
NONCOMMUTATIVE FOURIER ANALYSIS AND PROBABILITY

RYAN O’LOUGHLIN

In this report, we study Fourier analysis on groups with applications to probability. The

most general framework would be out of reach for an undergraduate project and we aim

at understanding the examples which have started the theory over the past two hundred

years. We will begin with a review of the cases of the Euclidean Fourier transform and of

the Fourier series in Section 1 and 2. This can be generalised into the Fourier analysis on

abelian locally compact groups (LCA groups) which is quite well understood, see Section 3.

The non-commutative (locally compact) groups present different challenges and we present

the cases of compact and finite groups in more details, see Sections 5 and 4, with some

applications to probability. Throughout the duration of the project something which has

become of particular interest is the structure of LCA groups, so we have looked at the theory

of LCA groups with some examples.
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Convention. In this report, we will follow the following convention. dx will denote the

normalised Haar measure on the groups under consideration. This means that dx is the

usual Lebesgue measure on Rn and Tn, and that it is a probability measure on a compact

group. In particular, this corresponds to taking the average 1
|G|
∑

x∈G on a finite group G.

The Fourier transform of (say) an integrable function f on G will be given by

(0.1) f̂(ρ) =

∫
G

f(x)ρ(x)∗dx,
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where ρ is a unitary representation of G. A representation is always assume to be finite di-

mensional and continuous unless stated otherwise.On a group equipped with a Haar measure

we define ‖f‖Lp = (
∫
G
|f(x)|pdx)

1
p for p ∈ [1,∞) for any suitable function f : G→ C

1. Fourier analysis on the torus

Consider the space C(R/Z), of all continuous functions with period 1. It is easily checked

this is a vector space, we now equip this with an inner product

(1.1) 〈f, g〉L2 =

∫ 1

0

f(x)g(x)∗dx,

to make C(R/Z) into an inner product space.

Remark 1.1. It is worth noting at this point that C(R/Z) is canonically isomorphic to the

space of functions f ∈ C[0, 1] where f(0) = f(1).

For k ∈ Z let

(1.2) ek(x) = e2πkix x ∈ R,

then ek lies in C(R/Z) and ek, k ∈ Z, form an orthonormal system in C(R/Z).

For each f ∈ C(R/Z), we define the numbers

(1.3) ck(f) = 〈f, ek〉L2 =

∫ 1

0

f(x)e−2πkixdx

to be the Fourier coefficients of f . The series

(1.4)
∞∑

k=−∞

ck(f)ek(x)

is called the Fourier series of f. We now want to discuss the convergence of the Fourier series,

as it is not immediate that the above expression converges at all.

Recall the L2 norm, this is the norm induced by the inner product defined in 1.1 (1.1) i.e.,

(1.5) ‖f‖L2 =
√
〈f, f〉,

now C(R/Z) equiped with the L2 norm is a normed vector space.

We now state a lemma which will help us to prove the convergence of Fourier series under

certain assumptions.
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Lemma 1.2. Let f ∈ C(R/Z) and for k ∈ Z let ck be its kth Fourier coefficient, then for

all n ∈ N

‖f −
k=n∑
k=−n

ck(f)ek‖2L2 = ‖f‖2L2 −
k=n∑
k=−n

|ck(f)|2

Proof. Let g =
∑k=n

k=−n ck(f)ek. Then

〈f, g〉 =
k=n∑
k=−n

ck(f)〈f, ek〉 =
k=n∑
k=−n

|ck(f)|2

similarly

〈g, g〉 =
k=n∑
k=−n

ck(f)〈g, ek〉 =
k=n∑
k=−n

|ck(f)|2

Combining these two results we see

(1.6) ‖f −
k=n∑
k=−n

ck(f)ek‖2L2 = ‖f‖2L2 −
k=n∑
k=−n

|ck(f)|2

�

The following proposition is also usefull.

Proposition 1.3. If a sequence of functions fn, n ∈ N converges to f uniformly on [0, 1],

then fn converges to f in the L2 norm.

