SUB-RIEMANNIAN SANTALÓ FORMULA AND APPLICATIONS

joint work with D. Prandi and L. Rizzi [arXiv:1509.05415]

Marcello Seri University of Bath, 28 June 2016

University of Reading

OUTLINE

- Motivations
- · Riemannian Santaló formula
- · Sub-Riemannian Santaló formula
- $\cdot\,$ Reduction procedure
- · Applications

Understand spectral properties of Laplace-Beltrami opeartor on almost Riemannian geometries that present **classical tunnelling** with **quantum confinement** (in progress).

But most of the usual "tools" are missing.

(a) geodesics starting from the singular set (red circle)

(b) geodesics starting from the the point (.3,0)

Figure 1: Geodesics for Grushin cylinder; red singular set; black wave front

RIEMANNIAN SANTALÓ FORMULA

- · Classical formula in integral geometry [Santaló, 1976]
- Allows to decompose integrals on a manifold with boundary in integrals along the geodesics starting from the boundary
- · Deep consequences, e.g. [Croke 1980–1987]:
 - · Isoperimetric inequalities
 - · Geometric inequalities (Hardy, Poincarè)
 - · Lower bounds for Laplace-Beltrami operator's spectrum

- \cdot (M, g) Riemannian manifold
 - \cdot compact
 - · with boundary $\partial M \neq \emptyset$
- $\cdot \ d\omega = \mathrm{vol}_{\mathsf{g}}$ Riemannian volume form
- **n** unit inward pointing vector

· Unit tangent bundle

$$UM = \{v \in TM \mid |v| = 1\}$$

• Geodesic flow
$$\phi_t: UM \to UM$$
,

$$\phi_t(\mathbf{v}) = \dot{\gamma}_{\mathbf{v}}(t)$$

• Exit time
$$\ell(v) \in [0, +\infty]$$
,

$$\ell(v) = \sup\{t \ge 0 \mid \gamma_v(t) \in M\}$$

 \cdot Visible unit tangent bundle

$$U^*M = \{v \in UM \mid \ell(-v) < +\infty\}$$

Let $\Theta := d\dot{q} \wedge dq$ be the *Liouville measure* (natural measure on *TM* with coordinate (q, \dot{q})). From it we can derive

- \cdot the Liouville surface measure d $_{\mu}$ on UM
- · the measure $d\eta_q$ on fibers above q, i.e.

$$\int_{UM} F \, d\mu = \int_M \left(\int_{U_qM} F(q,\dot{q}) \, d\eta_q(\dot{q}) \right) d\omega(q)$$

In coordinates, $d\eta$ is the standard measure on $U_q M \cong \mathbb{S}^{n-1}$.

Let $\Theta := d\dot{q} \wedge dq$ be the *Liouville measure* (natural measure on *TM* with coordinate (q, \dot{q})). From it we can derive

- \cdot the Liouville surface measure d $_{\mu}$ on UM
- \cdot the measure $d\eta_q$ on fibers above q

Theorem (Santaló formula)

Let $F:UM\to \mathbb{R}$ measurable. Then

$$\int_{U^*M} F \, d\mu = \int_{\partial M} d\sigma(q) \int_{U_q^+ \partial M} d\eta(v) \int_0^{\ell(v)} dt \, F(\phi_t(v)) \, \mathbf{g}(v, \mathbf{n}_q)$$

where $U_q^+\partial M := \{v \in U_q M \mid q \in \partial M, \mathbf{g}(v, \mathbf{n}_q) > 0\}$ is the set of unit inward pointing vectors on the boundary.

Choosing $F \equiv 1$ in the Santaló formula one finds **Theorem (Croke)** Let $\theta^* \in [0, 1]$ be the visibility angle of M. Then

$$\frac{\sigma(\partial M)}{\omega(M)} \geq \frac{2\pi |\mathbb{S}^{n-1}|}{|\mathbb{S}^n|} \frac{\theta^*}{\operatorname{diam}(M)}$$

Equality holds iff M is isometric to an hemisphere.

