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PATHWISE INEQUALITIES FOR LOCAL TIME: APPLICATIONS
TO SKOROKHOD EMBEDDINGS AND OPTIMAL STOPPING

BY A. M. G. COX,1 DAVID HOBSON2 AND JAN OBŁÓJ3

University of Bath, University of Warwick and Imperial College London

We develop a class of pathwise inequalities of the form H(Bt ) ≥ Mt +
F(Lt ), where Bt is Brownian motion, Lt its local time at zero and Mt a lo-
cal martingale. The concrete nature of the representation makes the inequality
useful for a variety of applications. In this work, we use the inequalities to de-
rive constructions and optimality results of Vallois’ Skorokhod embeddings.
We discuss their financial interpretation in the context of robust pricing and
hedging of options written on the local time. In the final part of the paper we
use the inequalities to solve a class of optimal stopping problems of the form
supτ E[F(Lτ ) − ∫ τ

0 β(Bs) ds]. The solution is given via a minimal solution
to a system of differential equations and thus resembles the maximality prin-
ciple described by Peskir. Throughout, the emphasis is placed on the novelty
and simplicity of the techniques.

1. Introduction. The aim of this paper is to develop and explore a new ap-
proach to solving Skorokhod embeddings and related problems in stochastic con-
trol based on pathwise inequalities of the form

H(Bt) ≥ Mt + F(Lt) ∀t ≥ 0,(1)

where Bt is Brownian motion, Lt is its local time in zero and Mt is a local martin-
gale. Then, provided the stopping time τ is finite almost surely, and provided the
stopped martingale Mt∧τ is uniformly integrable, we have

E[H(Bτ )] ≥ E[F(Lτ )].(2)

There is equality in (2) if there is equality at τ in (1).
Our aim is to find pairs (H,F ) such that (1) holds and to use this pathwise

inequality to deduce inequalities of the form (2). We can then investigate the opti-
mality properties of (2). For the examples we have in mind F and H are typically
convex. Further we often consider stopping rules of the form

τφ = inf{u :Bu /∈ (φ−(Lu),φ+(Lu))}
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and then there is a 1–1 correspondence between φ+/− and the law of the stopped
process.

We shall consider three different approaches to the inequalities in (1) and (2).
First, given H and φ+/− we find F (and M) such that (1) and then (2) holds.

This will build our intuition for constructing inequalities of this type.
Second, and more importantly, given F we find H such that (1) holds, and

then for all τ satisfying suitable integrability conditions we also have E[F(Lτ )] ≤
E[H(Bτ )]. If we let T (μ) denote the set of stopping times such that (Bt∧τ ) is a
uniformly integrable martingale, and such that Bτ ∼ μ, then for all τ ∈ T (μ)

E[F(Lτ )] ≤
∫

R

H(x)μ(dx).

In particular, for all minimal solutions of the Skorokhod embedding problem for
μ in B we have a bound on E[F(Lτ )]. We carry out this program in Section 2. We
recover results of Vallois [22, 23] for Skorokhod embeddings based on local times.
See Cox and Hobson [8] for a recent study concerned with similar embeddings
and Obłój [15] for an extensive survey and history of the Skorokhod embedding
problem.

Third, given F and H satisfying (1), then for suitable τ we have E[F(Lτ ) −
H(Bτ )] ≤ 0. This means we can consider problems of the form

sup
τ

E[F(Lτ ) − H(Bτ )]

both for general τ and for τ ∈ T (μ) for given μ; further, under suitable integra-
bility conditions, the problem can be recast (via Itô’s lemma) as the more natural
stopping problem

sup
τ

E

[
F(Lτ ) −

∫ τ

0

1
2H ′′(Bs) ds

]
.

This is the subject of Section 3. Similar problems, but with the local time replaced
by the maximum process, have been studied by Jacka [13], Dubins, Shepp and
Shiryaev [9], Peskir [19], Obłój [17] and Hobson [12]. The formulation of our
solution will be similar to the maximality principle of Peskir [19].

One of our motivations for studying inequalities of the form (2) and the relation-
ship to pathwise inequalities such as (1), is the interpretation of such inequalities in
mathematical finance as superreplication strategies for exotic derivatives, with as-
sociated price bounds. The idea is that if we can identify a martingale stock price
process St with a time-changed Brownian motion such that ST ∼ Bτ , and if we
know the prices of vanilla call options on ST , then this is equivalent to knowing
the law of Bτ . If we can also identify the martingale M in (1) with the gains from
trade from a simple strategy in S, then we have a superreplicating strategy for an
exotic option with payoff which is a function of the local time of S. Furthermore
this strategy and associated price do not depend on any model assumptions.
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For the case where the exotic option has a payoff which depends on the maxi-
mum (e.g., lookback and barrier options) this idea was exploited by Hobson [11]
and Brown, Hobson and Rogers [5]. Financial options with payoff contingent on
the local time are rare, but they can appear naturally when considering the “naive”
hedging of plain vanilla options and have recently been the subject of a study by
Carr [6]. A further discussion of the application of our ideas to mathematical fi-
nance is given in Section 2.3.

NOTATION. We work on a filtered probability space satisfying the usual hy-
potheses. (Bt ) denotes a real-valued Brownian motion and (Lt ) is its local time
at zero (see Revuz and Yor [20], Chapter VI, for definition and further proper-
ties). We stress, however, that one can equally assume that (Bt ) is a diffusion on
natural scale (thus a Markov local martingale) with B0 = 0 and 〈B〉∞ = ∞ a.s.
No changes in the paper are needed apart from replacing dt with d〈B〉t where
appropriate. Furthermore, we could also work with a recurrent time-homogenous
diffusion using the scale function to change the coordinates (see the remarks in
Section 3).

F,H will typically denote convex functions and μ a probability measure with
μ(x) = μ([x,∞)) denoting the right-tail. We write X ∼ μ or L(X) = μ to say
that the law of X is μ.

2. Convex functions of the terminal local time. We begin by studying the
first and second problems suggested in the Introduction. First, given H and μ we
will find F and M such that (1) holds. Then we will reverse the process, so that for
a given F and μ we will find H . For an appropriate H it will follow that (2) holds
for all minimal τ with Bτ ∼ μ. Furthermore, the function H will be optimal in
the sense that there exists a stopping time τφ (which we give explicitly) for which
there is equality in (2). We will first consider the well-behaved case to build up
intuition and then, in Section 2.2, develop the general approach.

Throughout this section we work with convex functions F and H . The essential
property of convex functions that we use is one of the most fundamental, namely
that the graph of H lies above any tangent to it, that is, H(b) ≥ H ′(a)(b − a) +
H(a).

2.1. Symmetric terminal laws with positive densities. Let H be a symmetric,
strictly convex function which is differentiable on R \ {0}. Then, for any a, b > 0
we have H(−b) = H(b) ≥ H ′(a)(b − a) + H(a), with equality if and only if
b = a; see Figure 1.

Let φ be any continuous, strictly increasing function with φ(0) = 0, and let
ψ denote its inverse. Define γ (l) = H ′(φ(l)), �(l) = ∫ l

0 γ (m)dm and θ(l) =
H(φ(l)) − φ(l)H ′(φ(l)). Then with b = |Bt | and a = φ(Lt) we have for t ≥ 0,

H(Bt) ≥ H ′(φ(Lt ))|Bt | − H ′(φ(Lt ))φ(Lt ) + H(φ(Lt))
(3)

= Mt + F(Lt),
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FIG. 1. Since H is convex we have H(b) ≥ H(φ(l)) + (b − φ(l))H ′(φ(l)). Further the intercept
of this tangent with the y-axis is θ(l) = H(φ(l)) − φ(l)H ′(φ(l)).

where Mt = M
H,φ
t = |Bt |γ (Lt) − �(Lt) and F(l) = FH,φ(l) = �(l) + θ(l).

