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Chapter 1

Functions and Equations

1.1 What are functions and equations?

An equation is a statement saying that two things (in this course typically
numbers or quantities) are equal. For example, the equation

2 + 3 = 5

expresses the fact that the sum of 2 and 3 is equal to 5. We often consider
equations involving an unknown quantity or number, say x. For example,
consider the equation

x2 = 2.

To solve an equation of this type means to determine all values of x such
that the equation is true.

Example 1.1.1. Consider the equation

x2 − 4 = 0.

It has two solutions, namely x = 2 and x = −2.

A function is a rule by which one quantity depends unambiguously on
another. We can think of a function as a process that takes a certain in-
put and turns it into a unique output. (The word ‘unambiguously’ in the
previous definition means that every input generates one single output.)

Example 1.1.2. The formula

y = x2 + 2x− 1

2

gives rise to a function by which the quantity y depends on x. The input
x = 2, say, leads to y = 22 + 2 · 2− 1

2 = 15
2 , and every other value for x will

give a single value for y.
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6 CHAPTER 1. FUNCTIONS AND EQUATIONS

We will mostly study functions that are given by formulas such as in the
example, because these are particularly useful.

We may use symbols to represent a given function, just as we use x to
represent numbers in the above examples. If our function is denoted by f ,
then f(x) stands for the output arising from the input x. If we wish to assign
a symbol to this quantity as well, say y, then we can write y = f(x). Here
x is called the independent variable and y is called the dependent variable
of the function.

Example 1.1.3. Consider the function determined by the formula

y = x2 + 2x− 1

2
.

If we represent this function by the symbol f , then we may also write

f(x) = x2 + 2x− 1

2
.

Then we have, for example, f(2) = 15
2 .

A function f can be represented geometrically in terms of the set of all
points in the plane with coordinates (x, y) such that

y = f(x).

This is called the graph of the function f .

Example 1.1.4. Fig. 1.1.1 represents the graph of the function from Ex-
ample 1.1.3.

Figure 1.1.1: The graph of the function f with f(x) = x2 + 2x− 1
2

A zero of the function f is a solution of the equation f(x) = 0.
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1.2 Special functions

1.2.1 Polynomials

Among the simplest functions are the linear ones, given by a formula such
as

y = ax+ b.

Here a and b are constants (i.e., fixed numbers), whereas x and y are the
independent variable and the dependent variable, respectively. The graph
of a linear function is a straight line (hence the name) with slope a and
y-intercept b. (An example is shown in Fig. 1.2.1.)

Figure 1.2.1: The line given by y = 1
2x+ 1

If we look for the zeros of such a function, then we consider the equation

ax+ b = 0,

which we may attempt to solve for x. This is possible if a 6= 0 and gives the
unique solution

x = − b
a
.

If a = 0, then it can happen that the equation has no solutions (which is
the case if b 6= 0) or that every number is a solution (if b = 0).

We now consider the next more complicated thing, a quadratic function.
For given constants a, b, c, consider the formula

y = ax2 + bx+ c,

giving rise to a function. If a = 0, then we can ignore the first term on
the right-hand side and we have a linear function. If a 6= 0 (which we
assume henceforth), then we have something fundamentally different here.
The graph of such a function is a parabola. If we look for the zeros, we
obtain the quadratic equation

ax2 + bx+ c = 0.
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If we want to solve the equation, it is convenient to divide by a on both
sides first (which we can do as a 6= 0):

x2 +
b

a
x+

c

a
= 0.

Then we ‘complete the square’, i.e., we reformulate this as follows:(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0.

Thus (
x+

b

2a

)2

=
b2

4a2
− c

a
.

Assuming that b2 − 4ac ≥ 0, we can take the square root on both sides:

x+
b

2a
= ±

√
b2

4a2
− c

a
= ±
√
b2 − 4ac

2a
.

Now subtract b/2a on both sides to obtain the well-known formula

x =
−b±

√
b2 − 4ac

2a
.

