Molecular Simulation Research Projects

Introduction to Molecular Dynamics

Prof Tina Düren, t.duren@bath.ac.uk, 9West 3.02

Dr Carmelo Herdes, c.e.herdes.moreno@bath.ac.uk, WH 7.19

Dr Matthew Lennox, m.j.lennox@bath.ac.uk, 9West 2.04B

Molecular Dynamics is easy (in principle)

$$\mathbf{F} = m \frac{d^2 \mathbf{r}}{dt^2}$$

- Compute the forces on acting on a particle
- Integrate Newton's equation of motion to get trajectories
- Sample for desired properties every now and then.

An example

Finding optimal surface groups for CO₂ capture applications

What else is MD used for?

- Materials property prediction
 e.g. bulk modulus, surface tension, shear viscosity, thermal conductivity
- Biomolecular modelling
 e.g. protein folding, cell membranes, ion
 transport
- Ligand and drug design
 e.g. docking, interaction, sterics
- High-throughput molecular screening e.g. drugs, surfactants, self-assembling materials

Wetting

http://lisgi1.engr.ccny.cuny .edu/jkres.htm

Protein in lipid bilayer

http://www.molecularsimulation.org/thit.html

What length scales are we dealing with?

Macroscale

- Time > 1 s
- Lengthscale $> 1\mu$
- · Phase field models, FEM

Mesoscale

- Time $\sim 10^{-8} 10^{-2} s$
- Lengthscale ~ 10-1000 nm
- DPD, coarse-graining

Nanoscale

- Time $\sim 10^{-15} 10^{-9} s$
- Lengthscale ~ 0.1 10 nm
- Molecular dynamics, Monte Carlo

Subatomic scale

- Electronic structures
- Ab initio

What is Molecular Dynamics?

 In MD, we model the motion of some group of particles (e.g., atoms) by solving the classical equations of motion.

1. Calculate the force acting on a molecule

2. Integrate Newton's equations of motion to get new position

$$\frac{d^{2}\mathbf{r}_{i}(t)}{dt^{2}} = \frac{1}{m_{i}}\mathbf{f}_{i}(t)$$

$$= -\frac{1}{m_{i}}\frac{\partial U(\mathbf{r}^{N})}{\partial \mathbf{r}_{i}}$$

Remember: e.g. Lennard Jones potential to describe interaction between two particles

$$u(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

Force calculations

Force is the gradient of the potential

$$\mathbf{F}_{2 \to 1} = -\nabla u(r_{12})$$
Force on 1, = $-\frac{\partial u(r_{12})}{\partial x_1} \mathbf{e}_x - \frac{\partial u(r_{12})}{\partial y_1} \mathbf{e}_y$

$$= -\frac{du(r_{12})}{dr_{12}} \left[\frac{\partial r_{12}}{\partial x_1} \mathbf{e}_x + \frac{\partial r_{12}}{\partial y_1} \mathbf{e}_y \right]$$

$$= -\frac{f(r_{12})}{r_{12}} \left[x_{12} \mathbf{e}_x + y_{12} \mathbf{e}_y \right]$$

$$\mathbf{F}_{2\to 1} = -\mathbf{F}_{1\to 2}$$

$$r_{12} = [(x_2 - x_1)^2 + (y_2 - y_1)^2]$$

Cutting off the potential

- For an N particle system, we need to perform N(N-1)/2 force calculations.
- Luckily, most potentials are (relatively) short ranged and contributions from particles that are further away can be neglected.
- Consider interactions only if particles are closer than some cut-off radius r_{cut}.
- The error can be made arbitrarily small by choosing a large cut-off radius.

Truncation error At 2.5·σ error in energy is ~10 %

U_{LJ}: Lennard Jones potential truncated at r_{cut}.

U_{LJ-corr}: truncated Lennard Jones potential corrected with tail correction

- Can I live with that?
- Increase the cut-off radius?
- Use tail corrections?

Increase in computational effort

Depends on application

Ways to truncate the potential

Simple truncation = ignore all interactions beyond r_{cut}

$$u^{trunc}(r) = \begin{cases} u^{LJ}(r) & r \leq r_{cut} \\ 0 & r > r_{cut} \end{cases}$$

- Very often used for Monte Carlo simulations.
- Unsuitable for MD simulations as potential changes discontinuously at r_{cut}. This will result in an infinite force at the discontinuity.

Truncated and shifted potential

 The potential is truncated and shifted such that the potential vanishes at the cut-off radius

$$u^{tr-sh}(r) = \begin{cases} u^{LJ}(r) - u^{LJ}(r_{cut}) & r \leq r_{cut} \\ 0 & r > r_{cut} \end{cases}$$

Most commonly used approach in MD.