Proof. Let ε > 0. Then there is an n0 such that for all n0 6 n

(1.7) |f(x)− fn(x)| < ε

whenever x ∈ [0, 1]. Hence for n0 6 n,

(1.8) ‖f − fn‖2L2 =

∫ 1

0

|f(x)− fn(x)|2dx < ε2

So‖f − fn‖ < ε. �

We now prove a huge result, that the Fourier series of every continuous function f converges

to f in the L2 norm. To do this we need the following result which we will state without

proof. The interested reader is refered to [1, Sec.1.4].

Lemma 1.4. Let f : R → R be periodic and such that f |[0,1] is a step function. Then the

Fourier series of f converges to f in the L2 norm.

We now prove the main result, known as Plancherel’s Theorem.
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Theorem 1.5. Let f : R→ R be continuous and periodic on [0, 1] then

(1.9)
∞∑

k=−∞

|ck(f)|2 =

∫ 1

0

|f(x)|2dx.

Remark 1.6. This immediately shows that the Fourier series of f converges to f in the L2

norm, as a result of (1.6).

Definition 1.7. The convolution of two functions f1 and f2 which are assumed to be con-

tinuous and periodic on [0, 1] is denoted f1 ∗ f2 and given by

(1.10) f1 ∗ f2(x) =

∫ 1

0

f1(y)f2(x− y)dy.

Theorem 1.8. If f1, f2 ∈ C(R/Z) and f = f1 ∗ f2 , then f ∈ C(R/Z) and ck(f) =

ck(f1)ck(f2)

Proof.

ck(f) =

∫ 1

0

f(x)e−2πkixdx

=

∫ 1

0

∫ 1

0

f1(z)f2(x− z)dze−2πkixdx

=

∫ 1

0

∫ 1

0

f2(x− z)e−2πkixdxf1(z)dz

=

∫ 1

0

∫ 1

0

f2(x
′)e−2πkix

′
dx′f1(z)e−2πkizdz

= ck(f1)ck(f2).

note the penultimate step is intergration by substitution(where x′ = x− z ). And we justify

the exchange of intergration by Fubini’s theorem, the interested reader is reffered to [1,

sec.7.2].

It is immediate form the definition that f is periodic, with period 1. It remains to show

f is continuous.
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Let ε > 0 be arbitary and f1, f2 ∈ C(R/Z) then (as being continuous on a closed and

bounded interval in R is equivalent to being uniformly continuous), there exists a δ > 0 such

that, for all x, x′ ∈ [0, 1] and f 6= 0

|x− x′| < δ =⇒ |f1(x)− f1(x′)| <
ε

‖f2‖L1

.

Then for |x− x0| < δ we have

|f1 ∗ f2(x)− f1 ∗ f2(x0)| =
∣∣∣∣∫ 1

0

f1(y)f2(x− y)dy −
∫ 1

0

f1(y)f2(x0 − y)dy

∣∣∣∣
6
∫ 1

0

|f1(x− y)− f1(x0 − y)||f2(y)|dy

6
ε

‖f2‖L1

∫ 1

0

|f2(y)|dy 6 ε

�

Remark 1.9. The above theorem shows that if we equipp C(R/Z) with convolution as a

binary operation then, C(R/Z) may be viewed as an algebra.

If we consider the mapping F(f) = (ck(f))k∈Z for f ∈ C(R/Z), then we may view this

as a mapping from the convolution algebra C(R/Z) to the algebra of sequences, the latter

being equipped with pointwise addition and multiplication .

Theorem 1.10. Let f ∈ C(R/Z) be piecewise continuously differentiable, then
∑
|ck(f)| <

∞, and

(1.11) f(x) =
∞∑

k=−∞

ck(f)ek(x) x ∈ [0, 1).

Proof. Let f ∈ C(R/Z) be piecewise continuously differentiable, let φj : [tj−1, tj]→ C be the

continuous derivative of f and let φ : C(R/Z) → C be function that coincides with φj on

[tj−1, tj) for every j. Let (γk)k∈Z be the Fourier coefficients of φ. Then by (1.6)
∞∑
−∞

|γk|2 6 ‖φ‖2L2 <∞.

