K
E
v+1) will

sub-replicate the European option with strike KA
u2

at cost Erhs
lb (KA

u2
,P∗

0 ). Hence, we

can conclude that the portfolio P (Elb, A
lhs
lb ;KA

u2
,KE

u1
;P∗

0 ) generates arbitrage, as it has

non-negative payoff regardless of the evolution of the underlying and a strictly negative
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cost of

α · âw−1 + (1 − α) ·

[

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )]

]

− âw,

where α = (KE
u1

−KA
w )/(KE

u1
−KA

w−1).

To obtain the arbitrage portfolio P (Elb, A
rhs
lb ;KE

u1
,KA

u2
;P∗

0 ) in the case where

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] < Arhs
lb (KE

u1
,P∗

0 )

we proceed analogously. The only difference to the arbitrage portfolio in the previous

case is that we now aim to super-replicate an American option with strike KA
w+1 using

the portfolio PA
1 (KA

w+1;K
E
u1
,KA

w+2), which includes a long position in the non-traded

American option with strike KE
u1

.

Remark 3.6.15. Note that we can rule out the case where the left hand-side lower

bound Alhs
lb (KE

u1
,P∗

0 ) is given by zero, as a negative price for American options with

strike KE
u1

would imply that European options are traded for a strictly negative price in

the market.

We are thus left to show that there exists arbitrage whenever an American op-

tion with strike Ki,q ∈ KE(P∗
0 ), can be super-replicated in the market for less than

AA
lb(Ki,q,P

∗
0 ). To do so, we suppose again that the strikes Ki,q and Ki,p correspond to

KE
u1

∈ KE(P∗
0 ) and KA

u2
∈ KA(P∗

0 )\KE(P∗
0 ), respectively.

Proposition 3.6.16. Suppose that American and co-terminal European options are

traded in the market and that their prices are provided by P∗
0 . Then we can generate

model-independent arbitrage in the market if there exist strikes KE
u1

∈ KE(P∗
0 ) and

KA
u2

∈ KA(P∗
0 )\KE(P∗

0 ) with KE
u1

< KA
u2
, such that

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] < AA,l
lb (KE

u1
,P∗

0 ).

Specifically, let us write v = arg min1≤j′≤m2−1{K
E
j′ ∈ KE(P∗

0 ) : KE
j′ ≥ KA

u2
} and

w = arg max0≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ ≤ KE
u1
}. Suppose

AA,l
lb (KE

u1
,P∗

0 ) =
âw − aj

KA
w −KE

j e−rT
· (KE

u1
−KA

w ) + âw,

where KE
j e−rT ∈ Sw−1, then we can use portfolio P (Elb, A

A,l
lb ;KA

u2
,KE

u1
;P∗

0 ), consisting

of a long position of

•
KE

u1
−KA

w

KE
u1

−KE
j e−rT units of European options with strike KE

j
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•
KA

w−KE
j e−rT

KE
u1

−KE
j e−rT units of European options with strike KE

u1

•
KE

u1

KA
u2

·
KA

w−KE
j e−rT

KE
u1

−KE
j e−rT units of American options with strike KA

u2

•
KE

u1

KA
u2

·
KA

w−KE
j e−rT

KE
u1

−KE
j e−rT ·

KE
v −KA

u2

KE
v+1−KE

v
units of European option with strike KE

v+1

and a short position of

• 1 unit of American options with strike KA
w

•
KE

u1

KA
u2

·
KA

w−KE
j e−rT

KE
u1

−KE
j e−rT ·

KE
v+1−KA

u2

KE
v+1−KE

v
units of European option with strike KE

v

to generate arbitrage in the market if the position in the American options with strike

KA
u2

is exercised simultaneously with the American option at strike KA
w .

Similarly, suppose

êu1 +
KE

u1

KA
u2

· [âu2 − Erhs
lb (KA

u2
,P∗

0 )] < AA,r
lb (KE

u1
,P∗

0 ),

where

AA,r
lb (KE

u1
,P∗

0 ) =
aj − âw+1

KE
j e−rT −KA

w+1

· (KE
u1

−KA
w+1) + âw+1

with KE
j e−rT ∈ Sw+1, then we can use the portfolio P (Elb, A

A,r
lb ;KA

u2
,KE

u1
;P∗

0 ), con-

sisting of a long position of

•
KE

j e−rT−KA
w+1

KE
j e−rT−KE

u1

units of European options with strike KE
u1

•
KA

w+1−KE
u1

KE
j e−rT−KE

u1

units of European options with strike KE
j

•
KE

u1

KA
u2

·
KE

j e−rT−KA
w+1

KE
j e−rT−KE

u1

units of American options with strike KA
u2

•
KE

u1

KA
u2

·
KE

j e−rT−KA
w+1

KE
j e−rT−KE

u1

·
KE

v −KA
u2

KE
v+1−KE

v
units of European option with strike KE

v+1

and a short position of

• 1 unit of American options with strike KA
w+1

•
KE

u1

KA
u2

·
KE

j e−rT−KA
w+1

KE
j
e−rT−KE

u1

·
KE

v+1−KA
u2

KE
v+1−KE

v
units of European option with strike KE

v

to generate arbitrage if we exercise the position in the American option with strike KA
u2

simultaneously with the American option with strike KA
w+1.
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Proof. Assume for a moment that both American options with strike KE
j e−rT and

KE
u1

are traded in the market and that their respective prices are aj and êu1 +
KE

u1

KA
u2

·

[âu2 − Erhs
lb (KA

u2
,P∗

0 )]. In this case the portfolio PA
1 (KA

w ;KE
j e−rT ,KE

u1
) could be used

to super-replicate an American option with strike KA
w . Moreover, we could generate

arbitrage by holding a portfolio consisting of a long position in PA
1 (KA

w ;KE
j e−rT ,KE

u1
)

and a short position of one American option with strike KA
w , as its cost is given by

α · aj + (1 − α) ·

[

êu1 +
KE

u1

KA
u2

· [âu2 −Erhs
lb (KA

u2
,P∗

0 )]

]

− âw,

where α = (KE
u1
−KA

w )/(KE
u1
−KE

j e−rT ), and thus strictly negative. However, American

options are neither traded at strike KE
j e−rT nor at strike KE

u1
in the market and we

are forced to find a super-replicating portfolio for each one of them. Since we discussed

already how to super-replicate an American option with strike KE
u1

using the portfolios

PLF
2 (KE

u1
,KA

u2
) and PE

3 (KA
u2

;KE
v ,KE

v+1), we are only left to find a super-replicating

portfolio for the payoff of an American option with strike KE
j e−rT with cost aj . In

Theorem 2.2.3 of Chapter 2, we argued that a European option with strike KE
j can

be used to super-replicate the payoff of an American option with strike KE
j e−rT . In

particular, we know from the definition of the upper bound A that the cost for a

European option with strike KE
j matches aj. We can therefore conclude that the

portfolio P (Elb, A
A,l
lb ;KA

u2
,KE

u1
;P∗

0 ) generates arbitrage in the market. The derivation

of the arbitrage portfolio P (Elb, A
A,r
lb ;KA

u2
,KE

u1
;P∗

0 ) follows analogously.

3.6.4 Situation III: Violation of Aub(Ki,p,Pi,p−1) ≥ ai,p

We will now present the arbitrage portfolios that can be used in case there exists a strike

Ki,p ∈ KE(P∗
i )\KA(P∗

0 ) where ai,p > Aub(Ki,p,Pi,p−1). Recall that in this situation the

revised price for American options with strike Ki,p depends on whether or not the upper

bound Aub is given by the prices of two traded options. If this is the case it is possible

to super-replicate the American option with strike Ki,p using portfolio PA
1 . Otherwise

we will use portfolio PLF
3 to super-replicate the option. Setting the revised price for

American options with strike Ki,p equal to the cost of the respective super-replicating

portfolio then allows us to generate arbitrage whenever eni,q > Eub(Ki,q,P
∗
0 ) for Ki,q ∈

KA(P∗
0 )\KE(P∗

0 ) or ani,q < max{Alb(Ki,q,P
∗
0 ), AA

lb(Ki,q,P
∗
0 )} for Ki,q ∈ KE(P∗

0 ) occurs

at strike Ki,q, where Ki,q < Ki,p.

Note that we will only discuss the situation where ai,p > Aub(Ki,p,P
∗
0 ), as the

arbitrage portfolios in the second case is obtained by replacing PA
1 by PLF

3 in the

arbitrage portfolio.

In the following proposition the strikes Ki,q and Ki,p correspond to KA
u1

∈ KA(P∗
0 )

and KE
u2

∈ KE(P∗
0 )\KA(P∗

0 ), respectively.
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Proposition 3.6.17. Suppose that American and co-terminal European options are

traded in the market and that their prices are provided by P∗
0 . Then we can generate

model-independent arbitrage in the market if there exist strikes KA
u1

∈ KA(P∗
0 ) and

KE
u2

∈ KE(P∗
0 )\KA(P∗

0 ) with KA
u1

< KE
u2
, such that

âu1 −
KA

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ] > Eub(K
A
u1
,P∗

0 ).

Specifically, if we set v = arg max1≤j′≤m1−1{K
A
j′ ∈ KA(P∗

0 ) : KA
j′ ≤ KE

u2
} and

w = arg max0≤j′≤m2
{KE

j′ ∈ KE(P∗
0 ) : KE

j′ ≤ KA
u1
}, then we can generate arbitrage

using the portfolio P (Aub, Eub;K
E
u2
,KA

u1
,P∗

0 ), consisting of a long position of

•
KE

w+1−KA
u1

KE
w+1−KE

w
units of the European option with strike KE

w ,

•
KA

u1
−KE

w

KE
w+1−KE

w
units of the European option with strike KE

w+1,

•
KA

u1

KE
u2

·
KA

v+1−KE
u2

KA
v+1−KA

v
units of the American option with strike KA

v

•
KA

u1

KE
u2

·
KE

u2
−KA

v

KA
v+1−KA

v
units of the American option with strike KA

v+1

and a short position of

• 1 unit of the American option with strike KA
u1
,

•
KA

u1

KE
u2

units of the European option with strike KE
u2
.

if the American options with strike KA
v and KA

v+1 are exercised simultaneously with the

American option with strike KA
u1
.

Proof. If we assume that both European options with strike KA
u1

and American options

with strike KE
u2

are traded in the market for

âu1 −
KA

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ]

and Aub(K
E
u2
,P∗

0 ), respectively, we can super-replicate a (traded) American option with

strike KA
u1

using the portfolio PLF
1 (KA

u1
,KE

u2
) for âu1 . However, as neither European

options with strike KA
u1

nor American options with strike KE
u2

are actually traded,

we have to find a super-replicating portfolio for either position. In the case of the

European option with strike KA
u1

, we can use the portfolio PE
1 (KA

u1
;KE

w ,KE
w+1). More-

over, we have that the super-replicating portfolio can be purchased in the market for

Eub(K
A
u1
,P∗

0 ), which is strictly less than

âu1 −
KA

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ].
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An American option with strike KE
u2

can then be super-replicated using the portfolio

PA
1 (KE

u2
;KA

v ,K
A
v+1) at cost Aub(K

E
u2
,P∗

0 ). Combined this implies that we can find a

super-replicating portfolio for an American option with strike KA
u1

for strictly less than

âu1 , the amount it is traded for in the market. Hence, we can generate arbitrage using

the portfolio P (Aub, Eub;K
E
u2
,KA

u1
,P∗

0 ).

We continue by investigating the arbitrage portfolios for the situation where Amer-

ican options with strike Ki,q can be super-replicated for strictly less than Alb(Ki,q,P
∗
0 ),

where Ki,q ∈ KE(P∗
0 ). To do so, we assume that the strikes Ki,q and Ki,p correspond

to KE
u1

∈ KE(P∗
0 ) and KE

u2
∈ KE(P∗

0 )\KA(P∗
0 ), respectively.

Proposition 3.6.18. Suppose that American and co-terminal European options are

traded in the market and that their prices are provided by P∗
0 . Then we can generate

model-independent arbitrage in the market if there exist strikes KE
u1

∈ KE(P∗
0 ), KE

u2
∈

KE(P∗
0 )\KA(P∗

0 ) with KE
u1

< KE
u2
, such that

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ] < Alhs
lb (KE

u1
,P∗

0 ).

Specifically, if we set v = arg max1≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ ≤ KE
u2
} and w =

arg max0≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ ≤ KE
u1
}, then we can generate arbitrage using the

portfolio P (Aub, A
lhs
lb ;KE

u2
,KE

u1
,P∗

0 ), consisting of a long position of

•
KE

u1
−KA

w

KE
u1

−KA
w−1

units of the American option with strike KA
w−1,

•
KA

w−KA
w−1

KE
u1

−KA
w−1

units of the European option with strike KE
u1
,

•
KE

u1

KE
u2

·
KE

u1
−KA

w

KE
u1

−KA
w−1

·
KA

v+1−KE
u2

KA
v+1−KA

v
units of the American option with strike KA

v .

•
KE

u1

KE
u2

·
KE

u1
−KA

w

KE
u1

−KA
w−1

·
KE

u2
−KA

v

KA
v+1−KA

v
units of the American option with strike KA

v+1

and a short position of

• 1 unit of the American option with strike KA
w ,

•
KE

u1

KE
u2

·
KE

u1
−KA

w

KE
u1

−KA
w−1

units of the European option with strike KE
u2
.

if we exercise the positions in the American options with strike KA
w−1, K

A
v and KA

v+1

simultaneously with the American option with strike KA
w .

Similarly, if

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ] < Arhs
lb (KE

u1
,P∗

0 ).
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then we can generate arbitrage using the portfolio P (Aub, A
rhs
lb ;KE

u2
,KE

u1
;P∗

0 ), consisting

of a long position of

•
KA

w+1−KA
w+1

KA
w+1−KE

u1

units of the European option with strike KE
u1
,

•
KA

w+1−KA
u1

KA
w+1−KE

u1

units of the American option with strike KA
w+1

•
KE

u1

KE
u2

·
KA

w+1−KA
w+1

KA
w+1−KE

u1

·
KA

v+1−KE
u2

KA
v+1−KA

v
units of the American option with strike KA

v

•
KE

u1

KE
u2

·
KA

w+1−KA
w+1

KA
w+1−KE

u1

·
KE

u2
−KA

v

KA
v+1−KA

v
units of the American option with strike KA

v+1

and a short position of

• 1 unit of the American option with strike KA
w+1,

•
KE

u1

KE
u2

·
KA

w+1−KA
w+1

KA
w+1−KE

u1

units of the European option with strike KE
u2
.

if we exercise the American options with strike KA
w+1, K

A
v and KA

v+1 simultaneously

with the American option with strike KA
w+1.

Proof. We assume for the moment that American options with strike KE
u1

are traded

at cost

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ],

then we can super-replicate a (traded) American option with strike KA
w using the

portfolio PA
1 (KA

w ;KA
w+1,K

E
u1

) for

α1 · âw−1 + (1 − α1) · êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ],

where α1 = (KE
u1

− KA
w )/(KE

u1
− KA

w−1). According to the assumptions, the super-

replicating portfolio would cost strictly less than âw. However, American options

with strike KE
u1

are not actually traded and thus we have to super-replicate that po-

sition. To this end, let us suppose that American options with strike KE
u2

are traded

at Aub(K
E
u2
,P∗

0 ), then we can super-replicate an American option with strike KE
u1

for

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ] using the portfolio PLF
1 (KE

u1
,KE

u2
).

However, American options with strike Ku1 are not traded and therefore have

to be super-replicated. This can be achieve for Aub(K
E
u2
,P∗

0 ), using the portfolio

PA
1 (KE

u2
;KA

v ,K
A
v+1). Hence, we found a super-replicating strategy for the American

option with strike KA
w that can be purchased in the market for strictly less than âw.

We can thus conclude that the portfolio P (Aub, A
lhs
lb ;KE

u2
,KE

u1
;P∗

0 ) generates arbitrage

in the market.
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Similarly, we consider the super-replicating portfolio PA
1 (KA

w+1;K
E
u1
,KA

w+1) for the

traded American option with strike KA
w in the second case. Under the assumption that

American options with strike KE
u1

trade for

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ],

this portfolio can be purchased for strictly less than âw+1. As this is not the case,

we super-replicate the American option with strike KE
u1

as above. It follows that the

portfolio P (Aub, A
rhs
lb ;KE

u2
,KE

u1
;P∗

0 ) generates arbitrage if the American options with

strike KA
v and KA

v+1 are exercised correctly.

We are thus left to argue that there exists arbitrage in the market whenever Amer-

ican options with strike Ki,q can be super-replicated for less than AA
lb(Ki,q,P

∗
0 ). To

do so, we assume that the strikes Ki,q and Ki,p correspond to KE
u1

∈ KE(P∗
0 ) and

KE
u2

∈ KE(P∗
0 )\KA(P∗

0 ), respectively. Note further that the derivation for the arbi-

trage portfolios is analogous to the previous cases and thus will be omitted here.

Proposition 3.6.19. Suppose that American and co-terminal European options are

traded in the market and that their prices are provided by P∗
0 . Then we can generate

model-independent arbitrage in the market if there exist strikes KE
u1

∈ KE(P∗
0 ), KE

u2
∈

KE(P∗
0 )\KA(P∗

0 ) with KE
u1

< KE
u2
, such that

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ] < AA,l
lb (KE

u1
,P∗

0 ).

Specifically, let us write v = arg max1≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ ≤ KE
u2
} and

w = arg max0≤j′≤m1
{KA

j′ ∈ KA(P∗
0 ) : KA

j′ ≤ KE
u1
}, Suppose

AA,l
lb (KE

u1
,P∗

0 ) =
âw − aj

KA
w −KE

j e−rT
· (KE

u1
−KA

w ) + âw,

where KE
j e−rT ∈ Sw−1, then we can use the portfolio P (Aub, A

A,l
lb ;KE

u2
,KE

u1
,P∗

0 ), con-

sisting of a long position of

•
KE

u1
−KA

w

KE
u1

−KE
j e−rT units of the European option with strike KE

j ,

•
KA

w−KE
j e−rT

KE
u1

−KE
j e−rT units of the European option with strike KE

u1
,

•
KE

u1

KE
u2

·
KE

u1
−KA

w

KE
u1

−KE
j e−rT ·

KA
v+1−KE

u2

KA
v+1−KA

v
units of the American option with strike KA

v ,

•
KE

u1

KE
u2

·
KE

u1
−KA

w

KE
u1

−KE
j e−rT ·

KE
u2

−KA
v

KA
v+1−KA

v
units of the American option with strike KA

v+1

and a short position of
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• 1 unit of the American option with strike KA
w ,

•
KE

u1

KE
u2

·
KE

u1
−KA

w

KE
u1

−KE
j e−rT units of the European option with strike KE

u2

to generate arbitrage if we exercise the positions in the American options with strike

KA
v and KA

v+1 simultaneously with the American option with strike KA
w .

Similarly, suppose

êu1 +
KE

u1

KE
u2

· [Aub(K
E
u2
,P∗

0 ) − êu2 ] < AA,r
lb (KE

u1
,P∗

0 ),

where

AA,r
lb (KE

u1
,P∗

0 ) =
aj − âw+1

KE
j e−rT −KA

w+1

· (KE
u2

−KA
w+1) + âw+1,

with KE
j e−rT ∈ Sw+1, then we can use the portfolio P (Aub, A

A,r
lb ;KE

u2
,KE

u1
;P∗

0 ), con-

sisting of a long position of

•
KE

j e−rT−KA
w+1

KE
j e−rT−KE

u1

units of the European option with strike KE
u1
,

•
KA

w+1−KE
u1

KE
j e−rT−KE

u1

units of the European option with strike KE
j

•
KE

u1

KE
u2

·
KE

j e−rT−KA
w+1

KE
j e−rT−KE

u1

·
KA

v+1−KE
u2

KA
v+1−KA

v
units of the American option with strike KA

v

•
KE

u1

KE
u2

·
KE

j e−rT−KA
w+1

KE
j e−rT−KE

u1

·
KE

u2
−KA

v

KA
v+1−KA

v
units of the American option with strike KA

v+1

and a short position of

• 1 unit of the American option with strike KA
w+1,

•
KE

u1

KE
u2

·
KE

j e−rT−KA
w+1

KE
j
e−rT−KA

u1

units of the European option with strike KE
u2
.

if we exercise the American options with strike KA
v and KA

v+1 simultaneously with the

American option with strike KA
w+1.

3.7 Admissibility of the price functions

We are left to argue that the algorithm constructs admissible price functions A and E

from a given set of prices P∗
0 whenever none of the arbitrage situations of Section 3.6

occurs.

To this end, we will introduce the term of ξ-admissibility, which we will use to

incorporate all the important properties of the price functions up to strike ξ.

Definition 3.7.1. Suppose we are given a strike ξ ∈ (0,∞). We say that a set of

prices P is a ξ-admissible P∗
0 -extension if:
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(I) (âi,K
A
i ) ∈ PA for i = 1, ...,m1 and (êj,K

E
j ) ∈ PE for j = 1, ...,m2.

(II) K(P) ⊂ [0,∞).

(III) (KA(P∗
0 )∪KE(P∗

0 ))∩(0, ξ] ⊆ (KA(P)∩KE(P))∩(0, ξ] = (KA(P)∪KE(P))∩(0, ξ],

i.e. all traded options are priced correctly up to ξ under P and if one type of

option is priced at a strike so is the other.

(IV) The European price function E(K,P) defined in (3.7) satisfies the conditions in

Lemma 3.1.1 for any strike K ≥ 0

(i) E(K,P) is increasing and convex.

(ii) E(K,P) ≥ (e−rTK − S0)+.

(iii) E(K,P) ≤ e−rT .

(iv) If E(K,P) > e−rTK − S0, then E′(K+,P) < e−rT .

(V) The American price function A(K,P) defined in (3.6) satisfies the conditions in

Theorem 3.1.2 for any strike K ≥ 0

(i) A(K,P) is increasing and convex.

(ii) A(K,P) ≥ (K − S0)+.

(iii) A(K,P) ≥ E(K,P) for K ∈ (0, ξ].

(iv) A(K,P) ≤ A(K,P) for K ∈ (0, e−rT ξ].

(VI) For Ki,Ki′ ∈ [0, ξ) ∪ KA(P) and Kj ,Kj′ ∈ [0, ξ) ∪ KE(P) with Ki < Ki′ ,

Kj < Kj′, Kj ≤ Ki and Kj′ ≤ Ki′ the Legendre-Fenchel condition holds, i.e.

A(Ki′) −A(Ki)

Ki′ −Ki
Ki −A(Ki) ≥

E(Kj′) − E(Kj)

Kj′ −Kj
Kj − E(Kj) (3.35)

where we suppressed the dependence of the price functions on the set of prices

P. This simplifies for K ∈ (0, ξ) to

A′(K+,P)K −A(K,P) ≥ E′(K+,P)K − E(K,P).

Using the definition of ξ-admissibility we are now able to show that the price func-

tions generated by the algorithm satisfy the no-arbitrage conditions whenever the mar-

ket is free of arbitrage.

For this purpose we begin by considering a possible violation of the no-arbitrage

conditions when the initial set of prices is given by P∗
1 as this allows us to rule out the

existence of auxiliary price constraints of type 1.
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3.7.1 Violation of the upper bound under P∗
1

We start by analysing the situation in which a violation of the upper bound occurs.

To this end, we assume that the algorithm computed P1,p−1 a K1,p−1-admissible P∗
0 -

extension. In the next step the algorithm calculates the price for the non-traded option

with strike K1,p according to either (3.22) or (3.23) depending on the type of the strike

K1,p. The algorithm then stops due to a violation of a1,p ≥ A(K1,pe
−rT ,P1,p), where

we assume that K1,pe
−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗

1 ). In addition, let us

write

u = arg max{KA
i ∈ KA(P∗

0 ) : KA
i < K1,pe

−rT }.

We are then left to argue that the algorithm will successfully correct this violation

without affecting the prices of options outside of (K1,q,K1,q+1). To see that this is the

case we have to distinguish between the two cases where either [KA
u ,K

A
u+1]∩Kaux(P∗

1 ) =

∅ or [KA
u ,K

A
u+1] ∩Kaux(P∗

1 ) 6= ∅

Case I: [KA
u ,K

A
u+1] ∩Kaux(P∗

1 ) = ∅

In this case the violation of the upper bound at K1,pe
−rT is the first violation of a no-

arbitrage condition in [KA
u ,K

A
u+1]. Before we can argue that Algorithm 4 successfully

corrects the violation, we need to show the existence of a strike KE
j′ e

−rT ∈ (K1,q,K1,q+1)

as the auxiliary price constraint will be introduced at such a strike.

Proposition 3.7.2. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p), where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ [KA
u ,K

A
u+1] ∩

K(P∗
1 ). If we assume further that [KA

u ,K1,pe
−rT ] ∩Kaux(P∗

1 ) = ∅ and

j′ = arg min{KE
s ∈ KE(P∗

0 ) : KE
s ≥ K1,p},

then we have KE
j′ e

−rT ∈ (K1,q,K1,q+1).

Proof. Let us assume first that K1,q+1 ∈ KA(P∗
0 ). Proposition 3.10.18 shows that

[K1,pe
−rT ,∞) ∩ Kaux(P∗

1 ) = ∅. We can furthermore argue that Kaux
1 (P∗

1 ) = ∅ as

the algorithm has not been restarted yet. It follows that Proposition 3.10.17 can be

applied, which states that KE
j′ e

−rT < K1,q+1. The definition of j′, moreover, implies

that KE
j′ e

−rT > K1,q and thus KE
j′ e

−rT ∈ (K1,q,K1,q+1) has to hold.

Suppose now that K1,q+1 ∈ KE(P∗
0 )\KA(P∗

0 ), then we can deduce from [KA
u ,K

A
u+1]∩

Kaux(P∗
1 ) = ∅ that K1,q+1 ∈ (KE(P∗

0 )\KA(P∗
1 )). Hence, we can apply Proposi-
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tion 3.10.24 to see that

a1,q+1 = max{Arhs
lb (K1,q+1,P

∗
0 ), AA,r

lb (K1,q+1,P
∗
0 )}.

We know, moreover, from Proposition 3.10.5 that

a1,s = max{Arhs
lb (K1,s,P

∗
0 ), AA,r

lb (K1,s,P
∗
0 )}

for any strike K1,s ∈ [K1,q+1,K
A
u+1). If we assume for contradiction that KE

j′ e
−rT ≥

K1,q+1, then Proposition 3.10.17 guarantees that KE
j′ e

−rT ∈ [K1,q+1,K
A
u+1). Since the

American price function is obtained by interpolating linearly between the option prices

in PA
1,p, we must have

A(KE
j′ e

−rT ,P1,p) = max{Arhs
lb (KE

j′ ,P
∗
0 ), AA,r

lb (KE
j′ ,P

∗
0 )}.

It follows that aj′ < max{Arhs
lb (KE

j′ ,P
∗
0 ), AA,r

lb (KE
j′ ,P

∗
0 )} which is a contradiction to

(viii) of the Standing Assumptions. It follows that KE
j′ e

−rT ∈ (K1,q,K1,q+1).

We can now show that under P∗
1 Algorithm 4 successfully corrects a violation of

the upper bound in K1,pe
−rT if [KA

u ,K
A
u+1]∩Kaux(P∗

1 ) = ∅. Note also that henceforth

we will be using Kl(Pi,p) to refer to the l-th strike in K(Pi,p).

Proposition 3.7.3. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p), where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ [KA
u ,K

A
u+1] ∩

K(P∗
1 ). If we assume that [KA

u ,K1,pe
−rT ] ∩ Kaux(P∗

1 ) = ∅ and that Algorithm 4 ex-

tended the price set P1,p to

P1,p+1 = ((P1,p)A ∪ (aj ,K
E
j e−rT ); (P1,p)E ∪ (Eub(K

E
j e−rT ,P1,p),KE

j e−rT )),

then P1,p+1 has to be a K1,p+1-admissible P∗
0 -extension.

Proof. We begin by arguing that the auxiliary price constraint (aj ,K
E
j e−rT ) lies within

the no-arbitrage bounds inferred by the set of prices P1,p. Note also that j ≥ j′ for

j′ = arg min{Ks ∈ KE(P∗
0 ) : Ks ≥ K1,p}

First we show that aj < Aub(K
E
j e−rT ,P1,p). To this end, we start by arguing that

aj′ < Aub(K
E
j′ e

−rT ,P1,p). According to Proposition 3.10.18, we must have [KA
u ,∞) ∩

Kaux(P∗
1 ) = ∅. We can thus apply Proposition 3.10.14 to see that the prices a1,p−1, a1,p

and aj are co-linear. Proposition 3.10.22 further argues that a1,q ≤ A(K1,q,P1,p) has
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to hold. Combined with the fact that P1,p−1 is a K1,p−1-admissible P∗
0 -extension we

can conclude that A(K,P1,p) ≤ A(K,P1,p) for any strike K ≤ max{K1,q,K1,p−1e
−rT }.

In addition, we know that the price for European options with strike KE
j e−rT is set

to be Eub(K
E
j e−rT ,P1,p) and thus the upper bound remains unchanged after the in-

troduction of the auxiliary price constraint. Taking into account the assumption that

a1,p < A(K1,pe
−rT ,P1,p), we get aj′ < A(KE

j′ e
−rT ,P1,p). Since the price functions are

obtained by interpolating linearly between the given option prices we must therefore

have aj′ < Aub(K
E
j′ e

−rT ,P1,p).

Let us assume now that j > j′, then we can deduce from (3.28) that

aj − a1,q

KE
j e−rT −K1,q

≤
aj′ − a1,q

KE
j′ e

−rT −K1,q
.

Having argued already that aj′ < Aub(K
E
j′ e

−rT ,P1,p), we can now conclude that aj <

Aub(K
E
j e−rT ,P1,p) has to hold as well.

The argument that aj ≥ Alhs
lb (KE

j e−rT ,P1,p) is given in Proposition 3.10.23 as the

term on the right hand-side in (3.64) corresponds to the left hand-side lower bound on

[K1,q,K1,q+1].

To see that aj ≥ max{Arhs
lb (KE

j e−rT ,P1,p), AA,r
lb (KE

j e−rT ,P1,p)} we have to distin-

guish between the two cases where K1,q+1 ∈ KA(P∗
0 ) or K1,q+1 ∈ (KE(P∗

1 )\KA(P∗
0 )).

In the first case we know that the price for an American option with strike K1,s ∈

(KA
u+1,K

A
u+2) has to satisfy a1,s ≥ AA,l

lb (K1,s,P
∗
0 ) and thus aj ≥ Arhs

lb (KE
j e−rT ,P1,p).

The Standing Assumptions, moreover, guarantee in (v) that aj ≥ AA,r
lb (KE

j e−rT ,P∗
0 )

and thus

aj ≥ max{Arhs
lb (KE

j e−rT ,P1,p), AA,r
lb (KE

j e−rT ,P1,p)}

has to hold.

In the second case we can apply Proposition 3.10.24 to show that

a1,q+1 = max{Arhs
lb (K1,q+1,P

∗
0 ), AA,r

lb (K1,q+1,P
∗
0 )}.

Hence, the right hand-side lower bound Arhs
lb (KE

j e−rT ,P1,p) is given by the prices of

two traded options. We can thus conclude from the Standing Assumptions that

aj ≥ max{Arhs
lb (KE

j e−rT ,P1,p), AA,r
lb (KE

j e−rT ,P1,p)}.

