
HARMONIC ANALYSIS ON THE HEISENBERG GROUP

AND RELATED TOPICS

VERONIQUE FISCHER

The Heisenberg group Hn plays a fundamental rôle in several branches of analysis, especially
in non-commutative harmonic analysis, but also in sub-Riemannian geometric analysis. Indeed,
Hn may be viewed as the simplest example of non-commutative nilpotent Lie group and sub-
Riemannian manifold. Moreover, it is related to Euclidean phase-space analysis via the Schrödinger
representation.

In this series of lectures, we will discuss the following topics:

• We will start with the definition of the Heisenberg group Hn, in particular various equivalent
realisations.

• We will then introduce important objects and structures considered on the Heisenberg group
coming from sub-Riemannian geometry (e.g. the canonical sub-Laplacian, the horizontal
distributions, the CC-distance etc.).

• We will discuss some harmonic analysis on the Heisenberg group in relation to Singular
Integral theory and possibly representation theory.

• At the end of the lectures, we will discuss the recent progress on non-commutative phase-
space analysis on the Heisenberg group and beyond.
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1. Definition(s) of the Heisenberg group

In this section, we discuss the usual definition(s) of the Heisenberg group as a Lie group.

Recall that a Lie group is a smooth manifold M equipped with a compatible group structure;
the compatibility means that the multiplication and inverse operations (x, y) !→ xy and x !→ x−1

are smooth maps M ×M → M and M → M respectively.

1.1. Our preferred definition. In these lectures, our preferred definition for the Heisenberg
group Hn will be the following: it is the manifold R2n+1 equipped with the law

(1.1) (x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

2
(xy′ − x′y)),

where (x, y, t) and (x′, y′, t′) are in Rn×Rn×R ∼ Hn. In these lecture notes, we adopt the following
convention: if x and y are two vectors in Rn for some n ∈ N, then xy denotes their standard scalar
product

xy =

n!

j=1

xjyj if x = (x1, . . . , xn), y = (y1, . . . , yn).

It is straightforward to check that (1.1) defines a group law, with inverse (x, y, t)−1 = (−x,−y,−t)
and neutral element 0 = (0, 0, 0). These product and inverse operations are smooth, so Hn is indeed
a Lie group.

1.2. Lie groups isomorphic to Hn. First we remark that the factor 1
2 in the group law given by

(1.1) is irrelevant in the following sense. Let α ∈ R∗ = R\{0}. Consider the Lie group H(α)
n given

by the manifold R2n+1 equipped with the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

α
(xy′ − x′y)).

Then the Lie groups H(α)
n and Hn = H(2)

n are isomorphic via

(1.2)

"
Hn −→ H(α)

n

(x, y, t) !−→ (x, y, 2
α t)

.

In the same way, consider the polarised Heisenberg group H̃n given by the manifold R2n+1

equipped with the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ + xy′).

Then the Lie groups H̃n and Hn are isomorphic via
"

Hn −→ H̃n

(x, y, t) !−→ (x, y, t+ 1
2xy)

.

Note that the Heisenberg group Hn can be also viewed as a matrix group. For simplicity, we consider
n = 1, in which case the group H̃1 is isomorphic to T3, the group of 3-by-3 upper triangular real
matrices with 1 on the diagonal:

#
$$%

$$&

H̃1 −→ T3

(x, y, t) !−→

'

(
1 x t
0 1 y
0 0 1

)

* .
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All the statements above can be readily checked by a straightforward computation. Combining two
isomorphisms above, we obtain the identification H1 −→ H̃1 −→ T3 given by

#
$$%

$$&

H1 −→ T3

(x, y, t) !−→

'

(
1 x t+ 1

2xy
0 1 y
0 0 1

)

* .

1.3. The Heisenberg group as the boundary of the complex sphere. Here we consider the
case n = 1 for the sake of clarity.

The Heisenberg group can be also realised as a group of transformations: for each

h = (x, y, t) ∈ H1,

the affine (holomorphic) map given by

φh : C× C ∋ (z1, z2) !−→ (z1 + x+ iy, z2 + t+ 2iz1(x− iy) + i(x2 + y2)) ∈ C× C,

sends the (Siegel) domain

U := {(z1, z2) ∈ C× C : ℑz2 > |z1|2} (= SU(2, 1)/U(2))

to itself, and the (Shilov) boundary of U ,

bU := {(z1, z2) ∈ C× C : ℑz2 = |z1|2},

also to itself. One can check that H1 ∋ h !→ φh defines an action of H1 on U and on bU .
Furthermore, the action of H1 on bU is simply transitive. The Cayley type transform

(w1, w2) !−→ (z1, z2) with z1 =
w1

1 + w2
, z2 = i

1− w2

1 + w2
,

is a biholomorphic bijective mapping which sends U onto the unit complex ball of C2. It also send
bU to the unit complex sphere S3, more precisely onto S3\{S} where S = (0,−1) is the south pole
(which may be viewed as the image of ∞). Hence the Heisenberg group acts simply transitively on
S3\{S}.

1.4. The Heisenberg group from its Lie algebra. Recall that a Lie algebra is a vector space L
equipped with a Lie bracket [·, ·], that is, a skew-symmetric bilinear operation L×L → L satisfying
the Jacobi identity:

∀Z1, Z2, Z3 ∈ L [Z1, [Z2, Z3]] + [Z3, [Z1, Z2]] + [Z2, [Z3, Z1]] = 0.

Convention: In these lecture notes, unless otherwise stated, the Lie algebras are over the fields R
of real numbers and are finite dimensional.

The (abstract) Heisenberg Lie algebra hn is the vector space R2n+1 with Lie brackets given on
the canonical basis X1, . . . , Xn, Y1, . . . , Yn, T by

(1.3) [Xj , Yj ] = T, j = 1, . . . , n,

and all other relations being zero. These relations are known as the canonical commutation relations.
In particular [T,Xj ] = [T, Yj ] = 0 for j = 1, . . . , n so RT is the centre of the Lie algebra hn.

Moreover, [·, [·, ·]] = 0. Consequently, hn is a nilpotent Lie algebra of step 2.
The recap in Section 1.5 below implies that there is a unique simply connected Lie group with

Lie algebra hn. It is the Lie group with underlying manifold R2n+1 with group law given by

X $ Y = X + Y +
1

2
[X,Y ], X, Y ∈ R2n+1.
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1.5. Recap from elementary differential geometry and some Lie theory. Recall the fol-
lowing definitions:

(1) What is a vector field?

• Analysts’ definition: A vector field X̃ on an open subset U ⊂ RN is a field of vectors,
i.e. a smooth map X̃ : U → RN , given in components by (c1, . . . , cN ). Equivalently, it

is the differential operator of degree 1 with no constant term given by X̃ =
+N

j=1 cj∂j .

Roughly speaking, a vector field X̃ on a manifold M is a differential operator on M
such that in every chart, it is given by a vector field on RN with N = dimM .

• Geometers’ definition: A vector field is a smooth section over the tangent bundle TM ,
i.e. X̃p is a tangent vector at a point p depending smoothly on p ∈ M .
Recalling the following notions may help with this definition. Given a point p0 inM and
a path γ(t) with γ(0) = p0 (i.e a smooth function γ : I → M defined on a small interval

I about t ∈ 0 and satisfying γ(0) = p0), consider the operation f !→ d
dtf(γ(t))

,,,
t=0

on

the space of smooth functions f : M → R. Many paths yield the same operation, and
modulo this equivalence, this defines a tangent vector at p0. The set of tangent vectors
at p0, known as the tangent space Tp0M at p0. This is a finite dimensional vector space
whose dimension is the dimension of the manifold. The tangent bundle of M is defined
as TM := ∪p0Tp0M .

Naturally, the two definitions coincide, although the geometers’ justifies more intrinsically
the fact that a vector field makes sense as an object on a manifold.

(2) The space of vector fields Γ(TM) on M is equipped with the commutator bracket

[X̃, Ỹ ] := X̃Ỹ − Ỹ X̃, X̃, Ỹ ∈ Γ(TM).

This definition requires to check that the commutator bracket of two vector fields is a vector
field. The analysts’ viewpoint will start with the setting RN where the commutator bracket
of two vector fields viewed as differential operators is clearly a differential operator of degree
≤ 2, and a (simple but lengthy) computation shows that the terms with degrees = 2 and
= 0 vanish, so it is a vector field in RN . Consequently, this is also true on manifold.

A more geometric proof is the following. The flow φX̃ of X̃ is the solutions of the ODE
d
dtφ

X̃
t (p) = X̃φX̃

t (p) where X̃ is viewed here as a field of vectors in the case of RN and more
generally as a smooth section of TM in the manifold case. We have

[X̃, Ỹ ] =
d

dt

,,,
t=0

φX̃√
t
φỸ√

t
φX̃
−
√
t
φỸ
−
√
t
=

1

2

d2

dt2

,,,
t=0

φX̃
t φỸ

t φ
X̃
−tφ

Ỹ
−t.

The fact that this indeed defines a vector field that can alternatively be defined with the
commutator bracket is one of the first results of differential geometry.