Using integration by parts we obtain∫ tj

tj−1

f(x)e−2πikx =
1

−2πikx
f(x)e−2πikx|tjtj−1

− 1

−2πikx

∫ tj

tj−1

φ(x)e−2πikxdx

so when k 6= 0 we obtain

ck(f) =

∫ 1

0

f(x)e−2πikxdx =
1

−2πikx

∫ 1

0

φ(x)e−2πikxdx =
1

−2πik
γk.
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For α, β ∈ C we have 0 6 (|α| − |β|)2 = |α| = |β|2 − 2|αβ| so |αβ| 6 1
2
(|α|2 + |β|2), applying

this to the expression above we see that

|ck(f)| 6 1

2

(
1

4π2k2
+ |γk|2

)
,

which implies ∑
|ck(f)| <∞.

We have now proved the first part of our statement, it remains to show that f(x) =∑∞
k=−∞ ck(f)ek(x).

The first part of our statement implies that the Fourier series,
∑
ck(f)e2πikx converges uni-

formly. Denote the limit function g, then g is continuous ( as it is the uniform limit of

continuous functions). Since the Fourier series also converges to f in the L2 norm, and since

uniform convergence implies L2 convergence by (1.3) it follows that f = g, by uniqueness of

limits. �

Remark 1.11. This may be viewed as a Fourier series inversion formula, in the sense that

if we know the Fourier coefficients of a given function, we can then retrieve the original

function.

We now consider a very interesting application of Fourier series, in a problem first posed

by Pietro Mengoli in 1644 and solved by Leonhard Euler in 1734. It is known as the Basel

problem. The Basel problem asks for the precise summation of the reciprocals of the squares

of the natural numbers, i.e.
∑∞

k=1
1
k2

To solve this problem we first consider the periodic extension of the function f : [0, 1)→
R, f(x) = x. We begin by computing the Fourier coefficients of this function to retrieve

ck(f) =

{
−1
2πki

if k 6= 0;
1
2

if k = 0.

We can apply Plancherel’s theorem (1.9) to deduce

1

2π2k2
+

1

4
= ‖f‖2L2

Computing

‖f‖2L2 =

∫ 1

0

x2dx =

[
x3

3

]1
0

=
1

3
.
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We finally obtain

(1.12)
∞∑
k=1

1

k2
=
π2

6
.

2. The Fourier Transform on R

We first define L1
bc(R) to be the set of all bounded continuous functions R→ R satisfying

(2.1) ‖f‖L1(R) =

∫
R
|f(x)|dx <∞

It is easily checked that this is a norm.

For f ∈ L1
bc(R) we define the Fourier transform of f by

(2.2) F(f)(y) = f̂(y) =

∫
R
f(x)e−2πixydx

We now introduce a new set of functions called the Schwartz space denoted S(R), this is

the space of all infinitely differentiable functions f : R→ R such that for every 0 6 m,n we

have

(2.3) σm,n(f) = sup
x∈R
|xmf (n)(x)| <∞

Theorem 2.1. Let F denote the Fourier transform (i.e F : f 7→ f̂ ), then S ⊂ L1
bc(R) and

F(S(R)) ⊂ S(R)

Proof. We first prove S ⊂ L1
bc(R).

Let f ∈ S. Then f is bounded and continuous and (1 + x2)f(x) is bounded, say by C > 0,

so ∫ ∞
−∞
|f(x)|dx 6 C

∫ ∞
−∞

1

1 + x2
dx <∞

Which implies f ∈ L1
bc

In order to prove the second part of this theorem, we need the following lemmas, which

we will state without proof.
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(1) Let f ∈ L1
bc(R), let g(x) = −2πixf(x) and g ∈ L1

bc(R) then f̂ is continuously differentiable

with f̂ ′(y) = ĝ(y).

We also need the following

(2) Let f be continuously differentiable and assume that the functions f and f ′ lie in L1
bc(R).

Then f̂ ′(y) = 2πiyf̂(y) , so in particular the function yf̂(y) is bounded.

