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Motivation

● Recent years have seen a huge explosion of deep learning
● Machine Learning (ML), in particular Deep Learning, has had a transformative 

effect on all areas of our life
● Applications in all disciplines, e.g.

○ (Bio-) Medical Sciences
○ Computer Vision
○ Physical sciences
○ Environmental sciences
○ Scientific computing
○ Speech Recognition
○ Gaming
○ Finance



But there are currently problems associated with the rapid growth 

● Success of deep learning not understood
● Results are mysterious => black box lacks explainability
● Problems with unstructured data
● Problems with small data
● Much larger scale problematic

There currently is no complete rigorous mathematical theory 
for the setup, training and application performance of deep 
neural networks.  

There is an urgent need to address this to make progress



Aim and Objectives of Maths4DL

Aim: Put deep learning onto a firm mathematical basis

Combine theory, modelling, data, computation 
to unlock the next generation of deep learning

Objectives

1. Explainable AI  Develop a Fundamental Theory of Deep Learning
2. Trustworthy AI Determine the Limits of Deep Learning Technology
3. New avenues Bring Deep Learning to New Horizons



Deep learning zoo - what 
works best and why?

- A myriad of proposed 
network architectures

- Various proposed loss 
functions

How to make an 
informed choice?

P. Liu, C. Li, C.-B Schönlieb, GANReDL: Medical Image enhancement using a generative 
adversarial network with real-order derivative induced loss functions, MICCAI 2019

Explainable AI ?



Vulnerability of deep learning
Safety danger: visually 
indistinguishable 
perturbed examples can 
break the network 
performance

How to render provably 
stable neural networks 
while keeping the 
performance?

Etmann, C., Lunz, S., Maass, P., & Schönlieb, C. B. On the Connection Between 
Adversarial Robustness and Saliency Map Interpretability, ICML 2019.

Trustworthy  AI?



Does deep learning respect the physics?
Would you fly on an airplane which was 
built by looking at a lot of examples of 
existing airplanes?

Would you believe in weather predictions 
that are solely built on empirical 
observations?

How to introduce physics into deep 
learning solutions?
McRae, A. T., Cotter, C. J., & Budd, C. J. (2018). Optimal-transport-
-based mesh adaptivity on the plane and sphere using finite 
elements. SIAM Journal on Scientific Computing, 40(2), A1121-
A1148.
Hauptmann, A., Lucka, F., Betcke, M., Huynh, N., Adler, J., Cox, B., 
... & Arridge, S. (2018). Model-based learning for accelerated, 
limited-view 3-d photoacoustic tomography. IEEE transactions on 
medical imaging, 37(6), 1382-1393.
.

New Avenues



The first Aim of Maths4DL 

To put DL onto a firm mathematical basis, by looking at DL 
through the magnifying glass of continuum models. 

The second Aim of Maths4DL 

To provide a new physics-driven DL paradigm. We believe this 
to be crucial to unlock the next generation of DL that realises its 
full potentials within physical domains. 



Work Packages



The Team
so far ….. 

● Bath: Chris Budd, Matthias Ehrhardt, Teo Deveney, Lisa Kreusser, 
Tatiana Bubba, Simone Appella, Margaret Duff

● Cambridge: Carola-Bibiane Schönlieb, Richard Nickl, Kweku Abraham, 
Yury Korolev, GeorgiosBatzolis, Sören Dittmer,Tamara
Grossmann, Subhadip Mukherjee, Jan Stanczuk, Junqi Tang.

● UCL: Simon Arridge, Bangti Jin, Rob Tovey, Andreas Hauptmann 

● Project Manager:  Helena Lake



Industrial Partners



Opportunities to get involved

Planned activities include:

• Deep learning reading group every Thursday (Tatiana Bubba & Yury Korolev)

• July 2022:  Sponsored workshop with Matt Thorpe and the ICMS:  
Analytic and Geometric Approaches to Machine Learning

• September 2022:    Workshop on  Deep learning and environmental problems

• Late Autumn 2022: Workshop on Deep learning for industry

• June 2023:  International conference on Deep learning in computational physics

• Partnership with the Millennium Mathematics Project on Public engagement



Physics Inspired Deep Learning

Simon Arridge, Bangti Jin (University College London)

Goal of Math4DL: To establish a mathematical, computational and statistical framework 



● Classical techniques: specialized, with provable guarantees

fast iterative solvers, physical model, variational regularization, optimal transport …

● Learned iterative solver for physical problems

● 𝒌 𝟏 𝒌 𝜽 𝒌 𝒌 𝒌 𝒌 𝒌 𝒌
∗

𝒌

● Very effective for challenging tasks in physical simulation, imaging, uncertainty quantification 
….

Combining knowledge / model with deep learning



A. Stanziola, S. Arridge, B. Cox, B. Treeby. J. Comput. Phys. 2021

2D wave propagation

Unsupervised Helmoltz solvers beat GMRES !