Note that the space of vector fields Γ(TM) equipped with the commutator bracket is
then a Lie algebra of infinite dimension.

(3) Assume that M = G is a Lie group.

By definition, a vector field X̃ is left-invariant when it commutes with the left multi-
plication p !→ g0p by every element g0 of the group G, that is, X̃(f(g0 ·)) = (X̃f)(g0 ·) on
M = G.

One checks readily that the commutator bracket of two left-invariant vector fields is also
left-invariant. This allows us to define the Lie algebra L of the Lie group G as the space
of left-invariant vector fields equipped with the commutator bracket. Note that L is a Lie
sub-algebra of Γ(TM) with this definition.

There is an alternative description of L that shows that it is finite dimensional. Indeed,
we observe that the tangent space TeGG at the origin eG of the group is in one-to-one
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correspondence with the left-invariant vector fields

X ←→ X̃

via

X̃f(g) =
d

dt

,,,
t=0

f(gγ(t)), for any path γ(t) with γ(0) = eG,
d

dt

,,,
t=0

γ(t) = X.

Hence, L may be viewed as the tangent space TeGG at the origin equipped with the Lie
bracket given by

[X,Y ] = [X̃, Ỹ ](eG).

Consequently, dimL = dimG < ∞.
Note that the analysis above may be also done with right-invariant vector fields.
If X ∈ L then the time-one flow of X̃ defines the exponential of X:

expX := φX̃
t=1.

This defines the smooth map

exp : L → G,

called the exponential map. Note that this is the exponential map from Lie theory - not to
be confused with the exponential map on a Riemannian manifold and its generalisations.

References for an introduction to differential geometry with basic aspects of Lie theorey include
for instance the textbook [27]. References on Lie groups and Lie algebras include for instance
[28, 13] and furthermore for the very motivated readers [15, 16].

Recall the following facts in Lie theory:

• The exponential map is a smooth diffeomorphism from a neighbourhood of 0 ∈ L onto a
neighbourhood of eM ∈ G. However, for a simply connected nilpotent Lie group M , this a
(global) diffeomorphism from L onto M .
Convention: A simply connected topological space is assumed connected in these lecture
notes.

• The Baker-Campbell-Hausdorff formula

exp(X) exp(Y ) = exp(X + Y +
1

2
[X,Y ] + . . .) = exp(X $ Y ),

with X $ Y given in (1.4) below, holds on any Lie group for X and Y in a small enough
neighbourhood of 0 ∈ L. The sum in the exponential on the right-hand side of the Baker-
Campbell-Hausdorff formula is

(1.4) X $ Y :=

∞!

ℓ=1

(−1)ℓ−1

ℓ

!

r,s∈Nℓ
0

r1+s1>0,...,rℓ+sℓ>0

cr,sad
r1Xads1Y . . . adrℓXadsℓ−1Y (Y ).

Above, ad denotes the operation ad(Z1)(Z2) = [Z1, Z2]; this is known as the adjoint repre-
sentation of L. The coefficients cr,s are known:

c−1
r,s =

- ℓ!

j=1

(rj + sj)
.
Πℓ

i=1ri!si!

In (1.4), the term for which sℓ > 1 or sℓ = 0 and rℓ > 1 is zero, while the term adXad−1Y (Y )
for sℓ = 0, rℓ = 1 is understood as X. On any Lie group, the sum in (1.4) converges when
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X and Y are in a small enough neighbourhood of 0 ∈ L and then the Baker-Campbell-
Hausdorff formula holds. In the case of a nilpotent Lie group, the sum over ℓ is finite and
the formula holds globally when G is a connected nilpotent Lie group.

The Baker-Campbell-Hausdorff formula holds in more general settings [22, Appendix].
• To any Lie algebra corresponds at least one Lie group. In fact, there are often many Lie
groups with the same Lie algebra. However, the correspondence is known to be one-to-one
between nilpotent Lie algebras and simply connected nilpotent Lie groups.

• Let us describe more precisely the correspondence:

nilpotent Lie algebra L ←→ connected simply connected nilpotent Lie group G.

← If G is a nilpotent Lie group then L is its Lie algebra (see Part (3) of the definition
above).

→ If L is a nilpotent Lie algebra, then consider the manifold G given by the same under-
lying vector space V as L. As L is nilpotent, the sum in (1.4) is finite and we take this
to define the operation sometimes known as the Dynkin or star product. One checks
readily that this defines a group law and that G is a simply connected Lie group with
Lie algebra L. Moreover, in this case, the exponential mapping is given via

V ∼ L ∋ V !→ expV ∼= V ∈ G ∼ V.

Recall that a left Haar measure µG on a Lie group G (or more generally on a locally compact
group G) is a positive Radon measure that is invariant under left translations, i.e. µG(g0A) = µG(A)
for any g0 ∈ G, A measurable subset of G, or equivalently

/
G f(g0g)dµG(g) =

/
G f(g)dµG(g) for

any function f ∈ Cc(G) and g0 ∈ G. A left Haar measure always exists, and is unique up to a
constant. A similar notion exists for right Haar measure with a similar property. A nilpotent Lie
group is unimodular, meaning that a left Haar measure is also a right one, and that a right Haar
measure is also a left one. On a unimodular group, there is no confusion about the meaning of
measurability or Lp-integrability with respect to ‘the Haar measure(s)’ as they all differ from one
another by a (fixed) constant. Moreover,

/
G f(g−1)dµG(g) =

/
G f(g)dµG(g).

On a connected simply connected nilpotent Lie group G, a choice of basis on its Lie algebra L
yields a natural choice for the Lebesgue measure on L, and therefore a natural choice for the Haar
measure µG on G via the exponential mapping. For instance, on the Heisenberg group, the Haar
measure associated with our canonical basis X1, . . . , Xn, Y1, . . . , Yn, T is given by

(1.5)

0

Hn

f dµHn =

0

Hn

f(x, y, t)dxdydt, f ∈ Cc(Hn).

1.6. The realisations in Sections 1.1 and 1.4 coincide. Our preferred definition for the Heisen-
berg group Hn was given in Section 1.1. Let us make the difference between the vector space
V = R2n+1 underlying the Heisenberg group Hn, and the Heisenberg group itself which is the
manifold V equipped with the law (1.1).

Let us show that this coincides with the construction of the simply connected nilpotent Lie
group whose Lie algebra is the Heisenberg Lie algebra in Section 1.4. Again, we will make a
difference between the vector space V and the Heisenberg Lie algebra hn which is V together with
Lie bracket defined via the canonical commutation relations (1.3) given on the canonical basis
X1, . . . , Xn, Y1, . . . , Yn, T of V. Elements of the group Hn and of the Lie algebra hn are both
identified with elements of the underlying subspace V via the exponential mapping:

exp(

n!

j=1

xjXj + yjYj + tT ) = (x, y, t) ∈ Rn × Rn × R ∼ Hn.
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Now let us consider two elements (x, y, t) = expV and (x′, y′, t′) = expV ′ with writing as above
and compute V $ V ′ = V + V ′ + 1

2 [V, V
′], especially

[V, V ′] =

'

(
n!

j=1

xjXj + yjYj + tT,

n!

j′=1

x′j′Xj′ + y′j′Yj′ + t′T

)

*

=

n!

j=1

n!

j′=1

1
xjXj + yjYj , x

′
j′Xj′ + y′j′Yj′

2
=

3

4
n!

j=1

xjy
′
j − yjx

′
j

5

6T.

Therefore,

(x, y, t)(x′, y′, t′) = exp(V $ V ′) = exp(V + V ′ +
1

2
[V, V ′]).

This shows that our preferred definition for the Heisenberg group Hn in Section 1.1. coincides with
the construction of the simply connected nilpotent Lie group whose Lie algebra is the Heisenberg
Lie algebra in Section (1.4).

Let us give a concrete expression for the left-invariant vector fields corresponding to the canonical
basis of hn. We know that X̃jf(p) = ∂t=0f(pγ(t)) for any smooth function f : Hn → R and a path

γ(t) with d
dt

,,,
t=0

γ(t) = Xj . Here, let us take γ(t) = exp(tXj) and compute

(x, y, t)γ(t) = exp

3

4(

n!

j′=1

xj′Xj′ + yj′Yj′ + tT ) $ tXj

5

6

= exp

3

4
n!

j′=1

xj′Xj′ + yj′Yj′ + tT + tXj +
1

2
yjtT

5

6 ,

hence

(x, y, t)γ(t) = (x1, . . . , xj + t, . . . , xn, y1, . . . , yn, t−
1

2
yjt)

and
∂t=0f((x, y, t)γ(t)) = (∂xj −

yj
2
∂t)f(x, y, t).

We have obtained:
X̃j = ∂xj −

yj
2
∂t.

We compute similarly

Ỹj = ∂yj +
xj
2
∂t, T̃ = ∂t.

We check easily that these vector fields indeed satisfy the canonical commutation relations (1.3).
For comparison, the right-invariant vector fields corresponding to the canonical basis of hn are

X̌j = ∂xj +
yj
2
∂t, Y̌j = ∂yj −

xj
2
∂t, j = 1, . . . , n, and Ť = ∂t.