We can now prove the main result. Iterating statement (1) above we obtain

(−2πix)nf̂ = f̂ (n)

for every n ∈ N. Now, iterating statement (2) we see that

f̂ (n)(y) = (2πiy)nf̂(y)

for every n ∈ N. Combining these two results we see that for every f ∈ S and every

n,m ∈ N0 the function

ymf̂ (n)(y)

is a Fourier transform of a function in S, and hence bounded. �

Theorem 2.2 (The Fourier Inversion Formula). Let f, f̂ ∈ L1
bc(R) then

(2.4) f(x) =

∫
R
f̂(y)e2πixydy

Remark 2.3. The above expression can be reformulated as follows, for all x ∈ R

F−1g(x) = Fg(−x).

Remark 2.4. If we know the Fourier transform of a given function, we can use the above

equation to retrieve our original function.

Theorem 2.5. F : S(R)→ S(R) is an isomorphism of vector spaces.

Proof. Linearity of F follows trivially. Let us show F : S(R)→ S(R) is injective, this follows

from the Fourier inversion formulae, as given any function g(x) ∈ S(R), g(−x) is the unique

inverse. To show F is surjective we need to show F(S(R)) = S(R), but this has been shown

in theorem 1.12 as given any function g(x) ∈ S(R), g(−x) will map to g(x). Combining these

results we have shown that F : S(R)→ S(R) is an isomorphism. �
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The convolution of two functions defined on R is defined in a similiar way to R/Z , see

1.7. We make an adjustment to definition 1.7 to be suitable for f1, f2 ∈ L1
bc(R) ie, we change

the domain or our integration. So for f1, f2 ∈ L1
bc(R) the convolution of f1 and f2 is given

by

(2.5) f1 ∗ f2(x) =

∫
R
f1(y)f2(x− y)dy.

Theorem 2.6. Let f1, f2 ∈ L1
bc(R), then f1 ∗ f2 ∈ L1

bc(R).

Proof. Assume f2(x) < C for all x ∈ R. Then∫
R
|f1(y)f2(x− y)|dy 6 C

∫
R
|f1(y)|dy = C‖f1‖L1 .

This implies existence and boundedness of f ∗g. Next we prove it is continuous. Let x0 ∈ R.

Assume |f1(x)|, |f2(x)| < C for all x ∈ R, and assume g 6= 0. For a given ε > 0 there is a

T > |x0| such that ∫
|y|>T

|f2(y)|dy < ε

4C
.

Since a continuous function on a closed bounded interval is uniformly continuous, there exists

a δ > 0 such that

|x| < 2T, |x− x′| < δ =⇒ |f1(x)− f1(x′)| <
ε

2‖f2‖L1

.

Then for |x− x0| < δ we have

|
∫ T

−T
f1(y)f2(x− y)dy −

∫ T

−T
f1(y)f2(x0 − y)dy|

6
∫ T

−T
|f1(x− y)− f1(x0 − y)||f2(y)|dy

6
ε

2‖f2‖L1

∫ T

−T
|f2(y)|dy 6 ε

2
.

And ∫
|y|>T

|f1(x− y)− f1(x0 − y)||f2(y)| 6 2C

∫
|y|>T

|f2(y)| < ε

2

Combining these results imply that for |x− x0| < δ we have

|f1 ∗ f2(x)− f1 ∗ f2(x0)| < ε.

�
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We now prove an analogous result of theorem 1.8 , but for the Fourier transform. This is

known as the convolution theorem.

Theorem 2.7. Let f1, f2 ∈ L1
bc(R), define f = f1 ∗ f2 then f ∈ L1

bc and

(2.6) f̂(y) = f̂1(y)f̂2(y).

Proof.

f̂(y) =

∫
R
f(x)e−2πixydx

=

∫
R

∫
R
f1(z)f2(x− z)dze−2πixydx

=

∫
R

∫
R
f2(x− z)e−2πixydxf1(z)dz

=

∫
R

∫
R
f2(x

′)e−2πix
′ydx′f1(z)e−2πizydz

= f̂1(y)f̂2(y).

