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Schedule Day One

The Schedule for the workshop is as follows:

Thursday 21st April

12:00-13:00
13:00-13:30
13:30-14:00
14:00-14:20
14:20-14:40
14:40-15:00
15:00-15:30
15:30-16:00
16:00-16:20
16:20-16:50
16:50-17:10

17:15

Arrival and lunch

Opening and intro to the Maths4DL programme
Talk: Andrew Fitzgibbon (Graphcore)
Talk: Kweku Abraham (Cambridge)

Talk: Riccardo Barbano (UCL)

Talk: Teo Deveney (Bath)

Coffee

Talk: Gitta Kutyniok (LMU)

Talk: Subhadip Mukherjee (Cambridge)
Talk: Kwinten van Weverberg (Met Office)
Talk: Lisa Kreusser (Bath)

Talk: Reception and posters

Dinner 7.30pm Aqua Restaurant
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Motivation

Recent years have seen a huge explosion of deep learning

Machine Learning (ML), in particular Deep Learning, has had a transformative
effect on all areas of our life
Applications in all disciplines, e.g. Machine Learning Arxiv Papers per Year

= ML Arxiv Papers = Moore's Law growth rate (2x/2 years)
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_ _ _ ~100 new ML
(Bio-) Medical Sciences papers 5
every day!
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Physical sciences
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But there are currently problems associated with the rapid growth

Success of deep learning not understood

Results are mysterious => black box lacks explainability
Problems with unstructured data

Problems with small data

Much larger scale problematic

There currently is no complete rigorous mathematical theory

for the setup, training and application performance of deep
neural networks.

There is an urgent need to address this to make progress



Aim and Objectives of Maths4DL m4DL

Aim: Put deep learning onto a firm mathematical basis

Combine theory, modelling, data, computation
to unlock the next generation of deep learning

Objectives

1. Explainable Al Develop a Fundamental Theory of Deep Learning
2. Trustworthy Al Determine the Limits of Deep Learning Technology
3. New avenues Bring Deep Learning to New Horizons



Explainable Al ?
o Nevrl Networks - .- Deep learning zoo - what
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P. Liu, C. Li, C.-B Schonlieb, GANReDL: Medical Image enhancement using a generative
adversarial network with real-order derivative induced loss functions, MICCAI 2019
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Trustworthy Al?
Vulnerability of deep learning

Safety danger: visually
indistinguishable
perturbed examples can
break the network
performance

|dentified as a
45mph speed
sign

How to render provably
stable neural networks
while keeping the
performance?

Etmann, C., Lunz, S., Maass, P., & Schonlieb, C. B. On the Connection Between
Adversarial Robustness and Saliency Map Interpretability, ICML 2019.




New Avenues |
Does deep learning respect the physics?

Would you fly on an airplane which was
built by looking at a lot of examples of
existing airplanes?

Would you believe in weather predictions
that are solely built on empirical
observations?

How to introduce physics into deep
learning solutions?

McRae, A. T., Cotter, C. J., & Budd, C. J. (2018). Optimal-transport-
-based mesh adaptivity on the plane and sphere using finite
elements. SIAM Journal on Scientific Computing, 40(2), A1121-
A1148.

Hauptmann, A., Lucka, F., Betcke, M., Huynh, N., Adler, J., Cox, B.,
... & Arridge, S. (2018). Model-based learning for accelerated,
limited-view 3-d photoacoustic tomography. IEEE transactions on
medical imaging, 37(6), 1382-1393.




The first Aim of Maths4DL

To put DL onto a firm mathematical basis, by looking at DL
through the magnifying glass of continuum models.

The second Aim of Maths4DL

To provide a new physics-driven DL paradigm. We believe this
to be crucial to unlock the next generation of DL that realises its
full potentials within physical domains.



Work Packages

WP1.1 DL as Optimal Control
WP1.2 Physics Based Neural Networks
WP1.2 Uncertainty Quantification for DL (" theory \ [ agorithms \ [ applications
WP1.4 DL on Manifolds ‘

C1: Interpretability \ C2: Expressivity

WP2.1 Training of Continuum Models — —__ =

WP2.2 Novel Metric Based Training Methods /“{ ’}) —— o

WP2.3 Large Nonconvex Optimisation @ ® \ © ® @>@\§

WP2.4 Imaging Off-the-Grid \ ==

WP2.5 Learning Approximate Models > Robusness cs: Scalability
WP3.1 Environmental Problems \ VRN J l\ Y,

WP3.2 DL in Computational Physics
WP3.23 Inverse Problems in Imaging
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Opportunities to get involved

Planned activities include:

 Deep learning reading group every Thursday (Tatiana Bubba & Yury Korolev)

« July 2022: Sponsored workshop with Matt Thorpe and the ICMS:
Analytic and Geometric Approaches to Machine Learning

« September 2022: Workshop on Deep learning and environmental problems
« Late Autumn 2022: Workshop on Deep learning for industry
« June 2023: International conference on Deep learning in computational physics

« Partnership with the Millennium Mathematics Project on Public engagement
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Physics Inspired Deep Learning

Simon Arridge, Bangti Jin (University College London)

Goal of Math4DL: To establish a mathematical, computational and statistical framework
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Combining knowledge / model with deep learning

e Classical techniques: specialized, with provable guarantees
fast iterative solvers, physical model, variational regularization, optimal transport ...
e Learned iterative solver for physical problems

. U1 = Ug + fo(uy, ey), ex =F(uw)—g, / ex=F ) (F(u) —g)

e Very effective for challenging tasks in physical simulation, imaging, uncertainty quantification
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A. Stanziola, S. Arridge, B. Cox, B. Treeby. J. Comput. Phys. 2021

Unsupervised Helmoltz solvers beat GMRES !



3D Photoacoustic tomography

(Op—c§M)p(r,t) =0

Initialization zo = A*Yyeal DGD x5 Updated DGD 5
— 1 |% | =X, atp | =0
1 0.9 M
y = Mp|
0.8 aQx(0,T)

« Supervised training with
ellipses

o . —_ . -5 o ats =9. —4
TV suh-sampled,_)\ =5-10 Updated U-Net TV fully-sampled dd-td. A=2-10
20 Iterations 20 Iterations

« Test with real palm data

 beat standard TV with
full data

A. Hauptmann, F. Lucka, ..., S. Arridge. IEEE Trans. Med. Imag. 2018



Uncertainty quantification

X Ix — x*| std-dev marginal std-dev
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PSNR: 23.490 dB; SSIM: 0.7339 log-likelihood: 0.8699

J Antoran, R Barbano, J Leuschner, JM Hernandez-Lobato, B Jin. arXiv:2203.00479

A probabilistic formulation of deep image prior on Walnut data, with calibrated
uncertainty
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What is next ?

e New physics inspired approaches for scientific problems with better
interpretability

e Theoretical studies, especially convergence issues
¢ Algorithmic convergence

% Error estimates via stability analysis

% Generalization errors

+«»» Statistical estimation



Bayesian inverse problems, UQ and DL

RicHARD NICKL

University of Cambridge (UK)

Bath, April 21 2022
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Statistical inverse regression models

Consider statistical observations arising as random vectors (Y;, X;)Y.,, where the
X; represent a discretisation of a d-dimensional manifold X', and with

Y = gg(X,‘) +€i, € ~fi-d- ./\/(0, 1)7

where a collection of ‘regression’ fields {¢, : 6 € ©} is indexed by the
high-dimensional parameter 6 € ©.

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems

April 2022



Statistical inverse regression models

Consider statistical observations arising as random vectors (Y;, X;)Y.,, where the
X; represent a discretisation of a d-dimensional manifold X', and with

Y = gg(X,‘) +€i, € ~fi-d- ./\/(0, 1)7

where a collection of ‘regression’ fields {¢, : 6 € ©} is indexed by the
high-dimensional parameter § € ©. In inverse problems

G0 = LX), 0— 9,

is the possibly non-linear solution ‘forward’ map of a PDE.
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Statistical inverse regression models

Consider statistical observations arising as random vectors (Y;, X;)Y.,, where the
X; represent a discretisation of a d-dimensional manifold X', and with

Y = gg(X,‘) +€i, € ~fi-d- ./\/(0, 1)7

where a collection of ‘regression’ fields {¢, : 6 € ©} is indexed by the
high-dimensional parameter § € ©. In inverse problems

G:0 = [2(X), 0%,
is the possibly non-linear solution ‘forward’ map of a PDE.
Example: Suppose ¥ = up is the solution to

Pu+0u=0 on X,
u=g onodX,

with 2 a given linear partial differential op. (e.g., Laplacian, or geodesic vector field).

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems April 2022



Examples for & from partial differential equations (PDEs)

e Elliptic PDEs: Electric impedance tomography (Caldéron problem),
groundwater flow & oil reservoir analysis, photoacoustics, etc..

Spin-flipper  Detector

8 &8 8 &

° 8 38 8 8
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Examples for & from partial differential equations (PDEs)

e Elliptic PDEs: Electric impedance tomography (Caldéron problem),
groundwater flow & oil reservoir analysis, photoacoustics, etc..