1.7. Links with the realisations of the Heisenberg group in Section 1.2. The tangent

space of H(α)
n at the origin 0 is R2n+1 with canonical basis

X1,α, . . . , Xn,α, Y1,α, . . . , Yn,α, Tα.

The left-invariant vector field corresponding to X1,α is X̃1,αf(p) = ∂t=0f(pγ(t)) for any smooth

function f : H(α)
n → R and a path γ(t) with d

dt

,,,
t=0

γ(t) = X1,α. Here, let us take γ(t) = (t, 0, . . . , 0)

and compute

(x, y, t)γ(t) = (x1 + t, . . . , xn, y1, . . . , yn, t−
1

α
y1t)
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so

X̃1,α = ∂xj −
yj
α
∂t.

More generally, the left-invariant vector field corresponding to the canonical basis are

X̃j,α = ∂xj −
yj
α
∂t, Ỹj,α = ∂yj +

xj
α
∂t, T̃ = ∂t.

We then compute their commutator brackets: they are all zero except for:

[X̃j,α, Ỹj,α] =
2

α
T̃α, j = 1, . . . , n.

The map
n!

j=1

xjXj + yjYj + tT !−→
n!

j=1

xjXj,α + yjYj,α +
2

α
tTα

is an isomorphism between the Lie algebras hn and h
(α)
n of Hn and H(α)

n . Taking the exponential
on both sides yields the isomorphism of Lie groups in (1.2).

We have a similar analysis for the polarised Heisenberg group H̃n.

Remark 1.1. • A physicist’s viewpoint on this analysis would be that there is only one real-
isation of ‘the’ Heisenberg group up to bad choices of normalisation for the generators of
the Lie algebra. Meanwhile, a mathematician would say that the isomorphisms between all
these realisations are easily deduced from the Lie brackets on the canonical bases.

• Apart from a choice of canonical basis and canonical commutation relations, we have used
the fact that the exponential mapping is a global diffeomorphism from the vector space
underlying the Lie algebra to the Heisenberg group viewed as a manifold. It is possible to
then compose with other maps and obtain other groups isomorphic to Hn, for instance see
[4, Remark 2.2.4 and Example 2.2.5].

1.8. Some comments.

1.8.1. Generalisation of the above construction. Any simply connected nilpotent Lie group of step
2 can be constructed as above: take a vector space V and assume that there exists a Lie bracket
[·, ·] on V which turns it into a step-two nilpotent Lie algebra L. The star product in (1.4) reduces
to X $ Y = X + Y + 1

2 [X,Y ], X,Y ∈ V. The space V viewed as a manifold equipped with the
star product is a simply connected nilpotent Lie group G with step 2. Particular cases of these are
of course the Heisenberg group, but also the groups of Heisenberg types and more generally the
Metivier groups.

Naturally, this extends to any step, but the star product takes longer to write down.

1.8.2. Why so many realisations?

• Lie theory. As explained above, our preferred realisation of the Heisenberg group is rooted
in Lie theory via the Baker-Campbell-Hausdorff formula and the exponential mapping.

Note that the Heisenberg group appears in another part of Lie theory, namely in the
Iwasawa or KAN decomposition of the semi-simple Lie group

SU(n, 1) = {M ∈ SLn+1(C),MTDM = D}, where D = diag(1, . . . , 1,−1).

because SU(n, 1) = KAN with K = S(diag(U(n),U(1)) ∼ U(n) its maximal compact
subgroup, A ∼ R and N ∼ Hn.

Note that the compact analogue of SU(n, 1) is SU(n+ 1), and that its quotient SU(n+
1)/K byK is naturally identified with the sphere {z ∈ Cn+1, |z| = 1} of Cn+1 or equivalently
the odd dimensional sphere S2n+1. This is related to the description in Section 1.3, see [9].
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The classic references (perhaps reserved for motivated readers) regarding Iwasawa de-
compositions and symmetric spaces are Helgason’s textbooks [15, 16, 14].

However, other viewpoints may lead to favour other realisations.

• Complex analysis. An important motivation for studying the Heisenberg group comes from
analysis on complex manifolds (as mentioned below in relation to contact manifolds in
Section 2.3). In this context, the Heisenberg group is often described as the real manifold
Cn × R equipped with the group law

(z, t)(z′, t′) = (z + z′, t+ t′ − 1

2
ℑ(zz̄′)),

or more generally with any α ∈ C
(z, t)(z′, t′) = (z + z′, t+ t′ − αℑ(zz̄′)),

where
zz̄′ = z1z̄

′
1 + . . .+ znz̄

′
n so ℑ(zz̄′) = xy′ − x′y,

having written z = x + iy and z′ = x′ + iy′. This choice of description for the Heisenberg
group tends to take α = 1 above and to consider the complexification of the Heisenberg Lie
algebra, in particular the elements

Zj := Xj − iYj , Z̄j = Xj + iYj .

• Other approaches. Other realisation of the Heisenberg than our preferred one may be
more suitable for certain approaches. For instance, it is immediate that the realisation of
the Heisenberg group as the matrix group T3 shows that ‘the’ Heisenberg group contains
discrete subgroups; indeed, it suffices to take the entries to be integers, for instance

H1(Z) :=

#
%

&

'

(
1 x t
0 1 y
0 0 1

)

* , x, y, t ∈ Z

7
8

9 .

The quotient H1/H1(Z) is well understood [19, 26]. More generally, the existence of closed
discrete subgroups of a nilpotent Lie groups and their quotient (aka nilmanifolds) are well
understood [6].

In a direction which would see us exit the realm of smooth manifolds and Lie groups, we
can consider the Heisenberg group

H1(R) :=

#
%

&

'

(
1 x t
0 1 y
0 0 1

)

* , x, y, t ∈ R

7
8

9 ,

associated with any commutative ring R with an identity, for example Z/pZ.
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2. Which kind of analysis can / should we do on Hn?

The underlying manifold of Hn is R2n+1. The type of analysis we would like to perform is not
related to this Euclidean structure, but to the structure of the group (e.g. analysis of left-invariant
operators) as well as other structures coming from the stratification of the Heisenberg Lie algebra.

2.1. The stratified structure of the Heisenberg Lie algebra. From now on, we will not
distinguish between an element of the Lie algebra and a left-invariant vector field. In other words,
the Lie algebra hn of Hn is identified with the vector space of left-invariant vector fields. We have
already computed that the canonical basis of hn is given by the left-invariant vector fields

Xj = ∂xj −
yj
2
∂t, Yj = ∂yj +

xj
2
∂t, j = 1, . . . , n, and T = ∂t.

and the canonical commutation relations

[Xj , Yj ] = T, j = 1, . . . , n,

while T is in the centre of hn.
The Heisenberg Lie algebra admits the following stratification

hn = g1 ⊕ g2, where g1 := RX1 ⊕ . . .⊕ RXn ⊕ RY1 ⊕ . . .⊕ RYn, g2 := RT.

Therefore, the Heisenberg group can be equipped with three related structures:

• dilations, leading to a notion of homogeneity,
• contact manifold,
• sub-Riemannian manifold.

This will determine the kind of analysis is interesting / relevant on the Heisenberg group.

2.2. The natural dilations. Since the Heisenberg Lie algebra is stratified via hn = V1 ⊕ V2, the
natural dilations on the Lie algebra are given by

Dr(Xj) = rXj and Dr(Yj) = rYj , j = 1, . . . , n, and Dr(T ) = r2T.

We check readily that the dilations Dr are morphism of the Lie algebra hn:

∀V1, V2 ∈ hn, r > 0 [DrV1, DrV2] = Dr[V1, V2].

Indeed, by linearity and since R is the centre of the Lie algebra hn, it suffices to check this for V1, V2

being a vector amongst X1, . . . , Xn, Y1, . . . , Yn, and this is straightforward, for instance

[DrXj , DrYk] = [rXj , rYk] = r2[Xj , Yk] = r2δj = kT = Dr[Xj , Yk].

Note that if we have chosen the isotropic dilations Dr(T ) = rT , they would not be morphism of
the Lie algebra hn.

We keep the same notation Dr for the corresponding dilations on the group Hn, and we may
also denote them just by r ·. They are characterised by

Dr expV = expDrV, V ∈ hn,

so they are given by

Dr(x, y, t) = r(x, y, t) = (rx, ry, r2t), (x, y, t) ∈ Hn, r > 0.

They are morphisms of the Lie group Hn. As explained in Section 2.6, this equips the Heisenberg
group with a homogeneous structure.
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2.3. Hn as a (the canonical) contact manifold. Roughly speaking, an odd dimensional mani-
fold M is contact when locally it looks like the Heisenberg group. The more geometric definition of
a contact manifold M is that its tangent bundle TM admits a hyperplane distribution satisfying a
condition of complete non-integrability that we now describe in two equivalent ways:

(1) Above each point p ∈ M , we assume that there is a distinguished hyperplane Hp in the
tangent space TpM ; moreover, the dependence in p is smooth in the sense that we can
find local smooth frames for the hyperplane distribution H = ∪p∈MHpM , that is, a family
V1, . . . , V2n of vector fields giving a basis of HpM above every p ∈ U of any open subset U
of M small enough; here 2n + 1 = dimM . The condition of complete non-integrability is
that [Vi, Vj ](p) ∈ HpM unless (i, j) = (2k − 1, 2k), k = 1, . . . , n at every p ∈ U .