�

Note the penultimate step is intergration by substitution(where x′ = x − z ). And we

justify the exchange of integration by Fubini’s theorem, the interested reader is reffered to

[1, Sec.7.2]

We now state a result also known as Plancherel’s theorem, because it is an analogous

result for the Plancherel’s theorem we have seen before, but once again in a different setting.

We first define L2
bc(R) to be the set of all bounded continuous functions R→ R satisfying,

(2.7) ‖f‖2L2(R) =

∫
R
|f(x)|2dx <∞

It is easily checked that this is a norm, and L1
bc(R) ⊂ L2

bc(R) as if f ∈ L1
bcR, then |f(x)| < C

for all x ∈ R and for some C. Then

|f(x)|2 6 C|f(x)|, =⇒
∫
R
|f(x)|2dx 6 C‖f‖L1

Remark 2.8. L1
bc is also an algebra for pointwise multiplacation, as if f, g ∈ L1

bc, then

‖fg‖L1 6 (supx∈R f)(‖g‖L1) 6∞
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Theorem 2.9 (Plancherel’s Theorem). If f ∈ L1
bc(R) then f̂ ∈ L2

bc(R) and

(2.8) ‖f‖L2(R) = ‖f̂‖L2(R).

Consider the corresponding innner product associated with the L2(R) norm i.e if f, g ∈
L2
bc(R) then

(2.9) 〈f, g〉L2(R) =

∫
R
f(x)g(x)dx.

With this in mind we now state a corollary of Plancherel’s theorem.

Corollary 2.10 (The Parseval formula). Let f, g ∈ L2
bc(R) then

(2.10) 〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R).

We now aim to prove the Parseval formula. But first we need a lemma.

Lemma 2.11. let V be a inner product space, and let f, g ∈ V , then

〈f, g〉 =
1

4
(‖f + g‖2 − ‖f − g‖2) +

i

4
(‖f + ig‖2 − ‖f − ig‖2)

Proof. For the first summand, we expand to see

‖f + g‖2 − ‖f − g‖2 = ‖f‖2 + ‖g‖2 + 2<〈f, g〉 − (‖f‖2 + ‖g‖2 − 2<〈f, g〉)

= 4<〈f, g〉

For the second summand, by a similar calculation we achieve

‖f + ig‖2 − ‖f − ig‖2 = 4=〈f, g〉

and hence we achieve the result. �

Proof of The Parseval formula. From the above lemma we see

〈f, g〉L2(R) =
1

4
(‖f + g‖2L2(R) − ‖f − g‖2L2(R)) +

i

4
(‖f + ig‖2L2(R) − ‖f − ig‖2L2(R))

But also,

〈f̂ , ĝ〉L2(R) =
1

4
(‖f̂ + ĝ‖2L2(R) − ‖f̂ − ĝ‖2L2(R)) +

i

4
(‖f̂ + iĝ‖2L2(R) − ‖f̂ − iĝ‖2L2(R))

From linearity of the Fourier transform and Plancherel’s theorem we can equate the above

expressions to obtain 〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R).

�



12 RYAN O’LOUGHLIN

We pause here to look at the applications of the Fourier transform in probability.We

consider a random variable X, the characteristic function is defined as the expected value of

E[eitX¯ ] i.e, {
ψX : R→ C
ψX(t) = E[eitX¯ ] =

∫
R e

itX
¯ fX(x).

,

where fX is the probability density function on X.

Now we notice that the above expression is the Fourier transform of fX with a sign change

in the exponential function.

It is a basic result of probability that the characteristic function completely determines

the random variable X, so taking the fourier transform of a probability density function will

often simplify a problem, as we will see in 4.

3. Fourier analysis on LCA groups

In this section we will use the convention that an LCA group is a locally compact, σ-

compact abelian group.

Let A be a LCA group we will denote the set of characters i.e the dual group by Â and we

will use a result of representation theory that a representation of a finite abelian group is of

dimension 1 and therefore given by a map χ : A → T. We define L1
bc(A) and L2

bc(A) as in

section 1, although now we generalise to a Haar integral on A.