@ Transport PDEs: X-ray transforms in (non-linear) tomography

a Spin-flipper  Detector

8 &8 8 8

° 8 38 8 8

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems April 2022



Examples for & from partial differential equations (PDEs)

e Elliptic PDEs: Electric impedance tomography (Caldéron problem),
groundwater flow & oil reservoir analysis, photoacoustics, etc..

@ Transport PDEs: X-ray transforms in (non-linear) tomography
@ Time evolution equations: wave, heat, Euler and Navier-Stokes equations

a Spin-flipper  Detector

8 &8 8 8

April 2022

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems



Bayesian Inverse Problems (Stuart (2010))

The ‘log-likelihood’ or ‘least squares fit’ function is
1N
w(0) = =3IV ~ %Xy, o<e.
i=1

Note —/p is non-convex when ¢ is non-linear.

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems April 2022



Bayesian Inverse Problems (Stuart (2010))

The ‘log-likelihood’ or ‘least squares fit’ function is
1N
— . 31|12
In(0) = —5 -E,l Y: — % (X)lv, 0€0.

Note —/y is non-convex when % is non-linear. There is need for regularisation of
the complexity of @, which can be modelled by a Bayesian approach.

Let M be prior probability on ©. The posterior distribution M(:|(Y;, X;);) on ©
then equals
dn(8|(Y:, X)) o e @dn(g) 6 < o.

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems April 2022



Bayesian Inverse Problems (Stuart (2010))

The ‘log-likelihood’ or ‘least squares fit’ function is
1N
— . 31|12
() =—3 21 1Yi = %o (Xi)lyy, 0 €©.

Note —/y is non-convex when % is non-linear. There is need for regularisation of
the complexity of @, which can be modelled by a Bayesian approach.

Let M be prior probability on ©. The posterior distribution M(:|(Y;, X;);) on ©
then equals
dn(8|(Y:, X)) o e @dn(g) 6 < o.

Avoiding optimisation methods one can estimate 6 by the posterior mean
ENfoI(Y X)) = [ 0Nl X)),
©

Can we consider priors that arise with neural network architectures?

RicHARD NICKL (U. of Cambridge) Bayesian Inverse Problems April 2022



Computation: gradient based MCMC

Let us single out one popular MCMC method for illustration:

Unadjusted discretised Langevin algorithm

The log-posterior density on a high-dimensional discretisation space © D RP is
pr(8) = log mn(8](Yi, Xi)L1), 6 € RP.

Then fix § > 0 and initialise at 9. For k > 0 and & ~™ N(0, 1) in RP, do:

k1 = Uk + (Svp/\/(’ﬂk) F \/ﬁgk

RicHARD NIcKL (U. of Cambridge) Bayesian Inverse Problems April 2022



Bayesian inversion with Gaussian process priors in action

Posterior mean fields for N = 200, 400,800 and Ns = 100000 MCMC iterations

1 1

RicHARD NIcKL (U. of Cambridge) Bayesian Inverse Problems



Algorithmic guarantees: Uncertainty quantification

-1 0.5 0 05 1 4 0.5 0 05 1

Do Bayesian methods provide valid frequentist error bars?

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems April 2022



Algorithmic guarantees: Uncertainty quantification

-1 0.5 0 05 1 4 0.5 0 05 1

Do Bayesian methods provide valid frequentist error bars?

Confident credibility: If Ry = Ro((Yi, Xi);) are posterior quantiles for some
norm, and ¢ is the posterior mean or mode, do we have

Pil(6o € {0 — Rn.0+Ry}) ~1—a, as N — oo?

Recent progress in the field shows that this can be true: Monard, Nickl, Paternain
(2021a, b). Does this extend to Deep Learning architectures ?

RicHARD NIcKL (U. of Cambridge) Bayesian Inverse Problems April 2022



Numerical illustration

e Numerical MCMC plots of posterior draws of (6, %) 2(x)|(Yi, X;); around the
posterior mean (green). The true value is marked in red, a Gaussian superimposed.
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Numerical illustration

e Numerical MCMC plots of posterior draws of (6, %) 2(x)|(Yi, X;); around the
posterior mean (green). The true value is marked in red, a Gaussian superimposed.
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e These findings illustrate that the non-Gaussian posterior measures arising in
non-linear inverse problems actually may produce Gaussian statistics for moderate
N = 600. In particular this illustrates that uncertainty quantification based on
posterior ‘credible sets' often works in practice.

RicHARD NickL (U. of Cambridge) Bayesian Inverse Problems April 2022
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