So for b2 − 4ac > 0, we have two solutions, and for b2 − 4ac = 0, we have
one, which is − b

2a . If b2 − 4ac < 0, then the equation has no solutions.1

Another method to solve a quadratic equation is factorisation. Assuming
that we have an equation of the form

x2 + bx+ c = 0,

(which is the case after the first step for the above method), we try to find
two numbers α, β such that

x2 + bx+ c = (x− α)(x− β).

This is true if α+β = −b and αβ = c. It is not always possible to find α and
β that satisfy both conditions, but if they do, then we have the solutions
x = α and x = β of the quadratic equation.

A cubic function arises from a formula of the form

y = ax3 + bx2 + cx+ d

and a quartic function from a formula of the form

y = ax4 + bx3 + cx2 + dx+ e,

1This is the case if you work with real numbers as we do here. In MA10193 Mathematics
2, you will see complex numbers, and if you work with these, then you have two solutions
in this case as well.
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where a, b, c, d, e are constants and in both cases it is assumed that a 6= 0.
There are still methods to solve the corresponding equations, but they are
rather more complicated.

There is no reason to stop at fourth powers of x, of course. Any function
built up from powers of x in this way is called a polynomial . For example,
the function given by

p(x) = x22 − x16 + 8x5 − 9

is a polynomial. The highest power in this expression is called the degree of
the polynomial. So in this example, the degree of p is 22.

1.2.2 Exponential functions

An exponential function is a function f that can be represented in the form

f(x) = ax

for some constant a > 0. Here a is called the base and x is called the
exponent .

If a > 0, then ax exists for any number x and is always positive (i.e.,
ax > 0). A central property of exponentials is expressed by the formula

ax+y = axay, (1.2.1)

which holds true for all numbers x and y. In terms of the function f , this
can be written as

f(x+ y) = f(x)f(y).

This formula has a number of important consequences. For example, it
follows that

f(0) = f(0 + 0) = f(0)f(0).

Since f(0) = a0 > 0, we can divide by f(0) on both sides of the equation
and we obtain f(0) = 1. That is, we have

a0 = 1,

regardless of the value of a. Also, since x+ (−x) = 0 for any number x, we
conclude that

1 = f(0) = f(x)f(−x).

Dividing by f(x) on both sides, we obtain f(−x) = 1/f(x). That is, we
always have

a−x =
1

ax
.

Another formula to remember is

(ax)y = axy, (1.2.2)

which is true for any pair of numbers x and y.
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Example 1.2.1. What is (214)1/7?

Solution. We have (214)1/7 = 214/7 = 22 = 4.

The shape of the graph of an exponential function depends on a. If
a > 1, then the values of ax increase as x increases. When x decreases
towards −∞, then the values of ax approach 0 (without ever reaching it).
As x gets large, the values of ax grow rapidly. This is known as exponential
growth (see Fig. 1.2.2). If 0 < a < 1, then ax decreases as x increases.

Figure 1.2.2: The graph of a function growing exponentially

When x approaches −∞, then ax grows rapidly, and when x gets large, it
approaches 0. This is exponential decay (see Fig. 1.2.3).

Figure 1.2.3: The graph of a function decaying exponentially

If a = 1, then ax = 1 for every x. So in this case, the graph of the
exponential function is a horizontal line.

There is a specific base such that the exponential function has particu-
larly nice properties. (We will see this later when we differentiate functions.)
This number is denoted e and is approximately (but not precisely) 2.71828.
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1.2.3 Logarithms

Suppose that we fix a number y > 0 and we want to solve the equation

y = ax. (1.2.3)

Geometrically, this means finding the intersection points of the graph of the
exponential function with a horizontal line at height y. If a 6= 1, then in
view of the above observations, it is clear that there exists a unique solution.
In other words, given y > 0, there exists a unique number x satisfying the
equation y = ax. This number is called the logarithm of y to the base a. We
use the notation

x = loga y (1.2.4)

for this concept.

Since the number x from (1.2.4) solves equation (1.2.3), we have

y = aloga y

for every y > 0. Moreover, for any x, if we substitute ax for y in (1.2.3),
then the equation is clearly satisfied. Therefore, we have

loga a
x = x.

