### **Molecular Simulation Research Projects**

#### Intermolecular Interactions & Intramolecular

Prof Tina Düren, Dr Matthew Lennox, and Dr Carmelo Herdes

### **Richard Feynman, Lectures in Physics**



Richard P. Feynman Theoretical physicist



One-hour video, click here

When taking over the introductory course in physics in 1961 at Caltech.



#### One Sentence to Be Passed on to the Next Generation

**"I believe it is the atomic hypothesis** (or the atomic fact, or whatever you wish to call it)...

...In that one sentence, you will see, there is an enormous amount of information about the world, if just a little **imagination and thinking** are applied."

#### ...this is what this course is about!

# Adjusting the focus

# We will look at the world from an atomistic perspective



From: <u>http://atomsinmotion.com/book/chapter1/atoms</u> Website contains some really nice explanations.

### Ideal gas model – no interaction



http://www.falstad.com/gas/

This simulation corresponds to a hard-sphere potential which is similar to an ideal gas.

### In nature molecules do interact ...

Coarse-grained molecular dynamic simulation of surfactants /water/air interface



Click <u>here</u> for a more details about this simulation

## Humans do interact ...



E.A. Müller, HUMAN SOCIETIES A Curious Application of Thermodynamics, 1998 Chemical Engineering Education 32(3):230

Behaviour of the collective

### How to compute the energy of a system



- U = energy. We are after the minimization of U!
- Chemical bonds are intramolecular interactions ranging from 150–1100 kJ/mol.
- Attractive and repulsive forces are intermolecular interactions ranging from 1–50 kJ/mol.

#### Intramolecular interactions: Bond stretching

 Often represented by simple harmonic potential

$$u_{stretch}(r_{ij}) = \frac{k_b}{2}(r_{ij} - r_0)^2$$

- Plays a big role e.g. for Infrared (or vibrational) spectroscopy of use to identify chemical substances.
- Not on the time scale of phenomena that we are interested in (VLE, LLE, adsorption, diffusion).

#### Intramolecular interactions: Molecule bending

 Represented by harmonic function around equilibrium angle θ<sub>0</sub>

$$u_{bend}\left(\theta_{ijk}\right) = \frac{k_{\theta}}{2} \left(\theta_{ijk} - \theta_0\right)^2$$



- Force constant is significantly smaller than for bond stretching.
- Bond bending is taken into account for flexible molecules with three or more (pseudo) atoms

#### Intramolecular interactions: Torsion

 Depends on the dihedral angle Φ made by the two planes incorporating the first and last three atoms involved in the torsion

$$u_{tors}\left(\phi_{ijkl}\right) = \frac{k_{\phi}}{2} \left(1 + \cos 3\phi_{ijkl}\right)$$

- Torsional motions are generally hundreds of times less stiff than bond stretching motions.
- Needs to be taken into account for flexible molecules consisting of more than four (pseudo)atoms



Proper dihedral



Improper dihedral



### Intermolecular distance

- The total potential energy is a function of the positions of all molecules of the system.
- It can be written as an infinite sum of two-body, threebody, etc. potentials.

$$U = \sum_{i < j} u(r_i, r_j) + \sum_{i < j < k} \Delta u_{ijk}(r_i, r_j, r_k) + \dots$$

Potential between two molecules i and j

Accounts for distortion of the pair potential due to the presence of the third molecule k.

Three-body and higher-body interactions are mostly ignored.

### Hard sphere potential



- Simplest pair potential
- Takes volume exclusion into account (molecules can't come closer than their hard sphere diameter)
- Describes only repulsion, no attraction



### **Square well potential**



- Somewhat more realistic
- Contains a region of attraction as well as the repulsive hard core.
- Although the square-well potential and the hard sphere potential are very simple they can provide valuable physical insight when used in molecular simulation.