Let f ∈ L1
bc(A) then f̂ : Â→ C is the Fourier transform of f defined by

(3.1) f̂(χ) =

∫
A

f(x)χ(x).

It is worth pausing at this point and checking our definition of Fourier transform here ties

in with section 1. After all R and R/Z are LCA groups.

In the case of R let φx(y) = e2πixy be a character, then for f ∈ L1
bc(R) we have

f̂(φx) =

∫
R
f(y)φx(y)∗dy =

∫ ∞
−∞

f(y)e2πixydy = f̂(x)
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Remark 3.1. It is worth noting here that R and R̂ are isomorphic as LCA groups via the

mapping {
R→ R̂
x 7→ φx

,

so by convention we write f̂(x) instead of f̂(φx) but this doesnt affect the fundamental idea.

For R/Z the dual group is isomorphic to the group Z again via{
Z→ R̂/Z
k 7→ φk

,

where φk(x) = e2πikx, so in light of the above remark we may write

f̂(k) =

∫
R/Z

f(y)e−2πikydy = ck(f)

So here we have recovered the k′th Fourier coefficient. Our approach to Fourier analysis

on groups shows us how the Fourier series and the Fourier transform are in fact very related,

the only difference being the group in question.

Theorem 3.2 (Convolution Theorem). Let f, g ∈ L1
bc(A), then

f ∗ g(x) =

∫
A

f(xy−1)g(y)dy

exists for every x ∈ A and f ∗ g ∈ L1
bc(A). Moreover

̂f ∗ g(χ) = f̂(χ)ĝ(χ).

Proof. We only prove the second statement i.e ̂f ∗ g(χ) = f̂(χ)ĝ(χ).
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̂f ∗ g(χ) =

∫
A

f ∗ g(x)χ(x)∗dx

=

∫
A

∫
A

f(xy−1)g(y)χ(x)∗dydx

=

∫
A

∫
A

f(y−1x)g(y)χ(x)∗dxdy

=

∫
A

∫
A

f(x)g(y)χ(yx)∗dxdy

=

∫
A

f(x)χ(x)∗dx

∫
A

g(y)χ(y)∗dy

= f̂(χ)ĝ(χ)

Again, the justification of exchanging integrals is Fubini’s Theorem, and the interested

reader is referred to [1, Sec.7.2]

�

Theorem 3.3 (Plancherel’s Theorem). If f ∈ L1
bc(A) then f̂ ∈ L2

bc(Â) and

‖f‖L2(A) = ‖f̂‖L2(Â)

Remark 3.4. Theorems 2.2 and 2.3 are a direct generalisation of the theorems in section 1.

Theorem 3.5 (Fourier Inversion Theorem). Let A be an LCA group and f be a function on

A, then

f(x) =

∫
ρ(x)f̂(ρ)dρ

Theorem 3.6 (Pontryagin Duality). The map

{
A→ ˆ̂

A

a 7→ δa
,

Where δa(χ) = χ(a) is an isomorphism of LCA groups.
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We can pause here and check that the groups we have studied in chapter 1 i.e R and R/Z
do indeed have this property. As previously stated in remark 3.1 (3.1) R is isomorphic to R̂.

So this directly implies R to isomorphic to
ˆ̂R.

We can also show that the dual group of Z is isomoprhic to R/Z . This is shown via the

map {
R/Z→ Ẑ
x 7→ φx

,

where φx(k) = e2πikx.

And similarily the dual group of R/Z is isomorphic to Z. This is shown in (3.1)

Combining these two results confirms the Pontryagin duality for the groups we have seen in

section 1.

We can generalise these examples further, in the case of Rn we can see that Rn and R̂n

are isomorphic as LCA groups via the mapping{
Rn → R̂n

x 7→ φx
,

where φx(y) = e2πi(x.y) and (x.y) denotes the usual inner product.

We now pause to think about the structure of LCA groups, with some examples. To start

off any compact abelian group is clearly an LCA group. Any countable abelian group with

the discrete topology is a LCA group. An exmaple of a LCA group which isnt compact is R.