By construction M
H,φ
t is a local martingale (cf. Obłój [16]), so if τ is a stopping

time such that E[MH,φ
τ ] = 0, then

E[FH,φ(Lτ )] ≤ E[H(Bτ )].(4)

Define τφ = inf{u > 0 : |Bu| = φ(Lu)} and suppose φ is such that 0 < τφ < ∞
a.s. Let μ = L(Bτφ ). Then for any solution of the Skorokhod embedding problem

for μ in B with the property that E[MH,φ
τ ] = 0 we have

E[FH,φ(Lτ )] ≤
∫

R

H(x)μ(dx).(5)

Thus we obtain an upper bound for the value E[FH,φ(Lτ )]. There is equality in (5)

if τ = τφ and E[MH,φ
τφ ] = 0. Further, among τ ∈ T (μ) with E[MH,φ

τ ] = 0, this is
the only stopping time with this property. To see this recall that a stopping time τ

is minimal if and only if (Bt∧τ ) is uniformly integrable (Monroe [14], Theorem 3),
and since we have strict inequality in (3) unless |Bτ | = φ(Lτ ), it must be the case
that for τ ∈ T (μ) to yield equality in (5) we must have that τ is the first positive
time that |Bτ | = φ(Lτ ).

Stopping times of the form τφ were used by Vallois [22] to solve the Skorokhod
embedding problem. For a given symmetric centered probability measure μ on R,
Vallois ([22], Theorem 3.1) defined a function φ = φ(μ) such that Bτφ ∼ μ and
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(Bt∧τφ : t ≥ 0) is a uniformly integrable martingale.4 Vallois [23], Theorem 1, then
proved that his stopping times maximize the expectation of convex functions of
LT . Using our methodology we recover his results: both the embedding property
and the optimality with respect to the convex ordering. Formally, the results of this
section are not new but the emphasis is on the novelty of the method. Indeed, in
both of his papers Vallois relied on martingale methods to compute laws of stopped
processes and did not have any pathwise inequalities in the spirit of (3). In this
sense our method offers a new interpretation and novel applications, in particular
in the context of financial mathematics (see Section 2.3 below).

Our aim now is to reverse the procedure described above. For a given convex
function F and measure μ we aim to find H such that FH,φ = F where φ is related
to μ via Vallois’ solution to the Skorokhod embedding problem.

To illustrate our method we begin with the simplest case and for the remainder
of this section we adopt the following simplifying assumptions:

(A1.1) Suppose μ is symmetric, with finite first moment and with a positive den-
sity (with respect to Lebesgue measure) on R.

(A1.2) Suppose F : R+ �→ R
+ is convex and increasing and has continuous first

derivative F ′ which is bounded by K .
(A1.3) Suppose φ is any continuous, strictly increasing function such that φ(0) =

0 and such that
∫

0+ dl/φ(l) < ∞ and
∫ ∞

dl/φ(l) = ∞.

Denote the inverse to φ by ψ . Define the measure ν ≡ νφ on R
+ via

ν(l) = ν([l,∞)) = exp
(
−

∫ l

0

dm

φ(m)

)
.(6)

By the assumptions on φ, ν is a probability measure with density ν(l)/φ(l).
Define H ≡ HF,φ via

H ′(b) = 1

ν(ψ(b))

∫ ∞
ψ(b)

F ′(m)ν(dm); H(0) = F(0).(7)

By the assumptions on F we have that H ′ is well defined and bounded by K . It is
easy to show that H ′ is increasing so that H is convex. Indeed,

H ′′(b) = ψ ′(b)

bν(ψ(b))

∫ ∞
ψ(b)

[F ′(m) − F ′(ψ(b))]ν(dm)(8)

= ψ ′(b)

b

(
H ′(b) − F ′(ψ(b))

)
(9)

which is nonnegative since ψ is increasing and F is convex.

4Vallois [22] actually solved the problem for any centered probability measure on R considering
more general asymmetric stopping times as in (16) below. See [22] or Obłój ([15], Section 3.12) for
more details on the general construction.
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LEMMA 2.1. Suppose H ′(x) ≤ K and τ is such that (Bt∧τ ) is a uniformly
integrable (UI) martingale. Then E[MH,φ

τ ] = 0.

PROOF. Let σn = inf{t : |Bt | ≥ n}, ρm = inf{t :Lt ≥ m} and τm,n = τ ∧ σn ∧
ρm. As the local martingale (M

H,φ
t∧τm,n

: t ≥ 0) is bounded it is UI and EM
H,φ
τm,n = 0

so that

E�(Lτm,n) = Eγ (Lτm,n)|Bτm,n | = Eγ (Lτ∞,n)|Bτ∞,n |1τ∧σn≤ρm.

By the monotone convergence theorem, as m → ∞ both sides converge, and in
the limit we obtain E�(Lτ∞,n) = Eγ (Lτ∞,n)|Bτ∞,n |. Now, as n → ∞, the left-
hand side converges, again by the monotone convergence theorem, to E[�(Lτ )],
since τ = τ∞,∞. The right-hand side converges to Eγ (Lτ )|Bτ | since γ is bounded
and |Bt∧τ | is UI, so that finally E[MH,φ

τ ] = 0. �

PROPOSITION 2.2. (i) Define H ≡ HF,φ via (7). Then, for all τ such that
(Bt∧τ ) is a uniformly integrable martingale,

E[F(Lτ )] ≤ E[HF,φ(Bτ )].(10)

(ii) Let φμ be the inverse to ψμ where ψμ is given by

ψμ(x) =
∫ x

0

s

μ(s)
μ(ds).(11)

Let τμ ≡ τφμ = inf{u > 0 : |Bu| = φμ(Lu)}. Then Bτμ ∼ μ, and E[F(Lτμ)] =∫
HF,φμ(x)μ(dx).
(iii) ∀τ ∈ T (μ), E[F(Lτ )] ≤ E[F(Lτμ)].

PROOF. (i) The first part follows from (4) provided we can show that FH,φ ≡
F and E[MH,φ

τ ] = 0. This latter statement is guaranteed by Lemma 2.1. For the
former, recall that FH,φ(l) = ∫ l

0 H ′(φ(m)) dm − φ(l)H ′(φ(l)) + H(φ(l)). Setting
l = ψ(b) and differentiating, we obtain from (9)

ψ ′(b)F ′
H,φ(ψ(b)) = ψ ′(b)H ′(b) − bH ′′(b) = ψ ′(b)F ′(ψ(b)).

Since FH,φ(0) = H(0) = F(0) and the image of ψ is the whole of R we conclude
that FH,φ ≡ F .

(ii) Note first that∫ u

0

dl

φμ(l)
=

∫ φμ(u)

0

μ(ds)

μ(s)
= − log(μ(φμ(u))),

which is finite for u ∈ (0,∞) and infinite for u = ∞. Hence φμ satisfies Assump-
tion (A1.3).
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Now let φ be any function which satisfies Assumption (A1.3), and let τφ =
inf{t > 0 : |Bt | ≥ φ(Lt)}. By an excursion theory argument (cf. Obłój and Yor [18])

P(Lτφ > l) = exp
(
−

∫ l

0

ds

φ(s)

)
, l > 0,(12)

and, using Assumption (A1.3), we have 0 < Lτφ < ∞ a.s. and therefore also 0 <

τφ < ∞ a.s. We have |Bτφ | = φ(Lτφ ) and, as remarked earlier, equality is achieved
in (3), so that EF(Lτφ ) = EH(Bτφ ).