Note that HpM ⊕ (TpM/HpM) is then naturally equipped with the structure of Heisen-
berg Lie algebra.

(2) Equivalently, the condition is expressed by one-forms. This is the traditional geometric
presentation.

Recall that a one-form is an element of Ω1(M) = Γ(T ∗M), that is, roughly speaking,
linear functionals depending smoothly on the points on the manifold.

The distinguished hyperplane is described as the kernel of a particular one-form α ∈
Ω1(M): Hp = kerαp, and the condition of complete non-integrability is the fact that the

(2n+ 1)-form α ∧ (dα)(∧n) = α ∧ dα ∧ . . . ∧ dα vanishes nowhere.

Note that then α ∧ (dα)(∧n) ∈ Ω2n+1(M) identifies with a volume form on M .

Before giving a sketch of the proof for the equivalence between the conditions in (1) and (2), let
us show that the Heisenberg group Hn is a contact manifold. Indeed, the canonical distinguished
hyperplane is given globally by

H = g1 = RX1 ⊕ . . .⊕ RXn ⊕ RY1 ⊕ . . .⊕ RYn,
while the canonical distinguished one-form is

(2.1) α = dt+
1

2

n!

j=1

xjdyj − yjdxj .

Indeed, we compute

α(Xj0) = α(∂xj0
)− yj0

2
α(∂t) =

1

2
yj0 −

yj0
2

= 0

and similarly α(Yj0) = 0, so g1 ⊂ kerα and even equality

g1 = kerα,

since g1 is a hyperplane distribution. Moreover,

dα =

n!

j=1

dxj ∧ dyj , so α ∧ (dα)(∧n) = −cndt ∧ dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn,

with a computable constant cn > 0 (note c1 = 1 for n = 1). Note that the volume form identified

with α ∧ (dα)(∧n) is the Haar measure µHn of Hn given in (1.5).

Let us now sketch the proof for the equivalence between the conditions in (1) and (2) above; this
will require some knowledge on contact manifolds. If (1) holds, the form dual to the Vj ’s will satisfy
the complete non-integrability condition. If (2) holds, then the well known Darboux theorem for
contact manifolds say that we can find local coordinates (x, y, t) on M such that the one-form α
writes as in (2.1), and the canonical basis for kerα for these coordinates provides the Vj ’s of (1).

Contact manifolds appear naturally in the geometry of classical mechanics, see Arnold’s classic
textbook [2] (perhaps for the motivated reader). They form an important class of manifolds which

12



contain the real hypersurfaces of Cn, arguably the most common class of Cauchy-Riemann mani-
folds. This is the important link between the Heisenberg group and analysis on complex manifolds
mentioned in Section 1.8.2.

2.4. Hn as a Sub-Riemannian manifold.

Definition 2.1. (1) Consider a distribution H of the manifold M , that is, a subbundle H =
∪p∈MHp of the tangent bundle TM : Hp ⊂ TpM .

The distribution on H of M satisfies the Hörmander condition when for we have that any
tangent vector at any point p ∈ M can be presented as a linear combination of vectors of
the vector fields Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], . . . , [Xj1 , [Xj2 , [Xj3 , . . . , Xjk ], . . . at p where
all vector fields Xji are in H.

(2) A sub-Riemannian manifold is a triple (M,H, g) where H is a distribution satisfying the
Hörmander condition on the differentiable manifold M and g is a smooth section of positive-
definite quadratic forms on H.

In this case, H is called the horizontal distribution, a vector field in H is called horizontal,
a curve γ on M is called horizontal when γ̇(t) ∈ Hγ(t) for all time t etc.

A sub-Riemannian manifold carries the natural intrinsic metric, called the Carnot-Carathéodory
metric or CC-metric for short, defined as

d(p, q) = inf

0 1

0
|γ̇(t)|dt

where the infimum is taken over all horizontal curves γ : [0, 1] → M joining p = γ(0) to q = γ(1);

here |γ̇(t)| :=
:

gγ(t)(γ̇(t), γ̇(t) denotes the g-length of the horizontal vector γ̇(t) at γ(t).

When the sub-Riemannian manifold M is equipped with a (fixed positive Radon) measure, then
we can define the associated sub-Laplacian as a div-grad [1, Chapter 21]. An intrinsic canonical
measure exists in the case of a contact manifold and on the Heisenberg group and more generally,
in the case of Carnot groups.

In the case of the Heisenberg group, the intrinsic sub-Laplacian on Hn is the operator

LHn :=

n!

j=1

(X2
j + Y 2

j )

=

n!

j=1

-
∂xj −

yj
2
∂t

.2
+

-
∂yj +

xj
2
∂t

.2

=

n!

j=1

∂2
xj

+ ∂2
yj +

y2j + x2j
4

∂2
t − yj∂xj∂t + xj∂yj∂t.

The operator L on Hn often plays the role of the Laplacian ∂2
1 + . . . + ∂2

N on RN . However,
the Laplacian is elliptic (its principal symbol or characteristic polynomial −(ζ21 + . . . + ζ2N ) never
vanishes), whereas L is hypoelliptic:

Definition 2.2. An operator D on an open set of RN is hypoelliptic when the solutions of the
equation Df = g with g ∈ C∞, are also C∞.

An elliptic operator is hypoelliptic, but the converse is not true. For instance, the sub-Laplacian
L is known to be hypoelliptic (by a famous result due to Hörmander recalled in Theorem 2.3) but

it is not elliptic: its principal symbol is −
+n

j=1

;
ζxj −

yj
2 ζt

<2
+
;
ζyj +

xj

2 ζt
<2
, and its restriction to

xj = 0 = yj , j = 1, . . . , n, and ζxj = 0 = ζyj , j = 1, . . . , n, vanishes identically.
Let us state the famous result by Hörmander on sum of squares [18]:
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Theorem 2.3. Let V0, V1, . . . , Vn be smooth real vector fields on an open subset Ω of RN . Assume
that among the operators

Vj1 , [Vj1 , Vj2 ], [Vj1 , [Vj2 , Vj3 ]], . . . , [Vj1 , [Vj2 , [Vj3 , . . . , Vjk ], . . .

where ji = 0, 1, . . . , n, there exist n which are linearly independent at any given point in Ω. Then
the second order differential operator V 2

1 + . . .+ V 2
n + V0 + c (where c is a constant) is hypoelliptic.

The assumption means that the iterated commutator brackets of the Vj ’s span linearly the whole
vector space at every point, i.e.

∀p ∈ U dim

=
span1≤i1,...,i2k≤n

k=1,2,...
[Vi1 , [Vi2 , [. . . , [Vik , Vik+1

, . . .]Vi2k ](p)

>
= N.

This generalises readily to the case of a manifold M satisfying the Hörmander condition, that is,
such that that the iterated commutator brackets of the vector fields V0, V1, . . . , Vn generate the
tangent bundle TM . This explains the vocabulary in Definition 2.1 (1).

2.5. So, which kind of analysis. . . ? The analysis on sub-Riemannian manifolds or sub-elliptic
Partial Differential Equations (PDE’s) (e.g. PDE’s involving sub-Laplacians) becomes rapidly in-
tractable with Euclidean tools. The reason is that the integral kernels of operators in this context
are often much more singular than their Euclidean counterparts, even using the CC-distance in-
stead of a Riemannian/Euclidean one. Even the very powerful micro-local analysis does not yield
interesting results. It can be argued that micro-local analysis is the culmination of the meeting
of the phase-space analysis with pseudo-differential theory stemming from the study of Euclidean
singular integral operators.

There have been many attempts to start developing tools to analyse sub-Riemannian or sub-
elliptic settings. However, they are far from being remotely as effective as what is known in the
Riemannian/Euclidean or elliptic settings. It is current research to determine what should be the
‘right’ tools comparable to e.g. micro-local analysis.

The starting point is usually agreed upon since the works of Elias Stein and his collaborators in
the 70’s (see e.g. [24, 11]): the Hörmander condition should be abstractly lifted to a nilpotent Lie
group above each point. This tallies with the geometric viewpoint developped in the 80’s: the metric
tangent space in the sense of Gromov of a sub-Riemannian manifold is a (Carnot) nilpotent Lie
group [3]. For instance, the metric tangent space of a contact manifold equipped with a compatible
sub-Riemannian structure is the Heisenberg group above every point. More general Carnot groups
may appear.

For these reasons, in these lecture notes, we will discuss the settings of homogeneous Lie groups
(including Carnot groups) and the singular integral theory on spaces of homogeneous types.

2.6. Definitions for the study of homogeneous Lie groups. Here, we follow the vocabulary
of G. Folland and E. Stein [12]. See also [10].

2.6.1. Definition of a homogeneous Lie group.

Definition 2.4. (i) A family of dilations of a Lie algebra g is a family of linear mappings

{Dr, r > 0}

from g to itself which satisfies:
– the mappings are of the form

Dr = Exp(A ln r) =

∞!

