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Introduction to Molecular Dynamics



Molecular Dynamics is easy (in principle)

 Compute the forces on acting on a particle

 Integrate Newton’s equation of motion to get 

trajectories

 Sample for desired properties every now and 

then.
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An example

Finding optimal surface groups for CO2 capture applications

Jennifer Williams, Tina Düren



What else is MD used for?

 Materials property prediction
e.g. bulk modulus, surface tension, shear 

viscosity, thermal conductivity

 Biomolecular modelling
e.g. protein folding, cell membranes, ion 

transport

 Ligand and drug design
e.g. docking, interaction, sterics

 High-throughput molecular screening
e.g. drugs, surfactants, self-assembling 

materials
http://www.molecular-

simulation.org/thit.html

Protein in lipid 

bilayer

Wetting

http://lisgi1.engr.ccny.cuny

.edu/jkres.htm



What length scales are we dealing with?

http://reaktiveplasmen.rub.de/files/lehre/md/01-1.pdf



What is Molecular Dynamics?

 In MD, we model the motion of some group of particles 

(e.g., atoms) by solving the classical equations of motion.
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1. Calculate the force 
acting on a molecule

2. Integrate Newton’s 
equations of motion to 
get new position













































612

4)(
ijij

ij
rr

ru




Remember: e.g. Lennard Jones potential to 
describe interaction between two particles
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Force calculations

 Force is the gradient of the potential
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Cutting off the potential

 For an N particle system, we need to perform N(N-1)/2 

force calculations.

 Luckily, most potentials are (relatively) short ranged and 

contributions from particles that are further away can be 

neglected.

 Consider interactions only if particles are closer than 

some cut-off radius rcut.

 The error can be made arbitrarily small by choosing a 

large cut-off radius.



Truncation error

At 2.5∙σ error in energy is ~10 %

• Can I live with that?

• Increase the cut-off radius?

• Use tail corrections? 

ULJ
ULJ: Lennard Jones 

potential truncated at rcut.

ULJ-corr: truncated Lennard 

Jones potential corrected 

with tail correction

http://reaktiveplasmen.rub.de/files/lehre/md/02-2.pdf

Increase in 

computational 

effort

Depends on 

application



Ways to truncate the potential

 Simple truncation = ignore all interactions beyond rcut

 Very often used for Monte Carlo simulations.

 Unsuitable for MD simulations as potential changes 

discontinuously at rcut . This will result in an infinite force 

at the discontinuity. 
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Truncated and shifted potential

 The potential is truncated and shifted such that the 

potential vanishes at the cut-off radius

 Most commonly used approach in MD.
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Integrating the equations of motion

 Desirable features of an integrator

• minimal need to compute forces (a very expensive 

calculation)

• good stability for (relatively) large time steps

• good accuracy 

• conserves energy and momentum



Verlet algorithm

 Very simple, very good, very popular algorithm

 Consider expansion of coordinate forward and backward 

in time

 Which results in 
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Verlet algorithm illustrated

 Calculation of new position without consulting velocity

 Velocities can be calculated from finite difference

 Biggest disadvantage: Calculated velocities lag behind by one 
time step
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current position and 

position at end of 

previous time step known

Use them to compute the 

force at the current 

position

Use all three to compute 

the new position, repeat
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Schematic from Allen & Tildesley, Computer Simulation of Liquids



Large time steps lead to energy drifts

 For any time step, numerical errors that accumulate result in 

long-term “energy drift” – an exponential increase in energy 

for very large number of integration steps.

 Typically, Δt* = 0.005 required for stability

• For argon limit of stability Δt = 10 fs (1 fs =10-15 s)

• For more complex systems, Δt = 1 – 2 fs
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More advanced integration schemes

 Leapfrog (default in gromacs)

 Velocity Verlet

 Predictor / Corrector methods



Boundary effects

 In small systems, boundary effects are always large.

 1000 atoms in a simple cubic crystal: 488 boundary 

atoms.

 1,000,000 atoms in a simple cubic crystal: still 6% 

boundary atoms…



How can we handle limited system size?

 We try to get information about the macroscopic 

system.

 But due to computational limitations we can only 

handle system sizes of a few nm.

 This could lead to severe boundary effects.

 We have to find boundary conditions that mimic 

the infinite bulk surrounding our model system.

Periodic boundary conditions



Periodic boundary conditions

Central box 

surrounded by 

its eight images 

in 2D (26 in 3D) 

to mimic infinite 

bulk phase

If a particle 

leaves the 

central cell, an 

image particle 

enters from an 

adjacent cell. 

Simulation box: simulation with five particles



Demonstration of pbc

 https://www.youtube.com/watch?v=5qdNafdyaG0

 Better as interactive: http://www.eng.buffalo.edu/~kofke/applets/dak_pbcCubic.html

(you will have to add http://www.eng.buffalo.edu as a trusted site to java)

https://www.youtube.com/watch?v=5qdNafdyaG0


Minimum image convention

 We have to avoid that a molecule is interacting with 

itself.

Interactions are only considered 

with the closest image.
All the red particles are the 

same.



Minimum image convention and the cut-off radius 

 The cut-off radius has to be smaller than half the 

box length or the minimum image convention is 

violated!



Setting up an MD simulation

 Without any 

additional control 

measure, MD in 

microcanonical 

ensemble (NVE 

constant).

 A thermostat and 

a barostat can be 

used to run the 

simulation at 

constant T and P.

Calculate forces and integrate equations of motion

Output
e.g. diffusion coefficients

radial distribution functions

detailed picture on molecular level

Input
e.g. system specifications (T,N, fluids …)

model for fluids and solids including force fields 

initial positions and velocities

Perform P, T control if necessary

t = t + Δt

Calculate / sample the desired physical properties 

t < tmax?



Sampling should only start once system 

has equilibrated
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configuration



Run MD

 http://rheneas.eng.buffalo.edu/wiki/LennardJones

Properties calculated:

• Velocity distribution (read more about Maxwell 

Boltzmann distribution on webpage)

• Kinetic and potential energy

• Radial distribution function

• Mean square displacement

Have a play!



Sampling – radial distribution function

 Gives information about the structure

 “Given that I have one atom at some 

position, how many atoms can I expect to 

find at a distance r away from it?”

 the rdf can be measured experimentally, 

using neutron-scattering techniques
dr

r

Gas like Solid like



Sampling – self diffusion coefficient

 How far will a molecule travel in a given time interval?

 Mean square displacement:

 Related through Einstein equation to macroscopic self-
diffusion (= Brownian motion, no external driving force)

 bulk systems: dsys = 3, slit-like pores: dsys = 2, cylindrical 
pores: dsys = 1
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Mean square displacement for flue gases in MCM-41

D[CO2] = 9.2 (+/- 0.6) (10-9 cm2/s)

D[ N2] = 97.5 (+/- 3.9) (10-9 cm2/s)
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