It remains to show that for the choice φ = φμ, the law of Bτμ is μ. Write ρ

for the law of |Bτμ |. To see directly that ρ = 2μ|R+ write ρ(x) = P(Lτμ ≥ ψμ(x))

which can be computed via (12) and (11). We want to give, however, a natural
approach to recover (11) where we only suppose that E|Bτμ | < ∞. We know from
the comments about equality in (5) that for a wide class of functions H ,∫ ∞

0
FH,φ(ψ(x))ρ(dx) = EFH,φ(Lτμ) = EH(|Bτμ |) =

∫ ∞
0

H(x)ρ(dx).(13)

This holds in particular for H(x) = (|x|−k)+ and then the right-hand side is finite.
We have

FH,φ(ψ(x)) =
∫ ψ(x)

0
H ′(φ(u)) du + H(x) − xH ′(x)

=
∫ x

0
H ′(u)dψ(u) + H(x) − xH ′(x),

which substituted into (13) yields∫ ∞
0

ρ(dx)

∫ x

0
H ′(u)dψ(u) =

∫ ∞
0

xH ′(x)ρ(dx).

Changing the order of integration we conclude∫ ∞
0

ρ(x)H ′(x) dψ(x) =
∫ ∞

0
xH ′(x)ρ(dx).

Given that the family of functions H ′(x)x contains the functions fk(x) = x1x≥k ,
for all k ≥ 0, and that this family is rich enough to determine probability measures
on R+, it follows that

dψ(x)

x
= ρ(dx)

ρ(x)
.

In particular, if ψ ≡ ψμ so that ψ solves (11), then d(log(ρ(x))) = d(log(μ(x)))

and thus ρ(x) = 2μ(x) where the constant 2 arises from the fact that ρ(0) = 1 =
2μ(0). Since L(Bτφ ) is symmetric we conclude Bτμ ∼ μ.

(iii) This follows immediately from (i) and (ii). �
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REMARK. From the definition of ψμ we have for its inverse φμ

d[lnμ(φμ(l))] = − dl

φμ(l)
= d[lnνμ(l)],

where νμ is defined from (6) using φμ. It follows that νμ(l) = 2μ(φμ(l)). Hence
(7) can be rewritten as

H ′(b) = 1

μ(b)

∫ ∞
b

F ′(ψ(x))μ(dx); H(0) = F(0).

COROLLARY 2.3. Suppose the Assumption (A1.2) is relaxed, and we as-
sume only that F is convex and increasing. Then, for all τ ∈ T (μ), E[F(Lτ )] ≤
E[F(Lτφ )]. In particular, the assumptions that F ′ is continuous and F ′ ≤ K can
be removed.

PROOF. It is clear from the definition of H via (7), and the proof of convexity
in (8) that we do not need the derivative F ′ continuous, but just that the integrals
in (7) and (8) are well defined. Further, for any increasing convex function F we
define FK via FK(0) = F(0) and F ′

K = F ′ ∧ K . We have shown so far that for
any solution to the Skorokhod embedding problem EFK(Lτφ ) ≥ EFK(Lτ ). Tak-
ing limits as K → ∞, via the monotone convergence theorem, we obtain the gen-
eral optimal property of Vallois’ stopping time: EF(Lτφ ) ≥ EF(Lτ ) for smooth
symmetric terminal distributions Bτ ∼ Bτφ ∼ μ. �

EXAMPLE 2.4. Suppose μ(l) = e−2α2l/2, where α > 0. Then ψμ(b) = α2b2,

φμ(l) = √
l/α and ν(l) = 2μ(φ(l)) = e−2α

√
l .

Suppose now that H(x) = Ax2 + B|x|, with A,B ≥ 0. Then

FH,φ(l) = 4

3α
Al3/2 +

(
B − 1

α2 A

)
l.

Note that F is convex and increasing if and only if B ≥ A/α2. Conversely, if
F(l) = Cl3/2, then HF,φ(x) = (3α/4)Cx2 + (3/4α)C|x|.

2.2. Arbitrary centered terminal laws. We want to extend the results of the
previous section to arbitrary terminal laws. We need to be able to deal with two
issues: atoms in μ and asymmetry of μ. We deal with the former by parameterizing
the fundamental quantities in terms of the quantiles of μ and we deal with the
latter by introducing separate functions φ+ and φ− on the positive and negative
half-spaces, respectively.

In this section when we take inverse functions we always mean the right-
continuous versions. We also use the notation φ± to indicate the pair (φ+, φ−),
this should cause no confusion.
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Let φ+ : R+ → R+ be an increasing function and φ− : R+ → R− a decreasing
function. To develop an analogue to (3) we will parameterize the negative half-line
with φ− and the positive half-line with φ+ so that{

H(x) ≥ γ+(l)x + θ+(l), x > 0,
H(z) ≥ γ−(l)z + θ−(l), z < 0,

where (see Figure 2){
H ′(φ+(l−)) ≤ γ+(l) ≤ H ′(φ+(l+)), θ+(l) = H(φ+(l)) − φ+(l)γ+(l),

H ′(φ−(l+)) ≤ γ−(l) ≤ H ′(φ−(l−)), θ−(l) = H(φ−(l)) − φ−(l)γ−(l).

Substituting Bt and Lt we obtain

H(Bt) ≥ γ+(Lt )B
+
t − γ−(Lt )B

−
t + θ+(Lt )1Bt≥0 + θ−(Lt )1Bt<0

(14)
= M

H,φ
t + �(Lt) + θ+(Lt )1Bt≥0 + θ−(Lt )1Bt<0,

where �(l) = ∫ l
0(γ+(m) − γ−(m))/2dm and M

H,φ
t = γ+(Lt )B

+
t − γ−(Lt )B

−
t −

�(Lt) is a local martingale. If we choose the various quantities such that θ+(l) =
θ−(l) = θ(l), then we have

H(Bt) ≥ M
H,φ
t + FH,φ,γ (Lt ),(15)

where FH,φ,γ (l) = �(l) + θ(l).
Note that when H ′ is not continuous different choices of functions γ±(l) (or

equivalently different choices of tangents to H ) may lead to different functions
FH,φ,γ (l) and different inequalities.

As before, our goal is to reverse the procedure: given F and a centered proba-
bility measure μ on R, we aim to choose H , φ and γ such that FH,φ,γ ≡ F and
Bτφ ∼ μ where

τφ = inf{u > 0 :B+
u = φ+(Lu) or B−

u = −φ−(Lu)}.(16)

Define


(l) =
∫ l

0

(
1

2φ+(m)
+ 1

2|φ−(m)|
)

dm.

ASSUMPTION (A2). Suppose F is convex and increasing and suppose φ+
and φ− are increasing positive and decreasing negative functions, respectively,
such that 
(l) is finite for each l > 0, but increases to infinity with l.

Fix φ+ and φ− satisfying Assumption (A.2), and let ψ+,ψ− denote their re-
spective inverses. Define ν = νφ via ν(l) = exp(−
(l)). Given F , define the in-
creasing function � via

�(l) = 1

ν(l)

∫ ∞
l

F ′(m)ν(dm).
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FIG. 2. Specification of the various functions, H , φ+, γ and θ .

Where F ′(l) exists, define δ(l) = �(l) − F ′(l). Then δ is defined almost every-
where in l and is positive.

Define

A+(l) = �(0) +
∫ l

0

δ(m)

φ+(m)
dm, C(l) = −F(0) +

∫ l

0
δ(m)dm,

A−(l) = −�(0) −
∫ l

0

δ(m)

|φ−(m)| dm,

and the function H via

H(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
l>0

{xA+(l) − C(l)}, x > 0,

F(0), x = 0,
sup
l>0

{xA−(l) − C(l)}, x < 0.
(17)

REMARK. In fact, the only condition we need on A+(0) and A−(0) is that
A+(0) − A−(0) = 2�(0) and A+(0) and A−(0) are undetermined except through
this difference. However, we fix both of them using an antisymmetry condition.
A different convention for the choice of A+(0) would lead to a modification
H(x) �→ H(x) + xk for some constant k. For τ ∈ T (μ) we have kE[Bτ ] = 0,
and hence such a modification would have no effect on inequalities such as (2).