So we can think of loga as the function that does the reverse of the exponen-
tial function with the same base. We say that they are inverse functions.

Example 1.2.2. Find log5 125.

Solution. We calculate that 53 = 125. So log5 125 = 3.

When we work with the base e, then we write ln for the corresponding
logarithm. That is, we abbreviate lnx = loge x. (But in some books you
may find different conventions.)

Now recall formula (1.2.1). If we choose two numbers x and y and set
u = ax, v = ay, and w = ax+y, then we can write the equation as uv = w.
But we also have x = loga u, y = loga v, and x+ y = logaw = loga(uv). So

loga(uv) = loga u+ loga v.

This formula is true for all positive numbers u, v > 0. (Recall the the
logarithm only exists for positive numbers.)

How does equation (1.2.2) translate to the language of logarithms? Given
x and y, set b = ax and z = by. Then y = logb z and x = loga b. Moreover,
equation (1.2.2) says that z = axy. So loga z = xy. It follows that

loga z = loga b · logb z.
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This formula is particularly useful when you want to convert logarithms for
one base into logarithms for another, because it means that

logb z =
loga z

loga b

for all z > 0.
Another consequence of (1.2.2) is the following. Suppose that a > 0 and

b > 0. Then for any number x, we have

ax loga b =
(
aloga b

)x
= bx.

Therefore,
loga b

x = x loga b.

This fact is useful when we want to solve equations where the unknown is
in the exponent.

Example 1.2.3. Solve the equation e7x+2 = 13 for x.
Solution. The equation implies that 7x + 2 = ln 13. This is now easy to
solve for x and we obtain

x =
1

7
(ln 13− 2).

Example 1.2.4. Solve the equation log2(x
2 − 4) = 4 for x.

Solution. The equation implies that x2 − 4 = 24 = 16. Hence x2 = 20 and
so x = ±

√
20 = ±2

√
5.

Example 1.2.5. Solve the equation 2x
2

= 3x for x.
Solution. Apply ln on both sides:

x2 ln 2 = x ln 3.

This is equivalent to x2 ln 2−x ln 3 = 0, and we can factorise x(x ln 2−ln 3) =
0. We have either x = 0 or x ln 2 − ln 3 = 0, and in the second case, we
obtain

x =
ln 3

ln 2
= log2 3.

(Remark: we could have used logarithms for any base here and would have
obtained the same result.)

1.2.4 Trigonometric functions

The following definition of the sine and cosine may seem a bit odd at first,
but bear with me.

Imagine a circle of radius 1 in the plane, the centre of which has the
coordinates (0, 0). (Henceforth we will call this the unit circle.) So the
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point with coordinates (1, 0) is on this circle. Suppose that t ≥ 0 is a given
number. Starting at the point (0, 1), travel anticlockwise along the circle and
stop when you have covered the distance t. You will have reached a certain
point on the circle with a certain x-coordinate and a certain y-coordinate,
both of which are unambiguously determined by t. Define cos t to be the
x-coordinate and sin t to be the y-coordinate of that point (see Fig. 1.2.4).
For t < 0, use the same method, but travelling clockwise for the distance
−t.

(cost,sint)

t

Figure 1.2.4: Definition of the trigonometric functions

This procedure gives rise to two functions sin and cos. They can be
defined geometrically, involving angles and right triangles, but the above
method has some advantages. (Most importantly, there is no question what
measure of angles to use. Our definition is equivalent to the geometric
definition when angles are measured in radians.)

We can immediately see that these functions have the following proper-
ties.

Periodicity If we travel the distance t+2π instead of t, we just add a full
rotation of the circle and end up at the same point. Therefore,

cos(t+ 2π) = cos t and sin(t+ 2π) = sin t.

Symmetry Replacing t by −t corresponds to a reflection on the x-axis.
Therefore,

cos(−t) = cos t and sin(−t) = − sin t.

Pythagoras’ theorem The final point will be on the unit circle; therefore
it has distance 1 from the point (0, 0). This means that

cos2 t+ sin2 t = 1. (1.2.5)

Less obvious, but nevertheless important and true, are the following
addition formulas:

cos(s+ t) = cos s cos t− sin s sin t and sin(s+ t) = cos s sin t+ sin s cos t.