Before we show that the Legendre-Fenchel condition holds after the auxiliary price

constraint (aj,K
E
j e−rT ) was introduced, we would like to point out that the entire

argument below is given with respect to the augmented price set P1,p+1 obtained by

adding in the new price constraint (aj,K
E
j e−rT ) and shifting all prices at strikes greater

than KE
j e−rT to the right by one. This means that the strike at which the violation
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occurred is no longer given by K1,p, but is now K1,p+1. Note, however, that the same

conclusion cannot be made for any of the strikes K1,s, s ≤ p − 1, as we may have

K1,q = K1,s. For clarification we will therefore refer to these strikes in the sequel as

Ks(P1,p) and to the new ones by Ks(P1,p+1).

Suppose first that j = j′, then we know from above that A(K,P1,p+1) ≤ A(K,P1,p+1)

for any strike K ≤ max{K1,q,Kp−1(P1,p)e−rT }. Taking further into account that

A(KE
j e−rT ,P1,p+1) = aj and that the function A is linear on [Kp−1(P1,p)e−rT ,KE

j′ e
−rT ]

according to Remark 3.10.16 we can conclude that

cc(A;K1,q+1,K1,q+2;P1,p+1) ≤ cc(A;K1,q ,K1,q+1;P1,p+1)

≤ cc(A;K1,pe
−rT ,K1,p+1e

−rT ;P1,p+1)

= cc(E;K1,p,K1,p+1;P1,p+1)

≤ cc(E;K1,q+1,K1,q+2;P1,p+1)

= cc(E;K1,q ,K1,q+1;P1,p+1)

where the equality in the third line has to hold according to Proposition 3.10.4 and the

inequality in the penultimate line is due to the convexity of the European price function

up to Kp+1(P1,p+1) which still has to hold after adding in the price Eub(K
E
j e−rT ,P1,q).

Hence, the Legendre-Fenchel condition has to hold on [K1,q,Kq+2(P1,p+1)].

An analog argument can be used to show that the Legendre-Fenchel condition holds

on [K1,q,Kq+2(P1,p+1)] when j > j′, as

aj − a1,q

KE
j e−rT −K1,q

≤
av′ − a1,q

KE
v′ e

−rT −K1,q

for any strike KE
v′e

−rT ∈ (K1,q,Kq+2(P1,p+1)) with KE
v′ ∈ KE(P∗

0 ) guarantees that

av′ ≥
aj − a1,q

KE
j e−rT −K1,q

(KE
v′e

−rT −K1,q) + a1,q (3.36)

and thus

cc(A;K1,q ,K1,q+1;P1,p+1) ≤ cc(A;KE
j−1e

−rT ,KE
j e−rT ;P∗

0 ).

Finally, we will argue that the American price function A(·,P1,p+1) will not exceed

the upper bound A in any strike up to K1,p+1e
−rT . Note first that the added price

Eub(K
E
j e−rT ,P1,q) has no effect on the European price function and thus the upper

bound A remains unchanged as well. Recall next that A(K,P1,p+1) ≤ A(K,P1,p+1) for

any strike K ≤ K1,q. We are thus left to argue that the upper bound A also holds on

[K1,q,K1,p+1e
−rT ]. By construction we have A(KE

j e−rT ,P1,p+1) = aj. We can then

use (3.36) together with the convexity of the European price function on [0,K1,p+1]

to argue that A(K,P1,p+1) ≤ A(K,P1,p+1) for any strike K ∈ [K1,q,K1,p+1e
−rT ] and
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therefore we have shown that P1,p+1 is a K1,p+1-admissible P∗
0 -extension.

Case II: [KA
u ,K

A
u+1] ∩Kaux(P∗

1 ) 6= ∅

Suppose that the last auxiliary price constraint was introduced at the strike K1,q̃ ∈

[KA
u ,K

A
u+1] ∩ Kaux(P∗

1 ). Since we assumed that the initial set of prices is given by

P∗
1 , a previous violation of convexity can be ruled out and thus we must have K1,q̃ ∈

Kaux
2 (P∗

1 ).

To see that Algorithm 4 successfully corrects a violation of the upper bound in this

setting we first show again the existence of a strike KE
j′ e

−rT ∈ (K1,q,K1,q+1).

Proposition 3.7.4. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p), where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ [KA
u ,K

A
u+1] ∩

K(P∗
1 ). If we assume further that [KA

u ,K1,pe
−rT ] ∩Kaux(P∗

1 ) 6= ∅ and

j′ = arg min{KE
s ∈ KE(P∗

0 ) : KE
s ≥ K1,p},

then we have q = q̃ and KE
j′ e

−rT ∈ (K1,q̃,K1,q̃+1).

Proof. We begin by noting that according to Proposition 3.10.18 K1,pe
−rT > K1,q̃ and

thus KE
j′ e

−rT > K1,q̃ as well. Hence, we are left to show that KE
j′ e

−rT < K1,q̃+1. To

do so, we will argue that either K1,q̃+1 ∈ KA(P∗
1 ) or

a1,q̃+1 = max{Arhs
lb (K1,q̃+1,P

∗
0 ), AA,r

lb (K1,q̃+1,P
∗
0 )}

for K1,q̃+1 ∈ KE(P∗
1 )\KA(P∗

1 ). In the first case we can immediately rule out that

K1,q̃+1 ∈ Kaux(P∗
1 ) according to Proposition 3.10.18 and thus K1,q̃+1 ∈ KA(P∗

0 ). More-

over, Proposition 3.10.17 guarantees that KE
j′ e

−rT < KA
u+1 and therefore KE

j′ e
−rT ∈

(K1,q̃,K1,q̃+1) for K1,q̃+1 ∈ KA(P∗
1 ).

Hence, we are left to consider the situation where K1,q̃+1 ∈ KE(P∗
1 )\KA(P∗

1 ). To

see that also in this case KE
j′ e

−rT ∈ (K1,q̃,K1,q̃+1) holds, we will proceed as follows.

Let us assume for contradiction that KE
j′ e

−rT ≥ K1,q̃+1, then we can deduce from

Proposition 3.10.17 that KE
j′ e

−rT ∈ [K1,q̃+1,K
A
u+1). Suppose further that the first

violation of the upper bound in [KA
u ,K

A
u+1] was corrected by introducing the auxil-

iary constraint (a1,r,K1,r). We can then conclude that r ≤ q̃ and that according to

Proposition 3.10.24 the price for American options with strike K1,r+1 must be given

by a1,r+1 = max{Arhs
lb (K1,r+1,P

∗
0 ), AA,r

lb (K1,r+1,P
∗
0 )}. Applying Proposition 3.10.5 we
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can further conclude that

A(K,P1,p) = max{Arhs
lb (K,P∗

0 ), AA,r
lb (K,P∗

0 )}

for any strike K ∈ [K1,r+1,K
A
u+1]. This, however, yields a contradiction to (viii) of the

Standing Assumptions, as this guarantees that

aj′ ≥ max{Arhs
lb (Kj′e

−rT ,P∗
0 ), AA,r

lb (Kj′e
−rT ,P∗

0 )}.

We can therefore conclude that KE
j′ e

−rT ∈ (K1,q̃,K1,q̃+1) and q = q̃.

Remark 3.7.5. Suppose that the first time a violation of the upper bound occurs on

[KA
u ,K

A
u+1] is at K1,p1e

−rT ∈ [K1,q,K1,q+1], then Proposition 3.7.4 readily implies that

any further violation of the upper bound between KA
u and KA

u+1 at a strike K1,ple
−rT ∈

[KA
u ,K

A
u+1] has to satisfy K1,ple

−rT < K1,q+1.

Proposition 3.7.6. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p), where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ [KA
u ,K

A
u+1] ∩

K(P∗
1 ). If we assume that [KA

u ,K1,pe
−rT ] ∩ Kaux(P∗

1 ) 6= ∅ and that Algorithm 4 ex-

tended the price set P1,p to

P1,p+1 = ((P1,p)A ∪ (aj ,K
E
j e−rT ); (P1,p)E ∪ (Eub(K

E
j e−rT ,P1,p),KE

j e−rT )),

then P1,p+1 has to be a K1,p+1-admissible P∗
0 -extension.

Proof. We begin by showing that the auxiliary price constraint (aj,K
E
j e−rT ) lies within

the no-arbitrage bounds inferred by the set of prices P1,p. Moreover, we will use

j′ = arg min{KE
s ∈ KE(P∗

0 ) : KE
s ≥ K1,p} and thus have j ≥ j′.

To see that aj < Aub(K
E
j e−rT ,P1,p) holds we proceed analogously to the argument

in the proof of Proposition 3.7.3. The only difference in the argument is the way we

show that a1,q ≤ A(K1,q,P1,p). In the current setting we can use Proposition 3.7.4 to

guarantee that K1,q ∈ Kaux
2 (P∗

1 ) and thus a1,q = A(K1,q,P
∗
0 ) has to hold.

Next we will show that aj ≥ Alhs
lb (KE

j e−rT ,P1,p). To do so, we will assume for

contradiction that aj < Alhs
lb (KE

j e−rT ,P1,p). We can thus conclude that

a1,q − a1,q−1

K1,q −K1,q−1
≥

aj − a1,q−1

KE
j e−rT −K1,q−1

(3.37)

has to hold for K1,q−1 ∈ K(P∗
1 ). Applying Proposition 3.7.4 we further see that
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K1,q ∈ Kaux
2 (P∗

1 ). Combined with the fact that KE
j e−rT ∈ (K1,q,K1,q+1) and KE

j ∈

KE(P∗
0 ) this yields a contradiction, as the algorithm would have chosen the con-

straint (aj,K
E
j e−rT ) over (A(K1,q,P

∗
0 ),K1,q) previously. Hence, we can conclude that

aj ≥ Alhs
lb (KE

j e−rT ,P1,p) has to hold.

The argument showing that

aj ≥ max{Arhs
lb (KE

j e−rT ,Pi,p), AA,r
lb (KE

j e−rT ,Pi,p)}

can be taken directly from Proposition 3.7.3 as the right hand-side lower bound is

not affected by any auxiliary price constraints to the left. So can the proofs that

the Legendre-Fenchel condition holds and that the American price function will not

exceed the upper bound A. We can thus conclude that P1,p+1 is a K1,p+1-admissible

P∗
0 -extension.

The price for a European option at a strike in Kaux
2 (P∗

1 )

In the following proposition we argue that the price for a European option with strike

KE
j e−rT has to be given by Eub(K

E
j e−rT ,P1,p) to guarantee the admissibility of the

price functions.

Proposition 3.7.7. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p), where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ [KA
u ,K

A
u+1] ∩

K(P∗
1 ). If we assume that Algorithm 4 extended the price set P1,p to

P1,p+1 = ((P1,p)A ∪ (aj,K
E
j e−rT ); (P1,p)E ∪ (Eub(K

E
j e−rT ,P1,p),KE

j e−rT ))

in order to correct the violation and that K1,s = KE
j , then P1,s has to be a K1,s-

admissible P∗
0 -extension.

Proof. We argued already in Proposition 3.7.3 and Proposition 3.7.6, respectively, that

the set P1,p+1 is a K1,p+1-admissible P∗
0 -extension. It is therefore sufficient to rule out

both a violation of the upper bound and of convexity on (K1,p+1,K
E
j ].

Let us first consider the case where a violation of the upper bound occurs on

(K1,p+1,K
E
j ]. To this end, we set

K1,r = min{K1,r̃ ∈ (K1,p+1,K
E
j ] ∩K(P∗

1 ) : a1,r̃ < A(K1,r̃e
−rT ,P1,r̃)}

and

KE
j′ = min{KE

s ∈ KE(P∗
0 ) : KE

s ≥ K1,r}.
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Observe also that this readily implies that j′ ≤ j. Moreover, we know from Propo-

sition 3.10.14 that the prices a1,r−1, a1,r and aj′ are co-linear. It thus follows that

aj′ < A(KE
j′ e

−rT ,P1,s) has to hold. Then again, this is a contradiction to the way the

strike KE
j is chosen in (3.28) and thus a violation of the upper bound on (K1,p+1,K

E
j ]

can be ruled out.

We are therefore left to argue that a violation of convexity can be ruled out on

(K1,p+1,K
E
j ]. This, however, follows directly from Proposition 3.10.25. We can thus

conclude that P1,s is a K1,s-admissible P∗
0 -extension.

3.7.2 Violation of convexity under P∗
1

There are two possible violations of convexity that may occur during the construction

of the price functions. On the one hand it is possible that the price for an American

option with strike K1,p ∈ K(P∗
1 )\KA(P∗

1 ) exceeds the upper bound Aub(K1,p,P1,p−1) if

the price is computed to be a1,p = Alf (K1,p,P1,p−1). On the other hand the algorithm

may compute the price for a European option with strike K1,p ∈ K(P∗
1 )\KE(P∗

1 ) to

be e1,p = Elf (K1,p,P1,p−1) such that we have e1,p < Elb(K1,p,P1,p−1). Although the

starting prices for Algorithm 3 depend on the type of the violation the revision process

does not and thus we can discuss both cases at once.

To this end, let us assume that the first violation of convexity occurs at the strike

K1,p ∈ K(P∗
1 ) and that Algorithm 3 works backwards through the strikes in K(P∗

1 ) until

it reaches K1,q ∈ (KA
u ,K

A
u+1)∩KE(P∗

1 ) where it stops and introduces the auxiliary price

constraint (an1,q,K1,q). We will then argue in this section that the prices obtained by

restarting the algorithm with the new initial set

P ∗
2 = ((P1)A ∪ (an1,q,K1,q); (P∗

0 )E)

will be a Kvc
1 -admissible P∗

0 -extension. To do so, we will discuss first how the price

functions constructed from the initial set P∗
2 would look like if the algorithm was to

ignore any new violations of the upper bound A. That is, Algorithm 2 is executed

normally, but a violation of the upper bound does not start Algorithm 4. Instead

Algorithm 2 continues with the computation of option prices. It makes sense to consider

these price functions as we have seen in Section 3.7.1 that a correction of the upper

bound has no effect on the other option prices under P∗
1 . Note also that in this case the

algorithm will not introduce any auxiliary price constraints and thus the enumeration

of the strikes between the price set P1,p and P2,p will remain unchanged.

Proposition 3.7.8. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.
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Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Algo-

rithm 3 computes revised prices for non-traded options with strikes K1,s ∈ [K1,q,K1,p]∩

K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩KE(P∗

0 ) it stops and defines the new initial

set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,q,K1,q); (P∗

0 )E). Algorithm 2 is then restarted

with the initial set P∗
2 . If violations of the upper bound A are ignored by Algorithm 2

the price functions are given by

a2,s =































a1,s, if K2,s < K2,r

Arhs
lb (K2,s,P

∗
2 ), if K2,s ∈ [K2,r,K

A
u )

Aub(K2,s,P
∗
2 ), if K2,s ∈ [KA

u ,K2,q)

an1,s, if K2,s ∈ [K2,q,K2,p]

(3.38)

and

e2,s =







e1,s, if K2,s ≤ K2,q

en1,s, if K2,s ∈ [K2,q,K2,p]
(3.39)

for

K2,r = min{K2,s ∈ (K2,w,K
A
u ) ∩K(P∗

2 ) : Arhs
lb (K2,s,P

∗
2 ) > a1,s}

and

K2,w = max{K ∈ KA(P∗
2 ) : K < KA

u }. (3.40)

Remark 3.7.9. Note that the left hand-side lower bound Alhs
lb (·,P1,q−1) in the strike

K1,q has to be strictly positive as there exists arbitrage in the market otherwise according

to Remark 3.6.15. If [0,KA
1 ]∩KE(P∗

0 ) = ∅, we can, moreover, use (vi) of the Standing

Assumptions to argue that e1,1 = Elf (K1,1,P1,0) = â1 ≥ Erhs
lb (K1,1,P

∗
0 ) and thus

a violation of convexity in KA
1 can be ruled out as well. It follows that the strike

KA
u = max{KA

s ∈ KA(P∗
0 ) : KA

s < K1,q} satisfies KA
u > 0.

Proof. Observe that the existence of the strike K2,r is guaranteed due to Proposi-

tion 3.10.39. We then begin by showing that both the computed American and Eu-

ropean price functions remain unchanged for any strike K ∈ [0,K2,r) ∩ K(P∗
2 ). To

this end, we note that the price sets P∗
1 and P∗

2 differ only by the auxiliary price con-

straint (an1,q,K1,q) as any auxiliary price constraint introduced to correct a violation

of the upper bound during the first iteration is added to P∗
1 . Hence, a change in the

price functions can only be caused by either the new constraint (an1,q,K1,q) or by the

algorithm pricing European options with strikes in Kaux
2 (P∗

2 ) differently to (3.30). We

will now argue that the first time the auxiliary price constraint (an1,q,K1,q) affects the
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pricing of American options is on the interval (K2,w,K
A
u ). This follows from the fact

that the auxiliary price constraint (an1,q,K1,q) appears for the first time in the pricing

formula for American options when the right hand-side lower bound is given by

Arhs
lb (K,P∗

2 ) =
an1,q − âu

K1,q −KA
u

(K −KA
u ) + âu

which is the case on (K2,w,K
A
u ). Taking into account the definition of the strike K2,r we

can conclude that the prices for American options with strike K2,s ∈ [0,K2,r) ∩K(P∗
2 )

are not affected by the auxiliary price constraint (an1,q,K1,q).

According to Proposition 3.10.40, the algorithm will determine the price for Euro-

pean options with strike K2,l ∈ (0,K2,w]∩Kaux
2 (P∗

2 ) to be Eub(K2,l,P2,l−1). Hence, we

can conclude that a2,s = a1,s and e2,s = e1,s for any strike K2,s ∈ [0,K2,r) ∩K(P∗
2 ).

We proceed by showing that a2,s = Arhs
lb (K2,s,P

∗
2 ) and e2,s = e1,s for any strike

K2,s ∈ [K2,r,K
A
u ). According to Proposition 3.10.39 the strike

K2,r = min{K2,s ∈ (K2,w,K
A
u ) ∩K(P∗

2 ) : Arhs
lb (K2,s,P

∗
2 ) > a1,s}

exists and by its definition we must have a2,r = Arhs
lb (K2,r,P

∗
2 ). Note further that

the definition of K2,w in (3.40) takes into account the strikes of the auxiliary price

constraints already introduced. Combined with the fact that Algorithm 2 ignores

possible violations of the upper bound in the second iteration we are guaranteed that

[K2,w,K
A
u ] ∩ Kaux(P∗

2 ) = ∅. We can thus deduce from K2,r > K2,w that [K2,r,K
A
u ] ∩

Kaux(P∗
2 ) = ∅ has to hold as well. We can therefore apply Proposition 3.10.5 to see

that a2,s = Arhs
lb (K2,s,P∗

2 ) for any strike K2,s ∈ [K2,r,K
A
u ). Moreover, we can deduce

from the definition of K2,w that (K2,w,K
A
u ) ∩ K(P∗

2 ) ⊂ KE(P∗
0 ). Hence, the prices

for European options with strikes in (K2,w,K
A
u ) ∩K(P∗

2 ) are given by (P∗
0 )E and thus

e2,s = e1,s for any strike K2,s ∈ (K2,w,K
A
u ).

Let us continue by investigating the price for American and European options with

strike K2,s ∈ [KA
u ,K2,q). Note first that K1,q ∈ (KA

u ,K1,q̃] according to Remark 3.10.38.

Since we ignore any violation of the upper bound A in the second iteration of the

algorithm we further know that K2,q ∈ (KA
u ,K2,q̃] and according to Proposition 3.10.30

[KA
u ,K2,q) ∩ Kaux(P∗

2 ) = ∅. It follows that the price for European options only needs

to be computed in KA
u . To be able to compare the prices for European options in the

two iterations we need to determine them first. To this end, suppose that under P1,p

the strike KA
u corresponds to K1,s̃.

According to Proposition 3.10.32 we know that a1,q̃ = Alhs
lb (K1,q̃,P1,p) where

Alhs
lb (K1,q̃,P1,p) > Alf (K1,q̃,P1,p).
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Hence,

cc(A;K1,q̃−1,K1,q̃;P1,p) < cc(E;K1,q̃−1,K1,q̃;P1,p)

has to hold. In Proposition 3.10.33 we further argue that the prices a1,s̃−1, a1,s̃ and

a1,q̃ are co-linear and thus

cc(A;K1,s̃−1,K1,s̃;P1,p) = cc(A;K1,q̃−1,K1,q̃;P1,p)

< cc(E;K1,q̃−1,K1,q̃;P1,p)

≤ cc(E;K1,s̃−1,K1,s̃;P1,p)

follows. This readily implies that the Legendre-Fenchel condition holds with strict

inequality on [K1,s̃−1,K1,s̃] and thus the price for European options with strike K1,s̃ is

given by e1,s̃ = Eub(K1,s̃,P1,s̃).

Let us now determine the price for European options with strike KA
u which the

algorithm computes from the initial price set P∗
2 . We then have to distinguish between

the two cases where either K2,q = K2,s̃+1 or K2,q > K2,s̃+1. In the first case we know

from Remark 3.10.34 that K1,s̃−1 ∈ KE(P∗
0 ) has to hold. In addition, we know that

Algorithm 3 stops revising option prices in a strike at which European options are

traded in the market. Since we assumed that Algorithm 2 ignores any violation of the

upper bound and thus refrains from introducing auxiliary price constraints we then

also know that K2,s̃−1,K2,s̃+1 ∈ KE(P∗
0 ) has to hold. As we further assumed that

Algorithm 3 did not stop due to the existence of an arbitrage we can conclude that

en1,s̃ ≤ Eub(K1,s̃,P
∗
0 ) and thus

cc(E;K1,s̃−1,K1,s̃+1;P1,p) ≥ cc(En;K1,s̃,K1,s̃+1;P1,p).

Taking into account that the revised prices are computed such that the Legendre-

Fenchel condition holds with equality we furthermore have that

cc(En;K1,s̃,K1,s̃+1;P1,p) = cc(A,An;K1,s̃,K1,s̃+1;P1,p).

Since K1,s̃ = KA
u and K1,s̃+1 = K2,q we can furthermore conclude that

cc(A;K2,s̃,K2,s̃+1;P
∗
2 ) = cc(A,An;K1,s̃,K1,s̃+1;P1,p).

Combined with the fact that a2,s̃−1 = Arhs
lb (K2,s̃−1,P

∗
2 ) we obtain that

cc(E;K1,s̃−1,K1,s̃+1;P
∗
0 ) ≥ cc(En;K1,s̃,K1,s̃+1;P1,p)

= cc(A,An;K1,s̃,K1,s̃+1;P1,p)
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= cc(A;K2,s̃,K2,q;P
∗
2 )

= cc(A;K2,s̃−1,K2,s̃;P2,s̃−1)

and thus e2,s̃ = Eub(K2,s̃,P2,s̃−1) has to hold.

In the second case we have K1,q−1,K1,q ∈ KE(P∗
0 ) and according to the stopping

condition in line 5 of Algorithm 3

cc(A,An;K1,s̃,K1,q;P1,p) ≤ cc(E;K1,q−1,K1,q;P1,p)

has to hold. Recall further that we argued in the previous case that K2,s̃−1,K2,s̃+1 ∈

KE(P∗
0 ). The convexity of the European price function E(·,P∗

0 ) together with the fact

that K2,s̃−1,K2,s̃+1 ∈ KE(P∗
0 ) then implies that

cc(E;K2,s̃−1,K2,s̃+1;P2,s̃−1) ≥ cc(E;K1,q−1,K1,q;P1,p).

Analogously to the previous case we also know that a2,s̃−1 = Arhs
lb (K2,s̃−1,P

∗
2 ) holds.

Hence, we obtain that

cc(A;K2,s̃−1,K2,s̃;P2,s̃−1) = cc(A,An;K1,s̃,K1,q;P1,p)

≤ cc(E;K1,q−1,K1,q;P1,p)

≤ cc(E;K2,s̃−1,K2,s̃+1;P2,s̃−1)

and thus we can conclude again that e2,s̃ = Eub(K2,s̃,P2,s̃−1).

We can now consider the prices for American options with strikes in [KA
u ,K2,q) ∩

KE(P∗
0 ) the algorithm computes from the initial set of prices P∗

2 . In the case where

K2,q = K2,s̃+1 the set [KA
u ,K2,q) ∩ KE(P∗

0 ) is empty and thus we will assume that

K2,q > K2,s̃+1 in the sequel. To see that a2,s = Aub(K2,s,P2,s−1) for any strike K2,s ∈

[KA
u ,K2,q) ∩KE(P∗

0 ), we will assume for contradiction that there exists

K2,ŝ = min{K2,s ∈ [KA
u ,K2,q) ∩KE(P∗

0 ) : a2,s > Aub(K2,s,P2,s−1)}.

According to Proposition 3.10.39 the price for American options with strike K2,s̃−1

is given by a2,s̃−1 = Arhs
lb (K2,s̃−1,P

∗
2 ) and thus the upper bound Aub(K2,s,P

∗
2 ) cor-

responds to the left hand-side lower bound Alhs
lb (K2,s,P2,s̃) for any strike K2,s ∈

[KA
u ,K2,q) ∩KE(P∗

0 ). Hence, we must have

a2,ŝ = max{Alf (K2,ŝ,P2,ŝ−1), AA
lb(K2,ŝ,P2,ŝ−1), A

rhs
lb (K2,ŝ,P2,ŝ−1)}.

We will then rule out each of the cases individually. Suppose first that the price for

an American option with strike K2,ŝ is given by a2,ŝ = Alf (K2,ŝ,P2,ŝ−1) and note that
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the stopping condition in line 5 of Algorithm 3 is given by

cc(E;K1,q−1,K1,q;P1,p) ≥ cc(A,An;K1,s̃,K1,q;P1,p).

Note further that

cc(A,An;K1,s̃,K1,q;P1,p) = cc(Aub;K2,s̃,K2,q;P
∗
2 )

where

Aub(K,P∗
2 ) =

an1,q − a2,s̃

K1,q −K2,s̃
(K −K2,s̃) + a2,s̃

for K ∈ [K2,s̃,K2,q]. Moreover, we obtain from convexity of E(·,P∗
0 ) that

cc(E;K2,ŝ−1,K2,ŝ;P2,ŝ−1) ≥ cc(E;K1,q−1,K1,q;P1,p),

as K1,q−1,K1,q ∈ KE(P∗
0 ) and either K2,ŝ−1,K2,ŝ ∈ KE(P∗

0 ) or K2,ŝ−1 = K2,s̃ in

which case e2,ŝ−1 = Eub(K2,ŝ−1,P
∗
0 ). Combined with the assumption that a2,ŝ =

Alf (K2,ŝ,P2,ŝ−1) these inequalities yield

cc(A;K2,ŝ−1,K2,ŝ;P2,ŝ−1) = cc(E;K2,ŝ−1,K2,ŝ;P2,ŝ−1)

≥ cc(E;K1,q−1,K1,q;P1,p)

≥ cc(A,An;K1,s̃,K1,q;P1,p)

= cc(Aub;K2,s̃,K2,q;P
∗
2 )

which implies that Alf (K2,ŝ,P2,ŝ−1) ≤ Aub(K2,ŝ,P
∗
2 ), thereby contradicting the as-

sumption that a2,ŝ > Aub(K2,ŝ,P
∗
2 ).

Suppose now that a2,ŝ = Arhs
lb (K2,ŝ,P2,ŝ−1), where the right hand-side lower bound

is given by
âu+1 − an1,q

KA
u+1 −K1,q

(K2,ŝ −KA
u+1) + âu+1.

We can then deduce from a2,ŝ > Aub(K2,ŝ,P
∗
2 ) that an1,q > Aub(K1,q,P

∗
0 ). According

to Proposition 3.10.35 we further know that a1,q > an1,q and thus a1,q > Aub(K1,q,P
∗
0 )

has to hold. This contradicts the assumption that P1,p−1 is a K1,p−1-admissible P∗
0 -

extension as K1,q ≤ K1,p−1 and thus we can conclude that

Arhs
lb (K2,ŝ,P2,ŝ−1) ≤ Aub(K2,ŝ,P2,ŝ−1)

has to hold.

Let us assume next that a2,ŝ = AA,l
lb (K2,ŝ,P2,ŝ−1). In this case there has to exist a
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strike KE
j e−rT ∈ (K2,w,K

A
u ) with KE

j ∈ KE(P∗
0 ) such that

a2,ŝ =
âu − aj

KA
u −KE

j e−rT
(K2,ŝ −KA

u ) + âu

>
an1,q − âu

K1,q −KA
u

(K2,ŝ −KA
u ) + âu

= Aub(K2,ŝ,P
∗
2 ).

It follows that
âu − aj

KA
u −KE

j e−rT
(K1,q −KA

u ) + âu > an1,q.

Then again, this would have prompted the algorithm to stop in K1,q due to the existence

of an arbitrage. Hence, a2,ŝ = AA,l
lb (K2,ŝ,P2,ŝ−1) cannot hold either.

The only possibility left is that the price for American options with strike K2,ŝ

is given by a2,ŝ = AA,r
lb (K2,ŝ,P2,ŝ−1). Then there has to exist a strike KE

j e−rT ∈

(K2,q,K
A
u+1) with KE

j ∈ KE(P∗
0 ) such that

Aub(K2,ŝ,P
∗
2 ) <

aj − an1,q

KE
j e−rT −K1,q

(K2,ŝ −KE
j e−rT ) + aj.

It follows that

aj <
an1,q − âu

K1,q −KA
u

(KE
j e−rT −KA

u ) + âu

holds. Taking into account that a1,q > an1,q according to Proposition 3.10.35 we fur-

thermore obtain that

aj <
a1,q − âu

K1,q −KA
u

(KE
j e−rT −KA

u ) + âu. (3.41)

In contrast we know from Proposition 3.10.33 that a1,s̃−1, a1,q−1 and a1,q are co-linear.

Since P1,p−1 is a K1,p−1-admissible P∗
0 -extension we can further deduce that a1,s̃−1 ≥

AA,r
lb (K1,s̃−1,P

∗
1 ). This readily implies that

aj ≥
a1,q − âu

K1,q −KA
u

(KE
j e−rT −KA

u ) + âu

and thus contradicts (3.41). Hence, we have shown that the price for American options

with strike K2,s ∈ [KA
u ,K2,q) ∩KE(P∗

0 ) has to be given by a2,s = Aub(K2,s,P
∗
2 ).

We are therefore only left to argue that the prices for options with strikes in

[K2,q,K2,p] the algorithm computes from P∗
2 coincide with the revised prices. To this

end we will show that depending on the type of strike the price is computed to be

either Alf (K2,s,P2,s−1) or Elf (K2,s,P2,s−1). As the prices for both American and Eu-
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ropean options with strike K2,q coincide with the revised prices it then follows from the

Legendre-Fenchel condition that a2,s = an1,s for K2,s ∈ [K2,q,K2,p]∩ (KE(P∗
0 )\KA(P∗

2 ))

and e2,s = en1,s for K2,s ∈ [K2,q,K2,p] ∩ (KA(P∗
2 )\KE(P∗

0 )).

To see that the prices coincide we will use induction. In the base step we con-

sider the price for non-traded options with the strike K2,q+1. Suppose first that

K2,q+1 ∈ KE(P∗
0 )\KA(P∗

2 ) and let us assume for contradiction that the price for Amer-

ican options with strike K2,q+1 exceeds Alf (K2,q+1,P2,q). We can then immediately

rule out that a2,q+1 is given by Arhs
lb (K2,q+1,P2,q) or AA,r

lb (K2,q+1,P2,q) as Proposi-

tion 3.10.30 guarantees that (K2,q,∞) ∩Kaux(P∗
2 ) = ∅ and we know that

an1,q+1 ≥ max{Arhs
lb (K1,q+1,P

∗
0 ), AA,r

lb (K1,q+1,P
∗
0 )}.