Observing that any $f : M \to \mathbb{R}$ can be lifted to $F : UM \to \mathbb{R}$ by $F(q, \dot{q}) = f(q)$, one also finds

Theorem (Croke, Derdzinski)

Let $f \in C_0^{\infty}(M)$. Then

$$\int_{M} |\nabla f|^2 \ d\omega \geq \frac{n\pi^2}{|\mathbb{S}^{n-1}|L^2} \int_{M} f^2 d\omega \quad \Longrightarrow \quad \lambda_1(M) \geq \frac{n\pi^2}{|\mathbb{S}^{n-1}|L^2},$$

where $L \leq \infty$ is the length of the longest Riemannian geodesic contained in M. The equality for the eigenvalue lower bound holds iff M is isometric to an hemisphere.

SUB-RIEMANNIAN SANTALÓ FORMULA

Definition

A sub-Riemannian manifold is a triple (M, D, g) where

- · *M* is an connected smooth manifold of dimension $n \ge 3$;
- $D \subset TM$ is a smooth distribution of constant rank $k \le n$, i.e. a smooth map that associates to $q \in M$ a k-dimensional subspace $D_q \subseteq T_qM$ satisfying the Hörmander condition:

$$\forall q \in M, \qquad \operatorname{span}\{[X_1, [\dots [X_{j-1}, X_j]]](q) \mid X_i \in \overline{D}, j \in \mathbb{N}\} = T_q M,$$

where $\overline{D} = \{X \in Vec(M) \mid X_q \in D_q, \forall q \in M\}$ denotes the set of *horizontal vector fields on M*;

 $\cdot \mathbf{g}_q$ is a smooth Riemannian metric on D_q , smooth as function of q.

Definition

A sub-Riemannian manifold is a triple (M, D, g) where

- · *M* is an connected smooth manifold of dimension $n \ge 3$;
- · $D \subset TM$ is a smooth distribution of constant rank $k \leq n$, ;
- \cdot **g**_q is a smooth Riemannian metric on *D*_q, smooth as function of *q*.

In the rest of the talk:

- · M compact
- $\cdot \partial M \neq \emptyset$
- $\cdot \,\,\omega$ fixed smooth volume on M

Sub-Riemannian distance:

$$d(p,q) := \inf \left\{ \int_0^T \mathbf{g}(\dot{\gamma}(t), \dot{\gamma}(t)) dt \mid \dot{\gamma}(t) \in D_{\gamma(t)}, \text{ and } (\gamma(0), \gamma(T)) = (p,q) \right\}$$

Remark

Thanks to the Hörmander condition, (M, d) is a metric space with the same topology as the original one of M (Chow-Rashevsky theorem).

SUB-RIEMANNIAN GEOMETRY: BASIC FEATURES

Figure 2: The Heisenberg Sub-Riemannian sphere

- · spheres are highly non-isotropic
- \cdot there are geodesics loosing optimality close to the starting point \implies spheres are never smooth even for small time
- the Hausdorff dimension is bigger than the topological dimension (unless it is actually a Riemannian manifold)

· **Boundary**: the sub-Riemannian normal is the inward-pointing unit vector $\mathbf{n}_q \in D_q$ such that

 $\mathbf{n}_q \perp \mathbf{v}, \qquad \forall \mathbf{v} \in T_q \partial M \cap D_q.$

When D_q is tangent to ∂M , \mathbf{n}_q is not well defined.

· **Boundary**: the sub-Riemannian normal is the inward-pointing unit vector $\mathbf{n}_q \in D_q$ such that

 $\mathbf{n}_q \perp \mathbf{v}, \qquad \forall \mathbf{v} \in T_q \partial M \cap D_q.$

When D_q is tangent to ∂M , \mathbf{n}_q is not well defined. \Rightarrow **Proposition** [Prandi, Rizzi, S]: the set of points such that D_q is tangent to ∂M is negligible. · **Boundary**: the sub-Riemannian normal is the inward-pointing unit vector $\mathbf{n}_q \in D_q$ such that

 $\mathbf{n}_q \perp \mathbf{v}, \qquad \forall \mathbf{v} \in T_q \partial M \cap D_q.$

When D_q is tangent to ∂M , \mathbf{n}_q is not well defined. \Rightarrow **Proposition** [Prandi, Rizzi, S]: the set of points such that D_q is tangent to ∂M is negligible.