14 CHAPTER 1. FUNCTIONS AND EQUATIONS

Once we have the sine and cosine, we can also define a number of other
trigonometric functions:

tan t =
sin t

cos t
, cot t =

cos t

sin t
, sec t =

1

cos t
, csc t =

1

sin t
.

These are not defined for all values of t, because we always have to avoid a
vanishing denominator. (The functions cos and sin, in contrast, are defined
for all values.) Most of these we will rarely use explicitly, because we can,
after all, write them as a fraction involving the sine and cosine.

1.2.5 Inverse trigonometric functions

Given a fixed number y, suppose that we want to solve the equation

sinx = y

for x. Geometrically, this amounts to the following question: how far do we
need to travel along the unit circle in order to reach a point with a given
y-coordinate? If there is a solution at all, there are always several answers
(in fact infinitely many), because we can always decide to add a full turn of
the circle and we will get back to the same point.

Example 1.2.6. Solve the equation

sin t =
1

2
.

Solution. Consider the intersection of the unit circle with the horizontal
line y = 1

2 (see Fig. 1.2.5). There are two intersection points. In order to

Figure 1.2.5: The unit circle and the line with y = 1
2

reach the first, we travel the distance π/6. So t = π/6 is one solution. But
t = 5π/6 is another solution, corresponding to the second intersection point.
Moreover, we can add arbitrary multiples (positive or negative) of 2π. So
every number of the form t = π/6 + 2πn or t = 5π/6 + 2πn, for any integer
n, is a solution.
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Example 1.2.7. Solve the equation

cos t =
1

2
.

Solution. Now we consider the intersection of the unit circle with the vertical
line x = 1

2 (see Fig. 1.2.6). Again there are two intersection points, and both
t = π/3 and t = −π/3 are solutions. Again we can add arbitrary multiples
of 2π. So every number of the form t = 2πn ± π/3, for any integer n, is a
solution.

Figure 1.2.6: The unit circle and the line with x = 1
2

Because an equation such as

cosx = y (1.2.6)

does not have a unique solution, there exists no single function that describes
all solutions. If we want a function that is the inverse of sin or cos in the
same sense as loga is the inverse of the exponential function with base a,
then we have to choose a specific solution. To this end, we use the following
observations. For every given y with −1 ≤ y ≤ 1, equation (1.2.6) has
exactly one solution x with 0 ≤ x ≤ π. This solution is called the arccosine of
y and denoted by arccos y. (Sometimes the notation cos−1 y is used instead,
but we will not use it here.)

Similarly, for any given y with −1 ≤ y ≤ 1, the equation

sinx = y (1.2.7)

has exactly one solution x with −π/2 ≤ x ≤ π/2. This is called the arcsine
of y and denoted by arcsin y.

Example 1.2.8. Solve the equation

cosx =
5

7
.
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Solution. By definition, the number arccos 5
7 is one solution. But it is not

the only one. By the symmetry and the periodicity, any number of the form
2πn± arccos 5

7 , for any integer n, is a solution.

Note that for y > 1 or y < −1, equations (1.2.6) and (1.2.7) have no
solutions. So there is no arccosine or arcsine of such a number.

Now consider the function tan. For any number y, the equation

tanx = y

has infinitely many solutions, but exactly one of them satisfies −π/2 < x <
π/2. This solution is called the arctangent of y and denoted arctan y.

1.2.6 Hyperbolic functions

The hyperbolic sine, denoted sinh, and the hyperbolic cosine, denoted cosh,
are the functions defined by the formulas

sinhx =
1

2
(ex − e−x),

coshx =
1

2
(ex + e−x).

The reason for these names is that the behaviour of these functions resembles
that of the sine and cosine in some respects. One example is the identity

cosh2 x− sinh2 x = 1,

which should be compared with (1.2.5). The identity can easily be checked
by inserting the above expressions. We will see other similarities later.