Consider next the case where a2,q+1 = Alhs
lb (K2,q+1,P2,q). We must then have that

cc(Alhs
lb ;K2,q,K2,q+1;P2,q) = cc(A;K2,s̃,K2,q+1;P2,q).

Moreover, we know that

cc(A;K2,s̃,K2,q;P2,q) = cc(A,An;K1,s̃,K1,q;P1,p).

Taking into account that

cc(Alf ;K2,q,K2,q+1;P2,q) = cc(An;K1,q,K1,q+1;Prev
1 )

and that K1,q,K1,q+1 ∈ KE(P∗
0 ), we can deduce that

cc(A,An;K1,s̃,K1,q+1;P1,p) = cc(A;K2,s̃,K2,q;P2,q)

= cc(Alhs
lb ;K2,q,K2,q+1;P2,q)

< cc(An;K1,q,K1,q+1;P
rev
1 )

= cc(En;K1,q,K1,q+1;P
rev
1 )

= cc(E;K1,q ,K1,q+1;P1,p).

We can thus conclude from the stopping condition in line 5 of Algorithm 3 that the

algorithm would have stopped already at the strike K1,q+1 instead of K1,q. As this is

not the case we must have Alf (K2,q+1,P2,q) ≥ Alhs
lb (K2,q+1,P2,q).

Let us assume last that a2,q+1 = AA,l
lb (K2,q+1,P2,q) where

AA,l
lb (K2,q+1,P2,q) > Alf (K2,q+1,P2,q).
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Then there has to exist a strike KE
j e−rT ∈ (KA

u ,K2,q) with KE
j ∈ KE(P∗

0 ) such that

Alf (K2,q+1,P2,q) <
an1,q − aj

K1,q −KE
j e−rT

(K2,q+1 −K2,q) + an1,q

We will now show that such a strike cannot exist. According to Proposition 3.10.33 we

know that the prices a1,s̃−1, âu and a1,q are co-linear. As the options with strike K1,l

were priced by (3.23) it follows that a1,s̃−1 ≥ AA,r
lb (K1,s̃−1,P

∗
1 ) and thus

aj ≥
âu − a1,s̃−1

KA
u −K1,s̃−1

(KE
j e−rT −KA

u ) + âu.

Taking into account that a2,s̃−1 > a1,s̃−1 we readily obtain that

aj >
âu − a2,s̃−1

KA
u −K2,s̃−1

(KE
j e−rT −KA

u ) + âu.

and thus AA,l
lb (K2,q+1,P2,q) < Alhs

lb (K2,q+1,P2,q) has to hold. We argued, however, al-

ready that Alhs
lb (K2,q+1,P2,q) < Alf (K2,q+1,P2,q) which implies that AA,l

lb (K2,q+1,P2,q) <

Alf (K2,q+1,P2,q), thereby yielding a contradiction. Hence, we have shown that the price

for American options with strike K2,q+1 has to be given by a2,q+1 = Alf (K2,q+1,P2,q).

Suppose now that K2,q+1 ∈ KA(P∗
2 )\KE(P∗

0 ) and that the price for European op-

tions with strike K2,q+1 is given by e2,q+1 = Eub(K2,q+1,P2,q) where Eub(K2,q+1,P2,q) <

Elf (K2,q+1,P2,q). If we assume that the strike KE
j = min{KE

v ∈ KE(P∗
0 ) : KE

v >

K2,q+1} corresponds to K2,q+n for n > 1 we can deduce that

cc(E;K2,q ,K2,q+n;P2,q) = cc(E;K2,q ,K2,q+1;P2,q)

> cc(En;K1,q,K1,q+1;P
rev
1 )

Then again, as K2,q,K2,q+n ∈ KE(P∗
0 ) this would imply that en1,q+1 > Eub(K1,q+1,P

∗
0 )

has to hold which cannot be the case as this would have prompted Algorithm 3 to stop

at the strike K1,q+1 due to the existence of an arbitrage. It follows that the price for

European options with strike K2,q+1 has to be given by e2,q+1 = Elf (K2,q+1,P2,q).

In the inductive step we assume that the price functions A(·,P2,p) and E(·,P2,p) sat-

isfy the Legendre-Fenchel condition with equality on any sub-interval of [K2,q,K2,ŝ−1]

for K2,ŝ ≤ K2,p. To argue that the Legendre-Fenchel condition then also has to hold

with equality on [K2,ŝ−1,K2,ŝ] we consider the cases where K2,ŝ ∈ KE(P∗
0 )\KA(P∗

2 )

and K2,ŝ ∈ KA(P∗
2 )\KE(P∗

0 ) separately.

In the first case we assume again that a2,ŝ > Alf (K2,ŝ,P2,ŝ−1). Analogously to the

base step we can rule out again that

a2,ŝ = max{Arhs
lb (K2,ŝ,P

∗
0 ), AA,r

lb (K2,ŝ,P
∗
0 )}.
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We thus continue by assuming that the algorithm determined the price for American

options with strike K2,ŝ to be a2,ŝ = Alhs
lb (K2,ŝ,P2,ŝ−1) where

Alhs
lb (K2,ŝ,P2,ŝ−1) > Alf (K2,ŝ,P2,ŝ−1).

This, however, cannot be the case as Corollary 3.10.36 shows that the revised price

functions are convex.

Hence, we are only left with the case where a2,ŝ = AA,l
lb (K2,ŝ,P2,ŝ−1). To see that

this case can be excluded from consideration as well we have to distinguish between the

two situations where either K2,ŝ ∈ (K2,q,K
A
u+1) or K2,ŝ ≥ KA

u+1. In the first case the

argument from the base step also guarantees that AA,l
lb (K2,ŝ,P2,ŝ−1) < Alf (K2,ŝ,P2,ŝ−1)

as the American price function is convex. In the second case the left hand-side lower

bound is given by AA,l
lb (K2,ŝ,P

∗
0 ). Since an1,ŝ ≥ AA,l

lb (K2,ŝ,P
∗
0 ) this case can be ruled out

as well.

Let us consider now the case where K2,ŝ ∈ KA(P∗
2 )\KE(P∗

0 ) and assume for con-

tradiction that the price for European options with strike K2,ŝ is given by e2,ŝ =

Eub(K2,ŝ,P2,ŝ−1) where Eub(K2,ŝ,P2,ŝ−1) < Elf (K2,ŝ,P2,ŝ−1). Then again, we know

from Corollary 3.10.36 that the revised price functions are convex which contradicts

Eub(K2,ŝ,P2,ŝ−1) < Elf (K2,ŝ,P2,ŝ−1).

We have therefore shown that the price functions constructed by the algorithm from

the initial set of prices P∗
2 are given by (3.38) and (3.39) if we disregard any possible

violations of the upper bound.

Before we can argue that the algorithm using the initial price set P∗
2 computes a

Kvc
1 -admissible P∗

0 -extension, we need to analyse the situation in which a violation of

the upper bound occurs in more detail.

Proposition 3.7.10. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Algo-

rithm 3 computes revised prices for non-traded options with strikes K1,s ∈ [K1,q,K1,p]∩

K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩KE(P∗

0 ) it stops and defines the new initial

set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,q,K1,q); (P∗

0 )E).

Using the new initial set P∗
2 Algorithm 2 computes the K2,s−1-admissible P∗

0 -extension

P2,s−1. If the algorithm stops at the strike K2,s ∈ [0,Kvc
1 ] ∩ K(P∗

2 ) due to a violation

of a2,s ≥ A(K2,se
−rT ,P2,s), then K2,se

−rT > K2,r−1 for

K2,r = min{K2,l ∈ (K2,w,K
A
u ) ∩K(P∗

2 ) : Arhs
lb (K2,l,P

∗
2 ) > a1,l}
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and

K2,w = max{K ∈ KA(P∗
2 ) : K < KA

u }.

Proof. Suppose for contradiction that K2,se
−rT ∈ (K2,q̃,K2,q̃+1) where K2,q̃,K2,q̃+1 ∈

[0,K2,r−1] ∩ K(P∗
2 ). According to Proposition 3.7.8 we know that the price functions

remain unchanged up to K2,r−1 between the two iterations of the algorithm if no viola-

tion of the upper bound occurs. In particular, this means that A(K,P2,s) = A(K,P1,p)

for any strike K ≤ min{K2,r−1,K2,s}. Taking Proposition 3.10.35 into account we

can conclude that the European price function is not decreased on [0,K2,s] and thus

A(K2,se
−rT ,P2,s) ≥ A(K1,se

−rT ,P1,p) has to hold. We then have to distinguish be-

tween the two cases where either K2,s < Kvc
1 or K2,s = Kvc

1 . In the first case we can

use that P1,p−1 is a K1,p−1-admissible P∗
0 -extension to obtain that

A(K2,se
−rT ,P2,s) ≥ A(K1,se

−rT ,P1,p−1)

≥ A(K1,se
−rT ,P1,s−1)

= A(K2,se
−rT ,P2,s)

and thus a violation of the upper bound can be ruled out. In the second case we can

deduce from the fact that P2,s−1 is a K2,s−1-admissible P∗
0 -extension that a2,s−1 ≥

A(K2,s−1e
−rT ,P2,s). According to Proposition 3.7.8 the Legendre-Fenchel condition

has to hold with equality on [K2,s−1,K2,s]. Proposition 3.10.7 then readily implies

that a2,s ≥ A(K2,se
−rT ,P2,s). We can thus conclude that K2,se

−rT > K2,r−1 has to

hold.

In contrast, a violation of the upper bound at a strike K2,se
−rT ∈ (K2,r−1,K2,r) is

possible as the price for American options with strike K2,r, a2,r, is increased between

the previous and the current iteration of the algorithm and thus the linear interpolation

between the prices a2,r−1 and a2,r may exceed the upper bound. We will thus show that

if a violation of the upper bound occurs at a strike K2,se
−rT ∈ [K2,r−1,K2,r], then there

has to exist a discounted European strike KE
j e−rT ∈ [K2,r−1,K2,r] for KE

j ∈ KE(P∗
0 ).

Recall further that we denote the strike at which Algorithm 3 introduces an auxiliary

price to the initial set P∗
2 by Kaux

1 .

Proposition 3.7.11. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Algo-

rithm 3 computes revised prices for non-traded options with strikes K1,s ∈ [K1,q,K1,p]∩

K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩KE(P∗

0 ) it stops and defines the new initial
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set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,q,K1,q); (P∗

0 )E).

Using the initial set P∗
2 Algorithm 2 computes the K2,s−1-admissible P∗

0 -extension

P2,s−1. If the algorithm stops at the strike K2,s ∈ [0,Kvc
1 ]∩K(P∗

2 ) due to a violation of

a2,s ≥ A(K2,se
−rT ,P2,s), where K2,se

−rT ∈ [K2,r−1,K2,r], then we must have for KE
j′ =

min{KE
l ∈ KE(P∗

0 ) : KE
l ≥ K2,s} that KE

j′ ≤ Kaux
1 and KE

j′ e
−rT ∈ (K2,r−1,K2,r).

Proof. We begin by showing that KE
j′ e

−rT ≤ Kaux
1 has to hold. To this end, we

assume for contradiction that K2,s ∈ (Kaux
1 ,Kvc

1 ] ∩ K(P∗
2 ). According to Proposi-

tion 3.7.8, we thus have that the Legendre-Fenchel condition holds with equality on

[K2,s−1,K2,s] and Proposition 3.10.7 then yields a contradiction to the assumption that

a2,s < A(K2,se
−rT ,P2,s). Hence, we can conclude that K2,s ≤ Kaux

1 and it thus follows

from Kaux
1 ∈ KE(P∗

0 ) that KE
j′ ≤ Kaux

1 as well.

To be able to apply Proposition 3.10.17 which shows that KE
j′ e

−rT < KA
u , we need to

argue that K2,r−1 /∈ Kaux
1 (P∗

2 ) and that [K2,s,K
E
j′ ) ∩Kaux(P∗

2 ) = ∅. Since Kaux
1 (P∗

2 ) =

{Kvc
1 } and K2,r−1 < Kaux

1 < Kvc
1 we readily obtain that K2,r−1 /∈ Kaux

1 (P∗
2 ). To see

that [K2,s,K
E
j′ ) ∩ Kaux(P∗

2 ) = ∅ holds we note that according to Proposition 3.10.30

[KA
u ,K

aux
1 ) ∩ Kaux(P∗

2 ) = ∅. Combining the definition of K2,w with K2,w < K2,s it

follows that [K2,s,K
E
j′ )∩Kaux(P∗

2 ) = ∅ and thus we can conclude that KE
j′ e

−rT < KA
u .

Finally, we will rule out that KE
j′ e

−rT ∈ [K2,r,K
A
u ) which then guarantees the

existence of a discounted European strike KE
j′ e

−rT ∈ (K2,r−1,K2,r). Note first that

since the algorithm stopped in the strike Kaux
1 due to a1,q = Alhs

lb (K1,q,P1,p), it follows

that an1,q ≥ AA,l
lb (K1,q,P

∗
0 ). This, however, readily implies that

aj′ ≥
an1,q − âu

K1,q −KA
u

(KE
j′ e

−rT −KA
u ) + âu.

In addition, we must have

a2,s − a2,s−1

K2,se−rT −K2,s−1e−rT
(K −K2,se

−rT ) + a2,s <
an1,q − âu

K1,q −KA
u

(K −KA
u ) + âu

for K ≥ K2,r as a2,s−1 ≥ A(K2,s−1e
−rT ,P2,s) but a2,s < A(K2,se

−rT ,P2,s). Since the

prices a2,s−1, a2,s and aj′ are co-linear according to Proposition 3.10.14 this implies

that KE
j′ e

−rT < K2,r. Hence, we have shown that KE
j′ e

−rT ∈ [K2,r−1,K2,r].

We will now argue that the price constraint (aj ,K
E
j e−rT ) determined by Algo-

rithm 4 to correct a violation of the upper bound in K1,se
−rT ∈ [Kr−1(P

∗
2 ),Kr(P

∗
2 )]

will lie within its no-arbitrage bounds.

Proposition 3.7.12. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.
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Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Algo-

rithm 3 computes revised prices for non-traded options with strikes K1,s ∈ [K1,q,K1,p]∩

K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩KE(P∗

0 ) it stops and defines the new initial

set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,q,K1,q); (P∗

0 )E). If Algorithm 2 using the ini-

tial set of prices P∗
2 introduces the auxiliary price constraint (aj ,K

E
j e−rT ) to correct a

violation of the upper bound at strike K2,se
−rT ∈ [Kr−1(P∗

2 ),Kr(P
∗
2 )] for

Kr(P
∗
2 ) = min{K2,s ∈ (K2,w,K

A
u ) ∩K(P∗

2 ) : Arhs
lb (K2,s,P

∗
2 ) > a1,s}

and

Kw(P∗
2 ) = max{K ∈ KA(P∗

2 ) : K < KA
u },

then (aj ,K
E
j e−rT ) lies within the no-arbitrage bounds given by (3.12) and (3.23).

Proof. To see that this is the case we use induction on the number of auxiliary price

constraints introduced in this iteration between Kr−1(P
∗
2 ) and Kr(P

∗
2 ). In the base

step we consider the case where (aj ,K
E
j e−rT ) is the first auxiliary price constraint

introduced between Kr−1(P∗
2 ) and Kr(P

∗
2 ). According to Proposition 3.7.10 we can

further rule out a violation of the upper bound on [0,Kr−1(P∗
2 )]. Since the price

functions are given by (3.38) and (3.39) prior to a violation of the upper bound we can

deduce that they must be convex up to K2,s. We can therefore rule out a violation of

convexity in any strike prior to K2,s. It follows that (aj,K
E
j e−rT ) has to be the first

auxiliary price constraint added in this iteration.

Let us show now that the auxiliary price constraint (aj ,K
E
j e−rT ) satisfies aj <

Aub(K
E
j e−rT ,P2,s). To do so, we argue first that aj′ < Aub(K

E
j′ e

−rT ,P2,s) for KE
j′ =

min{KE
l ∈ KE(P∗

0 ) : KE
l ≥ K2,s}. According to Proposition 3.7.11 KE

j′ ≤ Kaux
1

has to hold. Combined with the fact that [KA
u ,K

aux
1 ) ∩ Kaux(P∗

2 ) = ∅ according to

Proposition 3.10.30 and K2,s > K2,w for K2,w = max{K ∈ KA(P∗
2 ) : K < KA

u } we

readily obtain that [K2,s,K
E
j′ ] ∩ Kaux(P∗

2 ) = ∅ has to hold. This in turn allows us to

apply Proposition 3.10.14 guaranteeing that the prices a2,s−1, a2,s and aj′ are co-linear.

We can further argue that a2,r−1 ≤ A(K2,r−1,P2,s) has to hold. Note first that the price

for American options with strike K2,r−1 remains unchanged between the two iterations

of the algorithm according to Proposition 3.7.8. In addition, Proposition 3.7.8 shows

that the European price function is not decreased on [0,K2,s] which in turn means

that the upper bound is not decreased on [0,K2,se
−rT ]. We then obtain a2,r−1 =

a1,r−1 ≤ A(K1,r−1,P1,p) ≤ A(K2,r−1,P2,s). Recall also that we assumed that the first

violation of the upper bound occurs at K2,se
−rT and thus a2,s−1 ≥ A(K2,s−1e

−rT ,P2,s)

has to hold. We can thus conclude that A(K,P2,s) ≤ A(K,P2,s) for any strike K ≤

max{K2,r−1,K2,s−1e
−rT }. Combining a2,s < A(K2,se

−rT ,P2,s) with the fact that the

prices a2,s−1, a2,s and aj′ are co-linear we readily obtain that aj′ < A(KE
j′ e

−rT ,P2,s).
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Since the price functions are obtained by interpolating linearly between the given option

prices we must therefore have aj′ < Aub(K
E
j′ e

−rT ,P2,s).

Let us assume now that j > j′, then this means that

aj − a2,r−1

KE
j e−rT −K2,r−1

≤
aj′ − a2,r−1

KE
j′ e

−rT −K2,s
.

Having argued already that aj′ < Aub(K
E
j′ e

−rT ,P2,s), we can now conclude that aj <

Aub(K
E
j e−rT ,P2,s) to hold as well.

We are left to argue that the auxiliary price constraint (aj ,K
E
j e−rT ) satisfies

aj ≥ max{Alb(K
E
j e−rT ,P2,s), A

A
lb(K

E
j e−rT ,P2,s), Alf (KE

j e−rT ,P2,s)}.

Recall that the prices for American options with strikes up to K2,r−1 remain unchanged.

Hence, the left hand-side lower bound for American options with strikes in (K2,r−1,K2,r]

coincides with the left hand-side lower bound from the previous iteration. As no viola-

tion of the upper bound occurred on this interval in the previous iteration, we are guar-

anteed that aj ≥ Alhs
lb (KE

j e−rT ,P2,s). Further, we know that aj ≥ Arhs
lb (KE

j e−rT ,P2,s)

holds as an1,q ≥ AA,l
lb (K1,q,P

∗
0 ).

Suppose now for the moment that the auxiliary price constraint violates aj ≥

AA
lb(K

E
j e−rT ,P2,s). According to (viii) of the Standing Assumptions âu ≤ A(KA

u ,P
∗
0 )

has to hold. Combined with the convexity of the upper bound A(·,P∗
0 ) we can therefore

rule out aj < AA,r
lb (KE

j e−rT ,P2,s). Hence, we must have aj < AA,l
lb (KE

j e−rT ,P2,s).

Suppose first that K2,w corresponds to KA
u−1, then we can argue again using (viii) of

the Standing Assumptions that aj ≥ AA,l
lb (KE

j e−rT ,P2,s) has to hold. If we assume

that K2,w ∈ Kaux
2 (P∗

2 ) where K2,w corresponds to KE
v e−rT for KE

v ∈ KE(P∗
0 ), then

AA,l
lb (KE

j e−rT ,P2,s) =
av − av−1

KE
v e−rT −KE

v−1e
−rT

(KE
j e−rT −KE

v e−rT ) + av.

In this case aj ≥ AA,l
lb (KE

j e−rT ,P2,s) follows immediately from the convexity of A(·,P∗
0 ).

Finally, we consider the case where a violation of aj ≥ Alf (KE
j e−rT ,P2,s) occurs.

As we mentioned before, we know that the price for American options with strike

Kr−1(P
∗
2 ) remains unchanged between the two iterations of the algorithm according

to Proposition 3.7.8. From P1,p−1 being a K1,p−1-admissible P∗
0 -extension combined

with the fact that K2,s ≤ KE
j ≤ Kaux

1 ≤ K1,p−1 we know that aj ≥ A(KE
j e−rT ,P1,p−1)

has to hold. Moreover, the price for American options with strike K2,r was computed

such that the Legendre-Fenchel condition holds. Taking into account that the prices

for European options in the interval [K2,r−1,K2,r] remain unchanged it follows that

aj ≥ Alf (KE
j e−rT ,P2,s) has to hold.

In the inductive step, we use the following induction hypothesis. We assume that
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any auxiliary price constraint already introduced to correct a violation of the upper

bound on [Kr−1(P∗
2 ),Kr(P

∗
2 )] lies within its respective no-arbitrage bounds and deduce

that the new auxiliary price constraint will do so as well. Note further that the last

constraint introduced has to be (aj−1,K
E
j−1e

−rT ) as we know that the upper bound

A(·,P∗
0 ) is convex. In addition, we know that A(KE

j−1e
−rT ,P2,s) = aj−1 has to hold.

We begin again by arguing that the new auxiliary constraint (aj ,K
E
j e−rT ) satisfies

aj < Aub(K
E
j e−rT ,P2,s). To see that this is the case we apply the argument used in

the base step to show that the prices aj−1, a2,s and aj are co-linear. Combined with

the fact that A(KE
j−1e

−rT ,P2,s) = aj−1 we readily obtain aj < Aub(K
E
j e−rT ,P2,s).

Finally, we will argue that

aj ≥ max{Alb(K
E
j e−rT ,P2,s), A

A
lb(K

E
j e−rT ,P2,s), Alf (KE

j e−rT ,P2,s)}

has to hold. Note first that having introduced auxiliary constraints on the inter-

val [Kr−1(P
∗
2 ),KE

j e−rT ) has no effect on the lower bounds Arhs
lb (KE

j e−rT ,P2,s) or

AA,r
lb (KE

j e−rT ,P2,s). Hence, the argument given in the base step applies here as well.

Further it follows immediately from (3.28) that aj ≥ Alhs
lb (KE

j e−rT ,P2,s) holds. Taking

into account that K2,s−1e
−rT ∈ Kaux

2 (P∗
2 ), we readily obtain that AA,l

lb (KE
j e−rT ,P2,s) ≤

Alhs
lb (KE

j e−rT ,P2,s) and thus aj ≥ AA,l
lb (KE

j e−rT ,P2,s) has to hold as well.

We are thus left to argue that aj ≥ Alf (KE
j e−rT ,P2,s) has to hold. To see that

this is the case let us begin by pointing out that according to the induction hy-

pothesis KE
j−1e

−rT ∈ (Kr−1(P∗
2 ),Kr(P

∗
2 )) and aj−1 ≥ Alf (KE

j−1e
−rT ,P2,s). More-

over, we will set K̃ = max{K ∈ Kaux
2 (P∗

2 ) : K < KE
j−1e

−rT }. We can then define

K2,s̃ = max{Kr−1(P∗
2 ), K̃} to conclude that

cc(Alhs
lb ;KE

j−1e
−rT ,KE

j e−rT ;P2,s) = cc(A;K2,s̃,K
E
j−1e

−rT ;P2,s) (3.42)

≤ cc(Alf ;K2,s̃,K
E
j−1e

−rT ;P2,s̃)

= cc(E;K2,s̃,K
E
j−1e

−rT ;P2,s̃)

= cc(E;Kr−1(P∗
2 ),Kr(P

∗
2 );P2,r−1)

= cc(Alf ;KE
j−1e

−rT ,KE
j e−rT ;P2,s)

Since the strikes at which auxiliary constraints are introduced are determined using

(3.28), it follows that aj ≥ Alhs
lb (KE

j e−rT ,P2,s) has to hold. Combined with the inequal-

ity in (3.42) we can thus deduce that aj ≥ Alf (KE
j e−rT ,P2,s). We can therefore con-

clude that the new auxiliary price constraint (aj,K
E
j e−rT ) lies within the no-arbitrage

bounds given by (3.12) and (3.23).

Next we will discuss how the price functions will look like for strikes in [Kr(P
∗
2 ),Kvc

1 ]

when the algorithm uses the initial price set P∗
2 and only considers possible violations of

the upper bound on [0,Kr(P
∗
2 )] while disregarding any such violations on [Kr(P

∗
2 ),Kvc

1 ].
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Proposition 3.7.13. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Algo-

rithm 3 computes revised prices for non-traded options with strikes K1,s ∈ [K1,q,K1,p]∩

K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩KE(P∗

0 ) it stops and defines the new initial

set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,q,K1,q); (P∗

0 )E). Taking into account possible

violations of the upper bound A on [0,Kr(P∗
2 )], but disregarding any such violations on

[Kr(P
∗
2 ),Kvc

1 ] the American and European price functions, computed from the initial

set P∗
2 , for strikes in [K2,r,K

vc
1 ] are given by

a2,s =



















Arhs
lb (K2,s,P

∗
2 ), if K2,s ∈ [Kr(P

∗
2 ),KA

u )

Aub(K2,s,P
∗
2 ), if K2,s ∈ [KA

u ,K
aux
1 )

an1,s, if K2,s ∈ [Kaux
1 ,Kvc

1 ]

(3.43)

and

e2,s =







e1,s, if K2,s ∈ [K2,r,K
aux
1 ]

en1,s, if K2,s ∈ [Kaux
1 ,Kvc

1 ].
(3.44)

Proof. If we assume that the first violation of the upper bound occurred at the strike

K2,s1e
−rT ∈ [Kr−1(P

∗
2 ),Kr(P

∗
2 )], then K2,s1 ≥ Kr(P

∗
2 ) has to hold. Hence, the price

for American options with strike Kr(P
∗
2 ) was already computed and is thus given by

Arhs
lb (Kr(P

∗
2 ),P∗

2 ) according to Proposition 3.7.8. We note further that the introduction

of auxiliary constraints on the prices of American put options has no effect on the prices

of European options according to (3.30). It follows that the prices for European options

with strikes less than or equal to Kr(P
∗
2 ) remain unchanged between the two iterations.

We can now discuss the effect that the introduction of these constraints has on the

prices of American options with strike K > Kr(P
∗
2 ). Note first that the right hand-side

lower bounds Arhs
lb (K,P2,s) and AA,r

lb (K,P2,s) remain unchanged. Similarly, the left

hand-side lower bound AA,l
lb (K,P2,s) is unaffected by the new prices.

Let us next investigate the possible effect the increased left hand-side lower bound

Alhs
lb (K,P2,s) has on the prices of American options with strike K ∈ [Kr(P

∗
2 ),KA

u ].

According to Proposition 3.7.12 we know that any of the auxiliary price constraints

introduced in this iteration of the algorithm lies within its respective no-arbitrage

bounds. We can therefore deduce that

aj ≥ max{Arhs
lb (KE

j e−rT ,P2,s), A
A,r
lb (KE

j e−rT ,P2,s)}
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for any such constraint (aj,K
E
j e−rT ) has to hold. Combined with the fact that the

price for American options with strike Kr(P
∗
2 ) is given by Arhs

lb (Kr(P
∗
2 ),P2,s), we obtain

that Alhs
lb (K,P2,s) ≤ Arhs

lb (K,P2,s) and thus the increased left hand-side lower bound

does not effect the prices on [Kr(P
∗
2 ),KA

u ].

We are left to argue that Arhs
lb (K,P2,s) ≥ Alf (K,P2,s) holds for any strike K ∈

[Kr(P
∗
2 ),KA

u ]. Then again, we know that the Legendre-Fenchel condition has to hold

with strict inequality on [Kr(P
∗
2 ),KA

u ] and therefore we can rule out any change in the

prices due to the Legendre-Fenchel condition.

As the prices for American options remain unchanged on [Kr(P
∗
2 ),KA

u ] it follows

that the prices for European options with strike KA
u are unaffected by the introduction

of the auxiliary price constraints on [Kr−1(P
∗
2 ),Kr(P

∗
2 )] as well. Moreover, none of the

no-arbitrage bounds will contain an auxiliary price constraint and thus we have shown

that the price functions must be given by (3.43) and (3.44) whenever we disregard any

possible violation of the upper bound on [Kr(P
∗
2 ),Kvc

1 ].

This allows us to argue in the following result that a violation of the upper bound

can be ruled out on [Kr(P
∗
2 ),Kvc

1 ].

Proposition 3.7.14. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convex-

ity. Algorithm 3 computes revised prices for non-traded options with strikes K1,s ∈

[K1,q,K1,p] ∩ K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩ KE(P∗

0 ) it stops and defines

the new initial set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,q,K1,q); (P∗

0 )E).

If the algorithm is restarted using the initial set P∗
2 , then a violation of the upper

bound A on [Kr(P
∗
2 ),Kvc

1 ] can be ruled out.

Proof. To see this we consider the scenario where the algorithm constructed P2,s−1 a

K2,s−1-admissible P∗
0 -extension from the initial set P∗

2 and stops at the strike K2,s ∈

[0,Kvc
1 ] ∩ K(P∗

2 ) due to a violation of a2,s ≥ A(K2,se
−rT ,P2,s), where K2,se

−rT ∈

[Kr(P
∗
2 ),Kvc

1 ].

We then have to distinguish between the two cases where either K2,s ≤ Kaux
1 or

K2,s > Kaux
1 . Suppose first that K2,s ≤ Kaux

1 and let us moreover assume for the

moment that K2,se
−rT ∈ [K2,q̃,K2,q̃+1) for K2,q̃,K2,q̃+1 ∈ [Kr(P

∗
2 ),KA

u ]. We would

then like to apply Proposition 3.10.17 to argue that KE
j′ e

−rT < KA
u has to hold as well

for

KE
j′ = min{KE

l ∈ KE(P∗
0 ) : KE

l ≥ K2,s}.

To this end, we need to show that K2,q̃ /∈ Kaux
1 (P∗

2 ) and that [K2,s,K
E
j′ )∩K

aux(P∗
2 ) = ∅.

Since Kaux
1 (P∗

2 ) = {Kvc
1 } and K2,q̃ < Kaux

1 < Kvc
1 we readily obtain that K2,q̃ /∈
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Kaux
1 (P∗

2 ). To see that [K2,s,K
E
j′ ) ∩ Kaux(P∗

2 ) = ∅ holds we note that according to

Proposition 3.10.30 [KA
u ,K

aux
1 )∩Kaux(P∗

2 ) = ∅. Combining the definition of K2,w with

K2,w < K2,s it follows that [K2,s,K
E
j′ ) ∩ Kaux(P∗

2 ) = ∅ and thus we can conclude that

KE
j′ e

−rT < KA
u .

We can further deduce from the fact that P2,s−1 is a K2,s−1-admissible P∗
0 -extension

that a2,s−1 ≥ A(K2,s−1e
−rT ,P2,s) has to hold. Taking into account that the prices

a2,s−1, a2,s and aj′ are co-linear according to Proposition 3.10.14 we can conclude from

a2,s <
an1,q − âu

K1,q −KA
u

(K2,se
−rT −KA

u ) + âu

that

aj′ <
an1,q − âu

K1,q −KA
u

(KE
j′ e

−rT −KA
u ) + âu

has to hold as well. This, however, yields a contradiction to an1,q ≥ AA,l
lb (K1,q,P

∗
0 )

and it follows that we can rule out a violation of the upper bound for K2,se
−rT ∈

[Kr(P
∗
2 ),KA

u ).