• Geodesic flow: since the initial velocities of the geodesics are constrained to $D \subset TM$, more than one geodesic can start with the same velocity.

 \Rightarrow there is no geodesic flow $\phi_t : TM \to TM$ (!!!)

Consider the Hamiltonian $H: T^*M \to \mathbb{R}$,

$$H(q,p) = \frac{1}{2} \sum_{i=1}^{k} \langle p, X_i(q) \rangle^2$$

Theorem (Pontryagin Maximum Principle for normal extremals) For any $\xi_0 \in T^*M$, the solution $\xi : [0,T] \to T^*M$ with $\xi(0) = \xi_0$ of the Hamiltonian system

$$\dot{\xi}(t) = \vec{H}(\xi(t)), \qquad \vec{H} = \frac{\partial H}{\partial q} \frac{\partial}{\partial p} + \frac{\partial H}{\partial p} \frac{\partial}{\partial q}$$

projects to a minimiser $\gamma = \pi \circ \xi : [0, T] \rightarrow M$ of the sub-Riemannian distance.

Consider the Hamiltonian $H: T^*M \to \mathbb{R}$,

$$H(q,p) = \frac{1}{2} \sum_{i=1}^{k} \langle p, X_i(q) \rangle^2$$

Theorem (Pontryagin Maximum Principle for normal extremals) For any $\xi_0 \in T^*M$, the solution $\xi : [0,T] \to T^*M$ with $\xi(0) = \xi_0$ of the Hamiltonian system

$$\dot{\xi}(t) = \vec{H}(\xi(t)), \qquad \vec{H} = \frac{\partial H}{\partial q} \frac{\partial}{\partial p} + \frac{\partial H}{\partial p} \frac{\partial}{\partial q}$$

projects to a minimiser $\gamma = \pi \circ \xi : [0, T] \rightarrow M$ of the sub-Riemannian distance.

- \cdot Normal minimizers parametrized by the initial covector
- · Sub-Riemannian geodesic flow $\phi_t : T^*M \to T^*M$

Consider the sub-Riemannian geodesic flow $\phi_t: U^*M \to U^*M$ with

$$U^*M := \{\xi \in T^*M \mid H(\lambda) = 1/2\}$$

The Liouville measure on the cotangent bundle T^*M still allows to define a Liouville surface measure $d\mu$ on U^*M and a vertical measure $d\eta_q$ on the fibers U_a^*M .

Theorem (Prandi, Rizzi, S)

Let $F: U^*M \to \mathbb{R}$ measurable. Then

$$\int_{U^{*}_{q}M} F \, d\mu = \int_{\partial M} d\sigma(q) \int_{U_{q}^{+}\partial M} d\eta(\xi) \int_{0}^{\ell(\xi)} dt \, F(\phi_{t}(\xi)) \, \langle \xi, \mathbf{n}_{q} \rangle$$

where $U_q^+ \partial M = \{\xi \in U_q^* \partial M \mid \langle \xi, \mathbf{n}_q \rangle \ge 0\} \subset U_q^* M$ is the set of inward pointing unit covectors on the boundary.

Theorem (Prandi, Rizzi, S)

Let $F: U^*M \to \mathbb{R}$ measurable. Then

$$\int_{U^*_{q}M} F \, d\mu = \int_{\partial M} d\sigma(q) \int_{U^+_{q}\partial M} d\eta(\xi) \int_0^{\ell(\xi)} dt \, F(\phi_t(\xi)) \, \langle \xi, \mathbf{n}_q \rangle$$

where $U_q^+\partial M = \{\xi \in U_q^*\partial M \mid \langle \xi, \mathbf{n}_q \rangle \ge 0\} \subset U_q^*M$ is the set of inward pointing unit covectors on the boundary.