In addition to these, we can now define other hyperbolic functions anal-
ogously to the trigonometric functions:

tanhx =
sinhx

coshx
, cothx =

coshx

sinhx
, sechx =

1

coshx
, cschx =

1

sinhx
.

1.3 Applications of trigonometric functions

1.3.1 Polar coordinates

Instead of representing a point P in the plane by its Cartesian coordinates
(x, y), it is sometimes convenient to use polar coordinates. In order to
find the polar coordinates, assume that P is not the origin O (the point
with Cartesian coordinates (0, 0)). Draw a circle centred at O through P .
Denote the radius of this circle by r. (This is the distance between O and
P .) Moreover, denote the length of the arc between the points (0, r) and P ,
travelling anticlockwise, by s (see Fig. 1.3.1). The numbers r and t = s/r
determine the position of P uniquely, and (r, t) are the polar coordinates
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P

s

O

r

Figure 1.3.1: Construction of polar coordinates (r, t) of the point P

of P . We usually insist that t satisfies 0 ≤ t < 2π, and then the polar
coordinates are determined uniquely by P as well, unless P = O. Given the
polar coordinates (r, t), it is easy to determine the Cartesian coordinates of
the same point:

x = r cos t, (1.3.1)

y = r sin t. (1.3.2)

The converse is a bit more complicated. Given the Cartesian coordinates
(x, y), we have r =

√
x2 + y2 by Pythagoras’ theorem. In order to find t, we

want to solve the system of equations (1.3.1), (1.3.2) for t. We first eliminate
r by taking a quotient:

y

x
=

sin t

cos t
= tan t

(provided that x 6= 0). So in order to solve for t, we take the arctangent,

t = arctan
y

x
,

provided that we expect −π/2 < t < π/2. This is the case if P is in the first
quadrant, i.e., if x > 0 and y ≥ 0. Otherwise, however, this gives the wrong
answer! (That’s because solutions of this equation are not unique and we’ve
made a choice when defining the arctangent.) The true answer is

t =



arctan y
x if x > 0 and y ≥ 0,

arctan y
x + π if x < 0,

arctan y
x + 2π if x > 0 and y < 0,

π
2 if x = 0 and y > 0,
3π
2 if x = 0 and y < 0.

This covers all cases except x = y = 0, where we do not have polar coordi-
nates. In practice, rather than remembering all of these cases, it is usually
more convenient to draw a picture and find out what range to expect for t.
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Example 1.3.1. Find the Cartesian coordinates of the point with polar
coordinates (3, π/3).
Solution. This is

x = 3 cos
π

3
=

3

2
,

y = 3 sin
π

3
=

3
√

3

2
.

Example 1.3.2. Find the polar coordinates of the point with Cartesian
coordinates (3,−4).
Solution. We have r =

√
9 + 16 = 5. The point is in the fourth quadrant,

so we expect that 3π/2 < t < 2π. As we have

−π/2 < arctan
−4

3
< 0,

we should add 2π. So

t = arctan
−4

3
+ 2π = 2π − arctan

4

3
.

1.3.2 Solving trigonometric equations

Suppose that you want to solve the equation

3 cos t+ 2 sin t = 2.

Should we use the arcsine or the arccosine here, or something else?
More generally, suppose that A,B,C are three given numbers and we

want to solve
A cos t+B sin t = C. (1.3.3)

The idea is to use the addition formulas for the sine and cosine. Try to find
r and θ such that

A cos t+B sin t = r cos(t+ θ).

By the addition formula, this works if

A = r cos θ and B = −r sin θ.

But this means that (r, θ) are the polar coordinates of the point with Eu-
clidean coordinates (A,−B). We know how to solve for r and θ by the
previous section, even if it can be a bit complicated. Having done that, we
have the equation

r cos(t+ θ) = C.

This is called the harmonic form of equation (1.3.3).
We can now solve it. Dividing by r, we obtain cos(t+ θ) = C/r. Hence

t+ θ = ± arccos(C/r) + 2πn for some integer n, and

t = ± arccos(C/r) + 2πn− θ.
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Example 1.3.3. Solve the equation

3 cos t+ 4 sin t = 4.