ℓ=0

1

ℓ!
(ln(r)A)ℓ,
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where A is a diagonalisable linear operator on g with positive eigenvalues, Exp denotes
the matrix exponential or the exponential of linear maps on finite dimension vector
space and ln(r) the natural logarithm of r > 0,

– each Dr is a morphism of the Lie algebra g, that is, a linear mapping from g to itself
which respects the Lie bracket:

∀X,Y ∈ g, r > 0 [DrX,DrY ] = Dr[X,Y ].

(ii) A homogeneous Lie group is a connected simply connected Lie group whose Lie algebra is
equipped with dilations.

(iii) We call the eigenvalues of A the dilations’ weights or weights. The set of dilations’ weights,
or in other worlds, the set of eigenvalues of A is denoted by WA.

We can realise the mappings A and Dr in a basis of A-eigenvectors as the diagonal matrices

A ≡

3

???4

υ1
υ2

. . .

υN

5

@@@6
and Dr ≡

3

???4

rυ1

rυ2

. . .

rυN

5

@@@6
.

We may assume that the dilations’ weights are increasingly ordered:

0 < υ1 ≤ . . . ≤ υN .

For example, hn has weights 1 ≤ . . . ≤ 1 ≤ 2 when equipped with the dilations discussed in
Section 2.1, so in this case WA = {1, 2}.

Let w1, . . . , ws ∈ R denote the weights listed without multiplicity:

WA = {υ1, . . . , υN} = {w1, . . . , ws}, with 0 < w1 < . . . < ws .

For each weight wj , we denote by gwj the wj-eigenspace for A. The Lie algebra decomposes into a
direct sum

g = ⊕s
j=1gwj satisfying [gwi , gwj ] ⊆ gwi+wj , 1 ≤ i, j ≤ s .

It follows that the g is nilpotent, and so is G. Keeping the same notation for the dilations on the
group, they are the maps Dr, with r > 0, on G characterised by δr expV = exp δrV , V ∈ g.

Note that the dilations Dr on G are automorphisms of the group G; this explains why homoge-
neous Lie groups are often presented as Lie groups equipped with dilations.

We may write
rx := Dr(x) for r > 0 and x ∈ G.

The dilations on the group or on the Lie algebra satisfy

Drs = DrDs, r, s > 0.

Example 2.5. (1) The abelian group (Rn,+) is homogeneous when equipped with the usual
dilations Drx = rx, r > 0, x ∈ Rn.

(2) The Heisenberg group Hn is homogeneous when equipped with the dilations defined in
Section 2.1.

2.6.2. Carnot, stratified and graded groups as homogeneous groups. Let us recall some particular
cases of homogeneous groups often considered in other publications, potentially with a different
vocabulary from G. Folland and E. Stein [12].

When the weights of the dilations may be assumed to be integers [10, Section 3.1], the group is
said to be graded. If in addition gw1 with w1 = 1 generates the whole Lie algebra g, the Lie group
G is called stratified ; it is also known as Carnot when a scalar product has been fixed on g1 (this
can always be assumed). The main example of Carnot groups is the Heisenberg group.
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Schematically, we have the following implications

stratified =⇒ graded =⇒ homogeneous =⇒ nilpotent.

However, none of them can be reversed [10, Section 3.1]: not all (connected simply connected)
nilpotent Lie groups can be equipped with a homogeneous structure, there are homogeneous groups
that do not admit any gradation, and finally it is not always possible to find a stratification on
every graded group.

2.6.3. Homogeneous functions. A scalar function f defined on G or G \ {0} is homogeneous of
degree m (with respect to the dilations Dr, r > 0) when

∀r > 0 f ◦Dr = rmf, i.e. f(rx) = rmf(x).

This notion extends to measurable functions on G and distributions D′(G) and D′(G \ {0}).
Convention: In these lecture notes, we allow ourselves to write e.g. D′(G) for D(RN ) where
dimG = N and similarly for other functional spaces.

Example 2.6. We fix a canonical basis X1, . . . , XN for g where the dilation matrix A is diagonal.
This yields a natural choice for the Lebesgue measure on L, and therefore a natural choice for the
Haar measure µG on G via the exponential mapping:

0

G
fdµG =

0

RN

f(exp

N!

j=1

xjXj)dx1 . . . dxN .

This measure is homogeneous of degree 0 (with respect to the dilations Dr, r > 0).

We see that
0

G
f ◦Dr dµG =

0

RN

f(expDr

N!

j=1

xjXj)dx1 . . . dxN

=

0

RN

f(exp

N!

j=1

xjr
υjXj)dx1 . . . dxN

= r−Q

0

G
f(x)dµG(G),

where Q is the homogeneous dimension of the homogeneous group G:

Q :=

N!

j=1

υj =

s!

i=1

wi dim gi

This justifies that µG is 0-homogeneous. Indeed, the dilations of the distribution κ ∈ D′(G) are
the distributions κ ◦Dr, r > 0 defined via

(κ ◦Dr,ϕ) = r−Q(κ,ϕ ◦Dr−1), ϕ ∈ C∞
c (G),

thereby coinciding with the case of e.g. a function κ ∈ L1(Rn). The distribution κ ∈ D′(G) is
homogeneous of degree m (with respect to the dilations Dr, r > 0) when κ ◦ Dr = rmκ, that is,
when

∀ϕ ∈ C∞
c (G), r > 0 (κ,ϕ ◦Dr) = r−m−Q(κ,ϕ).

Example 2.7. The Dirac measure δ0 at the neutral element 0 is homogeneous of degree −Q since
0

G
ϕ ◦Dr dδ0 = ϕ(r0) = ϕ(0) =

0

G
ϕ dδ0, ϕ ∈ C∞

c (G).
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Note that the homogeneous dimension in the case of the Heisenberg group is 2n+2 > dimHn =
2n+ 1. More generally, for any (non-abelian) homogeneous Lie group, Q > dimG.

An important type of homogeneous functions are the homogeneous quasi-norms:

Definition 2.8. A homogeneous quasi-norm is a continuous non-negative function

G ∋ x !−→ |x| ∈ [0,∞),

satisfying

(i) (symmetric) |x−1| = |x| for all x ∈ G,
(ii) (1-homogeneous) |rx| = r|x| for all x ∈ G and r > 0,
(iii) (definite) |x| = 0 if and only if x = 0.

The associated ball and sphere centred at x ∈ G with radius R > 0 are defined by

B(x,R) := {y ∈ G : |x−1y| < R}, S(x,R) := {y ∈ G : |x−1y| = R}.

We could of course consider an Euclidean norm |·|E on g by declaring the Xj ’s to be orthonormal.
We may also regard this norm as a function on G via the exponential mapping, that is,

|x|E = | exp−1
G x|E .

However, this norm is of limited use for our purposes, since it does not interact in a simple fashion
with dilations.

It is easy to construct homogeneous quasi-norms:

|(x1, . . . , xn)|p =

3

4
n!

j=1

|xj |
p
υj

5

6

1
p

, 0 < p < ∞, and for p = ∞, |(x1, . . . , xn)|∞ = max
1≤j≤n

|xj |
1
υj .

In Definition 2.8 we do not require a homogeneous quasi-norm to be smooth away from the
origin but some authors do. Quasi-norms with added regularity always exist as well but, in fact,
a distinction between different quasi-norms is usually irrelevant for many questions of analysis
because the following properties hold:

(i) Every homogeneous Lie group G admits a homogeneous quasi-norm that is smooth away
from the unit element.

(ii) Any two homogeneous quasi-norms | · | and | · |′ on G are mutually equivalent:

| · | ≍ | · |′ in the sense that ∃a, b > 0 ∀x ∈ G a|x|′ ≤ |x| ≤ b|x|′.

Moreover, the usual Euclidean topology coincides with the topology associated with any homoge-
neous quasi-norm (i.e. the topology induced by the | · |-balls). The terminology of ‘quasi-norm’ is
justified by the fact every homogeneous quasi-norm satisfies the triangle inequality up to a constant:

∃C > 0 ∀x, y ∈ G |xy| ≤ C (|x|+ |y|) .

The constant C above satisfies necessarily C ≥ 1 since |0| = 0 implies |x| ≤ C|x| for all x ∈ G.
It is natural to ask whether a homogeneous Lie group G may admit a homogeneous quasi-norm
| · | which is actually a norm or, equivalently, which satisfies the triangle inequality with constant
C = 1. For instance, on the Heisenberg group Hn, the homogeneous quasi-norm

|(x, y, t)| :=
;
(|x|2 + |y|2)2 + 16t2

<1/4
.

It turns out to be a norm (cf. [7]). In the stratified case, the norm built from the CC distance
|x| = d(x, 0) is also 1-homogeneous. This can be generalised to all homogeneous Lie groups.
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2.6.4. Homogeneous operators. The notion of homogeneity also extends to operators. For instance,
an operator T : D(G) → D′(G) is homogeneous of degree m when

T (ϕ ◦Dr) = rm(TF )Dr, ϕ ∈ D(G).