Problem: the typical fiber $U_q^*M \cong \mathbb{S}^{k-1} \times \mathbb{R}^{n-k}$ is not compact! \implies Choosing $F \equiv 1$ or lifting $f: M \to \mathbb{R}$ as before gives ∞ on both sides of the equation.

REDUCTION PROCEDURE

First proposed by **[Pansu 1985]** in the Heisenberg group and **[Chanillo-Young 2009]** for 3D Sasakian manifolds.

• Assume that you can fix $\mathcal{V} \subset TM$ such that $TM = D \oplus \mathcal{V}$. Equiv. you can fix a Riemannian metric $\hat{\mathbf{g}}$ on M such that $\hat{\mathbf{g}} \upharpoonright_D = \mathbf{g}$ and $\operatorname{vol}_{\mathbf{g}} = \omega$.

$$\Rightarrow T^*M = D^{\perp} \oplus \mathcal{V}^{\perp}$$

· The reduced cotangent bundle is $T^*M^r := T^*M \cap \mathcal{V}^{\perp}$ and similarly $U^*M^r = U^*M \cap \mathcal{V}^{\perp}$

Example: in the Heisenberg group, given by the vector fields on \mathbb{R}^3

$$X = \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{2}y \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 \\ 1 \\ \frac{1}{2}x \end{pmatrix},$$

the geodesics with covectors in $U_q^*M^r$ at (x, y, z) span the plane orthogonal to (y/2, -x/2, 1).

First proposed by **[Pansu 1985]** in the Heisenberg group and **[Chanillo-Young 2009]** for 3D Sasakian manifolds.

- Assume that you can fix $\mathcal{V} \subset TM$ such that $TM = D \oplus \mathcal{V}$. $\Rightarrow T^*M = D^{\perp} \oplus \mathcal{V}^{\perp}$
- · The reduced cotangent bundle is $T^*M^r := T^*M \cap \mathcal{V}^{\perp}$ and similarly $U^*M^r = U^*M \cap \mathcal{V}^{\perp}$

Theorem (Prandi, Rizzi, S)

Let $F:U^*M^r\to \mathbb{R}.$ Under some stability assumptions on the complement $\mathcal{V},$

$$\int_{U^{\Psi}M^{\mathrm{r}}} F \, d\mu^{\mathrm{r}} = \int_{\partial M} d\sigma(q) \int_{U^{*}_{q} \partial M^{\mathrm{r}}} d\eta^{\mathrm{r}}(\xi) \int_{0}^{\ell(\xi)} dt \, F(\phi_{t}(\xi)) \, \langle \xi, n_{q} \rangle.$$

Now, $U_q^* M^r \cong \mathbb{S}^{k-1}$ is **compact**!

APPLICATIONS

Theorem (Prandi, Rizzi, S)

Let $\theta^{*} \in [0,1]$ be the (reduced) visibility angle of M, then

$$\frac{\sigma(\partial M)}{\omega(M)} \geq \frac{2\pi |\mathbb{S}^{k-1}|}{|\mathbb{S}^k|} \frac{\theta^*}{\mathrm{diam}^{\mathrm{r}}(M)}$$

where $\operatorname{diam}^{r}(M)$ is the reduced sub-Riemannian diameter of M.

Remark

- · it is always true that $\operatorname{diam}^{\mathrm{r}}(M) \leq \operatorname{diam}(M)$
- · $\operatorname{diam}^{r}(M)$ is much easier to compute than $\operatorname{diam}(M)$
- In the Riemannian setting, to get rid of the diameter one needs curvature arguments that not available right now in the sub-Riemannian setting

The sub-Riemannian gradient of $f \in C^{\infty}(M)$ is, for a local orthonormal frame,

$$\nabla_{H}f = \sum_{i=1}^{k} (X_{i}f)X_{i}$$

Theorem (Prandi, Rizzi, S)

Let $f \in C_0^{\infty}(M)$, then

$$\int_{M} |\nabla_{H} f|^{2} d\omega \geq \frac{k\pi^{2}}{L^{2}} \int_{M} f^{2} d\omega$$

where L is the length of the longest *reduced* geodesic.