Solution. We first need to find the polar coordinates of the point (3,−4),
which we have done in Example 1.3.2: we have r = 5 and θ = π − arctan 4

3 .
Thus the equation becomes

cos

(
t+ π − arctan

4

3

)
=

4

5
.

So the solutions are of the form

t = ± arccos
4

5
+ arctan

4

3
− π + 2πn

for any integer n.

The above equation is still fairly simple. In general, when you need to
solve an equation involving trigonometric functions, you need to keep the
trigonometric identities from section 1.2.4 in mind, because they often allow
you to simplify the equation. Also remember that you can in general expect
many solutions.

Example 1.3.4. Solve the equation

cos2 x− 3 cosx+ 2 = 0.

Solution. Substitute u = cosx to obtain the equation

u2 − 3u+ 2 = 0.

This equation we can solve, using the factorisation u2−3u+2 = (u−2)(u−1).
So u = 2 or u = 1. There is no number x such that cosx = 2, so we can rule
out one of the solutions. This leaves u = 1 and therefore cosx = 1. The
solutions of this equation are of the form x = 2πn for an integer n.

Example 1.3.5. Solve the equation

3− sin2 x− 3 cosx = 0.

Solution. Using the identity cos2 x + sin2 x = 1, we can reformulate the
equation as follows:

cos2 x− 3 cosx+ 2 = 0.

This is the equation from the previous example and we obtain the same
solutions.
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Example 1.3.6. Solve the equation

cos(2x)− 2 sinx = 1.

Solution. We first use the addition formula and the formula from Pythago-
ras’ theorem to rewrite

cos(2x) = cos2 x− sin2 x = 1− 2 sin2 x.

Hence the equation becomes

1− 2 sin2 x− 2 sinx = 1,

which is equivalent to
sin2 x+ sinx = 0.

The substitution u = sinx yields 0 = u2 + u = u(u + 1). So u = 0 or
u = −1. If u = 0, then sinx = 0, so x = nπ for an integer n. If u = −1,
then sinx = −1, so x = mπ − π

2 for an integer m. All of these are solutions
of the equation.

1.4 Limits

Sometimes a quantity approaches a certain value without necessarily ever
reaching it. For example, consider a radioactive material with half-life T .
That means after time T , the quantity of the material is reduced by half
through radioactive decay. After time 2T , there is a quarter of the original
quantity left, after 3T an eighth, and so on. We may prescribe any acceptable
level, and as long as it is positive and we are willing to wait long enough, the
remaining quantity will eventually be below. In particular, it approaches 0
as the time tends to ∞.

More generally, consider a function f of the independent variable x. If
there exists a number L such that f(x) approaches L as x tends to∞, in the
sense that the distance between f(x) and L will eventually remain smaller
than any prescribed positive error level,2 then we say that L is the limit of
f(x) as x→∞. In symbols, we express this as follows:

L = lim
x→∞

f(x).

Sometimes, we also write f(x)→ L as x→∞.

Example 1.4.1. If f(x) = 1 + 1
x , then

lim
x→∞

f(x) = 1,

since the quantity 1
x can be made arbitrarily small in absolute value by

increasing x sufficiently. Fig. 1.4.1 illustrates this.

2More formally, the condition is the following. For every given number ε > 0 there
exists a corresponding number R > 0 such that for all x > R, the inequality |f(x)−L| < ε
is satisfied.
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Figure 1.4.1: The graph of the function f with f(x) = 1 + 1
x

We have limits not just for x→∞. The expression

lim
x→−∞

f(x),

if it exists, is defined similarly, considering values of x that are large in mag-
nitude but negative. Furthermore, we can define limits when x approaches
a finite number.

Suppose that a and L are numbers such that f(x) approaches L as x
approaches a, in the sense that the distance between f(x) and L shrinks
below any prescribed positive error level as soon as x is sufficiently close to
a.3 Then we say that L is the limit of f(x) as x→ a and we write

L = lim
x→a

f(x).

Example 1.4.2. Consider the function f given by f(x) =
√
|x| (see Fig.