LEMMA 2.5. H is convex. The suprema for x > 0 and x < 0 in (17) are at-
tained at l = ψ+(x) and l = ψ−(x), respectively. Further H ′(φ+(l−)) ≤ A+(l) ≤
H ′(φ+(l+)) and H ′(φ−(l+)) ≤ A−(l) ≤ H ′(φ−(l−)).
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Finally, FH,φ,A = F .

PROOF. We have

xA+(l) − C(l) = x�(0) + F(0) +
∫ l

0
δ(m)

(
x

φ+(m)
− 1

)
dm

which is maximized by l = ψ+(x) since thereafter the integrand is negative. Con-
vexity of H follows immediately from the definition as a supremum of linear func-
tions (cf. Hiriart-Urruty and Lemaréchal [10], Section B.2.1). Note also that H is
continuous at 0.

For the final statement observe that by definition FH,φ,A(l) ≡ �A(l) + θ(l). We
have θ+(l) = θ−(l) = −C(l) and

A+(l) − A−(l) = 2�(0) + 2
∫ l

0
δ(m)

ν(dm)

ν(m)

= 2�(0) + 2
∫ l

0

ν(dm)

ν(m)2

∫ ∞
m

[F ′(m) − F ′(l)]ν(dm)

= 2�(0) + 2
∫ l

0
�′(m)dm = 2�(l).

As a consequence, FH,φ,A(l) = ∫ l
0 �(m)dm − C(l) = F(0) + ∫ l

0 F ′(m)dm =
F(l). �

We can now deduce our theorem which makes precise the ideas outlined in the
Introduction.

THEOREM 2.6. Suppose F and φ satisfy Assumption (A2). Define H ≡
HF,φ,A via (17). Then, for all τ such that (Bt∧τ ) is a uniformly integrable martin-
gale

E[F(Lτ )] ≤ E[H(Bτ )].(18)

PROOF. Suppose F ′ ≤ K (the result for the general case can be deduced as in
Corollary 2.3). Then, by a slight generalization of Lemma 2.1, E[MH,φ

τ ] = 0. The
result now follows from (15). �

Our goal is to prove that there can be equality in (18). Moreover, if given a
centered distribution μ we can find a stopping rule such that Bτ ∼ μ and there is
equality in (18), then, as in Proposition 2.2, we have a tight bound on E[F(Lτ )]
over solutions of the Skorokhod embedding problem for μ. The existence and
form of an embedding of μ based on the local time, and its optimality in the sense
of maximizing convex functions, are due to Vallois [22], Théorème 3.1 and [23],
Théorème 1.
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Let μ be a centered probability distribution with no atom in zero and let
μ(R−) = a∗ > 0. Let G denote the cumulative distribution function of μ so that
G(x) = μ((−∞, x]). For a∗ ≤ a ≤ 1 define α(a) via∫ a

a∗
G−1(c) dc +

∫ a∗

α(a)
G−1(c) dc = 0.

Then 0 < α(a) < a∗, α(a∗) = a∗, α(1) = 0 and α is a strictly decreasing absolutely
continuous function with α′(c) = G−1(c)/G−1(α(c)).

Define ξ = ξμ via

ξ(a) = 2
∫ a

a∗

G−1(c)

α(c) + (1 − c)
dc, a∗ ≤ a ≤ 1,

and

ξ(a) = 2
∫ a∗

a

G−1(c)

c + 1 − α−1(c)
dc, 0 ≤ a ≤ a∗.

Then, ξ is an absolutely continuous function which is convex on a ≥ a∗ and con-
cave on a ≤ a∗. Note also that ξ(1) = ∞ = −ξ(0).

Define ψμ(x) via ψμ(x) = ξ(G(x)) so that ψμ is an increasing function on R.
If μ is symmetric, then α(c) = 1 − c and for x > 0 we obtain the following gener-
alization of the formula (11):

ψμ(x) = −
∫
[0,x]

s d(lnμ(s)).

THEOREM 2.7. Let μ be a centered probability distribution on R with
μ({0}) = 0. Let φμ : R �→ R be the inverse to ψμ defined above, and define
φ+ : R+ �→ R

+ and φ− : R+ �→ R
− via φ±(l) = φμ(±l). Define τφ as in (16).

Then Bτφ ∼ μ and there is equality in (18).

PROOF. First we show that ν(ξ(a)) = α(a) + 1 − a for a > a∗. We have

lnν(ξ(a)) = −
(ξ(a)) = −
∫ a

a∗
ξ ′(c)
′(ξ(c)) dc

=
∫ a

a∗

−1

(α(c) + 1 − c)

(
1 − G−1(c)

G−1(α(c))

)
dc

= ln
(
α(a) + 1 − a

)
,

where we use the fact that identities φ+(ξ(c)) = G−1(c) and φ−(ξ(c)) =
G−1(α(c)) hold dc almost everywhere on (a∗,1). This implies

lim
m↑∞
(m) = ∞

as required by Assumption (A.2).
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For x > 0 we have

P(Bτφ > x) =
∫ ∞

0
ν(l)

dl

2φ+(l)
1{φ+(l)>x}

=
∫
(x,∞)

ν(ξ(G(y))

2y
dξ(G(y))

=
∫ 1

G(x)

ν(ξ(c))

α(c) + (1 − c)
dc = 1 − G(x).

Calculations for a ∈ (0, a∗) and for x < 0 are similar.
Equality in (18) follows from the definition of τφ and resulting equality in (14).

�

COROLLARY 2.8. Suppose μ is centered with μ({0}) = 0 and F is convex.
Then, for all τ ∈ T (μ), E[F(Lτ )] ≤ E[F(Lτφ )].

Finally, we relax the condition that μ({0}) = 0. If μ places mass at zero, then we
can construct an embedding of μ as follows. Let Z be a Bernoulli random variable
with P(Z = 0) = μ({0}) which is independent of B—if necessary we expand the
probability space so that it is sufficiently rich as to support Z—and, given X ∼ μ,
let μ̃ be the law of X conditioned to be nonzero.

On Z = 0 set τ = 0. Otherwise, on Z = 1, let τ be the stopping rule defined
via φ̃ and (16), where φ̃ is defined from μ̃ using the algorithm described following
Theorem 2.6.

It is clear Bτ ∼ μ. Also it is clear that with H defined relative to F and φ̃, (18)
still holds. Further, by considering the cases Z = 0, Z = 1 separately we see that
there can be equality in (18).

Independent randomization is necessary for a stopping rule to attain equality in
(18). Otherwise, if we insist that the stopping times are adapted to the minimal
filtration generated by B , then the best that is possible is to find a sequence of
times τn such that Bτn ∼ μ and limn↑∞ E[F(Lτn)] = ∫

H(x)μ(dx).

2.3. Financial applications. Let St be the time-T forward-price process of a
financial asset. (To keep notation simple we express all prices in terms of monetary
units at time T .) Consider the following “naive” hedging strategy for a European
call option with maturity T and strike K ≥ S0: borrow K and trade such that
the portfolio holdings are max{St ,K}. In particular, the first time, if ever, that
the forward exceeds K , buy the forward; if subsequently the forward price falls
below K , then sell; whereupon the process is repeated. Provided St is continuous,
all the transactions happen when St = K .

Such a strategy was called the stop-loss start-gain strategy by Seidenverg [21].
At maturity this strategy yields K + (ST −K)+ and paying back K we have repli-
cated the call payoff at no cost. Therefore, for no arbitrage to hold the price of an
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out-of-the-money call would have to be zero, while in practice such calls have pos-
itive value. The answer to the apparent paradox is that when St is continuous but
has unbounded variation, then trading continuously at level K accumulates local
time at that level, and the strategy is not self-financing.