In the second case where K2,se
−rT ∈ [KA

u ,K
aux
1 ) we use the fact that the European

price function is not decreased on [0,Kvc
1 ] between the two iterations of the algorithm

to deduce that A(K2,se
−rT ,P2,s) ≥ A(K2,se

−rT ,P1,p). In addition, we know that the

set of prices P1,p−1 is a K1,p−1-admissible P∗
0 -extension. Combined with the fact that

K2,s ≤ Kaux
1 ≤ K1,p−1 we obtain that A(K2,se

−rT ,P1,p) ≥ A(K2,se
−rT ,P1,p) holds.

Taking into account that an1,q < a1,q, we further conclude that A(K2,se
−rT ,P1,p) ≥

A(K2,se
−rT ,P2,s) has to hold and thus

A(K2,se
−rT ,P2,s) ≥ A(K2,se

−rT ,P1,p)

≥ A(K2,se
−rT ,P1,p)

≥ A(K2,se
−rT ,P2,s).

This allows us to rule out a violation of the upper bound at strike K2,se
−rT whenever

K2,s ≤ Kaux
1 .

We are left to rule out a violation of the upper bound for K2,s ∈ (Kaux
1 ,Kvc

1 ]∩K(P∗
2 ).

Since we assumed that the set P2,s−1 is a K2,s−1-admissible P∗
0 -extension we must have

a2,s−1 ≥ A(K2,s−1e
−rT ,P2,s).

According to Proposition 3.7.13 the Legendre-Fenchel condition has to hold with equal-

ity on [K2,s−1,K2,s] and thus Proposition 3.10.7 yields a contradiction to the assump-

tion that a2,s < A(K2,se
−rT ,P2,s). Hence, we have shown that a violation of the upper

bound can be ruled out on [Kr(P
∗
2 ),Kvc

1 ].
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Since we now know how the price functions will look like on [0,Kvc
1 ] after the

algorithm restarts using the initial set of prices P∗
2 we can show that the violation of

convexity has been corrected successfully.

Proposition 3.7.15. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convex-

ity. Algorithm 3 computes revised prices for non-traded options with strikes K1,s ∈

[K1,q,K1,p] ∩ K(P∗
1 ). At the strike K1,q ∈ (KA

u ,K
A
u+1) ∩ KE(P∗

0 ) it stops and defines

the new initial set of prices P∗
2 by P∗

2 = ((P∗
1 )A ∪ (an1,qK1,q); (P∗

0 )E).

Then the algorithm computes a Kvc
1 -admissible P∗

0 -extension from the new initial

set P∗
2 .

Proof. When the algorithm computes price functions from an initial set two different

types of violations may occur during the construction. On the one hand, the prices for

American options may exceed the upper bound A. On the other hand, the prices for

either American or European options may violate convexity.

According to Proposition 3.7.10 and Proposition 3.7.14 a violation of the upper

bound A is only possible on the interval [Kr−1(P∗
2 ),Kr(P

∗
2 )]. Proposition 3.7.12, how-

ever, guarantees that any such violation will be corrected successfully by Algorithm 4.

We are thus left to rule out a violation of convexity for both the American and

European price functions on [0,Kvc
1 ]. Let us consider first the European price function.

We know from Proposition 3.7.8 and Proposition 3.7.13 that the prices for European

options in strikes [0,Kaux
1 ]∩K(P∗

2 ) coincide with the prices in the previous iteration of

the algorithm. On [Kaux
1 ,Kvc

1 ] the European price function will be given by En(·,Prev
1 )

and thus the European price function has to be convex as argued in the proof of

Proposition 3.7.8.

In Proposition 3.7.8 we argued that the American price function will be given by

(3.38) if possible violations of the upper bound are ignored. It is furthermore shown that

this price function is convex up to Kp(P1,p). When Algorithm 4 introduces an auxiliary

price constraint to correct a violation of the upper bound on [Kr−1(P∗
2 ),Kr(P

∗
2 )] the

chosen price lies within its no-arbitrage bounds according to Proposition 3.7.12. As

we have shown in Proposition 3.7.13 that the introduction of these auxiliary price

constraints has no effect on the American price function outside of [Kr−1(P∗
2 ),Kr(P∗

2 )]

it follows that the American price function is convex up to Kp(P1,p). Hence, we can

conclude that the algorithm will construct a Kp(P1,p)-admissible P∗
0 -extension from

the initial set of prices P∗
2 .
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3.7.3 Violations under P∗
i , i ≥ 2

The major difference between an extended initial set of prices P∗
i , i ≥ 2, and P∗

1 is the

existence of auxiliary price constraints of type 1 that have to be accounted for during

the construction of the price functions using P∗
i . Subsequently, we will discuss the

results required to argue that the algorithm can be applied to the extended initial set

P∗
i . Moreover, we provide reasons why they should hold and highlight situations they

are required in. Note, however, that we are not able to give rigorous proofs here.

Before we start to discuss the situations in which the algorithm stops the con-

struction of the price functions let us point out some structural properties we will be

using

• Kaux
l < Kaux

k for l < k and Kaux
l ,Kaux

k ∈ Kaux
1 (P∗

i ).

• The Legendre-Fenchel condition holds with equality on [Kaux
i−1 ,K

vc
i−1] under P∗

i .

• If Kaux
i−1 ∈ (KA

u ,K
A
u+1), then max{K ∈ Kaux

2 (P∗
i−1)} ≤ KA

u .

Suppose now that the algorithm computed a Kvc
i−1 admissible P∗

0 -extension using

P∗
i . We then have to discuss the different situations in which the algorithm is forced

to stop the construction of the price functions in a strike strictly larger than Kvc
i−1.

Consider first the situation where a violation of the upper bound occurs. We could

then argue as follows:

• A violation of the upper bound can be ruled out on [Kvc
i−1,K

vc
i−1e

rT ].

This would allow us to conclude that a violation of the upper bound to the right

of Kvc
i−1 has no effect on the already computed prices up to Kvc

i−1.

Suppose that the algorithm stopped at the strike Ki,p ∈ [Kvc
i−1,K

vc
i−1e

rT ] and that

Ki,pe
−rT ∈ (Ki,q,Ki,q+1). If we assume that the strike Kvc

i−1 corresponds to Ki,s

and taking into account the convexity of the price functions we obtain

cc(A;Ki,q ,Ki,q+1;Pi,p) ≥ cc(A;Ki,s−1,Ki,s,;Pi,p)

= cc(E;Ki,s−1,Ki,s;Pi,p)

≥ cc(E;Ki,p−1,Ki,p;Pi,p)

= cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p).

• If [KA
j ,K

A
j+1]∩Kaux

1 (P∗
i ) 6= ∅ a violation of the upper bound on that interval can

be ruled out.
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This result could be used to generalise the propositions in Section 3.10.5.

We believe that this result holds as the auxiliary constraints of type 1 are in-

creasing and the algorithm stopped to the right of Kvc
i−1e

rT . We then only need

to consider the case where a violation of the upper bound occurs at a strike in

[Kaux
i−1 ,K

A
j+1]. We further know that the Legendre-Fenchel condition has to hold

with equality on [Kaux
i−1 ,K

A
j+1] which contradicts a violation of the upper bound

A on that interval.

We should then be able to apply the results in Section 3.10.5 to show that a viola-

tion of the upper bound can be corrected using Algorithm 4.

Suppose now that a violation of convexity occurs at the strike Ki,p ∈ K(P∗
i ). More-

over, we assume that Kaux
i−1 ∈ (KA

u ,K
A
u+1) and Kvc

i−1 ∈ (KA
v ,K

A
v+1) for v ≥ u. We would

then like to argue as follows:

• If Algorithm 3 introduces an auxiliary price constraint Kaux
i , then either Kaux

i ∈

(KA
u ,K

aux
i−1 ] or Kaux

i > Kv+2.

The Legendre-Fenchel condition has to hold with equality on [Kaux
i−1 ,K

A
v+1]. Hence

Algorithm 3 will not stop revising option prices prior to Kaux
i−1 if it did not stop

prior to KA
v+1. If we suppose that the algorithm stopped revising option prices

at a strike Ki,q ∈ (KA
v+1,K

A
v+2), then the price for American options with strike

Ki,q has to be given by ai,q = Alhs
lb (Ki,q,P

A
v+2). Since we know that the Legendre-

Fenchel condition holds with equality on [Kaux
i−1 ,K

A
v+1] it follows that it also has to

hold with equality on [KA
v+1,Ki,q] as Pi,p−1 is a Ki,p−1-admissible P∗

0 -extension.

We can thus rule out that the algorithm would have stopped at the strike Ki,q ∈

(KA
v+1,K

A
v+2).

• If Kaux
i−1 ∈ (KA

u ,K
A
u+1), then Kaux

l < KA
u for any Kaux

l ∈ Kaux
1 (P∗

i )\{Kaux
i−1 },

• If Kaux
i ∈ (KA

u ,K
aux
i−1 ], then [KA

u ,∞) ∩Kaux
2 (P∗

i ) = ∅.

We know that the Legendre-Fenchel condition holds with equality on [Kaux
i ,Kvc

i ].

Hence, a violation of the upper bound can be ruled out on that interval. In

addition, we can exclude a violation of the upper bound for a strike larger than

Kvc
i from consideration as the algorithm has never computed prices for non-traded

options there before.

• The revised prices satisfy ani,s < ai,s for Ki,s ∈ KE(P∗
i )\KA(P∗

i ).
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• If Kaux
i ∈ (KA

u ,K
aux
i−1 ] the right hand-side lower bound on the prices of American

options with strikes in (Ki,w,K
A
u ), where Ki,w = max{K ∈ K(P∗

i ) : K < KA
u }, is

increased between the iterations.

This follows from ani,q < ai,q.

We then reduced this situation to the situation in the previous iteration in which

a violation of convexity was corrected successfully.

• If Ki,q > KA
v+2 the situation is the same as under P∗

1 as there exists at least

one American interval between the new price constraint and any auxiliary price

constraint of type 1.

Despite the fact that we are not able to give rigorous proof we hope that the

arguments provided persuade the reader that these results are meaningful. In the

absence of concrete proofs we are, however, only able to state the following results as

conjectures.

Conjecture 3.7.16. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Assume fur-

ther that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 0.

Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-admissible

P∗
0 -extension Pi,p−1 for p ≥ 1.

Suppose further that the algorithm stops at the strike Ki,p ∈ K(P∗
i ) due to a violation

of ai,p ≥ A(Ki,pe
−rT ,Pi,p) where Ki,pe

−rT ∈ (Ki,q,Ki,q+1] for Ki,q,Ki,q+1 ∈ K(P∗
i ). If

we assume that Algorithm 4 extended the price set Pi,p to

Pi,p+1 = ((Pi,p)A ∪ (aj,K
E
j e−rT ); (Pi,p)E ∪ (Eub(K

E
j e−rT ,Pi,p),KE

j e−rT ))

in order to correct the violation and that Ki,s = KE
j , then Pi,s has to be a Ki,s-

admissible P∗
0 -extension.

Conjecture 3.7.17. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Assume fur-

ther that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 0.

Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-admissible

P∗
0 -extension Pi,p−1 for p ≥ 1.

The algorithm stops at the strike Ki,p ∈ K(P∗
i ) due to a violation of convex-

ity. Algorithm 3 computes revised prices for non-traded options with strikes Ki,s ∈

[Ki,q,Ki,p]∩K(P∗
i ). At the strike Ki,q ∈ (KA

u ,K
A
u+1)∩KE(P∗

0 ) it stops and defines the

new initial set of prices P∗
i+1 by P∗

i+1 = ((P∗
i )A ∪ (ani,qKi,q); (P∗

0 )E).
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Then the algorithm computes a Kvc
i -admissible P∗

0 -extension from the new initial

set P∗
i+1.

3.8 Convergence of the algorithm

In this section we first argue that the algorithm given in Section 3.5 terminates in

finitely many steps irrespective of its success in constructing admissible price functions.

Subsequently, we will finally be able to show that given an initial set of prices P∗
0

the algorithm either constructs American and European price functions satisfying the

no-arbitrage conditions of Lemma 3.1.1 and Theorem 3.1.2 or provides an arbitrage

portfolio.

Proposition 3.8.1. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are given by P∗
0 ∈ M. Assuming

that Conjecture 3.7.16 and Conjecture 3.7.17 hold the algorithm given in Section 3.5

will terminate in finitely many steps.

Proof. Let us begin by assuming that the number of strikes in KA(P∗
0 ) and KE(P∗

0 )

are given by m1 and m2, respectively. It follows that the number of strikes in K(P∗
0 )

can be at most m1 + m2.

To see that the algorithm terminates in finitely many steps we first argue that in

each iteration i the number of strikes in K(P∗
i ) is bounded by m1 +2m2. Subsequently,

we show that the sequence of strikes (Kvc
j )j , at which the algorithm is restarted, is

strictly increasing in j. Combining the two results then yields that the algorithm stops

after finitely many steps.

In order to show that there are at most m1 + 2m2 strikes in K(P∗
i ) we need to

discuss when and how the auxiliary price constraints are introduced. There are only

two reasons for the algorithm to introduce an additional constraint. On the one hand

either one of the price functions may violate convexity. On the other hand it is possible

that the American price function violates its upper bound A. Consider first the case

where one of the price functions violates convexity. The algorithm then computes a

constraint for the American price function at a strike in KE(P∗
0 ). We can therefore

conclude that correcting a violation of convexity has no effect on the number of strikes

in K(P∗
i ).

If the American price function violates the upper bound A the algorithm introduces

an auxiliary price constraint at a strike of type KE(P∗
0 )e−rT . Since the number of strikes

in KE(P∗
0 ) is given by m2, we readily obtain that the algorithm introduces at most m2

constraints at strikes not included in K(P∗
0 ). This implies that the number of strikes

in K(P∗
i ) in each iteration i has to be bounded by m1 + 2m2.

Suppose now that the algorithm extended the initial set of prices from P∗
0 to P∗

i

and that a violation of convexity occurs at the strike Kvc
i . The algorithm then extends
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the initial set P∗
i by an auxiliary price constraint at Kaux

i and restarts. Assuming that

Conjecture 3.7.17 holds, we know that the algorithm constructs a Kvc
i admissible P∗

0 -

extension from the new initial set P∗
i+1. It follows that the next violation of convexity

has to occur at a strike Kvc
i+1 > Kvc

i and thus the sequence (Kvc
j )j has to be strictly

increasing in j. We can therefore conclude that the algorithm will terminate after

finitely many steps.

Finally, we are in a position to show that the algorithm in Section 3.5 can be used

to determine whether or not a given set of American and co-terminal European put

options allows for model-independent arbitrage.

Theorem 3.8.2. Suppose finitely many American and co-terminal European put op-

tions are traded in the market and that their prices are given by P∗
0 ∈ M. Assuming

that Conjecture 3.7.16 and Conjecture 3.7.17 hold the algorithm provided in Section 3.5

will either construct American and European price functions satisfying the no-arbitrage

conditions of Lemma 3.1.1 and Theorem 3.1.2 or there exists arbitrage in the market.

Proof. According to Proposition 3.6.9 there has to exist arbitrage in the market if P∗
0 ∈

M\M. Hence, it suffices to subsequently consider only price sets P∗
0 with P∗

0 ∈ M.

We begin by pointing out that the only possible violations of the no-arbitrage

conditions are either a violation of the upper bound A by the American price function

or a violation of convexity by either one of the two price functions. This is due to the fact

that the algorithm computes the prices for non-traded options using (3.22) and (3.23).

Under the assumption that Conjecture 3.7.16 holds a violation of the upper bound

can always be corrected by Algorithm 4. Assuming further that Conjecture 3.7.17

holds, a violation of convexity can either be corrected by introducing an auxiliary

price constraint or Algorithm 3 stops revising option prices prematurely at a strike

Ki,q ∈ K(P∗
i ) due to either

ani,q < max{Alb(Ki,q,P
∗
0 ), AA

lb(Ki,q,P
∗
0 ), At1

lb (Ki,q,P
∗
i )}

or eni,q > Eub(Ki,q,P
∗
0 ). In the latter case there has to exist arbitrage in the market

and depending on the violation of convexity the arbitrage portfolio can be found in

either Section 3.6.3 or Section 3.6.4. Hence, we can conclude that the algorithm either

computes a KE
m2

-admissible P∗
0 -extension or there has to exist arbitrage in the market.

We are thus only left to argue that the price functions constructed by the algorithm

satisfy the no-arbitrage conditions on the entire positive half-line and not only up to

KE
m2

. To this end, let us assume that the algorithm reached the strike KE
m2

in the i-th

iteration and that the final price set is given by Pi,n for i, n ≥ 1. Observe also that this

readily implies that the strike KE
m2

corresponds to Ki,n under Pi,n.

Let us begin by arguing that the European price function E(·,Pi,n) is convex.

According to the definition of E in (3.7) we know that E(K,Pi,n) = e−rTK−S0 for any
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strike K ≥ KE
m2

. It follows that for any strike K ≥ KE
m2

the right-hand side derivative

of the European price function is given by E′(K+,Pi,n) = e−rT . Since we assumed that

Pi,n is a Ki,n-admissible P∗
0 -extension we further know that the price for a European

option with strike Ki,s ∈ K(Pi,n) has to satisfy ei,s ≥ e−rTKi,s − S0. Combined with

the fact that êm2 = e−rTKE
m2

− S0 we can conclude that E′(KE
m2

−,Pi,n) ≤ e−rT has

to hold. Hence, the European price function E(·,Pi,n) has to be convex on the entire

positive half-line.

Next we will show that the European price function E(·,Pi,n) also has to be in-

creasing. Note first that the prices for European options with strikes in KE(Pi,n)

are non-negative. To see this observe that Elhs
lb (K,Pi,n) ≥ 0 for any strike K ≥ 0.

In addition, Proposition 3.10.3 guarantees that the price for a European option with

strike Ki,l ∈ K(P∗
i ), ei,l, exceeds Elhs

lb (Ki,l,Pi,n) and thus ei,l ≥ 0 has to hold. Recall

further that the price for a European option with strike 0 is given by 0. It thus fol-

lows that E′(0+,Pi,n) ≥ 0. Combined with the convexity of E(·,Pi,n) we obtain that

E′(K+,Pi,n) ≥ 0 for any strike K ≥ 0. This readily implies that the price function

E(·,Pi,n) is increasing as well.

We proceed by showing that the American price function A(·,Pi,n) is convex. As

Pi,n is a Ki,n-admissible P∗
0 -extension, we already know that A(·,Pi,n) is convex up to

Ki,n and that ai,s ≥ Ki,s − S0 for any strike Ki,s ∈ K(Pi,n). In addition, we argue in

Proposition 3.10.45 that ai,s = Ki,s−S0 for any strike Ki,s ∈ (KE
m2

e−rT ,∞)∩K(Pi,n).

It follows that A′(KE
m2

−,Pi,n) ≤ A′(KE
m2

+,Pi,n) has to hold. The American price

function A(·,Pi,n) thus has to be convex as A′(K+,Pi,n) = A′(KE
m2

−,Pi,n) for any

strike K ≥ KE
m2

.

Analogously to the European price function we can use non-negativity of the prices

for American put options in combination with the convexity of A(·,Pi,n) to obtain that

the American price function A(·,Pi,n) has to be increasing.

To see that the American price function A(·,Pi,n) remains below its upper bound

A(·,Pi,n) we will argue that A(K,Pi,n) = A(K,Pi,n) has to hold for any strike K ≥

KE
m2

e−rT . In particular, we will show that both price functions will coincide with the

immediate exercise line. To this end, recall that we assumed that êm2 = e−rTKE
m2

−S0

and thus am2 = e−rTKE
m2

− S0 has to hold as well. Since we assumed that Pi,n is a

Ki,n-admissible P∗
0 -extension we further know that

KE
m2

e−rT − S0 ≤ A(KE
m2

e−rT ,Pi,n) ≤ am2 = e−rTKE
m2

− S0.

It then follows that A(KE
m2

e−rT ,Pi,n) = KE
m2

e−rT − S0 has to hold. Combined with

the result in Proposition 3.10.45 we see that A(K,Pi,n) = K − S0 for any strike K ≥

KE
m2

e−rT − S0. Taking into account that the European price function is extended

beyond KE
m2

using e−rTK − S0 we obtain by the definition of the upper bound A that

A(K,Pi,n) = K−S0 for K ≥ KE
m2

e−rT −S0. Hence, the American price function A has
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to satisfy A(·,Pi,n) ≥ A(·,Pi,n). Moreover, we can conclude that A(K,Pi,n) ≥ K − S0

has to hold for any strike K ≥ 0.

Next we will demonstrate that the price functions A(·,Pi,n) and E(·,Pi,n) satisfy the

Legendre-Fenchel condition. Since A(K,Pi,n) = A(K,Pi,n) for K ≥ Ki,ne
−rT we must

have cc(A;Ki,ne
−rT , K̂;Pi,n) = cc(A;Ki,ne

−rT , K̂;Pi,n) for any strike K̂ > Ki,ne
−rT .

According to Proposition 3.10.4 we thus know that

cc(A;Ki,ne
−rT , K̂;Pi,n) = cc(E;Ki,n, K̂erT ;Pi,n)

holds. Taking into account that the European price function E(·;Pi,n) is convex we fur-

ther know that cc(E;Ki,ne
−rT , K̂;Pi,n) ≥ cc(E;Ki,n, K̂erT ;Pi,n) has to hold. Combin-

ing these inequalities we obtain that cc(A;Ki,ne
−rT , K̂;Pi,n) ≤ cc(E;Ki,ne

−rT , K̂;Pi,n)

holds. Hence, the Legendre-Fenchel condition is satisfied on the entire positive half-line.

Finally, we still have to argue that the price for an American option with strike

K ≥ 0 exceeds the price for a co-terminal European option with the same strike. Note

first that the Legendre-Fenchel condition implies that ai,s ≥ ei,s whenever ai,s−1 ≥

ei,s−1 and s ≥ 2. In the case where s = 1 we can, moreover, see from the generalisation

of the Legendre-Fenchel condition directly below (3.16) and (3.17), respectively, that

ai,1 ≥ ei,1 has to hold. Hence the price functions have to satisfy A(·,Pi,n) ≥ E(·,Pi,n).

We have therefore shown that given a set of prices P∗
0 ∈ M the algorithm either con-

structs American and European price functions satisfying the no-arbitrage conditions

of Lemma 3.1.1 and Theorem 3.1.2 or there has to exist arbitrage in the market.

3.9 Conclusion

Assuming that the conjectures in Section 3.7.3 hold we have shown that given a finite

sets of American and European put option prices provided by P∗
0 ∈ M it is always

possible to either construct American and European put price functions or there exists

arbitrage.

We believe that this result should be of interest to market makers and speculators

alike, as the arbitrage portfolios given in this paper will hold under any model. This is

due to the fact that these portfolios are derived without making any assumptions on the

underlying probability space generating the option prices. Furthermore, we would like

to point out that the portfolios generating arbitrage are altogether semi-static — this

means that the positions in the American and European options are fixed at the initial

time and there are only finitely many trades in the underlying up to maturity. This is

relevant, because semi-static portfolios generally exhibit smaller transaction costs than

portfolios using delta hedging, where trading at infinitely many times is required.

120



Chapter 3. Arb. situations in markets trading American and co-terminal European options

3.10 Appendix

3.10.1 Properties of the Legendre-Fenchel condition

Lemma 3.10.1. Suppose American and European options with maturity T are traded

in the market at strikes KA
i ,K

A
i′ and KE

j ,KE
j′ , respectively, where KE

j ≤ KE
j′ , K

A
i ≤

KA
i′ , K

E
j ≤ KA

i and KE
j′ ≤ KA

i′ . Then there exists model-independent arbitrage in the

market if the extended Legendre-Fenchel condition

ai′ − ai

KA
i′ −KA

i

KA
i − ai ≥

ej′ − ej

KE
j′ −KE

j

KE
j − ej (3.45)

is violated.

Proof. We will argue that there exists arbitrage whenever the extended Legendre-

Fenchel condition is violated between the strikes KA
i ,K

A
i′ , KE

j and KE
j′ , in the case that

KE
j ≤ KA

i ≤ KE
j′ ≤ KA

i′ . Analogously, the situation where KE
j < KE

j′ ≤ KA
i < KA

i′ can

be handled and is thus omitted.

To see that there exists arbitrage we have to find a portfolio that has negative initial

value and only positive subsequent cashflows. The portfolio PLF
arb (KE

j ,KA
i ,K

E
j′ ,K

A
i′ )

that we want to consider consists of long positions of KA
i (KA

i′ − KA
i )−1 units in an

American option with strike KA
i′ and KE

j′ (K
E
j′ − KE

j )−1 units in a European option

with strike KE
j and short positions of KA

i′ (KA
i′ −KA

i )−1 units in an American option

with strike KA
i and KE

j (KE
j′ −KE

j )−1 units in a European option with strike KE
j′ . If

the condition (3.45) is violated this portfolio clearly has a strictly negative initial value

and we are left to check that whatever happens to the price of the underlying up to T

results only in positive cashflows. First we investigate what happens if the American

options are not exercised before maturity T . In this case the payoff of the American

options corresponds to the payoff of European options with the same strikes. Denoting

∆A = KA
i′ −KA

i and ∆E = KE
j′ −KE

j we obtain the following payoffs at maturity











































0 , ST ≥ KA
i′

KA
i (∆A)−1(KA

i′ − ST ) , ST ∈ [KE
j′ ,K

A
i′ ]

KA
i (∆A)−1(KA

i′ − ST ) + KE
j (∆E)−1(ST −KE

j′ ) , ST ∈ [KA
i ,K

E
j′ ]

KE
j′ (∆

E)−1(ST −KE
j ) , ST ∈ [KE

j ,KA
i ]

0 , ST ∈ [0,KE
j ]

which are all clearly positive.

The other possibility is that the shorted American is exercised strictly before ma-

turity T . We then exercise the long American at the same time and hold the asset S
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obtained this way until maturity to receive the following payoffs



















ST , ST ≥ KE
j′

KE
j′ (∆

E)−1(ST −KE
j ) , ST ∈ [KE

j ,KE
j′ ]

0 , ST ∈ [0,KE
j ]

which are again all positive. We can therefore conclude that the condition in (3.45) is

necessary for the absence of model-independent arbitrage.

An important property of the Legendre-Fenchel condition is its transitivity over

adjacent intervals.

Proposition 3.10.2. Suppose the prices for American and European put options with

strikes K1, ...,Kn are given by a1, ...,an and e1, ..., en, respectively. Furthermore, the

Legendre-Fenchel condition is satisfied with equality between any two adjacent strikes

Ki < Ki+1 for i ∈ {1, ..., n − 1}, i.e

ai+1 − ai

Ki+1 −Ki
Ki − ai =

ei+1 − ei

Ki+1 −Ki
Ki − ei. (3.46)

Then it follows that the Legendre-Fenchel condition is also satisfied with equality be-

tween the prices aq, ap, eq and ep for p, q ∈ {1, ..., n} with q < p.

Proof. To see that this result holds we will use induction on the number of strikes

between Kq and Kp at which option prices are given. In the base step we assume

that p = q + 1. The result then follows immediately from the assumption that the

Legendre-Fenchel condition holds between any two adjacent strikes.

In the inductive step we suppose that p > q + 1 and that we know already that

ap−1 − aq

Kp−1 −Kq
Kq − aq =

ep−1 − eq

Kp−1 −Kq
Kq − eq.

Note further that the condition in (3.46) is equivalent to writing

ai+1 = ei+1 +
Ki+1

Ki
[ai − ei].

It is then sufficient to show that ap = ep +
Kp

Kq
[aq − eq]. Since the Legendre-Fenchel

condition holds with equality on [Kp−1,Kp] we know that

ap = ep +
Kp

Kp−1
[ap−1 − ep−1]. (3.47)
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In addition, we can use the induction hypothesis to write

ap−1 = ep−1 +
Kp−1

Kq
[aq − eq]. (3.48)

Substituting ap−1 in (3.47) by (3.48), we obtain

ap = ep +
Kp

Kq
[aq − eq].

This readily implies that the Legendre-Fenchel condition has to hold with equality on

the interval [Kq,Kp].

3.10.2 General properties of the price functions

Proposition 3.10.3. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-admissible

P∗
0 -extension Pi,p−1 for p ≥ 1.

If the algorithm stops at the strike Ki,p ∈ K(P∗
i )\KE(P∗

0 ) due to a violation of

ei,p ≥ Elb(Ki,p,Pi,p−1), then we must have Elb(Ki,p,Pi,p−1) = Erhs
lb (Ki,p,P

∗
0 ).

Proof. Let us assume for contradiction that ei,p < Elhs
lb (Ki,p,Pi,p−1). In the case where

p = 1, the left hand-side lower bound is given by Elhs
lb (Ki,p,Pi,p−1) = 0. For ei,p < 0

we must then have that either Elf (Ki,p,Pi,p−1) or Eub(Ki,p,Pi,p−1) is negative. Note

further that ei,p = Elf (Ki,p,Pi,p−1) implies that ei,p = ai,p and thus that American

options with strike Ki,p are traded at a negative price in the market. This, however,

can be ruled out as P∗
0 ∈ M.

Let us now consider the case that p ≥ 2. We will then show that the situation

ei,p < Elhs
lb (Ki,p,Pi,p−1) cannot occur as the algorithm would have stopped prior

to Ki,p already. To this end we distinguish between the cases where ei,p is either

given by Elf (Ki,p,Pi,p−1) or Eub(Ki,p,Pi,p−1). We start with the situation where

ei,p = Elf (Ki,p,Pi,p−1). Since Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension we can

conclude that cc(A;Ki,p−1,Ki,p;Pi,p) ≤ cc(A;Ki,p−2,Ki,p−1;Pi,p) has to hold. Also

ei,p = Elf (Ki,p,Pi,p−1) means that the Legendre-Fenchel conditions holds with equal-

ity between Ki,p−1 and Ki,p and therefore we must have cc(A;Ki,p−1,Ki,p;Pi,p) =

cc(E;Ki,p−1,Ki,p;Pi,p). The assumption that ei,p < Elhs
lb (Ki,p,Pi,p−1), furthermore,

implies that cc(E;Ki,p−2,Ki,p−1;Pi,p) < cc(E;Ki,p−1,Ki,p;Pi,p). Combined we obtain

cc(A;Ki,p−2,Ki,p−1;Pi,p) > cc(E;Ki,p−2,Ki,p−1;Pi,p),

a contradiction to the fact that Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension.
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Suppose now that we are in the situation where ei,p = Eub(Ki,p,Pi,p−1), then

Eub(Ki,p,Pi,p−1) < Elhs
lb (Ki,p,Pi,p−1) immediately implies that

êj <
ei,p−1 − ei,p−2

Ki,p−1 −Ki,p−2
(KE

j −Ki,p−1) + ep−1 (3.49)

for j = arg min{Ks ∈ KE(P∗
0 ) : Ks > Ki,p}. We then have to distinguish be-

tween the cases when European options with strike Ki,p−1 are traded in the mar-

ket or not. If Ki,p−1 ∈ KE(P∗
0 ), then this implies that ei,p−2 < Erhs

lb (Ki,p−2,P
∗
0 )

yielding a contradiction to the fact that Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension.