1.4.2). Since the distance between f(x) and 0 is always
√
|x|, which becomes

arbitrarily small when |x| is small enough, we have

lim
x→0

f(x) = 0.

Note that when we determine limx→a f(x), then the value f(a) is irrele-
vant. It need not even be defined.

Sometimes we take one-sided limits. If f(x) approaches L as x ap-
proaches a from above, meaning that x → a but at the same time x > a,
then we write

L = lim
x→a+

f(x).

3For any given ε > 0 there exists h > 0 such that for all x with 0 < |x − a| < h, the
inequality |f(x)− L| < ε is satisfied.
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Figure 1.4.2: The graph of the function f with f(x) =
√
|x|

If f(x) approaches L as x approaches a from below (i.e., x→ a while x < a),
then we write

L = lim
x→a−

f(x).

Example 1.4.3. Suppose that f(x) = x
|x| . Then we have f(x) = 1 for all

x > 0 and f(x) = −1 for all x < 0. Therefore,

lim
x→0+

f(x) = 1 and lim
x→0−

f(x) = −1.

In addition to these limits, we also consider the situation where f(x)
grows beyond all bounds when x → a, where a may be a finite number or
a =∞ or a = −∞. If this is the case then we write

lim
x→a

f(x) =∞.

If f(x) decreases below any bound as x→ a, then

lim
x→a

f(x) = −∞.

These are not limits in the strictest sense, but often we can treat these
situations the same way.

Example 1.4.4. The following is easy to see by inspecting Fig. 1.4.3:

lim
x→0+

1

x
=∞ and lim

x→0−

1

x
= −∞.

If we need to find the limit of a function that is composed of simpler
functions, then it is typically sufficient to find the limits of the constituent
parts. Suppose that we have two functions f and g, and suppose that a is
a finite number or a = ±∞. Then the following statements hold true.

• lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x);

• lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x);

• lim
x→a

(f(x)g(x)) = lim
x→a

f(x) · lim
x→a

g(x);
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Figure 1.4.3: The graph of the function f with f(x) = 1
x

• if limx→a g(x) 6= 0, then lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
.

This applies when we have actual limits, but in most cases also for ∞ and
−∞, provided that we interpret the resulting expressions correctly. For
example, we use the convention that L+∞ = ∞ and L

∞ = 0 for any finite
number L. In some cases, however, we have to be more careful. There is
no natural way to interpret expressions such as ∞−∞ or ∞∞ , and if they
appear, then these rules do not help. (But in the second case, another rule,
which we will discuss in Sect. 2.4.2, often helps.)

The same rules apply to one-sided limits.

Example 1.4.5. We know that limx→∞
1
x = 0. Therefore,

lim
x→∞

1

x2
= lim

x→∞

1

x
· lim
x→∞

1

x
= 0

Example 1.4.6. Find

lim
x→∞

x2 − x+ 3

2x2 − 7
.

Solution. We have

lim
x→∞

x2 − x+ 3

2x2 − 7
= lim

x→∞

1− 1
x + 3

x2

2− 7
x2

=
1− limx→∞

1
x + 3 lim 1

x2

2− 7 limx→∞
1
x2

=
1

2
.

There is also a rule for limits of the form limx→a f(g(x)), where f and
g are two given functions, but this requires some conditions on f that we
need to discuss first.

A function is called continuous if a small change of the independent
variable will result only in a small change of the dependent variable. Geo-
metrically this means that the graph of the function has no gaps. Nearly all
of the functions discussed so far are continuous.



24 CHAPTER 1. FUNCTIONS AND EQUATIONS

Now suppose that f is a continuous function and g is any function such
that limx→a g(x) exists, where again, a is a finite number or ±∞. Then

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)
.

Again, the rule applies to one-sided limits as well.

Example 1.4.7. For any base b > 0, the exponential function given by
y = bx is continuous. Hence

lim
x→∞

b1/x = blimx→∞ 1/x = b0 = 1.

1.5 The bisection method

So far we have only seen examples of equations that we were able to solve
exactly. This is only because the examples were chosen to demonstrate
certain solution methods. For even moderately complicated equations, it
is rare that we can solve them exactly and we normally have to make do
with a numerical approximation. But often we can say with certainty that
a suitably constructed number is in fact a good approximation of an actual
solution, and even give a bound for the error.