This resolution of the paradox, identified by Carr and Jarrow [7], shows that lo-
cal time related quantities can arise naturally in financial markets. Other products
closely linked with local time include corridor variance swaps, or more generally
products dependent on number of downcrossings of an interval (see also Carr [6]).
When exposed to the risk related to the local time, in addition to model-based
prices one would want to have model-free bounds on the risk-quantifying prod-
ucts, and our study can be interpreted in this way. Analogous studies based on
the supremum process (and yielding the Azéma–Yor solution to the Skorokhod
embedding problem) led to model-free bounds on prices of look-back and barrier
options (cf. Hobson [11] and Brown, Hobson and Rogers [5]).

We work in a financial market which admits no arbitrage, so that there ex-
ists a risk-neutral measure (equivalent to the physical measure) under which the
forward-price process (St ) is a local martingale. We further assume that (St ) has
continuous paths and is a true martingale (and thus a UI martingale) on finite time
horizon [0, T ]. In today’s markets plain vanilla options are traded liquidly and it is
an established practice to use them to calibrate models. We assume that T -maturity
calls with the full continuum of possible strikes are traded, and then from Bree-
den and Litzenberger [4] and subsequent works, we know that differentiating the
maturity-T call prices twice with respect to the strike, we recover the probability
distribution of ST under the risk-neutral measure.

To apply our results directly we define a shifted process Pt := St − S0 with
initial value P0 = 0. Under the risk-neutral measure, St is a continuous martingale
and the distribution of PT is a centered distribution on [−S0,∞) which we denote
by μ. As we now show, our results give bounds on the value of a contingent claim
paying F(LT (P )) at time T , where F is some convex function and (Lt (P )) is the
local time in zero of (Pt ), which is also the local time of (St ) at the level S0.

The process (Pt : t ≤ T ) can be written as a time-changed Brownian motion
(Bτt : t ≤ T ) where τ = τT is a stopping time such that Bτ ∼ μ and (Bτ∧s : s ≥ 0)

is a UI martingale. Furthermore, LT (P ) is equal to the stopped Brownian local
time Lτ (cf. Obłój [16]). Theorems 2.6 and 2.7 imply that � = ∫

H(x)μ(dx),
where H is given explicitly via (17) for φ± as in Theorem 2.7, is the upper model-
free bound on the expected value of F(LT (P )).

Associated with the price bound is a superreplicating portfolio, consisting of a
static portfolio paying H(PT ) and a dynamic hedge. The European payoff H(PT )

can be written as a static portfolio of puts and calls. The dynamic component is
given by a self-financing portfolio Gt whose increase is given by dGt = −
t dSt

where


t = H ′(φ+(Lt (P )))1Pt>0 + H ′(φ−(Lt (P )))1Pt>0.(19)
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Note that Gt is simply the time-change of the martingale −M
H,φ
t . Then (15) im-

plies that F(LT (P )) ≤ H(PT )+GT a.s. and we have exhibited a superreplicating
portfolio. The portfolio holdings 
t are only rebalanced when St = S0, so that
the hedging strategy is comparatively simple compared to a full dynamic hedging
strategy in a Black–Scholes style model.

This approach gives an upper bound on the potential model-based prices of
options contingent upon local time. The pricing mechanism in which the price
of the security paying F(LT (P )) is set to be � may be too conservative, but it
does have the benefit of being associated with a superhedging strategy which is
guaranteed to be successful, pathwise. A selling price �̃ < � can only be justified
if the forward price process is known to belong to some subclass of models. Even
in this case the seller can still use the hedging mechanism described above and be
certain that his potential loss is bounded below by � − �̃ regardless of all other
factors.

3. Optimal stopping problems. In this section we consider related optimal
stopping problems. In particular, we consider solutions to problems of the form

sup
τ

E

[
F(Lτ ) −

∫ τ

0
β(Bs) ds

]
,(20)

subject to the expectation of the integral term being finite. Both in terms of the
function we wish to maximize, and the form that our solution will take, this prob-
lem can be considered as a relative of the problem considered in Peskir [19]; in
particular, our solution resembles the maximality principle introduced by Peskir
[19]. We assume (initially) only that F and β are both nonnegative; we will make
stronger assumptions later as required. As stressed in the Introduction, in what
follows Brownian motion (Bt ) could be replaced with a diffusion in natural scale
(Xt). We then replace ds with d〈X〉s where appropriate, in particular in (20), but
no other changes are needed.5 We note, however, that the continuity and time-
homogeneity of the process are important. We could not easily deal, for exam-
ple, with jumps (for a discussion of optimization problems for processes including
jumps see, e.g., Alili and Kyprianou [1]).

Our motivation in studying (20) is threefold. First, it is a natural counterpart to
the study of similar problems where the local time is replaced with the unilateral
supremum process, undertaken in particular by Jacka [13], Dubins, Shepp and
Shiryaev [9] and Peskir [19]. Problem (20) now models a situation when we incur
a running cost and accumulate a reward related to the time spent in a given point

5Indeed, we can actually solve (20) for (Xt ) a regular recurrent time-homogenous diffusion. If s
is the scale function of (Xt ) with s(0) = 0, then Yt = s(Xt ) is in natural scale, 〈Y 〉∞ = ∞ a.s. and
the local times at zero of (Xt ) and (Yt ) coincide. The problem (20) for (Xt ) with a cost function
β(x) is simply the problem (20) for (Yt ) with the cost function βY (y) = β(s−1(y))/(s′(s−1(y)))2

which can be solved by the methods of the paper.
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as opposed to the reward related to the highest previously visited point. Second, in
a similar manner to the results in Peskir ([19], Section 4) for the case of supremum
process, our solution to (20) will provide optimal constants in general inequalities
involving the local time. We provide a simple illustration of this with Example 3.5.
Finally, (20) has a theoretical appeal as an interesting problem which can be solved
via a pathwise inequality rather than the more standard approach via a Hamilton–
Jacobi–Bellman equation with free boundary.

The approach we use will be based on the representations used in previous sec-
tions, where we have made extensive use of the fact that we can construct a local
martingale Mt such that F(Lt) ≤ H(Bt) + Mt . In this section, we can interpret a
related martingale as the Snell envelope for the optimal stopping problem; specifi-
cally, we are typically able both to provide a meaningful description of the optimal
strategy for our problem, and also to write down explicitly the Snell envelope. We
believe that being able to get such explicit descriptions of these objects is a strong
advantage of this approach.

In this section, we will outline the principle behind this approach, and provide
two results, the first of which allows us to provide an upper bound on the problem
under very mild conditions on F and β . The second result gives the value of the
problem and an optimal solution under some regularity conditions on F and β . We
then demonstrate through examples that in fact we can find the optimal solution
in more general cases. A final example, as stated above, shows how this technique
might be used to derive inequalities concerning the local time.