In the case where Ki,p−1 /∈ KE(P∗
0 ) the price ei,p−1 would have been determined

by ei,p−1 = min{Elf (Ki,p−1,Pi,p−2), Eub(Ki,p−1,Pi,p−2)}. Then again, the inequal-

ity in (3.49) implies that ei,p−1 > Eub(Ki,p−1,Pi,p−2) which is not possible. Thus

we have shown that the price for European options with strike Ki,p cannot be below

Elhs
lb (Ki,p,Pi,p−1).

Proposition 3.10.4. Suppose we are given a finite set of European put option prices

PE = {(e0, 0), (e1,K1), ..., (en,Kn)}

and that the functions E and A are defined by (3.7) and A(K,P) = E(KerT ,PE) for

K ≥ 0, then

cc(A;Kp−1e
−rT ,Kpe

−rT ;PE) = cc(E;Kp−1,Kp;PE) (3.50)

has to hold for any p ∈ {1, ..., n}.

Proof. To see that this is the case we apply the definition of the function cc to both

the European price function and the upper bound A. We then readily obtain that

cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;PE) =

= A(Ki,p−1e
−rT ,PE) −A

′
(Ki,p−1e

−rT+,PE)Ki,p−1e
−rT

= A(Ki,p−1e
−rT ,PE) −

A(Ki,pe
−rT ,PE) −A(Ki,p−1e

−rT ,PE)

Ki,pe−rT −Ki,p−1e−rT
Ki,p−1e

−rT

= E(Ki,p−1,P
E) −

E(Ki,p,P
E) − E(Ki,p−1,P

E)

Ki,p −Ki,p−1
Ki,p−1

= E(Ki,p−1,P
E) − E′(Ki,p−1+,PE)Ki,p−1

= cc(E;Ki,p−1,Ki,p;PE).

Proposition 3.10.5. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume
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further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Starting with the initial set of prices P∗
i the algorithm computes the Ki,p-admissible

P∗
0 -extension Pi,p for p ≥ 1.

If we assume that the price for an American option with strike Ki,p ∈ (KA
u ,K

A
u+1)∩

(K(P∗
i )\KA(P∗

i )) is given by

ai,p = max{Arhs
lb (Ki,p,P

∗
i ), AA,r

lb (Ki,p,P
∗
0 )}, (3.51)

and that [Ki,p,K
A
u+1) ∩ Kaux(P∗

i ) = ∅ then the algorithm will compute Pi,l successfully

for Ki,l ∈ (Ki,p,K
A
u+1) with

ai,l̃ = max{Arhs
lb (Ki,l̃,P

∗
i ), AA,r

lb (Ki,l̃,P
∗
0 )} (3.52)

for any strike Ki,l̃ ∈ [Ki,p,Ki,l].

Alternatively, we can assume that the price for European options with strike Ki,p ∈

(KE
v ,KE

v+1)∩(K(P∗
i )\KE(P∗

i )) is given by ei,p = Eub(Ki,p,Pi,p−1) and that [Ki,p,K
E
v+1)∩

Kaux(P∗
i ) = ∅. The algorithm will then successfully compute Pi,l for Ki,l ∈ (Ki,p,K

E
v+1)

and ei,l̃ = Eub(Ki,l̃,Pi,l̃−1) for any strike Ki,l̃ ∈ [Ki,p,Ki,l).

Proof. Consider first the situation where Ki,p ∈ (KA
u ,K

A
u+1) ∩ (KE(P∗

i )\KA(P∗
i )) and

the price for American options with strike Ki,p is given by (3.51). Let us assume for

contradiction that there exists a strike Ki,s with

Ki,s = min{Ki,s̃ ∈ (Ki,p,Ki,l] ∩ (KE(P∗
i )\KA(P∗

i )) :

ai,s̃ > max{Arhs
lb (Ki,s̃,P

∗
i ), AA,r

lb (Ki,s̃,P
∗
0 )}}.

We will begin by showing that we can exclude ai,s = Alhs
lb (Ki,s,Pi,s−1) from consider-

ation. To this end, we assume for contradiction that ai,s = Alhs
lb (Ki,s,Pi,s−1). Taking

into account the definition of Ki,s, the price for American options with strike Ki,s−1

has to be given by (3.52). We thus obtain that ai,s−2 has to satisfy

ai,s−2 < max{Arhs
lb (Ki,s−2,P

∗
i ), AA,r

lb (Ki,s−2,P
∗
0 )}.

This can be ruled out, however, as either ai,s−2 is given by (3.52) for s − 2 ≥ p or

because Pi,p is a Ki,p-admissible P∗
0 -extension for s− 1 = p and thus convex.

Suppose now for contradiction that ai,s = Alf (Ki,s,Pi,s−1), then we have to distin-

guish between the two cases where the right hand-side lower bound is either given by

AA,r
lb (Ki,s,P

∗
0 ) or Arhs

lb (Ki,s,P
∗
i ). In the first case we assume that the right hand-side

lower bound AA,r
lb is given by the prices âu+1 and aj. We can then argue that

cc(A,A;KA
u+1,K

E
j e−rT ;P∗

0 ) ≤ cc(A;KE
j−1e

−rT ,KE
j e−rT ;P∗

0 ). (3.53)
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To do this, we need to distinguish between the two cases where KE
j−1e

−rT ≤ KA
u+1 or

not. If KE
j−1e

−rT ≤ KA
u+1 then the inequality in (3.53) follows immediately from (viii)

of the Standing Assumption. In the case where KE
j−1e

−rT > KA
u+1 we can deduce from

the definition of AA,r
lb in (3.18) that

aj−1 ≥
aj − âu+1

KE
j e−rT −KA

u+1

(KE
j−1e

−rT −KA
u+1) + âu+1.

Hence we must have

cc(A,A;KA
u+1,K

E
j e−rT ;P∗

0 ) ≤ cc(A;KE
j−1e

−rT ,KE
j e−rT ;P∗

0 )

= cc(E;KE
j−1,K

E
j ;P∗

0 )

≤ cc(E;Ki,s−1,Ki,s;P
∗
0 ).

This, however, contradicts the assumption that Alf (Ki,l̃,Pi,s−1) > AA,r
lb (Ki,l̃,P

∗
0 ) and

thus we must have ai,l̃ = AA,r
lb (Ki,l̃,Pi,l̃−1).

In the second case there exist ordered strikes

(Ki,s−1,Ki,s,K
A
u+1,Ki,r) ∈ (KE(P∗

0 ),KE(P∗
0 ),KA(P∗

0 ),KA(P∗
i ))

such that

cc(E;Ki,s−1,Ki,s;P
∗
0 ) = cc(A;Ki,s−1,Ki,s;Pi,s) (3.54)

< cc(A;Ki,p,K
A
u+1;Pi,s)

= cc(A;KA
u+1,Ki,r;P

∗
i )

has to hold. We can thus immediately rule out that the strike Ki,r ∈ KA(P∗
0 ), as this

would imply a violation of (iv) of the Standing Assumptions. Note, moreover, that for

Ki,r ∈ Kaux
2 (P∗

i ) the two right hand-side lower bounds coincide and thus this case can

be ruled out using the argument from the first case. We are therefore left with the

situation where Ki,r ∈ Kaux
1 (P∗

i ). In this situation we only have to distinguish between

the two cases where Ki,r−1 ∈ KE(P∗
0 ) or Ki,r−1 = KA

u+1 as the definition of the right

hand-side lower bound in (3.14) implies that Ki,r = min{K ∈ KA(P∗
i ) : K > KA

u+1}.

If Ki,r−1 ∈ KE(P∗
0 ), then we know from the stopping condition in Algorithm 3 that

cc(A;KA
u+1,Ki,r;P

∗
i ) ≤ cc(E;Ki,r−1,Ki,r;P

∗
0 ).

Combined with the inequality in (3.54) this yields

cc(E;Ki,s−1,Ki,s;P
∗
0 ) < cc(E;Ki,r−1,Ki,r;P

∗
0 )
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which is a contradiction to the convexity assumption for E(·,P∗
0 ) in the Standing As-

sumptions.

Suppose now that Ki,r−1 = KA
u+1 and define KE

j = max{Kj′ ∈ KE(P∗
0 ) : Kj′ ≤

KA
u+1}, then we can conclude that

cc(A;KA
u+1,Ki,r;P

∗
i ) ≤ cc(E;KE

j ,Ki,r;P
∗
0 )

as there would exist arbitrage in the market otherwise according to the stopping condi-

tion of Algorithm 3 which in turn would have prompted the algorithm to stop instead

of restarting under P∗
i . Combined with (3.54) we obtain that

cc(E;Ki,s−1,Ki,s;P
∗
0 ) < cc(E;Ki,r−1,Ki,r;P

∗
0 )

which again yields a contradiction to the convexity assumption for E(·,P∗
0 ) in the

Standing Assumptions. We can thus conclude that

ai,l = max{Arhs
lb (Ki,l,P

∗
i ), AA,r

lb (Ki,l,P
∗
0 )}

for any strike Ki,l ∈ [Ki,p,K
A
u+1) ∩ (KE(P∗

i )\KA(P∗
i )) whenever (3.52) holds.

Suppose now that ei,p = Eub(Ki,p;Pi,p−1) for the strike Ki,p ∈ (KE
v ,KE

v+1) ∩

KA(P∗
i )\KE(P∗

i ). Let us furthermore assume for contradiction that there exists a

strike Ki,s with

Ki,s = min{Ki,s̃ ∈ (Ki,p,K
E
v+1) ∩ (KA(P∗

i )\KE(P∗
i )) :

ei,s̃ = Elf (Ki,s̃,Pi,s̃−1) and ei,s̃ < Eub(Ki,s̃,Pi,s̃−1)}

This means that cc(E;Ki,s−1,Ki,s;Pi,s) > cc(E;Ki,p−1,Ki,s−1;Pi,s). Additionally,

the Legendre-Fenchel condition has to hold with strict inequality on [Ki,p−1,Ki,s−1]

and with equality on [Ki,s−1,Ki,s] and thus we obtain that

cc(A;Ki,p−1,Ki,s−1;Pi,s) < cc(E;Ki,p−1,Ki,s−1;Pi,s)

< cc(E;Ki,s−1,Ki,s;Pi,s)

= cc(A;Ki,s−1,Ki,s;Pi,s).

Hence, the convexity of the American price function A has to be violated on [Ki,p−1,Ki,s].

Then again, we assumed that [Ki,p,K
E
v+1) ∩ Kaux(P∗

i ) = ∅ and thus (Ki,p,Ki,s) ∈

(KA(P∗
0 ),KA(P∗

0 )) has to hold. We now distinguish between the two cases where either

s > p + 1 or s = p + 1.

In the first case there exists Ki,s−1 ∈ (Ki,p,Ki,s)∩KA(P∗
0 ) such that the American

price function between the three prices ai,p, ai,s−1 and ai,s cannot be convex. Since
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American options are traded at these prices in the market, the price set P∗
0 would have

to violate the Standing Assumptions.

In the second case Ki,s = Ki,p+1 would imply that ai,p−1 < Arhs
lb (Ki,p−1,P

∗
0 ) which

cannot be the case as we assumed that Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension and

we can thus conclude that ei,s = Eub(Ki,s,P
∗
i ).

Proposition 3.10.6. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Starting with the initial set of prices P∗
i the algorithm computes the Ki,p-admissible

P∗
0 -extension Pi,p for p ≥ 1.

If we assume that the price for an American option with strike Ki,p ∈ (KA
u ,K

A
u+1)∩

(K(P∗
i )\KA(P∗

i )) is given by ai,p = AA,l
lb (Ki,p,P

∗
0 ), then ai,l = AA,l

lb (Ki,l,P
∗
0 ) for any

strike Ki,l ∈ (KA
u ,Ki,p].

Proof. Suppose for contradiction that there exists a strike Ki,l such that

Ki,l = max{Ki,s ∈ (KA
u ,Ki,p) ∩K(P∗

i ) : ai,l > AA,l
lb (Ki,l,P

∗
0 )}.

We can deduce from the fact that Pi,p is a Ki,p-admissible P∗
0 -extension that the Amer-

ican price function has to be convex up to Ki,p and thus

cc(A;Ki,l−1,Ki,l;Pi,p) ≤ cc(A;KA
u ,Ki,l;Pi,p)

has to hold. Moreover, we must have

cc(A;KA
u ,Ki,l;Pi,p) < cc(AA,l

lb ;KA
u ,Ki,l;P

∗
0 ),

as we assumed that ai,l > AA,l
lb (Ki,l,P

∗
0 ). We can therefore conclude that

cc(A;Ki,l−1,Ki,l;Pi,p) ≤ cc(A;KA
u ,Ki,l;Pi,p)

< cc(AA,l
lb ;KA

u ,Ki,l;P
∗
0 )

= cc(AA,l
lb ;Ki,p−1,Ki,p;P∗

0 ).

Then again, this yields a contradiction to the assumption that the American price

function is convex and thus we can conclude that the price for American options with

strike Ki,l has to be given by ai,l = AA,l
lb (Ki,l,P

∗
0 ).

Proposition 3.10.7. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.
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Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-admissible

P∗
0 -extension Pi,p−1 for p ≥ 1.

If the Legendre-Fenchel condition holds with equality on [Ki,p−1,Ki,p] a violation of

ai,p ≥ A(Ki,pe
−rT ,Pi,p) can be ruled out.

Proof. Since we assumed that Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension we know that

ai,p−1 ≥ A(Ki,p−1,Pi,p) as to hold. According to the assumptions we also know

that the Legendre-Fenchel condition holds with equality on [Ki,p−1,Ki,p]. That is,

cc(E;Ki,p−1,Ki,p;Pi,p) = cc(A;Ki,p−1,Ki,p;Pi,p). Taking into account that

cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p)

according to Proposition 3.10.4 we obtain

cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p) (3.55)

= cc(A;Ki,p−1,Ki,p;Pi,p)

≤ cc(A;Ki,q,Ki,q+1;Pi,p).

We then have to distinguish between the two cases where either

cc(A;Ki,p−1,Ki,p;Pi,p) < 0

or not. In the case where cc(A;Ki,p−1,Ki,p;Pi,p) < 0 holds we readily obtain from

ai,p−1 ≥ A(Ki,p−1e
−rT ,Pi,p) and (3.55) that ai,p ≥ A(Ki,pe

−rT ,Pi,p).

Let us consider now the situation where cc(A;Ki,p−1,Ki,p;Pi,p) = 0. The non-

positivity of the convex conjugate of the price functions A and E then yields that

both sides of the inequality in (3.55) are zero. If Ki,p−1 > 0 we thus obtain that

A(K,Pi,p) = E(K,Pi,p) for any strike K ∈ [0,Ki,p] and hence A(K,Pi,p) = 0 has to

hold as well. We can therefore rule out a violation of the upper bound in Ki,pe
−rT in

this case as well.

In the case where Ki,p−1 = 0 we note that either ai,1 ≥ Alf (Ki,1,Pi,p) holds for

Ki,1 ∈ (K(P∗
i )\KA(P∗

i )) or ei,1 ≤ Elf (Ki,1,Pi,p) for Ki,1 ∈ (K(P∗
i )\KE(P∗

i )). This

not only implies that ai,1 ≥ ei,p, but also A(K,Pi,p) ≥ E(K,Pi,p) for any strike K ∈

[0,Ki,1]. We can thus conclude that ai,p ≥ A(Ki,pe
−rT ,Pi,p) whenever the Legendre-

Fenchel condition holds with equality on [Ki,p−1,Ki,p].

Proposition 3.10.8. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Starting with the initial set of prices P∗
i the algorithm computes Pi,p a Ki,p-admissible

P∗
0 -extension.
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If we suppose now that the price for American options with strike Ki,p is given by

ai,p = Ki,p−S0 under Pi,p, then âj = KA
j −S0 for any strike KA

j ∈ [Ki,p,∞)∩KA(P∗
0 ).

Proof. We begin by showing that aj′ = KA
j′ − S0 for KA

j′ = min{KA
s ∈ KA(P∗

0 ) :

KA
s > Ki,p}. Suppose for contradiction that the price of an American option with

strike KA
j′ ∈ KA(P∗

0 ) is given by aj′ 6= KA
j′ − S0. Observe first that the option price

has to satisfy âj′ ≥ KA
j′ − S0 as P∗

0 ∈ M. It follows that âj′ > KA
j′ − S0 has to

hold. We then have to distinguish between the two cases where Ki,p ∈ KA(P∗
0 ) or

Ki,p ∈ KE(P∗
0 )\KA(P∗

0 ). The case where Ki,p ∈ KA(P∗
0 ) can be ruled out immediately

as A′(Ki,p+,P∗
0 ) ≤ 1 has to hold according to (iii) of the Standing Assumptions which

contradicts âj′ > KA
j′ − S0 for ai,p = Ki,p − S0.

In the second case where Ki,p ∈ KE(P∗
0 )\KA(P∗

0 ) we can deduce from A′(K+,P∗
0 ) ≤

1 for K ≥ 0 together with âj′ > KA
j′−S0 that âs > KA

s −S0 for any strike KA
s ∈ [0,KA

j′ ]∩

KA(P∗
0 ). It thus follows that KA

j′ ≤ Kl1(P∗
0 )

has to hold. The Standing Assumptions

then guarantee in (iii) that A′(KA
j′ +,P∗

0 ) < 1 has to hold. We can therefore conclude

that Arhs
lb (Ki,p,P

∗
0 ) > Ki,p − S0, thereby contradicting the assumption that ai,p =

Ki,p − S0. Hence, the price for an American option with strike KA
j′ ∈ KA(P∗

0 ) has to

be given by KA
j′ − S0.

Finally, we can use (iii) of the Standing Assumptions to deduce from âj′ = KA
j′ −S0

that âj = KA
j − S0 for any strike KA

j ∈ [Ki,p,∞) ∩KA(P∗
0 ).

Proposition 3.10.9. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-admissible

P∗
0 -extension Pi,p−1 for p ≥ 1. If we further assume that Ki,p ∈ KA(P∗

i ) with ai,p ≥

Ki,p − S0, then ei,p ≥ e−rTKi,p − S0 has to hold.

Remark 3.10.10. Note that ai,p ≥ Ki,p − S0 has to hold for Ki,p ∈ KA(P∗
0 ) when-

ever P∗
0 ∈ M. Moreover, this result remains valid after introducing auxiliary price

constraints that lie within their respective no-arbitrage bounds.

Proof. We consider first the case where Ki,p ∈ [0,KE
m2

) ∩ (KA(P∗
i )\KE(P∗

0 )). The

algorithm then computes the price for a European option with strike Ki,p using

ei,p = min{Eub(Ki,p,Pi,p−1), Elf (Ki,p,Pi,p−1)}.

Since Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension we also know that the price for Eu-

ropean options with strike Ki,p−1 satisfies ei,p−1 ≥ e−rTK − S0. Combined with

the fact that êj ≥ e−rTKE
j − S0 for any strike KE

j ∈ KE(P∗
0 ) we can then deduce

that Eub(Ki,p,Pi,p−1) ≥ e−rTKi,p − S0 has to hold as well. Hence, it follows that
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ei,p = Elf (Ki,p,Pi,p−1). Note further that this implies that the Legendre-Fenchel con-

dition holds with equality between the strikes Ki,p−1 and Ki,p. Combined with the

convexity of the American put price function A(·,Pi,p) we get that

cc(A,Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p) (3.56)

= cc(A;Ki,p−1,Ki,p;Pi,p)

≤ cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p).

Since Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension, we must have

ai,p−1 ≥ A(Ki,p−1e
−rT ;Pi,p).

Using the inequality in (3.56) we can further conclude that ai,p ≥ A(Ki,pe
−rT ;Pi,p)

must hold as well. Then again, we assumed that the European price function violates

its lower bound at Ki,p, which means that

e−rTKi,p − S0 > ei,p = ai,p ≥ A(Ki,pe
−rT ,Pi,p). (3.57)

Since Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension we can deduce that A(K,Pi,p−1) ≥

K − S0 has to hold for any strike K ≤ Ki,p−1. Combined with the assumption that

ai,p ≥ Ki,p − S0, we readily obtain that A(K,Pi,p) ≥ K − S0 for any strike K ≤ Ki,p,

thereby yielding a contradiction to (3.57). It follows that ei,p ≥ e−rTKi,p − S0 has to

hold for Ki,p ∈ [0,KE
m2

) ∩ (KA(P∗
i )\KE(P∗

0 )).

We are thus only left to argue that ei,p ≥ e−rTKi,p − S0 for Ki,p ∈ (KE
m2

,∞) ∩

(KA(P∗
i )\KE(P∗

0 )). Then again, the algorithm stops computing option prices at KE
m2

and extends the European price function to e−rTK − S0 for any strike K ≥ KE
m2

. We

can thus conclude that ei,p ≥ Ki,pe
−rT − S0 for Ki,p ∈ KA(P∗

i ).

3.10.3 General properties of the revised price functions

Proposition 3.10.11. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Assume further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 ,

i ≥ 1. Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-

admissible P∗
0 -extension Pi,p−1 for p ≥ 1.

Suppose further that the algorithm stops at the strike Ki,p either due to a violation

of ei,p ≥ Elb(Ki,p,Pi,p−1) for Ki,p ∈ (KA(P∗
i )\KE(P∗

i )) or due to a violation of ai,p ≤

Aub(Ki,p,Pi,p−1) for Ki,p ∈ (KE(P∗
i )\KA(P∗

i )) and Algorithm 3 revises the already

computed prices on [Ki,q̃,Ki,p].

If the previously computed price functions A(·,Pi) and E(·,Pi) satisfy the Legendre-

Fenchel condition with equality on [Ki,q̃,Ki,p], then we must have eni,s > ei,s for any
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strike Ki,s ∈ [Ki,q̃,Ki,p) ∩ (KA(P∗
i )\KE(P∗

i )) and ani,s < ai,s for any strike Ki,s ∈

[Ki,q̃,Ki,p) ∩KE(P∗
i ).

Proof. Note that both the price functions constructed using the initial set of prices

P∗
i and the revised price functions satisfy the Legendre-Fenchel condition with equal-

ity on [Ki,q̃,Ki,p]. This means that the following equations have to hold for Ki,s ∈

(KA(P∗
i )\KE(P∗

i ))

ei,s = ai,s −
Ki,s

Ki,p
[ai,p − ei,p]

eni,s = ai,s −
Ki,s

Ki,p
[ani,p − eni,p]

and for Ki,s ∈ KE(P∗
i )

ai,s = ei,s +
Ki,s

Ki,p
[ai,p − ei,p]

ani,s = ei,s +
Ki,s

Ki,p
[ani,p − eni,p].

Looking at the difference between eni,s and ei,s we see that

eni,s − ei,s =
Ki,s

Ki,p

[

(ai,p − ani,p) + (eni,p − ei,p)
]

(3.58)

is strictly positive and thus eni,s > ei,s. For the price difference of an American option

with strike Ki,s ∈ KE(P∗
i ) we see that

ai,s − ani,s =
Ki,s

Ki,p

[

(ai,p − ani,p) + (eni,p − ei,p)
]

(3.59)

which is again strictly positive and thus ai,s > ani,s.

Proposition 3.10.12. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Assume further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 ,

i ≥ 1. Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-

admissible P∗
0 -extension Pi,p−1 for p ≥ 1.

The algorithm stops at the strike Ki,p ∈ (KA
u ,K

A
u+1]∩K(P∗

i ) either due to a violation

of ei,p ≥ Elb(Ki,p,Pi,p−1) for the strike Ki,p ∈ KA(P∗
0 ) or due to a violation of ai,p ≤

Aub(Ki,p,Pi,p−1) for the strike Ki,p ∈ (KE(P∗
i )\KA(P∗

i )). If Algorithm 3 revises the

already computed prices on [Ki,q,Ki,p], then the prices ani,p−1, a
n
i,p and âu+1 have to be

co-linear.

Proof. Suppose first that Ki,p ∈ KA(P∗
0 ), then this readily implies that Ki,p = KA

u+1.
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Since we are only considering the two different prices ai,p−1 and ai,p in this case, we

trivially must have that they are co-linear.

Let us consider now the second case where Ki,p ∈ (KE(P∗
0 )\KA(P∗

0 )). Here the

price for the American option with strike Ki,p depends on whether Ki,p−1 ∈ KA(P∗
0 )

or Ki,p−1 ∈ KE(P∗
0 )\KA(P∗

0 ).

In the first case Algorithm 3 determines the price for American options with strike

Ki,p to be ani,p = Aub(Ki,p,P
∗
0 ) and it follows from the definition of Aub(·,P

∗
0 ) that the

prices ani,p−1, a
n
i,p and âu+1 have to be co-linear.

In the second case the price for American options with strike Ki,p is determined to

be

ani,p =
âu+1 − cc(E;Ki,p−1,Ki,p;Pi,p)

KA
u+1

(Ki,p −KA
u+1) + âu+1.

Note further that the price for American options at the strike Ki,p−1 is computed so

as to satisfy the Legendre-Fenchel condition with equality on [Ki,p−1,Ki,p]. It follows

that

cc(A;Ki,p−1,Ki,p;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p)

= cc(A;Ki,p,K
A
u+1;Pi,p).

and thus we obtain again that the prices ani,p−1, a
n
i,p and âu+1 have to be co-linear.

3.10.4 Properties of the price functions when a violation of A ≥ A

occurs

Proposition 3.10.13. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Assume further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 ,

i ≥ 0. Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-

admissible P∗
0 -extension Pi,p−1 for p ≥ 1.

Suppose further that the algorithm stops at the strike Ki,p ∈ K(P∗
i ) due to a vi-

olation of ai,p ≥ A(Ki,pe
−rT ,Pi,p) where Ki,pe

−rT ∈ (Ki,q,Ki,q+1] for Ki,q,Ki,q+1 ∈

K(P∗
i ). If we set j′ = arg min{KE

v ∈ KE(P∗
0 ) : KE

v ≥ Ki,p} and assume that both

[Ki,p,K
E
j′ ) ∩ Kaux(P∗

i ) = ∅ and cc(A;Ki,q,Ki,q+1;Pi,p) < 0 hold, then the Legendre-

Fenchel condition has to hold with strict inequality on every subinterval of [Ki,q,K
E
j′ ]

for any KE
j′ -admissible Pi,p-extension.

Proof. We start by noting that ai,p−1 ≥ A(Ki,p−1e
−rT ,Pi,p−1) must hold, as Pi,p−1 is

a Ki,p−1-admissible P∗
0 -extension. Moreover, we can conclude that the price functions

are increasing and convex up to the strike Ki,p as these properties are checked by

the algorithm prior to a possible violation of the upper bound. It then follows from
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cc(A;Ki,q,Ki,q+1;Pi,p) < 0 that there has to exist r ∈ {1, ..., q} such that

cc(A;Ki,r,Ki,r+1;Pi,p) < cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p),

since we would have ai,p ≥ A(Ki,pe
−rT ,Pi,p) otherwise. According to Proposition 3.10.4

we further know that

cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p).

Since both the American and the European price functions are convex up to Ki,p, we

can conclude that cc(E;Ki,p−1,Ki,p;Pi,p) ≤ cc(E;Ki,q ,Ki,q+1;Pi,p) and

cc(A;Ki,q,Ki,q+1;Pi,p) ≤ cc(A;Ki,r,Ki,r+1;Pi,p).

Combined we obtain for s ∈ {q, ..., p − 1} that

cc(A;Ki,s,Ki,s+1;Pi,p) ≤ cc(A;Ki,r,Ki,r+1;Pi,p)

< cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p)

= cc(E;Ki,p−1,Ki,p;Pi,p)

≤ cc(E;Ki,s,Ki,s+1;Pi,p)

which shows that the Legendre-Fenchel condition holds with strict inequality on the

interval [Ki,q,Ki,p]. In the case that Ki,p ∈ KE(P∗
0 ), this readily implies that the

Legendre-Fenchel conditions holds with strict inequality on [Ki,q,K
E
j′ ]. We are thus

left to consider the case where Ki,p ∈ KA(P∗
i )\KE(P∗

0 ). It then follows from the strict

inequality in the Legendre-Fenchel condition on [Ki,q,Ki,p] that the price for European

options with strike Ki,p is computed to be ei,p = Eub(Ki,p,Pi,p−1). According to

Proposition 3.10.5, we can thus conclude that ei,l = Eub(Ki,l,Pi,l−1) for any strike

Ki,l ∈ [Ki,p,K
E
j′ ) ∩ (K(P∗

i )\KE(P∗
i )). Hence, the convex conjugate for the European

price function remains unchanged on the interval [Ki,p−1,K
E
j′ ] and thus the Legendre-

Fenchel condition has to hold with strict inequality on [Ki,q,K
E
j′ ].

Proposition 3.10.14. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Assume further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 ,

i ≥ 0. Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-

admissible P∗
0 -extension Pi,p−1 for p ≥ 1.

Suppose further that the algorithm stops at the strike Ki,p ∈ K(P∗
i ) due to a violation

of ai,p ≥ A(Ki,pe
−rT ,Pi,p) where Ki,pe

−rT ∈ (Ki,q,Ki,q+1] for Ki,q,Ki,q+1 ∈ K(P∗
i ).

If we set j′ = arg min{KE
v ∈ KE(P∗

0 ) : KE
v ≥ Ki,p} and assume that [Ki,p,K

E
j′ ) ∩

Kaux(P∗
i ) = ∅, then the prices ei,p−1, ei,p and êj′ are co-linear.
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Remark 3.10.15. Note that for Ki,p ∈ KE(P∗
0 ) we have KE

j′ = Ki,p and thus the

prices ei,p−1, ei,p and êj′ are trivially co-linear.

Remark 3.10.16. Note, moreover, that Proposition 3.10.14 combined with Proposi-

tion 3.10.4 readily implies that ai,p−1, ai,p and aj′ have to be co-linear as well.

Proof. We need to distinguish between the two cases where either

cc(A;Ki,q,Ki,q+1;Pi,p) < 0

or not. In the first case we know from Proposition 3.10.13 that the Legendre-Fenchel

condition holds with strict inequality on [Ki,q,K
E
j′ ] and that ei,s = Eub(Ki,s,Pi,s−1) for

any strike Ki,s ∈ [Ki,q,K
E
j′ ] ∩ (K(P∗

i )\KE(P∗
i )). Hence, the prices ei,p−1, ei,p and êj′

have to be co-linear.

In the case where cc(A;Ki,q ,Ki,q+1;Pi,p) = 0, we cannot apply Proposition 3.10.13

and thus have to examine the situation separately. We begin by showing that Ki,p =

Ki,1 whenever ai,p < A(Ki,pe
−rT ,Pi,p). To see this, we assume for contradiction that

Ki,p > Ki,1. Since we know that Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension, we can

conclude that ai,s ≥ A(Ki,se
−rT ,P∗

i ) has to hold for any s ∈ {0, ..., p − 1}. Moreover,

we know that the European price function is convex up to the strike Ki,p and thus

ai,p ≥
ai,1 − ai,0

Ki,1
(Ki,p −Ki,1) + ai,1.

Taking into account that cc(A;Ki,q ,Ki,q+1;Pi,p) = 0 and ai,0 = 0, we thus obtain that

ai,p ≥
ai,1 − ai,0

Ki,1
(Ki,p −Ki,1) + ai,1.

=
ai,1 − cc(A;Ki,q,Ki,q+1;P∗

i )

Ki,1
(Ki,p −Ki,1) + ai,1

≥
A(Ki,1e

−rT ,Pi,p) − cc(A;Ki,q,Ki,q+1;P∗
i )

Ki,1
(Ki,p −Ki,1) + ai,1

≥ A(Ki,pe
−rT ,Pi,p).