### **Lennard Jones potential**



- Very realistic representation of intermolecular interaction.
- Attractive term: 1/r<sup>6</sup>
- Repulsive term: 1/r<sup>12</sup>

### LJ parameters are fitted to exp. data

Second virial coefficient

$$B_2(T) = -2\pi \int_0^\infty \left[ \exp\left(-\frac{U(r)}{kT}\right) - 1 \right] r^2 dr$$

- Viscosity data
- Vapour Liquid Equilibria



- \* Exp critical point
- Exp vapour liquid coexistence curve
- Simulation results

*J. Phys. Chem. B*, 1998, 102 (14), pp 2569–2577

### **Different values for LJ parameters exist**

#### TABLE 1

Values of LJ parameters for Ar, Kr,  $CH_4$  and  $N_2$  from the second virial coefficient (a) and from the viscosity (b) taken from the literature.

| System | σ (Å)   | ε/k (K)       |                                   |
|--------|---------|---------------|-----------------------------------|
| Ar     | 3.504   | 117.7         | (a)                               |
|        | 3.336   | 141.2         | (a)                               |
|        | 3.400   | 122.0         | (a)                               |
|        | 3.405   | 119.8         | (a)                               |
|        | 3.465   | 116.0         | (b)                               |
|        | → 3.418 | 124.0         | (b)                               |
| 3 3    | 3.542   | 93.3          | (b)                               |
|        |         | Mole<br>319-3 | cular Engineering 6<br>325, 1996. |

 Always check how LJ parameters were derived and if they are appropriate for the application

#### **Electrostatic interactions**



q: charge on ion,  $\mu$ : dipole moment 17

# Dependence of multipole interactions on the distance between two particles

| ELECTRIC     | Monopole         | Dipole           | Quadrupole       | Octupole         | Hexadecapole     |
|--------------|------------------|------------------|------------------|------------------|------------------|
| Monopole     | 1/R              | 1/R <sup>2</sup> | 1/R <sup>3</sup> | 1/R <sup>4</sup> | 1/R <sup>5</sup> |
| Dipole       | 1/R <sup>2</sup> | 1/R <sup>3</sup> | 1/R <sup>4</sup> | 1/R⁵             | 1/R <sup>6</sup> |
| Quadrupole   | 1/R <sup>3</sup> | 1/R <sup>4</sup> | 1/R <sup>5</sup> | 1/R <sup>6</sup> | 1/R <sup>7</sup> |
| Octupole     | 1/R <sup>4</sup> | 1/R⁵             | 1/R <sup>6</sup> | 1/R <sup>7</sup> | 1/R <sup>8</sup> |
| Hexadecapole | 1/R⁵             | 1/R <sup>6</sup> | 1/R <sup>7</sup> | 1/R <sup>8</sup> | 1/R <sup>9</sup> |





## **London Dispersion forces**

- Part of the van der Waals forces (vdW), i.e., depend on the distance.
- Present in all molecules; temporary partial charges give temporary polarity.
- Weak interactions (0.05 2 kJ/mol) and their strength increases with the polarizability (the squishiness of the electron cloud)



### What intermolecular forces are present?



#### **Boiling point – measure for intermolecular interaction**



| Molecule       | BP<br>(°C) | Structure                                                                        | MW<br>(g/mol) |
|----------------|------------|----------------------------------------------------------------------------------|---------------|
| Pentane        | 36         | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> —CH <sub>3</sub> | 72            |
| Diethyl ether  | 34         | CH <sub>3</sub> CH <sub>2</sub> —O—CH <sub>2</sub> CH <sub>3</sub>               | 74            |
| Butanone       | 80         | $CH_3CH_2 - C_{CH_3}$                                                            | 72            |
| Propanoic acid | 141        | O<br>∥<br>CH₃CH₂—C<br>◯OH                                                        | 74            |

#### vdW and electrostatic interactions



 Responsible for protein folding and enzymatic recognition, i.e., sustaining live as you know it!

http://www.chembio.uoguelph.ca/educmat /phy456/456lec02.htm

...this interactions drive life in the universe!

### References

 Ken A. Dill, Sarina Bromberg "Molecular Driving Forces", Garland Science, 2<sup>nd</sup> Ed. 2011