We now go on to prove two structure theorems of LCA groups, which help us break down

LCA in to simpler expressions.

Theorem 3.7. If A is a LCA group then A is isomorphic to a group of the form Rn × H
for some n ∈ N0, such that H is a LCA group which contains an open compact subgroup.
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Definition 3.8. A group A is said to be compactly generated if A =< U >=
⋃
n∈N0

Un for

some compact neighbourhood U of e

For example the group (R,+) is compactly generated by [−1, 1], (Z,+) is compactly

generated by −1, 0, 1 and (T,×) is compactly generated by e2πix for x ∈ [0, 1
2
]

Theorem 3.9. A compactly generated LCA group, A, is isomorphic to a group of the form

Rn × Zm ×K for some compact group K and m,n ∈ N0.

4. Fourier analysis on finite groups

Everything in Section 1 and 2 , has been theory related to abelian groups. In this section

we no longer have this restriction. So now when we have a representation of a group G, we

can no longer say this is a map from G to T. We now have a (matrix) representation is a

map G→ GL(n,F) where GL(n,F) is the set of all n×n invertable matrices over a arbitary

field F. For this reason our definition of our Fourier transform varies slightly

Let G be a finite group with the set of corresponding matrix representations denoted Rep(G).

Let f : G→ C, and ρ ∈ Rep(G) then we define

f̂(ρ) =
1

|G|
∑
g∈G

f(g)ρ(g)∗.

Remark 4.1. A closer inspection at the above formula shows that the Fourier transform at

any given representation is indeed a matrix. We also note that as we have the restricition of

only dealing with finite groups, our Haar measure becomes a summation.

Theorem 4.2 (Fourier Inversion Theorem). Let Ĝ denote the set of all equivalence classes

of irreducible representations of G where two representations are said to be in the same

equivalence class if their representations are equivalent. For each class in Ĝ choose a fixed

representative ρi. Let f be a function on G, then

f(s) =
1

|G|
∑
i

diTr(ρi(s
−1)f̂(ρi))

∗,

where di is the dimension of the irreducible representation ρi.

This theorem says if we know the values that f̂ takes on Ĝ (or in particular just all

irreducible representations) then we can retrieve the original function f .
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Theorem 4.3 (Plancherel’s Formula for Finite groups). Let f be a function on G, then

‖f‖2L2(G) =
1

|G|
∑
ρi

di‖f̂(ρi)‖2HS,

where di is the dimension of the irreducible representation ρi and ‖.‖HS is the Hilbert

Schmidt norm, that is ‖π‖2HS = tr(π∗π), for a square matrix π

Remark 4.4. Noting that all abelian group representations are of dimension one hence irre-

ducible, if we restrict the above formula to abelian groups we do retrieve Plancherel’s formula

in the abelian case.

Theorem 4.5 (Convolution Theorem). Let f, g be functions G→ C, then

f ∗ g(x) =
1

|G|
∑
y∈G

f(xy−1)g(y), x ∈ G

and
̂f ∗ g(ρ) = ĝ(ρ)f̂(ρ), ρ ∈ Rep(G).

The convolution theorem has many applications in probability, in particular on random

walks.

Let Q(g)g∈G be a probability distrubution on G. Then define Q∗k to be Q convolved

with itself k times. i.e Q∗3(g) = Q ∗ Q ∗ Q(g). The interpretation of this in the context

of probability is Q∗k(g) is the probability that a random walk on G generated by picking

elements repeatedly with weight givent by Q is at g after k steps. All walks start at the

indentity.

In light of the convolution theorem we can simplify the problem of finding the probability

of the state of a random walk on a group after k steps. We know the probability in question

is given by Q∗k(g), if we take the Fourier transform of this it becomes Q̂∗k(ρ) = Q̂k(ρ) ρ ∈
Rep(G). The problem has now been reduced to simple matrix multiplication.

Theorem 4.6. The uniform distribution is defined by U(s) = 1
|G| s ∈ G, where |G| is the

order of the group G. Then at the trivial representation Û(ρ) = 1
|G| and at any non-trivial

irreducible representation Û(ρ) = 0.
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Proof. First we compute the Fourier transform at the trivial representation. Let ρ be the

trivial representation, from our definition we see that

Û(ρ) =
1

|G|
∑
s∈G

1

|G|
.1 =

1

|G|
.