Writing H ′′(x) = 2β(x), we get

H(Bt) = H(0) +
∫ t

0
H ′(Bs) dBs +

∫ t

0
β(Bs) ds.(21)

In this section, we will further assume that

H(x) =
∫ x

0

∫ y

0
2β(z) dz dy,

and therefore H ′ is continuous and H(0) = H ′(0) = 0.
Using the results from previous sections, (14) says

H(Bt) ≥ γ+(Lt )B
+
t − γ−(Lt )B

−
t + θ+(Lt )1Bt≥0 + θ−(Lt )1Bt<0

(22)
= M

H,φ
t + �(Lt) + θ+(Lt )1Bt≥0 + θ−(Lt )1Bt<0,

where {
γ+(l) = H ′(φ+(l)), θ+(l) = H(φ+(l)) − φ+(l)H ′(φ+(l)),

γ−(l) = H ′(φ−(l)), θ−(l) = H(φ−(l)) − φ−(l)H ′(φ−(l));
and �(l) = ∫ l

0(γ+(m) − γ−(m))/2dm. In particular,

M
H,φ
t = γ+(Lt )B

+
t − γ−(Lt )B

−
t − �(Lt)
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is a local martingale. Combining (21) and (22) we deduce∫ t

0
β(Bs) ds ≥ M

H,φ
t −

∫ t

0
H ′(Bs) dBs + �(Lt) + θ+(Lt )1Bt≥0 + θ−(Lt )1Bt<0.

Moreover, suppose we can find a solution (ζ,φ+(·), φ−(·)) to both

F(l) ≤ ζ +
∫ l

0

H ′(φ+(u)) − H ′(φ−(u))

2
du

(23)
+ H(φ+(l)) − φ+(l)H ′(φ+(l))

and

F(l) ≤ ζ +
∫ l

0

H ′(φ+(u)) − H ′(φ−(u))

2
du

(24)
+ H(φ−(l)) − φ−(l)H ′(φ−(l)).

(Note that, unlike in previous sections, we make no assumption that the functions
φ+, φ− are monotonic.) We can now write

F(Lt) −
∫ t

0
β(Bs) ds ≤ ζ − M

H,φ
t +

∫ t

0
H ′(Bs) dBs.(25)

We note that N
H,φ
t = ∫ t

0 H ′(Bs) dBs −M
H,φ
t is a local martingale with N

H,φ
0 = 0.

In addition, if we define the set

Tβ =
{
τ : τ is a stopping time, E

[∫ τ

0
β(Bs) ds

]
< ∞

}
,(26)

we deduce from (25) that, when τ ∈ Tβ , N
H,φ
t∧τ is bounded below by an integrable

random variable, so that it is a supermartingale. Taking expectations, we conclude

E

[
F(Lτ ) −

∫ τ

0
β(Bs) ds

]
≤ ζ

for all stopping times τ ∈ Tβ . In particular we have proved the following result.

PROPOSITION 3.1. Suppose F(·) and β(·) are nonnegative functions, then for
any solution (ζ,φ+(·), φ−(·)) to (23) and (24) we have

sup
τ∈Tβ

E

[
F(Lτ ) −

∫ τ

0
β(Bs) ds

]
≤ ζ.

The arguments which formed the proof of Proposition 3.1 will be important in
the sequel. One of our aims will be to obtain an expression for the value of (20)
rather than merely a bound. To do this we will need to have equality in (22), (23)
and (24), as well as a suitable integrability constraint on the local martingale NH,φ .
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If we have equality in (23) and (24) and if we can differentiate suitably, then we
must have

φ′+(l) = (1/2)(H ′(φ+(l)) − H ′(φ−(l))) − F ′(l)
φ+(l)H ′′(φ+(l))

,(27)

φ′−(l) = (1/2)(H ′(φ+(l)) − H ′(φ−(l))) − F ′(l)
φ−(l)H ′′(φ−(l))

,(28)

together with a constraint on the initial values

H(φ+(0)) − φ+(0)H ′(φ+(0)) = H(φ−(0)) − φ−(0)H ′(φ−(0)).(29)

Further, equality is attained in (22) exactly on the set where B+
t = φ+(Lt ) or B−

t =
−φ−(Lt ). Also, since H(·) is convex, the function H(x) − xH ′(x) is decreasing
in x for x > 0, and increasing for x < 0. Consequently, we can choose

ζ = F(0) − H(φ+(0)) + φ+(0)H ′(φ+(0))(30)

and then also ζ = F(0) − H(φ−(0)) + φ−(0)H ′(φ−(0)) where we note that ζ is
increasing if considered as a function of φ+(0), and decreasing as a function of
φ−(0). In particular, we should attempt to minimize ζ to get a bound which may
be attained by the optimal stopping time.

REMARK. Since ζ is a function of (or determines) our choice of φ−(0), φ+(0),
it seems reasonable to ask how to interpret the solutions of (27)–(29) (i.e., ones
with different choices of initial value). In this context there are two possibilities,
assuming the relationship in (30) holds.

If we choose φ+(0) [and |φ−(0)|] too small, then we find that the candidate
solutions to (27)–(29) hit zero at a finite value m, and thereafter the equations
no longer make sense. [However, the stopping time τφ would be optimal for the
problem (20) with objective function F(l ∧ m). We will make use of this fact in
the sequel.]

Conversely we can ask what happens if we choose initial values for φ+(0) and
|φ−(0)| which are too large. In that case, we can still define a stopping time τφ but
it will not lie in the set Tβ .

For the main result of this section it will be convenient to introduce the class of
finite, positive, continuously differentiable solutions of (27)–(29). For such solu-
tions to exist we will need regularity conditions on F and β . We define the set

� =
⎧⎨
⎩

φ+, φ− are solutions of (27)–(29),
(φ+(·), φ−(·)) : |φ+(l)|, |φ−(l)| < ∞ ∀l ≥ 0,

|φ+(l)|, |φ−(l)| > 0 ∀l > 0

⎫⎬
⎭ ,

where φ+, φ− are assumed to be continuously differentiable functions on [0,∞).
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THEOREM 3.2. Suppose F(·) is strictly increasing on (0,∞) and twice con-
tinuously differentiable, and that β is positive and continuously differentiable
everywhere. Write

V = sup
τ∈Tβ

E

[
F(Lτ ) −

∫ τ

0
β(Bs) ds

]
(31)

for the value of the optimal stopping problem.
Suppose � = ∅ and∫

R+
|z|β(z) dz = ∞ =

∫
R−

|z|β(z) dz;(32)

then the value of the problem is infinite.
Alternatively, suppose the set � is nonempty; then � contains a minimal [in

φ+(0)] element (φ+(·), φ−(·)), and one of the following is true:

(i) The supremum in (31) is attained by the stopping time

τ = inf {t ≥ 0 :Bt /∈ (φ−(Lt ), φ+(Lt ))}(33)

with corresponding value

V = F(0) + φ+(0)H ′(φ+(0)) − H(φ+(0)) = F(0) +
∫ φ+(0)

0
zβ(z) dz.(34)

(ii) The stopping time defined in (33) is not in Tβ , but there exists a sequence
of stopping times τN ↑ τ such that τN ∈ Tβ whose corresponding values

VN = E

[
F(LτN

) −
∫ τN

0
β(Bs) ds

]

increase to V , which again is given by (34).

REMARK. Observe that (φ+(·), φ−(·)), a solution to (27)–(29), is minimal in
φ+ among solutions which do not hit the origin and which remain finite, if and
only if it is maximal in φ−.

Typically in the literature optimal stopping problems like (31) are considered for
an arbitrary starting point (x, l) for (Bt ,Lt ) (e.g., [9, 19]). The fact that a solution
is found simultaneously for all possible starting points is a natural consequence,
and indeed a necessity, of the fact that the solution method relies heavily on the
Markov property, and involves an identification of the value function and the stop-
ping region with a Stefan problem with free boundary. In contrast, in this work
we do not rely on Markovian techniques to solve (31) and we consider it only
for (Bt ,Lt ) starting at (0,0). Naturally once we have the solution given above in
Theorem 3.2 the generalization to an arbitrary starting point is straightforward.
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Under (32), we can state the conclusions of the theorem in the following way:
The value V in (31) is finite if and only if there exists a minimal solution (φ+, φ−)

to (27)–(29) which does not hit the origin, in which case V is given by (34).
This formulation is parallel to the maximality principle described by Peskir [19].

Note also that the solution in (ii) is what Peskir [19] calls an approximately optimal
solution.