We can also consider operators between other functional spaces e.g. Lp(G), S(G), S ′(G) etc.

Example 2.9. We check readily that the left-invariant vector fields X1, . . . , XN corresponding to the
canonical basis of g are 1-homogeneous, while the left-invariant vector field T is 2-homogeneous.

The following example is very relevant for the theme of this school:

Example 2.10. If κ ∈ D′(G) is m-homogeneous, then the associated convolution operator Tκ :
C∞
c (G) → D′(G) is (−m−Q)-homogeneous since

Tκ(ϕ ◦Dr)(g) =

0

G
ϕ(r(gh−1)κ(h)dh =

0

G
ϕ(rg rh−1)κ(h)dh

= r−Q

0

G
ϕ(rg h−1)κ(r−1h)dh = r−Q−m

0

G
ϕ(rg h−1)κ(h)dh

= r−Q−m(Tκϕ)(rg).

Recall that the convolution of two functions f1, f2 ∈ Cc(G) is defined as

f1 ∗ f2(g) :=
0

G
f1(h)f2(h

−1g)dh =

0

G
f1(gh

−1)f2(h)dh.

This extends for instance to f1, f2 ∈ L2(G) and also to f1 ∈ S ′(G) while f2 ∈ S(G) etc. The (right)
convolution operator Tκ associated with κ ∈ D′(H)n) is the operator defined as

Tκϕ = ϕ ∗ κ, ϕ ∈ C∞
c (G).

The distribution κ is then called the (right) convolution kernel of Tκ.

Example 2.11. The convolution operator with convolution kernel the Dirac measure δ0 is the identity
operator. As δ0 is (−Q)-homogeneous, the identity operator is 0-homogeneous by Example 2.10;
this is also trivially true.

One checks readily that a convolution operator Tκ is invariant under left translation.

Definition 2.12. An operator T : C∞
c (G) → D′(G) is left-invariant when it commutes with the

action of left-translations on functions:

T (ϕ(g0 ·)) = (Tϕ)(g0 ·), ϕ ∈ C∞
c (G), g0 ∈ G.

The same vocabulary holds for operators between other functional spaces e.g. Lp(G), S(G), S ′(G)
etc.

2.7. Singular integrals on spaces of homogeneous types. The operators appearing ‘in prac-
tice’ in the theory of partial differential equations on Rn often have kernels κ satisfying the following
properties:

(1) the restriction of κ(x, y) to (Rn
x × Rn

y )\{x = y} coincides with a smooth function κo =
κo(x, y) ∈ C∞((Rn

x × Rn
y )\{x = y});

(2) away from the diagonal x = y, the function κo decays rapidly;
(3) at the diagonal, κo is singular but not completely wild: κo and some of its first derivatives

admit a control of the form |κo(x, y)| ≤ Cx|x − y|k for some power k ∈ (−∞,∞) with Cx

varying slowly in x.
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In general, we want our operator T to map continuously some well-known functional space to
another. For example, we are looking for conditions to ensure that our operator extends to a
bounded operator from Lp to Lq. This is the subject of the theory of singular integrals on Rn,
especially when the power k above equals −n. In the classical Euclidean case, we refer to the
monograph [25] by E. Stein for a detailed presentation of this theory.

Here, let us present the main lines of the generalisation of the theory of singular integrals to the
setting of ‘spaces of homogeneous type’ due to Coifman and Wiess. We omit the proofs, referring
to [5, Chapitre III] for details. Note that there is no (apparent) trace of a group structure.

We first need to relax the notion of distance to encompass the positive definite symmetric map
that satisfy the triangle inequality up to a constant:

Definition 2.13. A quasi-distance on a set X is a function d : X ×X → [0,∞) such that

(1) d(x, y) > 0 if and only if x ∕= y;
(2) d(x, y) = d(y, x);
(3) there exists a constant K > 0 such that

∀x, y, z ∈ X d(x, z) ≤ K (d(x, y) + d(y, z)) .

We call

B(x, r) := {y ∈ G : d(x, y) < r},
the quasi-ball of radius r around x.

Definition 2.14. A space of homogeneous type is a topological space X equipped with a quasi-
distance d such that

(1) The quasi-balls B(x, r) form a basis of open neighbourhood at x;
(2) homogeneity property

there exists N ∈ N such that for every x ∈ X and every r > 0 the ball B(x, r) contains
at most N points xi such that d(xi, xj) > r/2.

The constants K in Definition 2.13 and N in Definition 2.14 are called the constants of the space
of homogeneous type X.

Some authors (like in the original text of [5]) prefer using the vocabulary pseudo-norms, pseudo-
distance, etc. instead of quasi-norms, quasi-distance, etc. In this lecture notes, following e.g. both
Stein [25] and Wikipedia, we choose the perhaps more widely adapted convention of the term
quasi-norm.

Examples of spaces of homogeneous type:

(1) A homogeneous Lie group equipped with the quasi-distance associated to any homogeneous
quasi-norm.

(2) The unit sphere Sn−1 in Rn with the quasi-distance

d(x, y) = |1− x · y|α,

where α > 0 and x · y =
+n

j=1 xjyj is the real scalar product of x, y ∈ Rn.

(3) The unit sphere S2n−1 embedded in Cn with the quasi-distance

d(z, w) = |1− (z, w)|α,

where α > 0 and (z, w) =
+n

j=1 zjw̄j .

(4) Any compact Riemannian manifold.

The proof that these spaces are effectively of homogeneous type comes easily from the following
lemma:
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Lemma 2.15. Let X be a topological set equipped with a quasi-distance d satisfying (1) of Definition
2.14.

Assume that there exist a Borel measure µ on X satisfying

(2.2) 0 < µ (B(x, r)) ≤ Cµ
-
B(x,

r

2
)
.
< ∞.

Then X is a space of homogeneous type.

The condition (2.2) is called the doubling condition. For instance, the Riemannian measure
of a Riemannian compact manifold or the Haar measure of a homogeneous Lie group satisfy the
doubling condition; we omit the proof of these facts, as well as the proof of Lemma 2.15.

Let (X, d) be a space of homogeneous type. The hypotheses are ‘just right’ to obtain a covering
lemma. We assume now that X is also equipped with a measure µ satisfying the doubling condition
(2.2). A maximal function with respect to the quasi-balls may be defined. Then given a level, any
function f can be decomposed ‘in the usual way’ into good and bad functions f = g +

+
j bj . The

Euclidean proof of the Singular Integral Theorem can be adapted to obtain

Theorem 2.16 (Singular integrals). Let (X, d) be a space of homogeneous type equipped with a
measure µ satisfying the doubling condition given in (2.2).

Let T be an operator which is bounded on L2(X):

(2.3) ∃Co ∀f ∈ L2 ‖Tf‖2 ≤ Co‖f‖2.
We assume that there exists a locally integrable function κ on (X×X)\{(x, y) ∈ X×X : x = y}

such that for any compactly supported function f ∈ L2(X), we have

∀x /∈ suppf Tf(x) =

0

X
κ(x, y)f(y)dµ(y).

We also assume that there exist C1, C2 > 0 such that

(2.4) ∀y, yo ∈ X

0

d(x,yo)>C1d(y,yo)
|κ(x, y)− κ(x, yo)|dµ(x) ≤ C2.

Then for all p, 1 < p ≤ 2, T extends to a bounded operator on Lp because

∃Ap ∀f ∈ L2 ∩ Lp ‖Tf‖p ≤ Ap‖f‖p;
for p = 1, the operator T extends to a weak-type (1,1) operator since

∃A1 ∀f ∈ L2 ∩ L1 µ{x : |Tf(x)| > α} ≤ A1
‖f‖1
α

;

the constants Ap, 1 ≤ p ≤ 2, depend only on Co, C1 and C2.

Remark 2.17. In the statement of the fundamental theorem of singular integrals on spaces of
homogeneous types, cf. [5, Théorème 2.4 Chapitre III], the kernel κ is assumed to be square
integrable in L2(X ×X). However, the proof requires only that the kernel κ is locally integrable
away from the diagonal, beside the L2-boundedness of the operator T . We have therefore chosen
to state it in the form given above.

Let us discuss the two main hypotheses of Theorem 2.16.

About Condition (2.4) in the Euclidean case. As explained at the beginning of this section, we
are interested in ‘nice’ kernels κo(x, y) with a control of the form |κo(x, y)| ≤ Cx|x − y|k with
a particular interest for k = −n, and similar estimates for their derivatives with power −n − 1.
Hence they should satisfy Condition (2.4). They are called Calderón-Zygmund kernels, which we
now briefly recall:
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Definition 2.18. A Calderón-Zygmund kernel on Rn is a measurable function κo defined on (Rn
x×

Rn
y )\{x = y} satisfying for some γ, 0 < γ ≤ 1, the inequalities

|κo(x, y)| ≤ A|x− y|−n,

|κo(x, y)− κo(x
′, y)| ≤ A

|x− x′|γ
|x− y|n+γ

if |x− x′| ≤ |x− y|
2

,

|κo(x, y)− κo(x, y
′)| ≤ A

|y − y′|γ
|x− y|n+γ

if |y − y′| ≤ |x− y|
2

.