3D Photoacoustic tomography

• Supervised training with 
ellipses

• Test with real palm data

• beat standard TV with 
full data

A. Hauptmann, F. Lucka, …, S. Arridge. IEEE Trans. Med. Imag. 2018

(𝜕 −𝑐 Δ)𝑝(𝑟, 𝑡) = 0

𝑝 = 𝑥, 𝜕 𝑝 = 0

𝑦 = 𝑀𝑝
×( , )



Uncertainty quantification

R. Barbano, C. Zhang, S. Arridge, B. Jin. ICPR 2020

J Antorán, R Barbano, J Leuschner, JM Hernández-Lobato, B Jin. arXiv:2203.00479

A probabilistic formulation of deep image prior on Walnut data, with calibrated 
uncertainty



What is next ?

● New physics inspired approaches for scientific problems with better 

interpretability

● Theoretical studies, especially convergence issues

 Algorithmic convergence

 Error estimates via stability analysis

 Generalization errors

 Statistical estimation 

 … 



Bayesian inverse problems, UQ and DL

Richard Nickl

University of Cambridge (UK)

Bath, April 21 2022
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Statistical inverse regression models

Consider statistical observations arising as random vectors (Yi ,Xi )
N
i=1, where the

Xi represent a discretisation of a d-dimensional manifold X , and with

Yi = Gθ(Xi ) + εi , εi ∼i.i.d. N (0, 1),

where a collection of ‘regression’ fields {Gθ : θ ∈ Θ} is indexed by the
high-dimensional parameter θ ∈ Θ.

In inverse problems

G : Θ→ L2(X ), θ 7→ Gθ,

is the possibly non-linear solution ‘forward’ map of a PDE.

Example: Suppose Gθ = uθ is the solution to

Du + θu = 0 on X ,
u = g on ∂X ,

with D a given linear partial differential op. (e.g., Laplacian, or geodesic vector field).
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Examples for G from partial differential equations (PDEs)

Elliptic PDEs: Electric impedance tomography (Caldéron problem),
groundwater flow & oil reservoir analysis, photoacoustics, etc..

Transport PDEs: X -ray transforms in (non-linear) tomography

Time evolution equations: wave, heat, Euler and Navier-Stokes equations
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Bayesian Inverse Problems (Stuart (2010))

The ‘log-likelihood’ or ‘least squares fit’ function is

`N(θ) = −1

2

N∑
i=1

‖Yi − Gθ(Xi )‖2
V , θ ∈ Θ.

Note −`N is non-convex when G is non-linear.

There is need for regularisation of
the complexity of θ, which can be modelled by a Bayesian approach.

Let Π be prior probability on Θ. The posterior distribution Π(·|(Yi ,Xi )
N
i=1) on Θ

then equals
dΠ(θ|(Yi ,Xi )

N
i=1) ∝ e`N (θ)dΠ(θ) θ ∈ Θ.

Avoiding optimisation methods one can estimate θ by the posterior mean

EΠ[θ|(Yi ,Xi )
N
i=1)] =

∫
Θ

θdΠ(θ|(Yi ,Xi )
N
i=1).

Can we consider priors that arise with neural network architectures?
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Computation: gradient based MCMC

Let us single out one popular MCMC method for illustration:

Unadjusted discretised Langevin algorithm

The log-posterior density on a high-dimensional discretisation space Θ ⊃ RD is

pN(θ) := log πN(θ|(Yi ,Xi )
N
i=1), θ ∈ RD .

Then fix δ > 0 and initialise at ϑ0. For k ≥ 0 and ξk ∼iid N (0, I ) in RD , do:

ϑk+1 = ϑk + δ∇pN(ϑk) +
√

2δξk .
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Bayesian inversion with Gaussian process priors in action

Posterior mean fields for N = 200, 400, 800 and Ns = 100000 MCMC iterations
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Algorithmic guarantees: Uncertainty quantification

Do Bayesian methods provide valid frequentist error bars?

Confident credibility: If RN ≡ Rα((Yi ,Xi )
N
i=1) are posterior quantiles for some

norm, and θ̄ is the posterior mean or mode, do we have

PN
θ0

(θ0 ∈ {θ̄ − RN , θ̄ + RN}) ≈ 1− α, as N →∞?

Recent progress in the field shows that this can be true: Monard, Nickl, Paternain
(2021a, b). Does this extend to Deep Learning architectures ?
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Numerical illustration

• Numerical MCMC plots of posterior draws of 〈θ, ψ〉L2(X )|(Yi ,Xi )
N
i=1 around the

posterior mean (green). The true value is marked in red, a Gaussian superimposed.

• These findings illustrate that the non-Gaussian posterior measures arising in
non-linear inverse problems actually may produce Gaussian statistics for moderate
N = 600. In particular this illustrates that uncertainty quantification based on
posterior ‘credible sets’ often works in practice.
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