Now let ρ be any non-trivial representation. It suffices to show∑
s∈G

ρ(s) = 0.

As a result of Schur’s lemma [2, Chap.2B] we conclude that (as for any g ∈ G ρ(g)
∑

s∈G ρ(s) =

(
∑

s∈G ρ(s))ρ(g)) ∑
s∈G

ρ(s) = λI,

where λ is a constant and I is the identity . But

ρ(g)
∑
s∈G

ρ(s) =
∑
s∈G

ρ(s) = λI,

so λ = 0.

�

5. Fourier analysis on compact groups

We use the convention that a compact group K is a compact topological group which is

Hausdorff.

It is a result of representation theory that every representation of a compact group is a

direct sum of irreducibles, and that every irreducible representation is finite dimensional.

Furthermore, every finite dimensional representation may be assumed to be unitary. See [3,

Sec.3.1]

We now want to discuss the Peter Weyl Theorem, but first we need some preparation.

Once again we let K̂ denote the set of all equivalence classes of irreducible representations

of K where two representations are in the same equivalence class if they are equivalent. For

each class in K̂ choose a fixed representative (τ, Vτ ). Choose an orthonormal basis e1, .., en
of Vτ and let

τi,j(k) = 〈τ(k)ei, ej〉.
The map τi,j : K → C is called the (i,j)th matrix coefficient of τ .
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Theorem 5.1 (Peter Weyl Theorem).

The family (
√
dτ )τi,j)τ,i,j form an orthonormal basis of the Hilbert space L2(K).

We will now reformulate the Peter Weyl Theorem to express it in a more familiar form.

Let f ∈ L2(K), we express f in terms of the orthonormal basis stated above. i.e

(5.1) f =
∑
τ

∑
i,j

〈f,
√
dττi,j〉L2

√
dττi,j

Now we use orthonormality to compute

〈f, f〉 = ‖f‖2L2 =
∑
τ

∑
i,j

|〈f,
√
dττi,j〉L2|2

=
∑
τ

dτ
∑
i,j

(

∫
fτij)(

∫
fτij)

but

[f̂(τ)]ij =

∫
f(x)τji(x)dx

and so

(

∫
fτji) = [f̂(τ)]ij

putting these results together we obtain

‖f‖2L2 =
∑
τ

dτ tr[f̂(τ)∗f̂(τ)].

This may be viewed as a generalisation of Plancherel’s theorem, and if wee restrict the case

to K being and LCA group or a finite group we will retrieve the Plancherel’s theorem we

have seen before.

Also note how (5.1) can be rearranged to give

=
∑
τ

dτ
∑
i,j

〈f, τi,j〉L2τi,j

which may be viewed as a generalisation of the Fourier inversion formulae.

We now examine the Peter Weyl theorem further, in particular the equivalences K̂.

For any τ ∈ Rep(K) let ετ = span{τij} ⊂ L2(K) where 1 6 i, j 6 dτ . It can be shown

that ετ depends only on [τ ] i.e, if we take two equivilant representations, τ1, τ2 then ετ1 = ετ2
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Theorem 5.2. Let ετ ⊂ L2(K) be defined as above and let λ be the representation given by{
K → GL(L2(K))

(λ(k0))f(k) = f(k−10 k)
,

then ετ is a stable subspace of ε(K) under λ

Proof. It suffices to show that for all k0 ∈ K

(λ(k0))τij ∈ ετ .

We begin with

(λ(k0))τij(k) = τij(k
−1
0 k) = [τ(k−10 k)]ij

Now noting that τ is a homomorphism we see that τ(k−10 k) = τ(k0)
−1τ(k) and hence

=
∑
l

[τ(k0)
−1]ilτlj(k)

So overall we obtain the result

(λ(k0))τij = l.iτij(k), 1 6 j 6 dτ

Which is a linear combination of elements of ετ
�
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