Sometimes the condition of Calderón-Zygmund kernels refers to a smooth function κo defined on
(Rn

x × Rn
y )\{x = y} satisfying

∀α,β ∃Cα,β

,,,∂α
x ∂

β
y κo(x, y)

,,, ≤ Cα,β |x− y|−n−α−β .

For a detailed discussion, the reader is directed to [25, ch.VII].

Definition 2.19. A Calderón-Zygmund operator on Rn is an operator T : S(Rn) → S ′(Rn) such
that the restriction of its kernel κ to (Rn

x×Rn
y )\{x = y} is a Calderón-Zygmund kernel κo. In other

words, T : S(Rn) → S ′(Rn) is a Calderón-Zygmund operator if there exists a Calderón-Zygmund
kernel κo satisfying

Tf(x) =

0

Rn

κo(x, y)f(y)dy,

for f ∈ S(Rn) with compact support and x ∈ Rn outside the support of f .

The Calderón-Zygmund conditions imply Condition (2.4) for the operator T and its formal
adjoint T ∗ but they are not sufficient to imply the L2-boundedness.

About Condition (2.3). The difficulty with applying the main theorem of singular integrals (i.e.
Theorem 2.16) is often to know that the operator is L2-bounded. In the particular case of a
convolution operator Tκ on Rn, the Plancherel formula for the Euclidean Fourier transform yields

(2.5) ‖Tκf‖L2(Rn) = ‖f ∗ κ‖L2(Rn) = ‖ Af Aκ‖L2(Rn), which implies ‖Tκ‖L (L2(Rn)) = ‖Aκ‖L∞(Rn),

and therefore the hypothesis ‖Aκ‖L∞(Rn) < ∞ provides the desired L2-boundedness.

2.8. Comments.

2.8.1. Application to multiplier problems. The theory of singular integrals on Rn, aka the Calderón-
Zygmund theory, is applied for instance to Fourier multipliers. Indeed, the Mihlin multiplier theo-
rem [20, 21] states that if a function σ defined on Rn\{0} has at least [d/2]+1 continuous derivatives
that satisfy

(2.6) ∀α ∈ Nd
0, |α| ≤ [d/2] + 1, |∂ασ(ξ)| ≤ Cα|ξ|−|α|,

then the Fourier multiplier operator Mσ associated with σ, initially defined on Schwartz functions
via

(2.7) Mσφ := F−1{σAφ},
admits a bounded extension on Lp(Rd) for all 1 < p < ∞. Above [t] is the integer part of t and

Fφ = Aφ denotes the Euclidean Fourier transform of a function φ. Hörmander improved the Mihlin
multiplier theorem by showing [17] that a sufficient condition for Mσ to be bounded on Lp(Rd) is
the membership of σ locally uniformly to a Sobolev space Hs(Rd) for some s > d/2, that is,

(2.8) ∃η ∈ D(0,∞), η ∕≡ 0, sup
r>0

‖σ(r ·) η(| · |2)‖Hs < ∞.
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If a multiplier satisfies the Hörmander condition in (2.8) with s near enough d/2, then it satisfies
the Mihlin condition in (2.6). Note that proceeding as in (2.5), ‖Mσ‖L (L2(Rn)) = ‖σ‖L∞(Rn), so the

the L2-boundedness necessary to apply a theorem like Theorem 2.16 for convolution operator on
Rn is obtained easily from the use of the Euclidean Fourier transform.

Anisotropic analogues of the Hörmander condition in (2.8) have been studied by Rivière [23].
Note that the anisotropic setting is covered by the Singular Integral theory on spaces of homoge-
neous type by Coifman & Weiss presented above.

The theory of singular integral may also be applied to prove the continuity Lp(G) → Lp(G)
of spectral multipliers F (LG) of a sub-Laplacian LG on a Carnot group G. Here, F : R →
R is a measurable function, and the L2-boundedness usually comes from functional analysis:
‖F (LG)‖L (L2(G)) ≤ ‖F‖L∞(R).

2.8.2. What is there beside Lp → Lp continuity? Theorem 2.16 insists on the Lp-boundedness of
certain operators. However, the theory of singular integrals is in fact more like a philosophy:
operators can still be reasonably well-behaved when their integral kernels have singularities on the
diagonal as long as the singularity corresponds to a certain homogeneity that is in a way integrable.

The theory of singular integrals was mainly due to Calderón and Zygmund in the 40’s and
50’s, with major improvement by Elias Stein in the 60’s. This has led the way to the theory of
pseudo-differential operators, and then micro-local analysis in the 70’s.
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3. The Group Fourier transform on Hn

The Euclidean Fourier transform on Rn is well known and understood by analysts, in particular
the Plancherel theorem

(3.1) ‖f‖L2(Rn) = ‖ Af‖L2(Rn) and ‖Tκ‖L (L2(Rn)) = ‖Aκ‖L∞(Rn),

where f ∈ L2(Rn), and Tκ : ϕ !→ ϕ ∗ κ denotes the convolution operator with convolution kernel
κ ∈ L∞(Rn). From the viewpoint of representation theory, this is an easy case since the group
(Rn,+) is commutative. Non-commutative cases are often much more complicated.

For certain questions, it is possible to use some weaker properties of commutativity. For instance,
this is the case of spectral multipliers in one self-adjoint operator L on L2(M); although the spaceM
may not have any particular structure and L may be unbounded, the spectral theorem for L yields
a decomposition of L2(M) and an understanding of ‖ · ‖L (L2(M)) for these spectral multipliers

for continuous bounded functions. Note that the C∗-algebra {F (L) ∈ L (L2(M)), F : R → R
continuous bounded} is commutative. This generalises to a strongly commuting family of self-
adjoint operators on a space L2(M).

Here, we are going to give some elements of representations theory, especially for the Heisenberg
group Hn and its group Fourier transform.

3.1. Elements of representation theory. Recall that a representation (Hπ, π) of G is a pair
consisting of a Hilbert space Hπ and a group morphism π from G to the set of unitary transforms
on Hπ. Here, the representations will always be assumed (unitary) strongly continuous, and their
Hilbert spaces separable. A representation is said to be irreducible if the only closed subspaces of
Hπ that are stable under π are {0} and Hπ itself. Two representations π1 and π2 are equivalent
if there exists a unitary transform U called an intertwining map that sends Hπ1 on Hπ2 with

π1 = U−1 ◦ π2 ◦ U. The dual set AG is obtained by taking the quotient of the set of irreducible

representations by this equivalence relation. We may still denote by π the elements of AG and
we keep in mind that different representations of the class are equivalent through intertwining
operators.

Example 3.1. The group GLn(C) acts on the Hilbert space Cn via π(M)v = Mv, M ∈ GLn(C),
v ∈ Cn.

The irreducible representations of (Rn,+) are one dimensional and are given by the characters
x !→ ei2πx·ξ, ξ ∈ Rn. The Fourier transform is defined as

Af(ξ) =
0

Rn

f(x)ei2πx·ξdx, f ∈ L1(Rn).

In fact it may be defined on S ′(Rn). The Plancherel theorem (3.1) holds.
Pontryagin duality: The case of Rn generalises (except for the S ′ part) to any locally compact

abelian group G. Indeed, any irreducible representation is one dimensional and therefore may be

identified with a character. The dual AG of G identifies with the space of characters on G, and it is

equipped naturally with a structure of locally compact abelian group. Moreover,
AAG ∼ G. We can

define the Fourier transform

Af(χ) =
0

G
f(x)χ(x)dx, f ∈ L1(G)

where dx denotes a (fixed) Haar measure on G. The Plancherel theorem (3.1) holds on G.

The non-commutative case is more complicated but more interesting as well. In the case of

a reasonable group G (technically: separable locally compact, unimodular, and of type I), AG is
equipped with a metrisable topology, and moreover a measure µ !G, called the Plancherel measure
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that is characterised as the unique measure on AG for which the Plancherel formula explained below
holds. The notion of Fourier transform is the following. If π is a representation of G and f ∈ L1(G),
we define

π(f) = FGf(π) = Af(π) :=
0

G
f(x)π(x)∗dx ∈ L (Hπ).

The Fourier transform of f is the measurable fields of operators Af(π) ∈ L (Hπ) where π ∈ AG,
understood as a class of operator modulo intertwining operators. The Plancherel formula is

‖f‖2L2(G) =

0

!G
‖π(f)‖2HS(Hπ)

dµ !G(π).

It holds for f ∈ L1(G) ∩ L2(G) and extends unitarily to L2(G). The second part of the Plancherel
theorem is that if T : L2(G) → L2(G) is invariant under left-translation, then there exists a

measurable field of operators AT (π) ∈ L (Hπ) where π ∈ AG such that BTf = AT Af for any f ∈ L2(G).
These results were proved by Dixmier in the 60’s [8].

Many classes of Lie groups are ‘reasonable’ in the sense above (technically: separable locally com-
pact, unimodular, and of type I): semi-simple, compact, nilpotent etc. Moreover, in this case, any
representation π of the group yields a representation of its Lie algebra via π(X) = ∂t=0π(exp tX),
and also of the universal enveloping algebra. Note that the action is on a subspace of Hπ, namely
the space H∞

π of smooth vectors.