Hence, we can rule out Ki,p > Ki,1 and are left to consider the situation where Ki,p =

Ki,1. For Ki,1 ∈ KE(P∗
0 ) we have ei,p = êj′ which readily implies that the prices ei,p−1,

ei,p and êj′ are co-linear. In the case where Ki,1 ∈ KA(P∗
i )\KE(P∗

i ), the price for

European options with strike Ki,1 has to be given by ei,1 = Eub(Ki,1,P
∗
i ) as ei,1 =

Elf (Ki,1,P
∗
i ) = â1 contradicts ai,p < A(Ki,pe

−rT ,Pi,p). It thus follows that ei,p−1, ei,p

and êj are co-linear.

Proposition 3.10.17. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.
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Assume also that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 ,

i ≥ 0. Starting with the initial set of prices P∗
i the algorithm computes the Ki,p−1-

admissible P∗
0 -extension Pi,p−1 for p ≥ 1.

Suppose further that the algorithm stops at the strike Ki,p ∈ K(P∗
i ) due to a violation

of ai,p ≥ A(Ki,pe
−rT ,Pi,p) where Ki,pe

−rT ∈ (Ki,q,Ki,q+1] for Ki,q,Ki,q+1 ∈ K(P∗
i ).

We further set

j′ = arg min{KE
v ∈ KE(P∗

0 ) : KE
v ≥ Ki,p}

and

u = arg max{KA
s ∈ KA(P∗

0 ) : KA
s < Ki,pe

−rT }.

If we assume that Ki,q /∈ Kaux
1 (P∗

i ) and [Ki,p,K
E
j′ ] ∩ Kaux(P∗

i ) = ∅, then KE
j′ e

−rT <

KA
u+1.

Proof. Suppose first for contradiction that KE
j′ e

−rT > KA
u+1. According to Proposi-

tion 3.10.14 the European price function is linear on [Ki,p−1,K
E
j′ ]. Let us thus denote

the smallest price co-linear with the prices ei,p−1 and êj′ by ei,l, where we must have

0 ≤ l ≤ p − 1. It then follows that the upper bound A is linear on [Ki,le
−rT ,KE

j′ e
−rT ]

as well.

Suppose now that there exists a strike Ki,s, s ∈ {l, ..., p − 1}, such that Ki,s ∈

KE(P∗
0 ). As we assumed that Pi,p−1 is a Ki,p−1-admissible P∗

0 -extension, we must have

ai,s ≥ A(Ki,se
−rT ,Pi,p). Taking into account that ai,p < A(Ki,pe

−rT ,Pi,p) we obtain

that âu+1 > A(KA
u+1,P

∗
0 ) thereby violating the Standing Assumptions. We can thus

conclude that

[Ki,l,Ki,p−1] ∩KE(P∗
0 ) 6= ∅. (3.60)

Moreover, we can deduce for l ≥ 1 that ei,l = Elf (Ki,l,Pi,l−1), as we assumed that

ei,l is the smallest price co-linear with ei,p−1 and êj′ . This readily implies that the

Legendre-Fenchel condition holds with equality on [Ki,l−1,Ki,l] or l = 0.

In the case where l > 0, we can use the argument in the proof of Proposition 3.10.14

to deduce that cc(A;Ki,q ,Ki,q+1;Pi,p) < 0. Proposition 3.10.13 then states that the

Legendre-Fenchel condition has to hold with strict inequality on the interval [Ki,q,K
E
j′ ].

Combined with the fact that Ki,l ≤ Ki,p−1 < KE
j′ we obtain that Ki,l ≤ Ki,q. In the

second case where l = 0, it follows directly from q ≥ 0 that Ki,l ≤ Ki,q.

Consider now the strike Ki,q, where the above implies that Ki,q ∈ KA(P∗
i )\KE(P∗

0 ).

Note first that this allows us to exclude the case where Ki,q = 0 from consideration

as 0 ∈ KE(P∗
0 ). We can further deduce from Pi,p−1 being a Ki,p−1-admissible P∗

0 -

extension that ai,p−1 ≥ A(Ki,p−1,Pi,p) has to hold. Note further that KA
u+1 ≤ Ki,p

as we either have that Ki,p ∈ KA(P∗
0 ) or Ki,p ∈ (KE(P∗

0 )\KA(P∗
0 )) with Ki,pe

−rT =

KE
j′ e

−rT > KA
u+1. We can thus conclude that the American price function has to be
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convex up to KA
u+1. Combined with the assumption that ai,p < A(Ki,pe

−rT ,Pi,p) we

obtain that

cc(A;Ki,q,K
A
u+1,Pi,p) ≤ cc(A;Ki,q ,Ki,q+1;Pi,p) (3.61)

< cc(A;Ki,p−1e
−rT ,Ki,pe

−rT ;Pi,p)

= cc(A;Ki,p−1e
−rT ,KE

j′ e
−rT ;Pi,p)

where the last equality holds because the upper bound A is linear on the interval

[Ki,le
−rT ,KE

j′ e
−rT ]. If we suppose now that Ki,q ∈ (0,∞) ∩ KA(P∗

0 ), it follows that

Alhs
lb (KE

j e−rT ,P∗
0 ) > aj has to hold which contradicts the Standing Assumptions.

We will now argue that Ki,q /∈ Kaux
2 (P∗

i ). Suppose thus for contradiction that

Ki,q ∈ Kaux
2 (P∗

i ), then there has to exist a strike Ki,s̃ ∈ KE(P∗
0 ) with Ki,s̃e

−rT = Ki,q.

Since we assumed that Ki,pe
−rT ∈ (Ki,q,Ki,q+1], we must have Ki,s̃ < Ki,p. This,

however, would imply that [Ki,l,Ki,p−1] ∩KE(P∗
0 ) 6= ∅ which yields a contradiction to

(3.60).

We are now only left to argue that KE
j′ e

−rT 6= KA
u+1. Then again, this follows

immediately from (viii) of the Standing Assumptions and we can therefore conclude

that KE
j′ e

−rT < KA
u+1.

3.10.5 Properties of the price functions under P∗
1 when a violation of

A ≥ A occurs

Proposition 3.10.18. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Start-

ing with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -

extension P1,p−1 for p ≥ 1.

If the algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗
1 ), then

[K1,pe
−rT ,∞) ∩Kaux(P∗

1 ) = ∅.

Proof. Before we start we would like to point out that during the whole argument we

will use the enumeration of the strikes with respect to the price set P1,p. Let us assume

for contradiction that there exists a strike

K1,s ∈ [K1,pe
−rT ,∞) ∩Kaux(P∗

1 ).

We can then immediately rule out that K1,s ∈ Kaux
1 (P∗

1 ) as the initial set is given by

P∗
1 and thus no violation of convexity has occurred so far. Hence, the constraint at

the strike K1,s must have been introduced to correct a violation of the upper bound.

Suppose now that this violation occurred at the strike K1,p̃e
−rT ∈ [K1,q̃,K1,q̃+1] for

K1,p̃,K1,q̃,K1,q̃+1 ∈ K(P∗
1 ). We can then conclude from the way the strike K1,s is
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chosen that K1,s = K1,q̃+1. Note also that K1,p̃ < K1,p has to hold, as the algorithm

did not compute option prices for non-traded strikes to the right of K1,p yet. We can

thus conclude that K1,pe
−rT ∈ (K1,p̃e

−rT ,K1,s], which in turn implies that q = q̃.

Combining K1,p̃ < K1,p with the fact that P1,p−1 is a K1,p−1-admissible P∗
0 -extension,

we can thus deduce that a1,q̃ ≤ A(K1,q̃,P1,p). Note further that Proposition 3.10.14

guarantees that for j′ = arg min{Kr ∈ KE(P∗
0 ) : Kr ≥ K1,p} the prices e1,p−1, e1,p and

ej′ have to be co-linear. It follows further from K1,se
rT ∈ KE(P∗

0 ) that KE
j′ e

−rT ≤ K1,s.

We can thus conclude from A(K1,p−1e
−rT ,P1,p) ≤ a1,p−1 and A(K1,pe

−rT ,P1,p) > a1,p

that A(KE
j′ e

−rT ,P1,p) > aj′ has to hold. Then again, this contradicts the fact that the

strike K1,s was chosen such that

A(K1,s,P
∗
0 ) − a1,q

K1,s −K1,q
≤

av − a1,q

KE
v e−rT −K1,q

for any strike KE
v e−rT ∈ [K1,q̃,K1,q̃+1] and KE

v ∈ KE(P∗
0 ). We can thus rule out

that there exists a strike K1,s ∈ [K1,p,∞) ∩ Kaux(P∗
1 ) when a1,p < A(K1,pe

−rT ,P1,p)

occurs.

Proposition 3.10.19. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

Suppose further that the algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a vio-

lation of a1,p ≥ A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈

K(P∗
1 ). If [K1,pe

−rT ,∞) ∩Kaux(P∗
1 ) = ∅, then we must either have

a1,q = max{Alhs
lb (K1,q,P1,q−1), AA,l

lb (K1,q,P1,q−1), Alf (K1,q,P1,q−1)}

for K1,q ∈ KE(P∗
1 )\KA(P∗

1 ) or K1,q ∈ KA(P∗
1 ).

Proof. Suppose for contradiction that the price for American options with strike K1,q ∈

KE(P∗
1 )\KA(P∗

1 ) is given by

a1,q = max{Arhs
lb (K1,q,P1,q−1), AA,r

lb (K1,q,P1,q−1)}.

We then start by pointing out that the assumption that [K1,pe
−rT ,∞)∩Kaux(P∗

1 ) = ∅

combined with K1,q ∈ KE(P∗
1 )\KA(P∗

1 ) readily implies that [K1,q,∞) ∩Kaux(P∗
1 ) = ∅.

Hence, we can apply Proposition 3.10.5 and see that

a1,s = max{Arhs
lb (K1,s,P1,s−1), A

A,r
lb (K1,s,P1,s−1)}

for any K1,s ∈ [K1,q,K
A
u+1), where u = arg max{Ks ∈ KA(P∗

0 ) : Ks < K1,pe
−rT }. In
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addition, we have seen in Proposition 3.10.17 that KE
j′ e

−rT < KA
u+1. Then again, this

would imply that

aj′ < max{Arhs
lb (KE

j′ e
−rT ,P∗

0 ), AA,r
lb (KE

j′ e
−rT ,P∗

0 )}

which contradicts either (v) or (viii) of the Standing Assumptions. Hence, we can

conclude that

a1,q = max{Alhs
lb (K1,q,P1,q−1), AA,l

lb (K1,q,P1,q−1), Alf (K1,q,P1,q−1)}

for K1,q ∈ KE(P∗
1 )\KA(P∗

1 ).

Let us write w = arg max{K1,s ∈ KA(P∗
1 ) : K1,s < K1,pe

−rT }, then the result

above can be readily extended to the price of any American option with strike Ki,s ∈

(Ki,w,Ki,q] using the argument above.

Corollary 3.10.20. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗
1 ). If we

assume that [K1,pe
−rT ,∞) ∩Kaux(P∗

1 ) = ∅, then we must have

a1,s = max{Alhs
lb (K1,s,P1,s−1), AA,l

lb (K1,s,P1,s−1), Alf (K1,s,P1,s−1)}

for any strike K1,s ∈ (K1,w,K1,q] ∩KE(P∗
1 ).

Proposition 3.10.21. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗
1 ). Setting

u = arg max{KA
s ∈ KA(P∗

0 ) : KA
s < K1,pe

−rT },

we must have âu ≤ A(KA
u ,Pi,p).

Proof. In the case where KA
u ≤ K1,p−1e

−rT , we can deduce from P1,p−1 being a K1,p−1-

admissible P∗
0 -extension that âu ≤ A(KA

u ,P1,p).

Thus we are left to consider the case KA
u > K1,p−1e

−rT , where we assume for

contradiction that âu > A(KA
u ,P1,p). According to Proposition 3.10.18 we can apply
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Proposition 3.10.14 in this setting and are thus guaranteed that the European price

function is linear on [K1,p−1,K
E
j′ ]. Moreover, this implies that the upper bound A is

linear on [K1,p−1e
−rT ,KE

j′ e
−rT ] as well. We then have to distinguish between the two

situations where the European price function is either linear on [KE
j′−1,K

E
j′ ] or not. If

it were we would have âu > A(KA
u ,P

∗
0 ), as KE

j′−1 ≤ K1,p−1. This, however, can be

ruled out due to (viii) of the Standing Assumptions.

Suppose now that the European price function is not linear on [KE
j′−1,K

E
j′ ]. In this

case there has to exist a strike K1,s̃ ∈ (KE
j′−1,K1,p−1] ∩ (K(P∗

i )\KE(P∗
1 )) such that

K1,s̃ = max{K1,l ∈ (KE
j′−1,K1,p−1] ∩ (K(P∗

1 )\KE(P∗
1 )) :

e1,l = Elf (K1,l,P1,l−1) and e1,l < Eub(K1,l,P1,l−1)}.

In addition, we know that a1,p−1 ≥ A(K1,p−1e
−rT ,P1,p−1) as the price set P1,p−1 is

a K1,p−1-admissible P∗
0 -extension. It then follows from âu > A(KA

u ,P1,p) and KA
u >

K1,p−1e
−rT that there has to exist a strike K1,s ∈ [0,KA

u ) ∩K(P∗
1 ) such that

K1,s = min{K1,l ∈ [0,KA
u ) ∩K(P∗

1 ) :

cc(A;K1,l,K1,l+1;P1,p) < cc(A;K1,p−1e
−rT ,K1,pe

−rT ;P1,p)}.

Note first that the definition of K1,s readily implies that a1,s ≤ A(K1,s,P1,p). The

linearity of the European price function on [K1,p−1,K
E
j′ ], furthermore, allows us to

conclude that the Legendre-Fenchel condition has to hold with strict inequality on every

subinterval of [K1,s,K
E
j′ ]. Then again, this implies that K1,s̃ ≤ K1,s, as we assumed

that the price for European options with strike K1,s̃ is given by e1,s̃ = Elf (K1,s̃,P1,p)

and K1,s̃ ≤ K1,p−1. We are thus given strikes

KE
j′−1 < K1,s̃ ≤ K1,s < KA

u ≤ K1,q < K1,q+1 ≤ K1,p ≤ KE
j′ .

If the strike K1,s ∈ KA(P∗
0 ), then we can use a1,s ≤ A(K1,s,P1,p) and âu >

A(KA
u ,P1,p) together with the convexity of the American price function A(·,P∗

0 ) to

argue that

cc(A;KA
u−1,K

A
u ;P∗

0 ) < cc(A;K1,p−1e
−rT ,KE

j′ e
−rT ;P1,p).

Since âu > A(KA
u ,P1,p) we thus obtain Alhs

lb (KE
j′ ,P

∗
0 ) > aj′ , a contradiction to (v) of

the Standing Assumptions.

We are now only left to rule out K1,s ∈ Kaux
2 (P∗

1 ). This, however, would mean

that K1,se
rT ∈ KE(P∗

0 ). Moreover, we know that the upper bound A is linear on

[K1,s,K
E
j′ e

−rT ] as K1,s ≥ K1,s̃. Hence, we must have âu > A(KA
u ,P

∗
0 ), violating (viii)

of the Standing Assumptions.
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First violation of the upper bound A on [KA
u ,K

A
u+1]

We will first discuss the situation where the current violation of the upper bound is

the first violation of this type in [KA
u ,K

A
u+1].

Proposition 3.10.22. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗
1 ). If we

assume that [KA
u ,K1,pe

−rT ) ∩Kaux(P∗
1 ) = ∅ for

u = arg max{KA
s ∈ KA(P∗

0 ) : KA
s < K1,pe

−rT },

then A(K1,s,P1,p) ≥ a1,s for any strike K1,s ∈ [KA
u ,K1,q] ∩K(P∗

1 ).

Proof. We will use induction on s to show that this result holds. In the base step we

can use Proposition 3.10.21 to argue that âu ≤ A(KA
u ,P1,p).

In the inductive step we will assume that A(K1,s−1,P1,p) ≥ a1,s−1 holds for K1,s−1 ∈

[KA
u ,K1,q) ∩ K(P∗

1 ) and show that this implies A(K1,s,P1,p) ≥ a1,s. Analogously to

Proposition 3.10.21 we have to distinguish between the two cases where either K1,s ≤

K1,p−1e
−rT or not. In the first case A(K1,s,P1,p) ≥ a1,s follows immediately from

P1,p−1 being a K1,p−1-admissible P∗
0 -extension.

Suppose now that K1,s > K1,p−1e
−rT . We begin by pointing out that according to

Corollary 3.10.20

a1,s = max{Alhs
lb (K1,s,P1,s−1), AA,l

lb (K1,s,P1,s−1), Alf (K1,s,P1,s−1)} (3.62)

for any strike K1,s ∈ (KA
u ,K1,q] ∩ (KE(P∗

1 )\KA(P∗
1 )) as K1,w = KA

u .

Suppose for the moment that a1,s = Alf (K1,s,P1,s−1). Since the price functions

A(·,Pi,p) and E(·,Pi,p) have to be convex up to K1,q if the algorithm stops in Ki,p due

to a violation of the upper bound in Ki,pe
−rT , we must have

cc(A;Ki,s−1,Ki,s;Pi,p) = cc(E;Ki,s−1,Ki,s;Pi,p)

= cc(A;Ki,s−1e
−rT ,Ki,se

−rT ;Pi,p)

≥ cc(A;Ki,s̃−1,Ki,s̃;Pi,p),

for s̃ ∈ {s, ..., p}, where the equality in the second line follows from Proposition 3.10.4.

Combined with the induction hypothesis that ai,s−1 ≤ A(Ki,s−1,Pi,p) we readily obtain

that ai,s ≤ A(Ki,s−1,Pi,p) has to hold.

We assume next that the price for American options with strike K1,s is given by
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a1,s = Alhs
lb (K1,s,P1,s−1). We then start by considering the case where the lower bound

Alhs
lb (K1,s,P1,s−1) = Alhs

lb (K1,s,P1,w) for

Alhs
lb (K1,s,P1,w) =

âu − a1,w−1

KA
u −K1,w−1

(K1,s −KA
u ) + âu,

with w = arg max{K1,s ∈ KA(P∗
1 ) : K1,s < K1,pe

−rT }. To see that a1,s ≤ A(K1,s,P1,p)

holds, we have to distinguish between the cases where K1,w−1 ∈ KE(P∗
0 )\KA(P∗

1 ),

K1,w−1 ∈ KA(P∗
0 ) or K1,w−1 ∈ Kaux

2 (P∗
1 ).

In the first case the price for an American option with strike K1,w−1 satisfies

a1,w−1 ≥ AA,r
lb (K1,w−1,P

∗
1 ) according to (3.23) and thus aj′ ≥ Alhs

lb (KE
j′ e

−rT ,P1,w)

has to hold for any strike KE
j′ e

−rT ∈ [KA
u ,K

A
u+1], where KE

j′ ∈ KE(P∗
0 ). Note further

that according to Proposition 3.10.17 KE
j′ e

−rT < KA
u+1 has to hold for

j′ = arg min{KE
s ∈ KE(P∗

0 ) : KE
s ≥ Ki,p}.

It then follows that aj′ ≥ Alhs
lb (KE

j′ e
−rT ,Pi,w). Moreover, we can deduce from the

fact that Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension that ai,p−1 ≥ A(Ki,p−1e

−rT ,Pi,p).

According to Remark 3.10.16 we further know that the prices ai,p−1, ai,p and aj′ are

co-linear. Recall also that we assumed that Ki,p−1e
−rT < Ki,s ≤ Ki,q ≤ Ki,pe

−rT

holds. Taking into account that the American price function A(·,Pi,p) is linear on

[Ki,w−1,Ki,s] we can then conclude that ai,s ≤ A(Ki,s,Pi,p) has to hold.

In the second case American options with strike K1,w−1 are traded in the mar-

ket for a1,w−1. According to the Standing Assumptions we must then have that

aj′ ≥ Alhs
lb (KE

j′ e
−rT ,P∗

0 ) for any strike KE
j′ e

−rT ∈ (KA
u ,K

A
u+1) with KE

j′ ∈ KE(P∗
0 ).

Analogously to the first case we obtain a1,s ≤ A(K1,s,P1,p).

We are thus left to consider the case where K1,w−1 ∈ Kaux
2 (P∗

1 ). Note first that

this implies that a1,w−1 = A(K1,w−1;P
∗
0 ) has to hold. According to the induction

hypothesis we further know that a1,s−1 ≤ A(K1,s−1,P1,p). It follows that we must have

cc(A;K1,w−1,K1,s−1;P1,p) ≤ cc(A;K1,w−1,K1,s−1;P1,p).

We, moreover, know that the price functions A(·,Pi,p) and E(·,Pi,p) are convex as the

algorithm stops at strike Ki,p due to a violation of the upper bound and not due to a

violation of convexity which is checked first. Hence, the upper bound A(·,P1,p) has to be

convex as well. In addition, we know from the assumption that a1,s = Alhs
lb (K1,s,P1,w)

that

cc(A;K1,s−1,K1,s;P1,p) = cc(A;K1,w−1,K
A
u ;P1,p)

has to hold. The convexity of the American price function then implies that

cc(A;K1,w−1,K1,s̃;P1,p) = cc(A;K1,w−1,K
A
u ;P1,p)
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for any strike K1,s̃ ∈ [KA
u ,K1,s]. From the convexity of the upper bound we can further

deduce that

cc(A;K1,w−1,K1,s;P1,p) ≤ cc(A;K1,w−1,K1,s−1;P1,p).

It follows that

cc(A;K1,w−1,K1,s;P1,p) ≤ cc(A;K1,w−1,K1,s;P1,p)

has to hold. Combined with a1,w−1 = A(K1,w−1;P1,p), we then obtain that a1,s ≤

A(K1,s;P1,p) is satisfied.

Before we continue with the situation where a1,s = Alhs
lb (K1,s,P1,s−1), we will show

that the case where a1,s = AA,l
lb (K1,s,P1,p) can be reduced to the situation in the

previous paragraph. To this end, we assume that the price for an American option

with strike K1,s is given by a1,s = AA,l
lb (K1,s,P1,s−1), where

AA,l
lb (K1,s,P1,s−1) =

âu − aj

KA
u −KE

j e−rT
(K1,s −KA

u ) + âu

for KE
j e−rT ∈ (KA

u−1,K
A
u ) and KE

j ∈ KE(P∗
0 ). We can then immediately observe

from KE
j e−rT < KA

u < K1,pe
−rT that KE

j ≤ K1,p−1 has to hold. Since we as-

sumed that P1,p−1 is a K1,p−1-admissible P∗
0 -extension we can also conclude that

aj ≥ A(KE
j e−rT ,P1,p) has to hold. Note further that the prices aj , âu and a1,s have

to be co-linear as we assumed that the price for an American option with strike K1,s is

given by a1,s = AA,l
lb (K1,s,P1,p). The convexity of the American price function A(·,P1,p)

then allows us to conclude that A(KE
j e−rT ,P1,p) = aj has to hold. Hence, we have

successfully reduced this case to the one in the previous paragraph and can therefore

deduce that a1,s ≤ A(K1,s,P1,p).

This leaves us with the situation where a1,s = Alhs
lb (K1,s,P1,s−1) and

Alhs
lb (K1,s,P1,s−1) > Alhs

lb (K1,s,P1,w). (3.63)

In this case there has to exist a strike K1,s̃ ∈ (KA
u ,K1,s] ∩ (KE(P∗

1 )\KA(P∗
1 )) with

K1,s̃ = max{K1,l ∈ (KA
u ,K1,s] ∩KE(P∗

1 )\KA(P∗
1 ) :

a1,l = max{AA,l
lb (K1,l,P1,l−1), Alf (K1,l,P1,l−1)}},

since we ruled out a price given by a1,s̃ = max{Arhs
lb (K1,s̃,P

∗
1 ), AA,r

lb (K1,s̃,P
∗
1 )} in (3.62).

Suppose first that a1,s̃ = AA,l
lb (K1,s̃,P1,s̃−1), then a1,s = AA,l

lb (K1,s,P1,s−1) has to

hold as well. We can therefore apply the argument above to conclude that a1,s ≤

A(K1,s,P1,p).
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Let us now assume that a1,s̃ = Alf (K1,s̃,P1,s̃−1) then we must have

cc(A;K1,s−1,K1,s;P1,p) = cc(A;K1,s̃−1,K1,s̃;P1,p)

if a1,s is given by (3.62). As the Legendre-Fenchel condition holds with equality on

[K1,s̃−1,K1,s̃] we also have cc(E;K1,s̃−1,K1,s̃;P1,p) = cc(A;K1,s̃−1,K1,s̃;P1,p). Com-

bined with the convexity of the European price function E(·,P1,p) we obtain

cc(E;K1,s−1,K1,s;P1,p) ≤ cc(E;K1,s̃−1,K1,s̃;P1,p)

= cc(A;K1,s̃−1,K1,s̃;P1,p)

= cc(A;K1,s−1,K1,s;P1,p).

Then again, we know that the Legendre-Fenchel condition holds on [K1,s−1,K1,s] as

P1,p−1 is a K1,p−1-admissible P∗
0 -extension and thus

cc(E;K1,s−1,K1,s;P1,p) = cc(A;K1,s−1,K1,s;P1,p).

However, this means that the price a1,s is given by a1,s = Alf (K1,s,P1,s−1) and we

argued already at the beginning that a1,s ≤ A(K1,s,P1,p) in this case.

Proposition 3.10.23. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗
1 ). If we

assume that [KA
u ,K1,pe

−rT ] ∩Kaux(P∗
1 ) = ∅ for

u = arg max{KA
s ∈ KA(P∗

0 ) : KA
s < K1,pe

−rT },

then

aj ≥
a1,q − a1,q−1

K1,q −K1,q−1
(KE

j e−rT −K1,q) + a1,q (3.64)

for any strike KE
j e−rT ∈ [K1,q,K1,q+1] with KE

j ∈ KE(P∗
0 ).

Proof. We are required to distinguish between the two situations where either K1,q ∈

KE(P∗
0 )\KA(P∗

1 ) or K1,q ∈ KA(P∗
1 ). Since we assumed that [KA

u ,K1,pe
−rT ]∩Kaux(P∗

1 ) =

∅ the second case can further be reduced to K1,q ∈ KA(P∗
0 ).

We begin by discussing the case where K1,q ∈ KE(P∗
0 )\KA(P∗

1 ). According to
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Corollary 3.10.20 the price for an American option with strike K1,q is given by

a1,s = max{Alhs
lb (K1,s,P1,s−1), A

A,l
lb (K1,s,P1,s−1), Alf (K1,s,P1,s−1)}.

To see that the inequality in (3.64) holds we will consider the different price possibilities

separately. We begin by assuming that a1,q = Alf (K1,q,P1,q−1). Let us further assume

for contradiction that inequality (3.64) is violated. Combined with the fact that a1,q ≤

A(K1,q,P1,p) holds according to Proposition 3.10.22, there has to exist a strike K1,s

such that K1,se
−rT ∈ (K1,q,K

E
j ] such that

cc(A;K1,s−1e
−rT ,K1,se

−rT ;P1,p) > cc(A;K1,q−1,K1,q;P1,p).

This however, implies that

cc(A;K1,s−1e
−rT ,K1,se

−rT ;P1,p) > cc(A;K1,q−1,K1,q;P1,p)

= cc(E;K1,q−1,K1,q;P1,p)

= cc(A;K1,q−1e
−rT ,K1,qe

−rT ;P1,p)

which contradicts the fact that the upper bound A(·,P1,p) is convex. Hence, we can

rule out a1,q = Alf (K1,q,P1,q−1).

Next we will consider the case where a1,q = AA,l
lb (K1,q,P1,q−1). If we assume that

the inequality in (3.64) does not hold, it follows that âu > A(KA
u ,P

∗
0 ) which can be

ruled out according to (v) of the Standing Assumptions.

We are now left to discuss the situation where a1,q = Alhs
lb (K1,q,P1,q−1). To

do so, we have to distinguish between the two cases where the left hand-side lower

bound is either given by Alhs
lb (K1,q,P1,w) or Alhs

lb (K1,q,P1,q−1) with Alhs
lb (K1,q,P1,q−1) >

Alhs
lb (K1,q,P1,w).

Let us consider first the situation where a1,q = Alhs
lb (K1,q,P1,w) and K1,w−1 ∈

KA(P∗
0 ), then the left hand-side lower bound is given by the prices of two traded

American options as [KA
u ,K1,pe

−rT ] ∩Kaux(P∗
1 ) = ∅. In this case we can deduce from

(v) of the Standing Assumptions that aj ≥ Alhs
lb (K1,q,P1,w) has to hold. If K1,w−1 ∈

Kaux
2 (P∗

1 ), then we must have a1,w−1 = A(K1,w−1,P1,p) for K1,w−1e
rT ∈ KE(P∗

0 ) and

thus (3.64) has to hold according to (viii) of the Standing Assumptions. Alternatively,

we may have K1,w−1 ∈ KE(P∗
0 ) which means that the algorithm determined a1,w−1

using (3.23) and thus a1,w−1 ≥ AA,r
lb (K1,w−1,P

∗
0 ) has to hold, readily implying (3.64).

Suppose now that Alhs
lb (K1,q,P1,q−1) with Alhs

lb (K1,q,P1,q−1) > Alhs
lb (K1,q,P1,w). In

this situation there has to exist a strike

K1,s̃ = max{K1,l ∈ (KA
u ,K1,q] : a1,l = max{AA,l

lb (K1,l,P1,l−1), Alf (K1,l,P1,l−1)}}
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as neither a1,s̃ = AA,r
lb (K1,l,P1,l−1) nor a1,s̃ = Arhs

lb (K1,l,P1,l−1) are possible according

to Corollary 3.10.20. Let us assume for the moment that a1,s̃ = AA,l
lb (K1,s̃,P1,s̃−1),

then we must also have a1,q = AA,l
lb (K1,q,P1,q−1) and we can thus argue as above

to see that the inequality in (3.64) has to hold. Analogously, we can deduce from

a1,s̃ = Alf (K1,s̃,P1,s̃−1) that a1,q = Alf (K1,q,P1,q−1) and thus (3.64) has to hold.

We are thus left to consider the case where K1,q ∈ KA(P∗
0 ). Note, however, that

the arguments used to show that (3.64) holds in case that a1,q = Alhs
lb (K1,q,P1,w) apply

here as well, since the argument uses the co-linearity of the prices a1,w−1, a1,w and a1,q

to draw conclusions about the prices a1,w−1, a1,w and aj . We have therefore shown

that the inequality in (3.64) indeed has to hold.

Proposition 3.10.24. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of a1,p ≥

A(K1,pe
−rT ,P1,p) where K1,pe

−rT ∈ (K1,q,K1,q+1] for K1,q,K1,q+1 ∈ K(P∗
1 ). If we

assume that [KA
u ,K1,pe

−rT ] ∩Kaux(P∗
1 ) = ∅ for

u = arg max{KA
s ∈ KA(P∗

0 ) : KA
s < K1,pe

−rT },

then we must either have

a1,q+1 = max{Arhs
lb (K1,q+1,P

∗
0 ), AA,r

lb (K1,q+1,P
∗
0 )}

for K1,q+1 ∈ KE(P∗
1 )\KA(P∗

1 ) or K1,q+1 ∈ KA(P∗
0 ).

Proof. Note first that we only need to consider the case where the strike K1,q+1 ∈

KE(P∗
1 )\KA(P∗

1 ), as K1,q+1 /∈ Kaux(P∗
1 ). Suppose for contradiction that the price for

an American option with strike K1,q+1 was computed to be given by

a1,q+1 = max{Alhs
lb (K1,q+1,P1,q), A

A,l
lb (K1,q+1,P1,q), Alf (K1,q+1,P1,q)}.