 \cdot In a similar way one can obtain the Hardy-like inequality

$$\int_{M} |\nabla_{\mathsf{H}} f|^2 d\omega \geq \frac{k}{4|\mathbb{S}^{k-1}|} \int_{M} \frac{f^2}{r^2} \ d\omega$$

where $\frac{1}{r^2} = \int_{U_q^* M^r} \frac{1}{\ell^2(\xi)} d\eta^r(\xi)$ is the harmonic mean distance from the boundary **[Davies 1999]**

- \cdot and *p*-Hardy inequalities for *p* > 1 (omitted)
- further improvements (e.g. getting additional correction terms or a refined constant) are possible but not treated in the paper

The Dirichlet sub-Laplacian is the (Friedrichs extension) of the operator $\mathcal L$ s.t.

$$\int_{M} \mathbf{g}(\nabla_{H} f, \nabla_{H} g) \ d\omega = \int_{M} (-\mathcal{L} f) g \ d\omega, \qquad \forall f, g \in C^{\infty}_{c}(M)$$

- $\cdot\,$ By Hörmander condition, $-\mathcal{L}$ is hypoelliptic
- · For a local orthonormal frame,

$$\mathcal{L} = \sum_{i=1}^{k} X_i^2 + ext{lower order terms}$$

 $\cdot \ \operatorname{spec}(M) = \{0 < \lambda_1 \leq \lambda_2 \leq \ldots \rightarrow \infty\}$

The Dirichlet sub-Laplacian is the (Friedrichs extension) of the operator $\mathcal L$ s.t.

$$\int_{M} \mathbf{g}(\nabla_{H} f, \nabla_{H} g) \ d\omega = \int_{M} (-\mathcal{L} f) g \ d\omega, \qquad \forall f, g \in C^{\infty}_{c}(M)$$

- $\cdot\,$ By Hörmander condition, $-\mathcal{L}$ is hypoelliptic
- · For a local orthonormal frame,

$$\mathcal{L} = \sum_{i=1}^{k} X_i^2 + \text{lower order terms}$$

 $\cdot \ \operatorname{spec}(M) = \{0 < \lambda_1 \leq \lambda_2 \leq \ldots \rightarrow \infty\}$

Theorem (Prandi, Rizzi, S)

$$\lambda_1(M) \geq \frac{k\pi^2}{L^2}$$

- The results apply notably to two large classes of sub-Riemannian manifolds
 - Riemannian foliations with totally geodesic fibers (submersions, contact manifold with symmetries, CR manifolds, quasi-contact manifolds)
 - · All Carnot groups (left-invariant nilpotent structures on \mathbb{R}^n)
- The isoperimetric inequality and the lower spectral bound are sharp for the hemispheres of the complex and quaternionic Hopf fibrations on the spheres (generalizes the sharpness by Croke)

- The results apply notably to two large classes of sub-Riemannian manifolds
 - Riemannian foliations with totally geodesic fibers (submersions, contact manifold with symmetries, CR manifolds, quasi-contact manifolds)
 - · All Carnot groups (left-invariant nilpotent structures on \mathbb{R}^n)
- The isoperimetric inequality and the lower spectral bound are sharp for the hemispheres of the complex and quaternionic Hopf fibrations on the spheres (generalizes the sharpness by Croke)
- Iterating the reduction procedure allows in some cases to improve some of the estimates (not enough to make them sharp)
- Building on these ideas it is possible to prove a sharper Hardy inequality that, in particular, holds also for almost-Riemannian manifold with non-constant rank [Prandi, Rizzi, S in preparation]

THANK YOU FOR THE ATTENTION!