In the case of a compact Lie group G, the unitary dual AG is discrete and well understood via the
highest weight theory. The Plancherel measure is completely explicit.

In the case of a nilpotent Lie group G, the unitary dual AG is also well understood via the orbit
method due to Kirillov. The Plancherel measure is also completely explicit. In the next sections,
we will give a description of the case of the Heisenberg group Hn.

3.2. Schrödinger representations πλ. The Schrödinger representations of the Heisenberg group
Hn are the infinite dimensional unitary representations of Hn, where, as usual, we allow ourselves to
identify unitary representations with their unitary equivalence classes. They are parametrised by
λ ∈ R\{0}. We denote these representations πλ. Each πλ acts on the Hilbert space Hπλ

= L2(Rn)
in the way we now describe. An element of L2(Rn) will very often be denoted as a function h of
the variable u = (u1, . . . , un) ∈ Rn.

First let us define π1 corresponding to λ = 1. It is the representation of the group Hn acting on
L2(Rn) via

π1(x, y, t)h(u) := ei(t+
1
2
xy)eiyuh(u+ x),

for h ∈ L2(Rn) and (x, y, t) ∈ Hn. Here xy denotes the scalar product in Rn of x and y, and
similarly for yu. Consequently its infinitesimal representation is given by

#
%

&

π1(Xj) = ∂uj (differentiate with respect to uj), j = 1, . . . , n,
π1(Yj) = iuj , (multiplication by iuj), j = 1, . . . , n,
π1(T ) = iI, (multiplication by i).

The Schrödinger representations πλ on the group are realised here using

πλ(x, y, t) :=

"
π1 ◦D√

λ(x, y, t) if λ > 0,

π−λ(x,−y,−t) if λ < 0,

that is,

πλ(x, y, t)h(u) = eiλ(t+
1
2
xy)ei

√
λyuh(u+

C
|λ|x),
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for h ∈ L2(Rn) and (x, y, t) ∈ Hn where we use the following convention:

√
λ := sgn(λ)

C
|λ| =

" √
λ if λ > 0,

−
C

|λ| if λ < 0.

We keep the same notation, here πλ for the corresponding infinitesimal representation. The infini-
tesimal representation of πλ acts on the canonical basis of hn via

πλ(Xj) =
C

|λ|∂uj , πλ(Yj) = i
√
λuj , j = 1, . . . , n, and πλ(T ) = iλI.

Consequently, the group Fourier transform of the sub-Laplacian

L =

n!

j=1

(X2
j + Y 2

j )

is

πλ(L) = |λ|
n!

j=1

(∂2
uj

− u2j ).

A direct characterisation implies that the space of smooth vectors of πλ is

H∞
πλ

= S(Rn).

This is true more generally for any representation of a connected simply connected nilpotent Lie
group realised on some L2(Rm) via the orbit method, see [6, Corollary 4.1.2].

3.3. The group Fourier transform on the Heisenberg group. We could have realised the
equivalence classes [πλ] of Schrödinger representations in various ways. For instance by composing

with the unitary operator Uλ : L2(Rn) → L2(Rn) given by Uf(x) = |λ|n2 f(
√
λx), one would have

obtained a slightly different, although equivalent, representation. Another realisation is with the
Bargmann representations.

The group Fourier transform of a function f ∈ L1(Hn) at π1 is

Af(π1) = FHn(f)(π1) = π1(f) =

0

Hn

κ(x, y, t)π1(x, y, t)
∗dxdydt,

that is, the operator on L2(Rn) given by

π1(f)h(u) =

0

R2n+1

f(x, y, t)ei(−t+ 1
2
xy)e−iyuh(u− x)dxdydt

Proposition 3.2. Let f ∈ S(Hn). Then for each λ ∈ R\{0} the operator Af(πλ) acting on L2(Rn)
is the Hilbert-Schmidt operator with integral kernel

Kf,λ : Rn × Rn −→ C,
given by

Kf,λ(u, v) = (2π)n+
1
2

0

Rn

ei(u−v)ξFR2n+1(f)(
C

|λ|ξ,
√
λ
u+ v

2
,λ)dξ,

and Hilbert-Schmidt norm

‖ Af(πλ)‖HS(L2(Rn)) = (2π)
3n+1

2 |λ|−
n
2 ‖FR2n+1(f)(·, ·,λ)‖L2(R2n)

= (2π)
3n+1

2 |λ|−
n
2

=0

Rn

0

Rn

|FR2n+1(f)(ξ, w,λ)|2dξdw
> 1

2

.

Here, we have used the following notation for the Euclidean Fourier transform

FRNϕ(ξ) = (2π)−
N
2

0

RN

ϕ(x)e−ixξdx, ϕ ∈ L1(RN ), ξ ∈ RN .
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Furthermore, we have
0

Hn

|f(x, y, t)|2dxdydt = cn

0

λ∈R\{0}
‖ Af(πλ)‖2HS(L2(Rn))|λ|

ndλ,

where cn = (2π)−(3n+1).

In particular, Proposition 3.2 implies that the Plancherel measure µHn on the Heisenberg group
is supported in {[πλ], λ ∈ R\{0}}, see (3.2). Moreover, we have

dµHn(πλ) ≡ cn|λ|ndλ, λ ∈ R\{0}.

The constant cn depends on our choice of realisation of πλ ∈ [πλ].

Proof of Proposition 3.2. We have for h ∈ L2(Rn) and u ∈ Rn,

Af(πλ)h(u) = (2π)n+
1
2

0

Rn

0

Rn

ei(u−v)ξFR2n+1(f)(
C

|λ|ξ,
√
λ
u+ v

2
,λ)h(v)dvdξ

=

0

Rn

Kf,λ(u, v)h(v)dv,

where Kf,λ is the integral kernel of Af(πλ) hence given by

Kf,λ(u, v) = (2π)n+
1
2

0

Rn

ei(u−v)ξFR2n+1(f)(
C

|λ|ξ,
√
λ
u+ v

2
,λ)dξ.

Using the Euclidean Fourier transform, we may rewrite this as

Kf,λ(u, v) = (2π)
3
2
n+ 1

2FRn

"
FR2n+1(f)(

C
|λ| ·,

√
λ
u+ v

2
,λ)

D
(v − u).

The L2(Rn × Rn)-norm of the integral kernel is
0

Rn×Rn

|Kf,λ(u, v)|2dudv

= (2π)3n+1

0

Rn×Rn

|FRn

"
FR2n+1(f)(

C
|λ| ·,

√
λ
u+ v

2
,λ)

D
(v − u)|2dudv

= (2π)3n+1

0

Rn

0

Rn

|FRn

E
FR2n+1(f)(

C
|λ| ·, w2,λ)

F
(w1)|2|λ|−

n
2 dw1dw2,

after the change of variable (w1, w2) = (v− u,
√
λu+v

2 ). The (Euclidean) Plancherel formula on Rn

in the variable w1 (with dual variable ξ1) then yields
0

Rn×Rn

|Kf,λ(u, v)|2dudv

= (2π)3n+1

0

Rn

0

Rn

|FR2n+1(f)(
C

|λ|ξ1, w2,λ)|2|λ|−
n
2 dξ1dw2

= (2π)3n+1|λ|−n

0

Rn

0

Rn

|FR2n+1(f)(ξ, w2,λ)|2dξdw2,

after the change of variable ξ =
C

|λ|ξ1. Since f ∈ S(Hn), this quantity is finite. Since the integral

kernel of Af(πλ) is square integrable, the operator Af(πλ) is Hilbert-Schmidt and its Hilbert-Schmidt
norm is the L2-norm of its integral kernel. This shows the first part of the statement.
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To finish the proof, we now integrate each side of the last equality against |λ|ndλ and then use
again the (Euclidean) Plancherel formula on R2n+1 in the variable (ξ, w2,λ). We obtain

0

R\{0}

0

Rn×Rn

|Kf,λ(u, v)|2dudv |λ|ndλ

= (2π)3n+1

0

R\{0}

0

Rn

0

Rn

|FR2n+1(f)(ξ, w2,λ)|2dξdw2dλ

= (2π)3n+1

0

R2n+1

|f(x, y, t)|2dxdydt.

This concludes the proof of Proposition 3.2. □
It follows from the Plancherel formula in Proposition 3.2 that the Schrödinger representations

πλ, λ ∈ R\{0}, are almost all the representations of Hn modulo unitary equivalence. ‘Almost all’

here refers to the Plancherel measure µHn = cn|λ|ndλ on AHn. The other representations are finite
dimensional and in fact 1-dimensional. They are given by the unitary characters of Hn

χw : (x, y, t) !→ ei(xw1+yw2), w = (w1, w2) ∈ Rn × Rn ∼ R2n.

We can summarise this paragraph by writing

(3.2) AHn = {[πλ], λ ∈ R\{0}}
GH

[χw], w ∈ R2n
I µHn a.e.

= {[πλ], λ ∈ R\{0}} .
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