We thus have to consider the situations where a1,q+1 = Alhs
lb (K1,q+1,P1,q), a1,q+1 =

AA,l
lb (K1,q+1,P1,q) or a1,q+1 = Alf (K1,q+1,P1,q) separately. The first case where the

price for American options with strike K1,q+1 is given by a1,q+1 = Alhs
lb (K1,q+1,P1,q)

can be ruled out according to Proposition 3.10.23 as the right hand-side in (3.64)

corresponds to the left hand-side lower bound.

In the second case we assume that a1,q+1 = AA,l
lb (Ki,q+1,P

∗
0 ). Proposition 3.10.22

then states that a1,q ≤ A(K1,q,P1,p). From Proposition 3.10.14 we further know

that the prices e1,p−1, e1,p and êj′ have to be co-linear. Moreover, we argued in

Proposition 3.10.17 that KE
j′ e

−rT < KA
u+1 has to hold. Combined this yields aj′ <
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AA,l
lb (Kj′e

−rT ,P∗
0 ). Then again, this would imply that âu > A(KA

u ,P
∗
0 ) and therefore

violate the Standing assumptions. We can thus rule out a1,q+1 = AA,l
lb (Ki,q+1,P

∗
0 ) as

well.

In the third case where a1,q+1 = Alf (K1,q+1,P1,q), we have to distinguish be-

tween the two cases where cc(A;K1,q ,K1,q+1;P1,p) < 0 or not. Suppose first that

cc(A;K1,q ,K1,q+1;P1,p) < 0, then we can combine a1,p < A(K1,pe
−rT ,P1,p) with the

fact from Proposition 3.10.22 that a1,q ≤ A(K1,q,P1,p) to obtain

cc(A;K1,q,K1,q+1;P1,p) < cc(A;K1,p−1e
−rT ,K1,pe

−rT ;P1,p)

= cc(E;K1,p−1,K1,p;P1,p)

≤ cc(E;K1,q ,K1,q+1;P1,p)

This, however, contradicts the assumption that the price for American options with

strike K1,q+1 was computed to be a1,q+1 = Alf (K1,q+1,P1,q).

In the case where cc(A;K1,q ,K1,q+1;P1,p) = 0, we argued in the proof of Propo-

sition 3.10.14 that p = 1. This, however, means that a1,p = e1,p and thus a1,p <

A(K1,p,P1,p) can be ruled out.

We can therefore conclude that the price for an American option with strike K1,q+1

has to be given by

a1,q+1 = max{Arhs
lb (K1,q+1,P1,q), A

A,r
lb (K1,q+1,P1,q)}

for K1,q+1 ∈ KE(P∗
1 )\KA(P∗

1 ) or K1,q+1 ∈ KA(P∗
0 ).

3.10.6 Properties of the price functions under P∗
1 when a violation of

convexity occurs

Proposition 3.10.25. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

If we assume that the algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation

of convexity, then K1,s < K1,p where K1,se
−rT = max{K ∈ Kaux

2 (P∗
1 )}.

Remark 3.10.26. This readily implies that P1,s is a K1,s-admissible P∗
0 -extension.

Remark 3.10.27. Note that it is theoretically possible that K1,s > K1,p although the

strike at which the violation of the upper bound is detected has to be strictly to the left of

K1,p. The reason being that the auxiliary price constraint is not necessarily introduced

at the strike where the violation occurs but at a strike chosen by (3.28).
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Proof. Using the convention that max{∅} = −∞, we readily obtain for Kaux
2 (P∗

1 ) = ∅

that K1,s < K1,p. We therefore only need to consider the case where Kaux
2 (P∗

1 ) 6= ∅ in

the sequel.

Suppose for contradiction that we have K1,s ≥ K1,p but note that K1,se
−rT < K1,p

has to hold as the auxiliary constraint is introduced between the same two strikes of

K(P∗
i ) where the violation occurs. Let us further define

K1,r = min{K1,r̃ ∈ (K1,se
−rT ,K1,p] ∩K(P∗

1 ) :

cc(A;K1,r̃−1,K1,r̃;P1,p) = cc(E;K1,r̃−1,K1,r̃;P1,p)}. (3.65)

Since a violation of convexity at strike K1,p can only occur if the Legendre-Fenchel

condition holds with equality on [K1,p−1,K1,p], we can conclude that K1,r has to exist.

If we, moreover, assume that K1,se
−rT = K1,q+1 under P1,p, then we can conclude from

the previous violation of the upper bound at that strike that

cc(A;K1,q+1,K1,q+2;P1,p) < cc(A;K1,q ,K1,q+2;P1,p) (3.66)

< cc(A;K1,q ,K1,q+1;P1,p).

Note also that the European price function remains unchanged on [K1,q,K1,q+2]. Com-

bined with the fact that the price functions satisfied the Legendre-Fenchel condition

prior to the introduction of the auxiliary price constraint at K1,q+1, we can con-

clude that it now has to hold with strict inequality on [K1,q+1,K1,q+2]. It then

follows by the definition of K1,r that e1,l = Eub(K1,l,P1,l−1) for any strike K1,l ∈

(K1,q+1,K1,r−1] ∩ (KA(P∗
1 )\KE(P∗

0 )).

Suppose that K1,l ∈ (KE
v ,KE

v+1) ∩ KA(P∗
1 ), then we can apply Proposition 3.10.5

as K1,q+1 = max{K ∈ Kaux
2 (P∗

1 )} implies that [K1,l,∞) ∩ Kaux(P∗
1 ) = ∅. It fol-

lows that e1,l̃ = Eub(K1,l̃,P1,l̃−1) for any strike K1,l̃ ∈ [K1,l,K
E
v+1). Hence the Eu-

ropean price function has to be linear on [K1,l,K
E
v+1]. This readily implies that

cc(E;K1,l,K
E
v+1;P1,p) = cc(E;K1,l̃,K1,l̃+1;P1,p).

Suppose for contradiction that K1,r−1 ∈ KA(P∗
0 ), then we know that the price for

European options with strike K1,r−1 has to be given by e1,r−1 = Eub(K1,r−1,P1,r−2) as

the Legendre-Fenchel condition holds with strict inequality according to the definition

of K1,r. Then again, we know that

cc(A;K1,r−1,K1,r;P1,p) ≤ cc(A;K1,r−2,K1,r−1;P1p)

which implies that

cc(A;K1,r−1,K1,r;P1,p) ≤ cc(A;K1,r−2,K1,r−1;P1p)
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< cc(E;K1,r−2,K1,r−1;P1p)

= cc(E;K1,r−1,K1,r;P1p).

Hence, the Legendre-Fenchel condition holds with strict inequality on the interval

[K1,r−1,K1,r], thereby contradicting the definition of K1,r. We can therefore conclude

that K1,r−1 ∈ KE(P∗
0 ).

We can furthermore deduce from K1,s ∈ KE(P∗
0 ) that there has to exist a strike

KE
j for j ∈ {1, ...,m2} with KE

j = K1,s. According to (3.28) we must then have that

cc(A;K1,q ,K1,q+1;P1,p) ≤ cc(A;KE
j−1e

−rT ,KE
j e−rT ;P∗

0 ), (3.67)

as aj = A(K1,q+1,P
∗
1 ) and a1,q ≤ A(K1,q,P1,p).

According to (3.22) the algorithm computes the price for a European option with

strike K1,l ∈ KA(P∗
1 )\KE(P∗

0 ) to be

e1,l = min{Elf (K1,l,P1,l−1), Eub(K1,l,P1,l−1)}

which readily implies that cc(E;K1,l−1,K1,l;P1,l) ≥ cc(E,Eub;K1,l−1,K1,l;P1,l). If

K1,l−1 ∈ KE(P∗
0 ) we must thus have that

cc(E;K1,l−1,K1,l;P1,l) ≥ cc(E;K1,l−1,K1,l;P
∗
0 ).

Combined with the result in Proposition 3.10.4 we obtain that

cc(A;K1,l−1e
−rT ,K1,le

−rT ;P1,l) ≥ cc(A;K1,l−1e
−rT ,K1,le

−rT ;P∗
0 ). (3.68)

Taking into account that the Legendre-Fenchel condition holds with equality on

[K1,r−1,K1,r], we can finally combine the inequalities in (3.66),(3.67) and (3.68) to

obtain

cc(A;K1,r−1e
−rT ,K1,re

−rT ;P1,p) = cc(E;K1,r−1,K1,r;P1,p)

= cc(A;K1,r−1,K1,r;P1,p)

≤ cc(A;K1,q ,K1,q+2;P1,p)

< cc(A;K1,q ,K1,q+1;P1,p)

≤ cc(A;KE
j−1e

−rT ,KE
j e−rT ;P∗

0 )

≤ cc(A;K1,r−1e
−rT ,K1,re

−rT ;P1,p).

Since this is impossible, we can conclude that the Legendre-Fenchel condition has to

hold with strict inequality up to K1,s. This, however, readily implies that K1,s <

K1,p.

149



Chapter 3. Arb. situations in markets trading American and co-terminal European options

Proposition 3.10.28. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity and

starts revising the prices for non-traded options using Algorithm 3. If we write

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)},

then [K1,q̃,∞) ∩Kaux(P∗
1 ) = ∅ has to hold.

Proof. As the algorithm uses the initial set P∗
1 to compute the American and Euro-

pean price functions a violation of convexity prior to K1,p can be ruled out and thus

Kaux(P∗
1 ) = Kaux

2 (P∗
1 ) has to hold. Having never restarted the algorithm before we

can further conclude that [K1,p,∞) ∩ Kaux(P∗
1 ) = ∅. Hence, we are left to argue that

[K1,q̃,K1,p) ∩Kaux(P∗
1 ) = ∅ holds as well.

Suppose now for contradiction that

K1,r = max{K1,r̃ ∈ [K1,q̃,K1,p) ∩Kaux
2 (P∗

1 )}

exists. To detect a violation of the upper bound at K1,r the algorithm has to have

computed option prices up to the strike K1,re
rT ∈ K(P∗

1 ). Since K1,r+1 = min{K ∈

K(P∗
1 ) : K > K1,r} it readily follows that K1,re

rT ≥ K1,r+1 has to hold. Taking into

account that the algorithm prices non-traded options so that the Legendre-Fenchel

condition holds, we can deduce that the Legendre-Fenchel condition has to hold on

[K1,r−1,K1,r+1] prior to the introduction of the auxiliary price constraint at K1,r. Since

the new constraint reduces the price for American options with strike K1,r it follows that

the Legendre-Fenchel condition now has to hold with strict inequality on [K1,r,K1,r+1].

According to the definition of K1,q̃ we must then have K1,q̃ ≥ K1,r+1. It then follows

that K1,r < K1,q̃ yielding a contradiction. We can therefore rule out this situation as

well and thus obtain that [K1,q̃,∞) ∩Kaux(P∗
1 ) = ∅.

Proposition 3.10.29. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity and

starts revising the prices for non-traded options using Algorithm 3. If the algorithm
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reaches the strike K1,q̃, where

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)},

without finding an arbitrage, then K1,q̃ ∈ (KE(P∗
0 )\KA(P∗

1 )) has to hold.

Proof. Observe that a violation of convexity at the strike K1,p can only occur if the

price functions A(·,P1,p) and E(·,P1,p) satisfy the Legendre-Fenchel condition with

equality. According to the definition of K1,q̃ we can then conclude that the Legendre-

Fenchel condition has to hold with equality on [K1,q̃,K1,p]. Hence, Proposition 3.10.11

can be applied to see that an1,q̃ < a1,q̃.

We proceed by excluding K1,q̃ ∈ KE(P∗
0 ) ∩ KA(P∗

1 ) and K1,q̃ ∈ KA(P∗
1 )\KE(P∗

0 )

from consideration. Suppose first that K1,q̃ ∈ KE(P∗
0 )∩KA(P∗

1 ). Since this implies that

American options are traded in the market for a1,q̃ it follows that Alb(K1,q̃,P
∗
0 ) = a1,q̃

holds. Depending on whether K1,p ∈ KA(P∗
0 )\KE(P∗

0 ) or K1,p ∈ KE(P∗
0 )\KA(P∗

0 ) we

can then either use Proposition 3.6.14 or Proposition 3.6.18 to conclude that there has

to exist arbitrage in the market.

Consider now the situation where K1,q̃ ∈ (KA(P∗
1 )\KE(P∗

0 )). According to the

definition of K1,q̃ we know that the Legendre-Fenchel condition has to hold with strict

inequality on [K1,q̃−1,K1,q̃]. Hence, the price for a European option with strike K1,q̃

has to have been determined by Algorithm 2 to be e1,q̃ = Eub(K1,q̃,P1,q̃−1). Taking

into account that [K1,q̃,∞) ∩ Kaux(P∗
1 ) = ∅ according to Proposition 3.10.28 we can

apply Proposition 3.10.5 to see that e1,s = Eub(K1,s,P1,s−1) has to hold for any strike

K1,s ∈ [K1,q̃,K
E
j ) where

KE
j = min{KE

r ∈ KE(P∗
0 ) : K > K1,q̃}.

Then again, this would imply that the price functions A(·,P1,p) and E(·,P1,p) sat-

isfy the Legendre-Fenchel condition with strict inequality on [K1,q̃,K
E
j ] which yields

a contradiction to the definition of the strike K1,q̃. We can therefore conclude that

K1,q̃ ∈ (KE(P∗
0 )\KA(P∗

1 )).

Proposition 3.10.30. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Sup-

pose further that Algorithm 3 revises option prices for non-traded options on [K1,q̃,K1,p],
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where

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)}

without finding an arbitrage. If we write

KA
u = max{KA

s ∈ KA(P∗
0 ) : KA

s < K1,q̃}

then [KA
u ,K1,q̃) ∩Kaux(P∗

1 ) = ∅ has to hold.

Remark 3.10.31. Note that combining Proposition 3.10.28 with Proposition 3.10.30

we readily obtain that [KA
u ,∞) ∩Kaux(P∗

1 ) = ∅ has to hold.

Proof. As the algorithm uses the initial set P∗
1 to compute the American and Euro-

pean price functions a violation of convexity prior to K1,p can be ruled out and thus

Kaux(P∗
1 ) = Kaux

2 (P∗
1 ) has to hold.

We are thus left to show that [KA
u ,K1,q̃]∩Kaux

2 (P∗
1 ) = ∅. For that purpose let us as-

sume for contradiction that there exists Kr̃(P1,p) = min{K ∈ (KA
u ,K1,q̃) ∩Kaux

2 (P∗
1 )}.

Suppose further that the auxiliary price constraint at Kr̃(P1,p) was introduced to cor-

rect a violation of the upper bound at Kp̃(P1,p)e−rT , where Kp̃(P1,p) < Kp(P1,p) has

to hold. We proceed by analysing the situation under P1,p̃ which will then allow us

to draw conclusions about the prices under P1,p. Suppose first that Kp̃(P1,p)e−rT ∈

[Kl(P1,p̃),Kl+1(P1,p̃)] for Kl(P1,p̃),Kl+1(P1,p̃) ∈ K(P∗
0 ). Note, moreover, that the defi-

nition of Kr̃(P1,p) allows us to deduce that [KA
u ,Kp̃(P1,p)e−rT ] ∩Kaux(P∗

1 ) = ∅ has to

hold. We can therefore apply Proposition 3.10.24 to see that

a1,l+1 = max{Arhs
lb (Kl+1(P1,p̃),P∗

0 ), AA,r
lb (Kl+1(P1,p̃),P∗

0 )}

for Kl+1(P1,p̃) ∈ (KE(P∗
0 )\KA(P∗

0 )) or Kl+1(P1,p̃) ∈ KA(P∗
0 ).

If we suppose that the strike Kl+1(P1,p̃) corresponds to Kr+1(P1,p), then we can

conclude from Remark 3.7.5 that Kr(P1,p) = max{K ∈ Kaux
2 (P∗

1 )}. In addition, we

know that

a1,r+1 = max{Arhs
lb (Kr+1(P1,p),P∗

0 ), AA,r
lb (Kr+1(P1,p),P∗

0 )}

for Kr+1(P1,p) ∈ (KE(P∗
0 )\KA(P∗

0 )) or Kr+1(P1,p) ∈ KA(P∗
0 ), as correcting a violation

of the upper bound has no effect on the prices already determined by the algorithm.

Let us first assume that Kr+1(P1,p) ∈ (KE(P∗
0 )\KA(P∗

0 )). According to the defini-

tion of Kr(P1,p) we know that [Kr+1(P1,p),Kq̃(P1,p))∩Kaux(P∗
1 ) = ∅ has to hold. Com-

bined with the result in Proposition 3.10.28 we can then conclude that [Kr+1(P1,p),∞)∩
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Kaux(P∗
1 ) = ∅ has to hold as well. We can thus apply Proposition 3.10.5 to obtain that

a1,q̃ = max{Arhs
lb (Kq̃(P1,p),P∗

0 ), AA,r
lb (Kq̃(P1,p),P∗

0 )}.

Then again, we argued already in Proposition 3.10.11 that an1,q̃ < a1,q̃ has to hold. This,

however, would imply that there exists arbitrage in the market yielding a contradiction

to the assumptions.

Moreover, we can rule out that Kr+1(P1,p) ∈ KA(P∗
0 ) according to the definition of

KA
u . We can thus conclude that [KA

u ,Kq̃(P1,p) ∩Kaux(P∗
1 ) = ∅ has to hold.

Proposition 3.10.32. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Sup-

pose further that Algorithm 3 revises option prices for non-traded options on [K1,q̃,K1,p],

where

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)},

without finding an arbitrage, then a1,q̃ = Alhs
lb (K1,q̃,P1,q̃−1), where

Alhs
lb (K1,q̃,P1,q̃−1) > max{Alf (K1,q̃,P1,q̃−1), Alb(K1,q̃,P

∗
0 ), AA

lb(K1,q̃,P
∗
0 )}.

Proof. We begin by pointing out that Proposition 3.10.29 guarantees that K1,q̃ ∈

(KE(P∗
0 )\KA(P∗

0 )). Suppose for contradiction that the price for an American option

with strike K1,q̃ is given by

a1,q̃ = max{Alf (K1,q̃,P1,q̃−1), Alb(K1,q̃,P
∗
0 ), AA

lb(K1,q̃,P
∗
0 )}.

According to the definition of the strike K1,q̃ we can immediately rule out that a1,q̃ =

Alf (K1,q̃,P1,q̃−1), as the Legendre-Fenchel condition holds with strict inequality on

[K1,q̃−1,K1,q̃].

Recall further that we know from Proposition 3.10.11 that an1,q̃ < a1,q̃ has to hold.

If the price for an American option with strike K1,q̃ was given by

a1,q̃ = max{Alb(K1,q̃,P
∗
0 ), AA

lb(K1,q̃,P
∗
0 )}

Algorithm 3 would have stopped revising option prices at the strike K1,q̃ due to the

existence of an arbitrage. The respective arbitrage portfolio can then be found either
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in Section 3.6.3 or Section 3.6.4. Hence, we can deduce that a1,q̃ = Alhs
lb (K1,q̃,P1,q̃−1)

has to hold.

Proposition 3.10.33. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Sup-

pose further that Algorithm 3 revises option prices for non-traded options on [K1,q̃,K1,p],

where

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)},

without finding an arbitrage. If we further write

KA
u = max{KA

s ∈ KA(P∗
0 ) : KA

s < K1,q̃}

and assume that the strike KA
u corresponds to K1,w under P1,p, then a1,w−1, a1,w and

a1,q̃ are co-linear.

Proof. According to Proposition 3.10.32 the price for an American option with strike

K1,q̃ was computed by Algorithm 2 to be a1,q̃ = Alhs
lb (K1,q̃,P1,q̃−1). It then follows

that the prices a1,q̃−2, a1,q̃−1 and a1,q̃ are co-linear which readily implies that the result

holds for KA
u = K1,q̃−1. We are thus only left to consider the case where KA

u < K1,q̃−1.

Suppose now for contradiction that a1,q̃ > Alhs
lb (K1,q̃,P1,w), then there has to exist a

strike K1,s ∈ (KA
u ,K1,q̃) such that

K1,s = max{K1,s̃ ∈ (KA
u ,K1,q̃) :

a1,s = max{Alf (K1,s,P1,s−1), A
rhs
lb (K1,s,P

∗
0 ), AA,r

lb (K1,s,P
∗
0 )}}.

Let us first rule out that a1,s = max{Arhs
lb (K1,s,P

∗
0 ), AA,r

lb (K1,s,P
∗
0 )}. According to

Remark 3.10.31 we know that [KA
u ,∞) ∩ Kaux(P∗

1 ) = ∅. If the price was indeed given

by a1,s = max{Arhs
lb (K1,s,P

∗
0 ), AA,r

lb (K1,s,P
∗
0 )}, we could apply Proposition 3.10.5 to

argue that a1,q̃ = max{Arhs
lb (K1,q̃,P

∗
0 ), AA,r

lb (K1,q̃,P
∗
0 )} has to hold as well which we

ruled out in Proposition 3.10.32.

Suppose now that the price for an American option with strike K1,s is given by

a1,s = Alf (K1,s,P1,s−1). By the definition of the strike K1,s we can then conclude

that the price for an American option with strike K1,s+1 has to be given by a1,s+1 =

Alhs
lb (K1,s+1,P1,s). Observe that this implies that the Legendre-Fenchel condition has
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to hold with strict inequality on [K1,s,K1,s+1]. In addition,

cc(A;K1,s−1,K1,s;P1,p) = cc(A;K1,s,K1,s+1;P1,p)

has to hold. Taking into account that P1,p−1 is a K1,p−1-admissible P∗
0 -extension and

that K1,q̃ < K1,p, we can further deduce that the European price function E(·,P1,p)

has to be convex on [K1,s−1,K1,s+1]. Hence,

cc(E;K1,s−1,K1,s;P1,p) ≥ cc(E;K1,s,K1,s+1;P1,p)

has to hold. It thus follows that

cc(A;K1,s−1,K1,s;P1,p) = cc(A;K1,s,K1,s+1;P1,p)

< cc(E;K1,s,K1,s+1;P1,p)

≤ cc(E;K1,s−1,K1,s;P1,p)

yielding a contradiction to the assumption that a1,s = Alf (K1,s,P1,s−1). Hence, we

can rule out the existence of the strike K1,s and thus the prices a1,w−1, a1,w and a1,q̃

have to be co-linear.

Remark 3.10.34. Note further that K1,w−1 ∈ KE(P∗
0 )\KA(P∗

1 ) has to hold, as there

exists arbitrage in the market otherwise due to

an1,q̃ < a1,q̃ =
âu − a1,w−1

KA
u −K1,w−1

(K1,q̃ −KA
u ) + âu.

Proposition 3.10.35. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm then stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of con-

vexity. Assume further that Algorithm 3 revised the prices for non-traded options on

[K1,s,K1,p], where K1,s ∈ [KA
u ,K1,p) for

KA
u = max{KA

s̃ ∈ KA(P∗
0 ) : KA

s̃ < K1,q̃}

and

K1,q̃ = max{K1,s̃ ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s̃−1,K1,s̃;P1,p) < cc(E;K1,s̃−1,K1,s̃;P1,p)},

without finding an arbitrage. Then we must have en1,s̃ > e1,s̃ for any strike K1,s̃ ∈
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[K1,s,K1,p) ∩ (KA(P∗
1 )\KE(P∗

0 )) and an1,s̃ < a1,s̃ for any strike K1,s̃ ∈ [K1,s,K1,p) ∩

KE(P∗
0 ).

Proof. According to Proposition 3.10.11 we know already that en1,s̃ > e1,s̃ for any

strike K1,s̃ ∈ [K1,q̃,K1,p) ∩ (KA(P∗
1 )\KE(P∗

0 )) and an1,s̃ < a1,s̃ for any strike K1,s̃ ∈

[K1,q̃,K1,p) ∩KE(P∗
0 ).

Next we consider the case where K1,s̃ ∈ (KA
u ,K1,q̃). Observe first that [KA

u ,∞) ∩

Kaux(P∗
1 ) = ∅ holds according to Remark 3.10.31. Moreover, we know from Proposi-

tion 3.10.29 that K1,q̃ ∈ (KE(P∗
0 )\KA(P∗

1 )). Taking into account the definition of KA
u ,

we readily obtain that (KA
u ,K1,q̃] ∩ KA(P∗

1 ) = ∅. We are thus required to show that

an1,s̃ < a1,s̃ holds. To this end, let us assume for contradiction that there exists a strike

K1,r ∈ [K1,s̃,K1,q̃) ∩K(P∗
1 ) with

K1,r = max{K1,r̃ ∈ [K1,s̃,K1,q̃) ∩K(P∗
1 ) : an1,r̃ ≥ a1,r̃}.

It then follows that an1,r̃+1 < a1,r̃+1 has to hold as K1,r̃+1 ∈ (KE(P∗
0 )\KA(P∗

1 )). Since

the algorithm did not stop revising option prices at K1,r̃+1 we must have

cc(A,An;KA
u ,K1,r̃+1;P1,p) > cc(E;K1,r̃,K1,r̃+1;P1,p)

according to line 34 of Algorithm 3. Recall further that we used equality in the

Legendre-Fenchel condition to compute the revised prices. Hence, the revised price

for American options with strike K1,r̃ corresponds to

an1,r̃ = e1,r̃ +
K1,r̃

K1,r̃+1
[an1,r̃+1 − e1,r̃+1].

Taking into account that the prices for American options with strikes in [K1,w−1,K1,q̃],

computed by Algorithm 2, are co-linear, we readily obtain that an1,r̃ < a1,r̃ has to

hold. Since this yields a contradiction we can conclude that an1,s̃ < a1,s̃ for any strike

K1,s̃ ∈ (KA
u ,K1,q̃].

We are thus left to show that en1,s̃ > e1,s̃ for K1,s̃ = KA
u . According to the stopping

condition in Algorithm 3 the revised price for European options with strike KA
u is

computed if and only if

cc(A,An;K1,s̃,K1,s̃+1;P1,p) > cc(E;K1,s̃,K1,s̃+1;P1,p)

holds. Using equality in the Legendre-Fenchel condition to recompute the price for a

European option with strike KA
u we now readily obtain that en1,s̃ > e1,s̃. We have there-

fore shown that either en1,s̃ > e1,s̃ for any strike K1,s̃ ∈ [K1,s,K1,p)∩ (KA(P∗
1 )\KE(P∗

0 ))

or an1,s̃ < a1,s̃ for any strike K1,s̃ ∈ [K1,s,K1,p) ∩KE(P∗
0 ).
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Corollary 3.10.36. Consider a market trading finitely many American and co-terminal

European put options and suppose that their prices are given by P∗
0 ∈ M. Starting with

the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible P∗

0 -extension

P1,p−1 for p ≥ 1. The algorithm stops at the strike K1,p due to a violation of convexity

and Algorithm 3 is used to revise the already computed prices on [K1,q,K1,p].

If neither an1,s < max{Alb(K1,s,P
∗
0 ), AA

lb(K1,s,P
∗
0 )} nor en1,s > Eub(K1,s,P

∗
0 ) oc-

curred for any strike K1,s ∈ [K1,q,K1,p] ∩ K(P∗
1 ), then the revised price functions

An(·,Prev
1 ) and En(·,Prev

1 ) are convex on [K1,q,K1,p].

Proof. To see that the revised price functions An(·,Prev
i ) and En(·,Prev

i ) are convex

we check whether or not the convex conjugate is decreasing as a function of the strike.

Note further that An(·,Prev
1 ) is convex if and only if En(·,Prev

1 ) is convex, as the con-

vex conjugates of An(·,Prev
1 ) and En(·,Prev

1 ) coincide. This allows us to choose in

each situation individually for which function we show convexity. All possible situ-

ations can be characterised via the type of the three adjacent strikes between which

the two linear pieces in question are given. Hence, there are eight different cases in

which a violation of the convexity of the functions An(·,Prev
1 ) and En(·,Prev

1 ) could

occur. Let us assume that we want to check convexity between the three strikes K1,l,

K1,l+1 and K1,l+2 ∈ K(P∗
1 ). According to the Standing Assumptions the price func-

tions A(·,P∗
0 ) and E(·,P∗

0 ) are convex. We can therefore immediately exclude from

consideration the cases where (K1,l,K1,l+1,K1,l+2) ∈ (KA(P∗
0 ),KA(P∗

0 ),KA(P∗
0 )) or

(K1,l,K1,l+1,K1,l+2) ∈ (KE(P∗
0 ),KE(P∗

0 ),KE(P∗
0 )).

We further know that neither an1,s < max{Alb(K1,s,P
∗
0 ), AA

lb(K1,s,P
∗
0 )} nor en1,s >

Eub(K1,s,P
∗
0 ) occurred for any K1,s ∈ [K1,q,K1,p] ∩ K(P∗

1 ). The corresponding strike

triplets are then given by

(K1,l,K1,l+1,K1,l+2) ∈ (KA(P∗
1 ),KA(P∗

1 ),KE(P∗
1 )),

(K1,l,K1,l+1,K1,l+2) ∈ (KE(P∗
1 ),KA(P∗

1 ),KA(P∗
1 ))

and

(K1,l,K1,l+1,K1,l+2) ∈ (KE(P∗
1 ),KA(P∗

1 ),KE(P∗
1 ))

and can thus be ruled out as well.

We are therefore left to discuss the situations where

(K1,l,K1,l+1,K1,l+2) ∈ (KA(P∗
1 ),KE(P∗

1 ),KA(P∗
1 )),

(K1,l,K1,l+1,K1,l+2) ∈ (KA(P∗
1 ),KE(P∗

1 ),KE(P∗
1 ))

or

(K1,l,K1,l+1,K1,l+2) ∈ (KE(P∗
1 ),KE(P∗

1 ),KA(P∗
1 )).
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In the first case a violation of convexity implies that an1,l+1 > Aub(K1,l+1,P
∗
0 ). Com-

bined with Proposition 3.10.35 we could then deduce that a1,l+1 > Aub(K1,l+1,P
∗
0 )

holds as well, thereby contradicting the assumption that P1,p−1 is a K1,p−1-admissible

P∗
0 -extension.

In the last two cases a violation of convexity corresponds either to the violation

en1,l < Erhs
lb (K1,l,P

∗
0 ) or en1,l+2 < Elhs

lb (K1,l+2,P
∗
0 ). Using Proposition 3.10.35 we see

that en1,s > e1,s for any K1,s ∈ [K1,q,K1,p]∩KA(P∗
1 ). Hence, e1,s̃ < Elb(K1,s̃,P

∗
0 ) would

have to hold as well for s̃ = l in the first case and s̃ = l + 2 in the second case. As we

assumed that P1,p−1 is a K1,p−1-admissible P∗
0 -extension this cannot be the case and

we can therefore rule out the last two situations as well. It follows that the revised

price functions An(·,Prev
1 ) and En(·,Prev

1 ) are convex on [K1,q,K1,p].

Proposition 3.10.37. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

Algorithm 2 stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity. Sup-

pose further that Algorithm 3 revises option prices down to KA
u , where

KA
u = max{KA

s ∈ KA(P∗
0 ) : KA

s < K1,q̃},

and

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)},

then there exists arbitrage in the market.

Proof. We begin by assuming that the strike KA
u corresponds to K1,w under P1,p. Recall

further that Proposition 3.10.33 guarantees that the prices a1,w−1, a1,w and a1,q̃ are

co-linear. The definition of K1,q̃ moreover implies that the Legendre-Fenchel condition

holds with strict inequality on [K1,q̃−1,K1,q̃]. Taking into account the convexity of the

European price function E(·,P1,p) on [0,K1,q̃] we obtain that

cc(A;K1,w−1,K1,w;P1,p) = cc(A;K1,q̃−1,K1,q̃;P1,p)

< cc(E;K1,q̃−1,K1,q̃;P1,p)

≤ cc(E;K1,w−1,K1,w;P1,p).