Integrating the equations of motion

- Desirable features of an integrator
 - minimal need to compute forces (a very expensive calculation)
 - good stability for (relatively) large time steps
 - good accuracy
 - conserves energy and momentum

Verlet algorithm

- Very simple, very good, very popular algorithm
- Consider expansion of coordinate forward and backward in time

$$\mathbf{r}_{i}(t+\Delta t) = \mathbf{r}_{i}(t) + \mathbf{v}_{i}(t)\Delta t + \frac{\mathbf{f}_{i}(t)}{2m_{i}}\Delta t^{2} + \frac{\mathbf{r}_{i}(t)}{3!}\Delta t^{3} + O(\Delta t^{4})$$

$$\mathbf{r}_{i}(t - \Delta t) = \mathbf{r}_{i}(t) - \mathbf{v}_{i}(t)\Delta t + \frac{\mathbf{f}_{i}(t)}{2m_{i}}\Delta t^{2} - \frac{\mathbf{r}_{i}(t)}{3!}\Delta t^{3} + O(\Delta t^{4})$$

Which results in

$$\mathbf{r}_{i}(t+\Delta t) = 2\mathbf{r}_{i}(t) - \mathbf{r}_{i}(t-\Delta t) + \frac{\mathbf{f}_{i}(t)}{m}\Delta t^{2} + O(\Delta t^{4})$$

Verlet algorithm illustrated

$$\mathbf{r}_{i}(t + \Delta t) = 2\mathbf{r}_{i}(t) - \mathbf{r}_{i}(t - \Delta t) + \frac{\mathbf{f}_{i}(t)}{m} \Delta t^{2} + O(\Delta t^{4})$$

current position and position at end of previous time step known

Use them to compute the force at the current position

Use all three to compute the new position, repeat

- Calculation of new position without consulting velocity
- Velocities can be calculated from finite difference

$$\mathbf{v}_{i}(t) = \frac{\mathbf{r}_{i}(t + \Delta t) - \mathbf{r}_{i}(t - \Delta t)}{2\Delta t} + O(\Delta t^{2})$$

Biggest disadvantage: Calculated velocities lag behind by one time step

Large time steps lead to energy drifts

- For any time step, numerical errors that accumulate result in long-term "energy drift" – an exponential increase in energy for very large number of integration steps.
- Typically, $\Delta t^* = 0.005$ required for stability

$$t^* = \frac{t}{\sigma \sqrt{\varepsilon/m}}$$

- For argon limit of stability $\Delta t = 10$ fs (1 fs = 10^{-15} s)
- For more complex systems, $\Delta t = 1 2$ fs

More advanced integration schemes

- Leapfrog (default in gromacs)
- Velocity Verlet
- Predictor / Corrector methods

Boundary effects

- In small systems, boundary effects are always large.
- 1000 atoms in a simple cubic crystal: 488 boundary atoms.
- 1,000,000 atoms in a simple cubic crystal: still 6% boundary atoms...

How can we handle limited system size?

- We try to get information about the macroscopic system.
- But due to computational limitations we can only handle system sizes of a few nm.
- This could lead to severe boundary effects.
- We have to find boundary conditions that mimic the infinite bulk surrounding our model system.
- Periodic boundary conditions

Periodic boundary conditions

Central box surrounded by its eight images in 2D (26 in 3D) to mimic infinite bulk phase

If a particle leaves the central cell, an image particle enters from an adjacent cell.

Simulation box: simulation with five particles

Demonstration of pbc

- https://www.youtube.com/watch?v=5qdNafdyaG0
- Better as interactive: http://www.eng.buffalo.edu/~kofke/applets/dak_pbcCubic.html (you will have to add http://www.eng.buffalo.edu as a trusted site to java)

Minimum image convention

 We have to avoid that a molecule is interacting with itself.

All the red particles are the same.

Interactions are only considered with the closest image.

Minimum image convention and the cut-off radius

The cut-off radius has to be smaller than half the box length or the minimum image convention is violated!

Setting up an MD simulation

- Without any additional control measure, MD in microcanonical ensemble (NVE constant).
- A thermostat and a barostat can be used to run the simulation at constant T and P.

Sampling should only start once system has equilibrated

Initial configuration

An equilibrium configuration

Run MD

http://rheneas.eng.buffalo.edu/wiki/LennardJones

Properties calculated:

- Velocity distribution (read more about Maxwell Boltzmann distribution on webpage)
- Kinetic and potential energy
- Radial distribution function
- Mean square displacement

Have a play!

Sampling – radial distribution function

- Gives information about the structure
- "Given that I have one atom at some position, how many atoms can I expect to find at a distance r away from it?"
- the rdf can be measured experimentally, using neutron-scattering techniques

Sampling – self diffusion coefficient

- How far will a molecule travel in a given time interval?
- Mean square displacement:

$$msd(t) = \langle \Delta r_i(t)^2 \rangle = \langle (r_i(t) - r_i(0))^2 \rangle$$

 Related through Einstein equation to macroscopic selfdiffusion (= Brownian motion, no external driving force)

$$\frac{\partial \left\langle \mathbf{r}^2(t) \right\rangle}{\partial t} = 2d^{sys} D_{self}$$

 bulk systems: d^{sys} = 3, slit-like pores: d^{sys} = 2, cylindrical pores: d^{sys} = 1

Mean square displacement for flue gases in MCM-41

References

- D. Frenkel, B. Smit "Understanding Molecular Simulation" 2nd Editions, Academic Press, 2002
- J. M. Haile "Molecular Dynamics Simulation. Elementary Methods", Wiley, 1992
- <u>http://reaktiveplasmen.ruhr-uni-bochum.de/</u> <u>index.php?option=com_content&view=category&layout=blog&id=86&Itemid=157</u>