Our aim with this result is not to prove the strongest possible version of Theo-
rem 3.2 since this seems to come at the price of having to account for a variety of
idiosyncrasies that these solutions might display. Instead we believe that most, if
not all of the restrictions on F and β can be weakened in different ways. Exam-
ples 3.3 and 3.4 explore this further.

PROOF OF THEOREM 3.2. We first recall classical facts about solutions to
ODEs which we use. Under the regularity assumptions on β(·) and F(·), the sys-
tem (27)–(28) can be rewritten as

(φ−, φ+)′(l) = η(l, φ−(l), φ+(l)),(35)

with further restriction on the starting point (29), where η(l, x) is continuously dif-
ferentiable on D = (0,∞)× ((−∞,0)× (0,∞)). Classical existence and unique-
ness theorems (cf. Arnol’d [2], Section 7.2) imply that for any point (l, x) ∈ D
there is a unique solution to (35), well defined for some l1 < l < l2 which goes
through (l, x). In particular we can define a solution to (35) for any starting point
x0 satisfying (29), and if φ1± and φ2± are two solutions of (27)–(29) defined on
some interval [0,m) with |φ1±(0)| > |φ2±(0)|, then |φ1±(l)| > |φ2±(l)| for all l < m.
And in fact, for a fixed l ∈ (0,m), (φ1−(l), φ1+(l)) is a continuous function of the
starting point (φ1−(0), φ1+(0)) (cf. Arnol’d [2], Section 7.3).

Suppose the set � is nonempty, (φ1−, φ1+) ∈ �. By the above, for any nonzero
starting point with φ+(0) ≤ φ1+(0), and then necessarily φ−(0) ≥ φ1−(0), the solu-
tion to (27)–(29) exists and stays finite and is thus well defined up to the first time
l = m when φ−(l) or φ+(l) hits zero. Note, however, that equalities in (23) and
(24) imply

H(φ+(l)) − φ+(l)H ′(φ+(l)) = H(φ−(l)) − φ−(l)H ′(φ−(l))

and therefore φ+ hits zero if and only if φ− does. Let φ+(0) = inf{φ̃+(0) : (φ̃+,

φ̃−) ∈ �} and φ−(0) defined similarly. Naturally (φ−(0), φ+(0)) satisfies (29) and
is a starting point of a solution φ±(l) to (27)–(28). Assume |φ±(0)| > 0. To see that
(φ−, φ+) ∈ � we have to argue that φ+ remains strictly positive and φ− remains
strictly negative. However, the continuity of solutions to (35) in the starting point
recalled above implies that φ+ is the (pointwise) infimum of φ̃+ in � and φ− is the
(pointwise) supremum of φ̃− in �. In consequence, the minimal solution φ+ may
only be equal to zero at a point for which φ′+(l) = 0, and we note that F ′(·) > 0



1890 A. M. G. COX, D. HOBSON AND J. OBŁÓJ

rules out this possibility in (27). As noted above, φ− can hit zero only if φ+ does
so φ− < 0.

By the same argument, φ+ is also the supremum of solutions φ̃+ with φ̃+(0) <

φ+(0) (and then φ− is the infimum of φ̃−). By definition of φ, such solution φ̃±
is not in � and thus hits zero in finite time. We now consider these approximating
solutions, writing (φm+(l), φm−(l)) for the solution to (27)–(29) which hits zero at
l = m. We also write the associated stopping rules τm defined by (33) and φm. We
argue that τm are optimal for the problems (31) posed for F(l ∧ m). It is clear that
φm± are in fact solutions to (27)–(29) with F(l) replaced by F(l ∧ m). In view of
the arguments which led to Proposition 3.1, the only property we need to demon-
strate is that the supermartingale N

H,φ
t∧τm

= ∫ t∧τm

0 H ′(Bs) dBs − M
H,φ
t∧τm

is in fact a
UI martingale. The important point to note here is that, by construction, the stop-
ping times τm are smaller than inf{t ≥ 0 :Lt ∨ |Bt | ≥ J } for some J . It follows
immediately that M

H,φ
t∧τm

is a UI martingale. On the other hand the local martingale∫ t∧τm

0 H ′(Bs) dBs has quadratic variation which is bounded by∫ τm

0
H ′(Bs)

2 ds ≤ Kτm,

for some K > 0. We know that Bt∧τm satisfies the conditions of the Azéma–
Gundy–Yor theorem [3], Theorem 1b, since τm is bounded by the hitting time
of {−J,J }. As a consequence,

∫ t∧τm

0 H ′(Bs) dBs also satisfies the conditions of
the Azéma–Gundy–Yor theorem and thus is a uniformly integrable martingale.

This procedure results in a sequence of stopping times, optimal for the problems
posed with gain function F(l ∧ m), and with values increasing to

V = F(0) − H(φ+(0)) + φ+(0)H ′(φ+(0))

from which we deduce that we are in either case (i) or (ii).
We must also consider the case where the minimal solution is a solution with

φ+(0) = φ−(0) = 0, and corresponding stopping time τ ≡ 0. It is then trivial to
apply Proposition 3.1 to this solution to deduce that this is the optimal solution,
with V = F(0).

It remains to prove the initial statement of the theorem. Let (φ−(·), φ+(·)) be a
solution of (27)–(29) with some nonzero starting point. Since � = ∅ this solution
has to either hit zero or explode in finite time. We show that the latter is impossible.
Define

G(z) = 2
∫ φ+(z)

φ−(z)
|u|β(u)du.

We have

G′(z) = 2φ′+(z)φ+(z)β(φ+(z)) + 2φ′−(z)φ−(z)β(φ−(z))

= H ′(φ+(z)) − H ′(φ−(z)) − 2F ′(z)
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≤ 2
∫ φ+(z)

φ−(z)
β(u) du

≤ 2
∫ φ+(0)

φ−(0)
β(u) du + 2

φ+(0)

∫ φ+(z)

0
uβ(u)du

+ 2

|φ−(0)|
∫ 0

φ−(z)
|u|β(u)du

≤ C1 + C2G(z),

where C1 = 2
∫ φ+(0)

φ−(0) β(u) du and C−1
2 = min{φ+(0), |φ−(0)|}. It follows from

Gronwall’s lemma that G(u) ≤ C1e
C2u; combining this with (32) we see that nei-

ther φ+ nor φ− can explode. We conclude that φ± are bounded and hit zero in
finite time. In consequence, the stopping time associated via (33) is in Tβ . We can
apply Proposition 3.1 to see that

V ≥ F(0) + lim
φ+(0)↑∞[φ+(0)H ′(φ+(0)) − H(φ+(0))]

and the value of the problem is infinite since (32) ensures
∫ x

0 zβ(z) dz = xH ′(x)−
H(x) increases to infinity. �

We finish this section with three examples. The first and second examples aim
to demonstrate that, although we require relatively strong conditions in order to
apply Theorem 3.2, the techniques and principles of the result are much more
generally applicable. The first example also shows that the condition (32) cannot
be weakened in general. A final example connects the results with established
inequalities concerning the local time.

EXAMPLE 3.3. The initial example considers the case where F(l) = l and
β(x) > 0 is continuous. In this setting, there are three possible types of behavior,
depending on the value of

c =
∫

R

β(x) dx.

For c < 1, every solution of (27) [resp. (28)] will have a strictly negative (resp.
positive) gradient, and will therefore hit the origin in finite time. Consider τ =
inf{t ≥ 0 :Lt = 1} and τN = inf{t ≥ 0 : |Bt | ≥ N or Lt = 1}. Then P(BτN

= 0) =
exp(−1/N), and by applying Itô’s formula to H(Bt) and using monotone conver-
gence, and using the fact that H ′ is increasing and bounded,

E

[∫ τ

0
β(Bs) ds

]
= lim

N→∞ EH(BτN
)

= lim
N→∞

[
H(N) + H(−N)

2

]
(1 − e−1/N)



1892 A. M. G. COX, D. HOBSON AND J. OBŁÓJ

= lim
N→∞

(
H ′(N) − H ′(−N)

2

)
= c.