We can thus conclude that the Legendre-Fenchel condition has to hold with strict

inequality on [K1,w−1,K1,q̃]. Moreover, we can use Remark 3.10.34 to argue that

K1,w−1 ∈ KE(P∗
0 )\KA(P∗

1 ) has to hold. It then follows that e1,w = Eub(K1,w,P
∗
0 ).
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Depending on whether K1,p ∈ (KA(P∗
0 )\KE(P∗

0 )) or K1,p ∈ (KE(P∗
0 )\KA(P∗

0 )) we can

apply either Proposition 3.6.13 or Proposition 3.6.17 to see that there has to exist

arbitrage in the market.

Remark 3.10.38. If Algorithm 3 introduces the auxiliary price constraint (an1,q,K1,q)

to correct a violation of convexity at the strike K1,p, then K1,q ∈ (KA
u ,K1,q̃] has to

hold. The reason being that the algorithm will not stop to the right of K1,q̃ nor will it

introduce an auxiliary price constraint once the strike KA
u is reached.

Proposition 3.10.39. Consider a market trading finitely many American and co-

terminal European put options and suppose that their prices are given by P∗
0 ∈ M.

Starting with the initial set of prices P∗
1 the algorithm computes the K1,p−1-admissible

P∗
0 -extension P1,p−1 for p ≥ 1.

The algorithm stops at the strike K1,p ∈ K(P∗
1 ) due to a violation of convexity and

computes revised prices for non-traded options with strikes K1,s ∈ [K1,q,K1,p]∩K(P∗
1 ).

At the strike K1,q ∈ (KA
u ,K

A
u+1)∩KE(P∗

0 ) the algorithm stops and defines the new initial

set of prices P∗
2 by P∗

2 = ((P1)A ∪ (an1,q,K1,q); (P∗
0 )E). The algorithm is then restarted

with the initial set P∗
2 . If possible violations of the upper bound A are disregarded there

has to exist a strike K2,r ∈ (K2,w,K
A
u ) ∩KE(P∗

0 ) for K2,w = max{K ∈ KA(P∗
2 ) : K <

KA
u } with a2,r = Arhs

lb (K2,r,P
∗
2 ).

Proof. Suppose that the strike KA
u corresponds to K1,s under P1,p and let us write

K1,q̃ = max{K1,s ∈ [0,K1,p] ∩K(P∗
1 ) :

cc(A;K1,s−1,K1,s;P1,p) < cc(E;K1,s−1,K1,s;P1,p)}.

According to Proposition 3.10.33 we then know that the prices for American options

with strikes in [K1,s−1,K1,q̃], computed by Algorithm 2 using the initial set of prices P∗
1 ,

are co-linear. Additionally, Remark 3.10.38 ensures that K1,q ∈ (KA
u ,K1,q̃] and thus

a1,s−1, a1,s and a1,q have to be co-linear. Moreover, we argue in Proposition 3.10.35 that

the revised price an1,q for American options with strike K1,q satisfies an1,q < a1,q. Hence,

the price for American options at strike K1,s−1 will be increased to a2,l = Arhs
lb (K2,l,P

∗
2 )

after restarting. Since we disregard any possible violation of the upper bound we must

have K2,w = K1,w and thus we can conclude that K2,r = K1,s−1 ∈ (K2,w,K
A
u )∩KE(P∗

0 )

with a2,r = Arhs
lb (K2,r,P

∗
2 ).

The following result shows that the algorithm will compute the price for a European

option with strike K2,p ∈ Kaux
2 (P∗

2 ) to be e2,p = Eub(K2,p,P2,p−1).

Proposition 3.10.40. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. As-

sume further that the algorithm extended the initial set of prices from P∗
0 to P∗

2 ⊇ P∗
0 .
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Starting with the initial set of prices P∗
2 the algorithm computes the K2,p−1-admissible

P∗
0 -extension P2,p−1 for p ≥ 1. If we assume that K2,p ∈ Kaux

2 (P∗
2 ), then e2,p =

Eub(K2,p,P2,p−1).

Proof. According to Proposition 3.10.30 we know that [KA
u ,∞) ∩ Kaux

2 (P∗
2 ) = ∅ for

KA
u = max{K ∈ KA(P∗

0 ) : K < Kaux
1 } and thus K2,p < KA

u has to hold. From the

definition of the set Kaux
2 (P∗

2 ), we can further deduce that K2,pe
rT ∈ KE(P∗

0 ). Hence,

there has to exist a j ∈ {1, ...,m2} with K2,pe
rT = KE

j . In addition, we can assume

without loss of generality that K2,s = K2,pe
rT for some s > p under P2,p−1.

To see that the algorithm determines e2,p to be Eub(K2,p,P2,p−1), we first consider

the case where K2,p = min{K ∈ Kaux
2 (P∗

2 )}. We start by showing that a2,p−1 ≤

A(K2,p−1,P2,p−1). To do so, we note that the European price function E(·,P2,p−1)

can only have kinks in strikes of type KE(P∗
0 ) or [0,K2,p−1] ∩ KA(P∗

2 ). Similarly, the

upper bound A(·,P2,p−1) can only have kinks in strikes K with KerT ∈ KE(P∗
0 ) or

KerT ∈ [0,K2,p−1] ∩ KA(P∗
2 ) and thus we have to distinguish between the two cases

where either K2,p−1 ≥ KE
j−1 or K2,p−1 < KE

j−1.

In the first case we can use the fact that P2,p−1 is a K2,p−1-admissible P∗
0 -extension

to infer that a2,p−1 ≥ A(K2,p−1e
−rT ,P2,p−1) has to hold. Taking into account that

A(·,P2,p−1) is convex, we can deduce from a2,p = a2,s that

A(K2,p−1,P2,p−1) =
a2,s − a2,p−1

K2,p −K2,p−1e−rT
(K2,p−1 −K2,p) + a2,s

≥
a2,p −A(K2,p−1e

−rT ,P2,p−1)

K2,p −K2,p−1e−rT
(K2,p−1 −K2,p) + a2,p

≥ a2,p−1

For K2,p−1 < KE
j−1 we have to further distinguish whether K2,p−1 < Kj−1e

−rT or

not. Let us first assume that K2,p−1 < Kj−1e
−rT holds, then we can immediately

conclude from (3.28) that aj−1 ≥ A(Kj−1e
−rT ,P2,p−1). The convexity of E(·,P2,p−1)

then readily implies that a2,p−1 ≤ A(K2,p−1,P2,p−1) has to hold.

The other situation occurs when KE
j−1e

−rT ∈ (K2,p−1e
−rT ,K2,p−1]. Let us now

assume for contradiction that a2,p−1 > A(K2,p−1,P2,p−1). We can then conclude from

K2,p−1e
−rT < KE

j−1e
−rT that a2,p−1 > A(K2,p−1,P

∗
0 ). Note, moreover, that the price

sets P∗
1 and P∗

2 differ only by the auxiliary price constraint (A(Kaux
1 ,P∗

2 ),Kaux
1 ) as

any auxiliary price constraint introduced to correct a violation of the upper bound

during the first iteration is added to P∗
1 . Hence, a change in the price functions has to

be caused either by this new constraint or by the algorithm pricing European options

with strikes in Kaux
2 (P∗

2 ) differently to (3.29). If we set

K2,w = max{K ∈ KA(P∗
2 ) : K < KA

u },
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it follows that the new constraint first appears in the pricing formula for American

options with strikes K > K2,w. The definition of K2,w, however, guarantees that

K2,p ≤ K2,w and thus we are guaranteed that the option prices are unchanged up

to K2,p−1. If we further assume that the strike KE
j corresponds to K1,s̃ and K2,p−1

corresponds to K1,p̃−1 under P1,s̃, then

a1,p̃−1 = a2,p−1

> A(K2,p−1,P
∗
0 )

≥ A(K1,p̃−1,P1,s̃)

where the inequality in the last line holds due to the fact that P1,s̃ is a K1,s̃-admissible

P∗
0 -extension according to Remark 3.10.26. Then again, we can rule out a1,p̃−1 >

A(K1,p̃−1,P1,s̃) for P1,s̃ a K1,s̃-admissible P∗
0 -extension, thereby contradicting the as-

sumption that a2,p−1 > A(K2,p−1,P2,p−1). We have thus shown that regardless of

whether K2,p−1 < KE
j−1 or not a2,p−1 ≤ A(K2,p−1,P2,p−1) has to hold.

We are only left to show that e2,p < Eub(K2,p,P2,p−1) cannot hold. To this end, we

assume for contradiction that e2,p = Elf (K2,p,P2,p−1) with

Elf (K2,p,P2,p−1) < Eub(K2,p,P2,p−1). (3.69)

We can then argue that

cc(E;K2,p−1,K2,p;P2,p−1) = cc(A;K2,p−1,K2,p;P2,p−1)

≤ cc(A;K2,s−1e
−rT ,K2,se

−rT ;P2,p−1)

= cc(E;K2,s−1,K2,s;P2,p−1)

where the inequality in the second line follows from a2,p−1 ≤ A(K2,p−1,P2,p−1) and

a2,p = a2,s. This, however, implies that

cc(E;K2,p−1,K2,p;P2,p−1) = cc(E;K2,s−1,K2,s;P2,p−1).

Taking into account that K2,s ∈ KE(P∗
0 ) and K2,s > K2,p, we must therefore have

cc(E;K2,p−1,K2,p;P2,p−1) = cc(Eub;K2,p−1,K2,p;P2,p−1).

As this is a contradiction to the assumption in (3.69), we can conclude that e2,p =

Eub(K2,p,P2,p−1) has to hold.

This result can now readily be extended to any strike K ∈ Kaux
2 (P∗

2 ), as the Euro-

pean price function remains unchanged and K ≤ K2,w. We have therefore shown that

e2,p = Eub(K2,p,P2,p−1) for any strike K2,p ∈ Kaux
2 (P∗

2 ).
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3.10.7 Miscellaneous

Proposition 3.10.41. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1,

then we can super-replicate an American option with strike Ki,r ∈ Kaux(P∗
i ) for ai,r in

the market.

Proof. Let us first consider the case where Ki,r ∈ Kaux
1 (P∗

i ). To this end, we assume

that the violation of the no-arbitrage bounds that lead to the introduction of the

auxiliary price constraint at the strike Ki,r occurred under the initial price set P∗
j ,

where 1 ≤ j ≤ i. If we suppose further that the strike Kr(P
∗
i ) corresponds to the

strike Ks(P
∗
j ), then there has to exist a strike Kj,p > Kj,s where the actual violation

of convexity occurred. We then have to distinguish between the different types of

violations.

Suppose first that Kj,p ∈ KA(P∗
0 )\KE(P∗

0 ), then the price for European options

with strike Kj,p computed by the algorithm using the initial price set P∗
j violated the

right-hand side lower bound Erhs
lb (Kj,p,P

∗
0 ). The auxiliary price constraint at Kj,s,

then satisfies

aj,s = ej,s +
Kj,s

Kj,p
[aj,p − Erhs

lb (Kj,p,P
∗
0 )], (3.70)

as the prices are revised such that the Legendre-Fenchel condition holds between Kj,s

and Kj,p. Observe further that (3.70) corresponds to the price for the super-replicating

portfolio PLF
1 (Kj,s,Kj,p) given in Proposition 3.6.7. Then again, European options

with strike Kj,p are not traded in the market and thus we need to find a (sub)-

replicating portfolio for the position in the European option with strike Kj,p with cost

of at least Erhs
lb (Kj,p,P

∗
0 ) to replace it. From Proposition 3.10.9 we furthermore know

that Kj,p < KE
m2−1. Hence, there exist at least two strikes larger than Kj,p at which

European options are traded in the market. We can thus use the portfolio PE
3 from

Proposition 3.6.4 to do exactly that. We have therefore shown that an American option

with strike Kj,s can be super-replicated in the market for aj,s. Since we assumed that

the price remains unchanged between the j-th and the i-th iteration of the algorithm

we can conclude that an American option with strike Kj,s can be super-replicated in

the market for ai,r.

Next we will consider the situation where a violation of aj,p ≤ Aub(Kj,p,Pj,p−1)

occurred at the strike Kj,p ∈ (KE(P∗
0 )\KA(P∗

0 )). Recall first that the algorithm revised

the option prices between Kj,s and Kj,p using the starting prices Aub(Kj,p,Pj,p−1) and

ej,p together with equality in the Legendre-Fenchel condition. Hence, we must have

aj,s = ej,s +
Kj,s

Kj,p
[Aub(Kj,p,Pj,p−1) − ej,p].
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According to Proposition 3.6.7 this corresponds to the price of the super-replicating

portfolio PLF
1 (Kj,s,Kj,p). Then again, we know that American options are not traded

in the market at the strike Kj,p and thus we have to find a super-replicating portfolio

for that position in PLF
1 that costs no more than Aub(Kj,p,Pj,p−1). Depending on

whether Kj,p−1 ∈ KA(P∗
0 ) or not the super-replicating portfolio will be given either by

PA
1 from Proposition 3.6.5 or PLF

3 from Proposition 3.6.8. In any case the cost of the

super-replicating portfolio will be given by Aub(Kj,p,Pj,p−1) and thus we found a super-

replicating portfolio for the American option with strike Kj,s that costs aj,s. Having

assumed that the price remains unchanged between the j-th and the i-th iteration

of the algorithm we can conclude that an American option with strike Kj,s can be

super-replicated in the market for ai,r.

We are then only left to consider the case where Ki,r ∈ Kaux
2 (P∗

i ). From Theo-

rem 2.2.3 of Chapter 2 we already know that an American option with strike Ki,r can be

super-replicated by a European option with strike Ki,re
rT . According to (3.28) the algo-

rithm only ever introduces an auxiliary constraint at a strike Ki,r if Ki,re
rT ∈ KE(P∗

0 )

holds. Hence, we can use the traded European option with strike Ki,re
rT to super-

replicate the American option with strike Ki,r in the market. Note further that the

definition of the upper bound A guarantees that the cost of the super-replicating port-

folio is given by ai,r. We have therefore shown that an American option with strike

Ki,r ∈ Kaux(P∗
i ) can be super-replicated in the market for ai,r.

Proposition 3.10.42. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥

1. Starting with the initial set of prices P∗
i the algorithm computes Pi,p−1 a Ki,p−1-

admissible P∗
0 -extension.

If we suppose now that the price for American options with strike Ki,p−1 is given

by ai,p−1 = Ki,p−1 − S0 under Pi,p−1 and that Kvc
i−1 ≤ Ki,p−1 holds, then the price

for American options with strike Ki,p has to be ai,p = Ki,p − S0 and the price for a

European option with strike Ki,p is ei,p = Eub(Ki,p,Pi,p−1) under Pi,p.

Remark 3.10.43. It follows that a violation of convexity can be ruled out at the strike

Ki,p. Note further that a possible violation of the upper bound in Ki,pe
−rT has no

effect on the option prices with strike K ∈ [Ki,p,∞). We can therefore conclude that

the algorithm will compute a Ki,p-admissible P∗
0 -extension without having to restart.

Proposition 3.10.42 can thus be applied repeatedly thereby showing that a violation of

convexity can be ruled out on [Ki,p,∞).

Proof. Note that [Ki,p,∞) ∩ Kaux(P∗
i ) = ∅ has to hold as we assumed that Kvc

i−1 ≤

Ki,p−1. Hence, we only have to discuss the cases where either Ki,p ∈ KA(P∗
0 ) or Ki,p ∈

KE(P∗
0 ). In the first case we can apply Proposition 3.10.8 to see that ai,p = Ki,p−S0 has
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to hold. Let us thus argue now that the price for a European option with strike Ki,p ∈

KA(P∗
0 ) will be computed to be Eub(Ki,p,Pi,p−1). Note first that for Ki,p ∈ KE(P∗

0 )

ei,p = Eub(Ki,p,Pi,p−1) trivially has to be satisfied according to the definition of Eub

in (3.8). Hence, we will only consider the situation where Ki,p ∈ KA(P∗
0 )\KE(P∗

0 ).

According to (3.22) the algorithm determines the price using

ei,p = min{Elf (Ki,p,Pi,p−1), Eub(Ki,p,Pi,p−1)}.

It thus suffices to show that Eub(Ki,p,Pi,p−1) ≤ Elf (Ki,p,Pi,p−1) holds which is the

case if

cc(A;Ki,p−1,Ki,p;Pi,p−1) ≤ cc(E;Ki,p−1,K
E
j ;Pi,p−1)

for j = arg min1≤j′≤m2
{KE

j′ ∈ KE(P∗
0 ) : KE

j′ ≥ Ki,p}. Since we assumed that Pi,p−1 is a

Ki,p−1-admissible P∗
0 -extension it follows that the European price function E(·,Pi,p−1)

is convex. This readily implies that

cc(E;Ki,p−1,K
E
j ;Pi,p−1) ≥ cc(E;Ki,p−1,K

E
m2

;Pi,p−1)

has to hold. We can further deduce from Pi,p−1 being a Ki,p−1-admissible P∗
0 -extension

that ei,s ≥ e−rTKi,s − S0 for any strike Ki,s ∈ KE(Pi,p−1). Taking into account that

êm2 = e−rTKE
m2

− S0 it follows that cc(E;Ki,p−1,K
E
m2

;Pi,p−1) ≥ −S0 has to hold.

Then again, we know that cc(A;Ki,p−1,Ki,p;Pi,p−1) = −S0 as A(K,Pi,p−1) = K − S0

for any strike K ∈ [Ki,p−1,Ki,p]. We can therefore conclude that the price for European

options with strike Ki,p is computed to be ei,p = Eub(Ki,p,Pi,p−1).

Suppose now that Ki,p ∈ KE(P∗
0 )\KA(P∗

i ), then we know already that the price for

European options with strike Ki,p is given by Eub(Ki,p,Pi,p−1). We are therefore only

left to argue that the price for American options with strike Ki,p will be computed to be

ai,p = Ki,p−S0 by the algorithm. To see this we will first show that Arhs
lb (Ki,p,Pi,p−1) =

Ki,p − S0 has to hold, thereby guaranteeing that ai,p ≥ Ki,p − S0.

If there is at most one American option traded in the market to the right of Ki,p this

follows immediately from the definition of the right hand-side lower bound in (3.14).

In the other case where two or more traded American options exist to the right of Ki,p

Proposition 3.10.8 yields the result. If we can now also rule out that ai,p > Ki,p − S0

we have shown that ai,p = Ki,p − S0. Recall that the algorithm uses

ai,p = max{Alb(Ki,p,Pi,p−1), A
A
lb(Ki,p,Pi,p−1), Alf (Ki,p,Pi,p−1)}

to determine the price for an American option with strike Ki,p ∈ KE(P∗
0 )\KA(P∗

i ). We

will thus discuss each of the possible prices separately. Recall that the right-hand side

lower bound in Ki,p has to be given by Arhs
lb (Ki,p,Pi,p−1) = Ki,p − S0. It follows that

ai,p > Ki,p − S0 cannot be caused by the right-hand side lower bound.
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Suppose now that ai,p = Alhs
lb (Ki,p,Pi,p−1). Since we assumed that Pi,p−1 is a

Ki,p−1-admissible P∗
0 -extension, we can conclude that ai,s ≥ Ki,s − S0 has to hold for

any strike Ki,s ∈ [0,Ki,p−1]∩K(Pi,p−1). Taking into account that ai,p−1 = Ki,p−1−S0,

we readily obtain that Alhs
lb (Ki,p,Pi,p−1) ≤ Ki,p − S0. We can therefore conclude that

the price for the American options with strike Ki,p was not determined by ai,p =

Alhs
lb (Ki,p,Pi,p−1) if ai,p > Ki,p − S0.

Next we will consider the case where ai,p = AA,r
lb (Ki,p,Pi,p). We then have to

distinguish between the two cases where there either exists a traded American option

to the right of Ki,p or not. If it does exist its price has to lie on the immediate exercise

line K−S0 according to Proposition 3.10.8. Moreover, it follows from (i) of the Standing

Assumptions that êj ≥ e−rTKE
j −S0 has to hold. From this we can then readily deduce

that aj ≥ e−rTKE
j − S0. Hence, the right-hand side lower bound AA,r

lb has to satisfy

AA,r
lb (Ki,p,Pi,p−1) and can thus be excluded from consideration as well.

In the case where KA
m1

< Ki,p the definition in (3.18) implies that the right hand-

side lower bound AA,r
lb has to be given by AA,r

lb (Ki,p,Pi,p−1) = −∞. This, however,

allows us to rule out ai,p = AA,r
lb (Ki,p,Pi,p−1) in this situation as well.

Let us assume now for the moment that ai,p = AA,l
lb (Ki,p,Pi,p−1). Since P∗

0 ∈ M we

know that the price for an American option with strike KA
j ∈ KA(P∗

0 ) has to satisfy

âj ≥ KA
j −S0. In particular, we must have âu ≥ KA

u −S0 for KA
u = max{K ∈ KA(P∗

0 ) :

K ≤ Ki,p−1}. Moreover, we know that the price for an American option with strike

Ki,p−1 has to satisfy ai,p−1 ≥ AA,l
lb (Ki,p−1,Pi,p−2) as we assumed that Pi,p−1 is a Ki,p−1-

admissible P∗
0 -extension. Combined we obtain that AA,l

lb (Ki,p,Pi,p−1) ≤ Ki,p − S0 has

to hold. It thus follows that we cannot have ai,p = AA
lb(Ki,p,Pi,p−1).

We consider now the last case where ai,p = Alf (Ki,p,Pi,p−1). We then know that

cc(A;Ki,p−1,Ki,p;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p).

Taking further into account that ai,p−1 = Ki,p−1 − S0 and ai,p > Ki,p − S0, we obtain

that cc(E;Ki,p−1,Ki,p;Pi,p) < −S0 has to hold. We then proceed by showing that this

is not possible. Since Pi,p−1 is a Ki,p−1-admissible P∗
0 -extension we can deduce that

the European price function E(·,Pi,p−1) is convex. It then follows from Ki,p ∈ KE(P∗
0 )

that

cc(E;Ki,p−1,Ki,p;Pi,p−1) ≥ cc(E;Ki,p−1,K
E
m2

;Pi,p−1) (3.71)

and

cc(E;Ki,p−1,Ki,p;Pi,p) = cc(E;Ki,p−1,Ki,p;Pi,p−1) (3.72)

have to hold. We can further observe that the price for European options with strike
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Ki,p−1 has to satisfy ei,p−1 ≥ e−rTKi,p−1 − S0 as Pi,p−1 is a Ki,p−1-admissible P∗
0 -

extension. Combined with êm2 = e−rTKE
m2

− S0 we readily obtain that

cc(E;Ki,p−1,K
E
m2

;Pi,p−1) ≥ −S0.

Taking into account the inequalities in (3.71) and (3.72) we see that

cc(E;Ki,p−1,Ki,p;Pi,p) ≥ −S0

which contradicts Alf (Ki,p,Pi,p−1) > Ki,p − S0. We can therefore rule out that the

price for an American options with strike Ki,p exceeds Ki,p − S0.

Proposition 3.10.44. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Starting with the initial set P∗
i the algorithm computes the Ki,q-admissible P∗

0 -extension

Pi,q where Ki,q = max{K ∈ K(P∗
i ) : K < KE

m2
e−rT }. If Kvc

i−1 ≤ Ki,q the price for an

American option with strike Ki,q+1 is given by ai,q+1 = Ki,q+1 − S0 under Pi,q+1.

Proof. From Kvc
i−1 ≤ Ki,q we can immediately conclude that Ki,q+1 /∈ Kaux(P∗

i ).

We thus only have to distinguish between the case where either Ki,q+1 ∈ KA(P∗
0 )

or Ki,q+1 ∈ KE(P∗
0 ). If we assume first that Ki,q+1 ∈ KA(P∗

0 ), then we can ap-

ply Corollary 3.6.12 to see that ai,s = Ki,s − S0 has to hold for any strike Ki,s ∈

[KE
m2

e−rT ,∞) ∩KA(P∗
0 ) including Ki,q+1.

Suppose now that Ki,q+1 ∈ KE(P∗
0 )\KA(P∗

0 ) we then need to distinguish between

the situations where either ai,q > Ki,q − S0 or not. In the first case we must have

A(KE
m2

e−rT ,Pi,q+1) > am2 as ai,q+1 ≥ Ki,q+1 − S0 has to hold according to (3.23).

It follows that a violation of the upper bound occurs at the strike KE
m2

e−rT . If a

generalised version of Proposition 3.10.24 holds we could then argue that the price for

an American option with strike Ki,q+1 has to be given by

ai,q+1 = max{Arhs
lb (Ki,q+1,Pi,q), A

A,r
lb (Ki,q+1,Pi,q)}.

Since P∗
0 ∈ M we are guaranteed that the prices for traded European options exceed

the lower bound e−rTK−S0. The definition of the upper bound A then readily implies

that aj ≥ e−rTKE
j −S0 for KE

j ∈ KE(P∗
0 ). If Ki,q+1 < KA

m1
this yields a right hand-side

lower bound AA,r
lb at Ki,q+1 given by AA,r

lb (Ki,q+1,Pi,q) ≤ Ki,q+1 − S0. In the case that

KA
m1

< Ki,q+1 the right-hand side lower bound is given by AA,r
lb (Ki,q+1,Pi,q) = −∞

according to the definition in (3.18). The lower bound Arhs
lb is furthermore given by

Ki,q+1 − S0 at the strike Ki,q+1. The reason begin that either all the prices for traded

American options with strikes larger than KE
m2

e−rT lie on the immediate exercise line,
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as argued above, or because the right-hand side lower bound is defined to be Ki,q+1−S0

in the case where Ki,q+1 > KA
m1−1 holds.

If we consider now the situation where the price for American options with strike

Ki,q is given by ai,q = Ki,q − S0 we can apply Proposition 3.10.42 to see that ai,q+1 =

Ki,q+1 − S0 has to hold. We can therefore conclude that the price for an American

option with strike Ki,q+1 has to be given by ai,q+1 = Ki,q+1 − S0 under Pi,q+1.

Proposition 3.10.45. Suppose finitely many American and co-terminal European put

options are traded in the market and that their prices are provided by P∗
0 ∈ M. Assume

further that the algorithm extended the initial set of prices from P∗
0 to P∗

i ⊇ P∗
0 , i ≥ 1.

Using the initial set of prices P∗
i the algorithm terminates at the strike KE

m2
having

constructed a KE
m2

-admissible P∗
0 -extension. Suppose that the final set of prices is

given by Pi,n, then ai,s = Ki,s − S0 for any strike Ki,s ∈ [Ki,q+1,∞) ∩ K(Pi,n) where

Ki,q+1 = min{K ∈ K(Pi,n) : K > KE
m2

e−rT }.

Proof. According to Proposition 3.10.44 the algorithm will initially compute the price

for an American option with strike Ki,q+1 to be ai,q+1 = Ki,q+1 − S0. We then

argue in Proposition 3.10.42 that the price for any American option with a strike

Ki,s ∈ [Ki,q+1,∞) ∩ K(P∗
i ) has to be given by ai,s = Ki,s − S0 as well. Moreover,

Remark 3.10.43 points out that a violation of convexity can be ruled out at any such

strike. Hence, the algorithm will not have to be restarted and thus the prices for

American options with strike K ≥ Ki,q+1 in Pi,n will be given by the prices calculated

initially.

3.11 Flowchart

In this section we will provide a flowchart for the algorithm given in Section 3.5. The

first flowchart contains the entire Algorithm 2. Algorithm 3 is then presented on the

following two pages whereas Algorithm 4 concludes this section.
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D

Set p = 1

Ki,p ∈

K(P∗
i )\KA(P∗

i )

Compute ei,p as

in l.9 of Alg 2

Set ani,p, eni,p,

Prev
i as in l.16

A

Set p = p + 1

Start

Set i = 1

Compute ai,p as

in l.6 of Alg 2,

update Pi,p

Ki,p ∈

K(P∗
i )\KE(P∗

i )

ei,p <

Elb(Ki,p,P
∗
0 )

A(Ki,pe
−rT ,Pi,p) >

ai,p

Ki,p < KE
m2

ai,p >

Aub(Ki,p,P
∗
0 )

Set ani,p, eni,p,

Prev
i as in

l.18 of Alg 2

Update Pi,p as in

l.11 as in Alg 2

B

Stop

Set ani,p, eni,p,

Prev
i as in

l.20 of Alg 2

ai,p >

Aub(Ki,p,Pi,p−1)

A

A(Ki,pe
−rT ,Pi,p) >

ai,p

B

E

yes

yes

no

yes

no

yes

no

yes

no

yes

no

yes no

no

yes

no

Figure 3-3: Flowchart for Algorithm 2
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A

Set q = p − 1
Ki,q ∈

K(P∗
i )\KE(P∗

i )

Compute ani,q,

eni,q and update

Prev
i as in

l.8 of Alg 3

ani,q <

Alb(Ki,q,P
∗
0 )

ani,q <

AA
lb(Ki,q,P

∗
0 )

ani,q <

At1
lb (Ki,q,P

∗
i )

ani,q < 0

stop

Compute ani,q,

eni,q and update

Prev
i as in

l.6 of Alg 3

ai,q =

Alhs
lb (Ki,q,Pi,q−1)

Alhs
lb (Ki,q,Pi,q−1) >

Alf (Ki,q,Pi,q−1)

eni,q >

Eub(Ki,q,P
∗
0 )

stop

Set q = q − 1

Ki,q ∈ Kaux
1 (P∗

i )

Remove

(ai,q,Ki,q)

from P∗
i and Ki,q

from Kaux
1 (P∗

1 )

C

yes

no

no

no

yes

yes

yes

yes
no

no

no

yes

yes

no

yes

no

yes

no

Figure 3-4: Part 1 of the flowchart for Algorithm 3
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C

Set j = 1

Ki,q−j /∈ KA(P∗
i )

Set s = 0

Set j = j + 1

≤*

s < j − 1

Compute eni,q−j

as in l.42 of Alg 3

stop

Set Kaux
1 (P∗

i+1) =

Kaux
1 (P∗

i )∪Ki,q−s

Compute

eni,q−s−1, a
n
i,q−s−1

and update Prev
i

as in l.40 of Alg 3

Set Kaux
2 (P∗

i+1) =

Kaux
2 (P∗

i )

Set s = s + 1

Set i = i + 1

and update P∗
i as

in l.37 of Alg 3

D

yes

no

yes

no

yes

no

Figure 3-5: Part 2 of the flowchart for Algorithm 3

*cc(A,An;Ki,q−j ,Ki,q−s;Pi,p) ≤ cc(E;Ki,q−s−1,Ki,q−s;Pi,p)
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B

Set q1 = arg max{Ki,j′ ∈ K(P∗
i ) : Ki,j′ < Ki,pe

−rT }

Set Ki,q2 = arg min
ai,v−ai,q1

Ki,ve−rT−Ki,q1

Set (P∗
i )′ = ((P∗

i )A ∪ (ai,q2,Ki,q2); (P∗
0 )E)

Set s = q1

Set (Pi,s+1)
′ = ((Pi,s)

A ∪ (ai,q2 ,Ki,q2); (Pi,s)
E ∪ (Eub(Ki,q2 ,Pi,q1),Ki,q2))

s ≤ p

Set Kaux
2 (P ′

i) = Kaux
2 (Pi) ∪ Ki,q2

E

Set s = s + 1
yes

no

Figure 3-6: Flowchart for Algorithm 4
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