Solutions to Exercise Sheet 1

- 1. Add 8 and then divide by 4. This gives x = 3.
- 2. By the definition of \log_5 , the solution is $x = \log_5 2$.
- 3. Factorising, this can be rewritten as (x+1)(x-4) = 0, so the solutions are x = -1 and x = 4.
- 4. Using exponential rules, this can be rewritten as $e^{4x} = 2$. Solve by taking the natural logarithm of both sides to get $4x = \ln 2$. Thus $x = \frac{1}{4} \ln 2$.
- 5. Using the substitution $u = \ln x$ gives $u^2 + 2u 3 = 0$. Factorisation gives (u + 3)(u 1) = 0, with solutions u = -3 and u = 1. Thus the solutions in the original variable x satisfy $\ln x = -3$ and $\ln x = 1$, respectively. So the solutions are $x = e^{-3}$ and x = e.
- 6. Using the logarithm rule, the equation becomes

$$\ln(x+1) + \ln(x-2) = \ln[(x+1)(x-2)] = 0.$$

Taking exponentials of both sides gives

$$e^{\ln\left[(x+1)(x-2)\right]} = e^0$$

That is,

$$(x+1)(x-2) = 1.$$

Expanding and rearranging gives the quadratic equation $x^2 - x - 3 = 0$, which has solutions (given by the quadratic formula) $x = \frac{1 \pm \sqrt{13}}{2}$.

However, note that in the original equation, we must have x > 2 for $\ln(x-2)$ to make sense. But $\frac{1-\sqrt{13}}{2} < 0$, so the only solution is $x = \frac{1+\sqrt{13}}{2}$. Note that $\frac{1+\sqrt{13}}{2} > \frac{1+\sqrt{9}}{2} = 2$.

RM, 14/09/2017