As a consequence, there is a positive, finite gain of 1− c from simply running until
the local time reaches 1. This process can then be continued, waiting until the local
time reaches an arbitrary level, giving an infinite value to the problem.

The interesting case occurs when c = 1. In this setting, we see that the above
argument fails—the strategy of waiting until the local time reaches 1 has no aver-
age gain. However, there is still value to the problem; we can apply Proposition 3.1
(when we interpret φ+ = φ− = ∞ suitably) to deduce that the value of the problem
is at most

max
(

lim
x→∞[xH ′(x) − H(x)], lim

x→−∞[xH ′(x) − H(x)]
)
,(36)

and we note that this expression can be infinite. Now consider the payoff from
running to exit of the interval (−αN,N) for some α ∈ (0,∞). From the martingale
property of Lt − |Bt | this is easily seen to be

2αN

1 + α
− H(N)

α

1 + α
− H(−αN)

1

1 + α
.

Using the fact that 1 = 1
2(H ′(∞) − H ′(−∞)) ≥ 1

2(H ′(N) − H ′(−αN)), we can
bound the last expression from below by

α

1 + α
[NH ′(N) − H(N)] + 1

1 + α
[(−αN)H ′(−αN) − H(−αN)].

Since α was arbitrary, we conclude that the solutions for sufficiently large N and
sufficiently large/small α are approximately optimal and the value in (36) is ob-
tained in the limit.

Finally, we consider the case c > 1. We want to find a pair φ−, φ+ such that
1
2(H ′(φ+) − H ′(φ−)) = 1 and such that (29) holds. We can rewrite this in terms
of β: ∫ φ+

φ−
sβ(s) ds = 0 subject to

∫ φ+

φ−
β(s) ds = 1.(37)

If this has a finite solution, then we can apply Theorem 3.2 to conclude that the
value function is given by φ+H ′(φ+) − H(φ+) = φ−H ′(φ−) − H(φ−) and the
optimal strategy is to stop on exit from a finite interval.

Otherwise (37) has no solution with both φ+ and φ− finite and either∫ φ+

−∞
sβ(s) ds ≥ 0 for φ+ the solution of

∫ φ+

−∞
β(s) ds = 1,(38)

or ∫ ∞
φ−

sβ(s) ds ≤ 0 for φ− the solution of
∫ ∞
φ−

β(s) ds = 1.(39)
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For the former case we must have

lim
x↓−∞xH ′(x) − H(x) < lim

x↑∞xH ′(x) − H(x)(40)

whereas for (39) we must have the reverse. [Note that if both sides of (40) are
infinite, then we must have a finite solution to (37).] Assuming (38) holds, it fol-
lows from Proposition 3.1 that φ+H ′(φ+)−H(φ+) is an upper bound on the value
function; that this bound can be attained in the limit follows from consideration of
stopping rules which are the first exit times from intervals of the form (−N,φ+).
If the inequality in (40) is reversed, then the value function is φ−H ′(φ−)−H(φ−)

where φ− solves the integral equality in (39).
Using this setup one can easily construct an example when the value is finite

even though
∫
R

|z|β(z) dz = ∞ which shows that both
∫
R− |z|β(z) dz = ∞ and∫

R+ zβ(z) dz = ∞ are needed in general to ensure the last statement of Theo-
rem 3.2.

EXAMPLE 3.4. The main aim of this example is to demonstrate that the above
ideas can lead to meaningful solutions to optimal stopping problems even if the
functions F and H and the resulting minimal solution to (27)–(29) are not “nice.”
In particular, we shall give an example where the minimal solution is finite only on
a bounded interval which excludes the origin, and where F is not nondecreasing,
but where the value of the problem is finite.

Specifically, we consider the optimal stopping problem (31) where the (slightly
contrived) functions F and β are defined by

F ′(l) =
{

(3 − 2l)e−1/2l2(l−2)2
, l < 2,

1, l ≥ 2,

with F(0) = 0 and

2β(x) = H ′′(x) = |x|−3e−1/(2x2).

We also obtain

H ′(x) = e−1/(2x2), H(x) = xe−1/(2x2) −
∫ ∞

1/x
e−1/2z2

dz.

Noting that the problem is symmetric (and therefore dropping the subscripts to
denote positive and negative solutions), (27) becomes

φ′(l) =

⎧⎪⎪⎨
⎪⎪⎩

φ(l)2
(

1 − (3 − 2l) exp
{

1

2φ(l)2 − 1

2
l2(2 − l)2

})
, l < 2,

φ(l)2
(

1 − exp
{

1

2φ(l)2

})
, l ≥ 2.

(41)
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Define the function φ0(l) via

φ0(l) =
⎧⎨
⎩

1

l(2 − l)
, l ∈ (0,2),

∞, otherwise;

then φ0 is a solution of (41) for l < 2. Moreover if for l > 2 we use the natural
definitions H ′(φ) = 1 and H(φ) − φH ′(φ) = −√

π/2 when φ = ∞, then

F(l) =
∫ l

0
H ′(φ0(u)) du + H(φ0(l)) − φ0(l)H

′(φ0(l)) +
√

π

2
for all l ≥ 0.

We will show that the stopping time τ = inf{t ≥ 0 : |Bt | ≥ φ0(Lt )} is approxi-
mately optimal in the sense described in the remarks below Theorem 3.2. Specif-
ically, we consider a sequence of solutions φm increasing to φ0 which have ex-
pected values increasing to

√
π
2 , and show further that no solution can improve on

this bound. The solutions φm(l) and φ0(l) are shown in Figure 3.
It is straightforward to check that the solutions φm do indeed increase to φ0, and

that each φm is a well-defined solution to (31) where the function F is replaced
by F(l) ∧ m′ for some m′. The resulting sequence provides an increasing set of
stopping times in Tβ , with values increasing to

√
π
2 .

FIG. 3. Solutions to (41) with different initial values. The top curve shows the function φ0(l).
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To conclude that this does give the supremum, we suppose for a contradiction
that there exists τ ∈ Tβ with larger expected value. Then for sufficiently large m′
we have

E

[
F(Lτ ) ∧ m′ −

∫ τ

0
β(Bs) ds

]
>

√
π

2
,

contradicting the optimality of the τm.
Finally, we note that the value of the problem for F(l) = (l− l0)+ is (

√
π
2 − l0)+,

so that F(l) = l has the same value as our original problem, while F(l) = (l −√
π
2 )+ has zero value. The value for F(l) actually follows from Example 3.3 since

H ′(∞) = −H ′(−∞) = 1 and this also provides additional intuition behind the
above results.

EXAMPLE 3.5. We end by demonstrating how our techniques may be used to
recover the well-known inequality

ELp
τ ≤ pp

E|Bτ |p, p > 1,(42)

valid for all stopping times τ such that the E|Bτ |p = p(p−1)
2 E

∫ τ
0 |Bs |p−2 ds. Fix

p > 1 and consider F(l) = lp

p
and βc(x) = c|x|p−2/2 for some c > 0. The func-

tion Hc(x) = c
p(p−1)

|x|p is symmetric so that φ− = φ+. One can easily verify

that φ(x) = ax satisfies (27) if and only if cap − c
p−1ap−1 + 1 = 0 and that

this equation has two solutions only for c ≥ cmin = pp(p − 1). As φ is linear∫
0+ ds/φ(s) = ∞ and the resulting stopping time τV = 0 a.s. Thus the value V of

the optimal stopping problem (31) associated with F and βc is zero. Consequently

E
L

p
τ

p
≤ c

p(p − 1)
E|Bτ |p, τ ∈ Tβ, c ≥ cmin(43)

and we recover (42) on taking c = cmin.
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