The following is a simple scheme to find approximate solutions and error
bounds. There are more efficient methods (in terms of required computation
time), but what makes this one useful, especially for theoretical purposes,
is that it gives you a high degree of certainty. The method works for all
continuous functions.

The basis of the bisection method is the intermediate value theorem,
which states the following. Suppose that f is a continuous function and y a
fixed number. Furthermore, suppose that a, b are two numbers with a < b,
such that f(a) and f(b) are on different sides of y. That is, either

• f(a) < y and f(b) > y, or

• f(a) > y and f(b) < y.

Then there exists a number c between a and b (that is, with a < c < b) such
that f(c) = y.

This is a useful statement because it tells us that in certain circum-
stances, there is definitely a solution of the equation f(x) = y in the interval
(a, b). The bisection method now works as follows.

Step 1 Find two numbers a0 and b0 with a0 < b0 such that either f(a0) <
y < f(b0) or f(a0) > y > f(b0). (So a solution of the equation f(x) = y is
guaranteed between a0 and b0.)
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Step 2 Define the number c0 = 1
2(a0 + b0).

• If f(c0) = y, then we have found an exact solution.

• If f(a0) < y < f(c0) or f(a0) > y > f(c0), then define a1 = a0 and
b1 = c0.

• If f(c0) < y < f(b0) or f(c0) > y > f(b0), then define a1 = c0 and
b1 = b0.

Step 3 If b1 − a1 is smaller than a tolerable error bound, use any number
in the interval (a1, b1) as an approximate solution. Otherwise, go back to
Step 2 and repeat with a1 and b1 instead of a0 and b0.

Example 1.5.1. Find an approximate solution of the equation

lnx = 2

with error smaller than 1
4 .

Solution. We compute ln 7 = 1.945910149 and ln 8 = 2.079441542. So
there is a solutions somewhere between 7 and 8. Next we compute ln 7.5 =
2.014903021. So the solution must be in the interval (7, 7.5). As ln 7.25 =
1.981001469, it’s in fact in the interval (7.25, 7.5). We may use as an ap-
proximate solution:

x ≈ 7.375.
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Chapter 2

Differentiation

2.1 Fundamentals

2.1.1 Definition

Consider the graph of a function f . For a given number x, we have a point
with coordinates (x, f(x)) on the graph. If this graph is a sufficiently nice
curve, then there is a unique tangent line at this point. The slope of the
tangent line is called the derivative of f at x and denoted by f ′(x). (Different
notation for the same thing will be discussed later.)

Since a tangent line can be a tricky thing to work with, we also consider
secant lines. These are lines passing through two points of the graph (see
Fig. 2.1.1). More specifically, suppose that h is a number different from 0.

Figure 2.1.1: Two secant lines (green) and a tangent line (red)

Then (x + h, f(x + h)) is another point on the graph, and the two points
determine a unique secant line, the slope of which is

f(x+ h)− f(x)

h
.

This is called a difference quotient . Assuming that f is nice enough to
possess a derivative at x, this expression will approach f ′(x) when h tends

27
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to 0. That is,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Example 2.1.1. Consider the function defined by f(x) = x2. We have
f(x+ h) = x2 + 2hx+ h2, so

f(x+ h)− f(x)

h
= 2x+ h.

When h approaches 0, the last term is small, so the difference quotient will
tend to 2x. So f ′(x) = 2x.

Not every function has a derivative at every point. For example, consider
the function with f(x) = |x|. The graph has a corner at (0, 0). The secant
lines through (0, 0) and (h, |h|) have slope 1 if h > 0 and slope −1 if h < 0.
There is no number that is approached by both of these, and there is no
tangent line to the graph at (0, 0). In other words, this function does not
have a derivative at 0.

2.1.2 Notation

Several conventions for the notation of the derivative are in use. Among the
most common ways to write the object defined above are:

f ′, ḟ , and
df

dx
.

These have different historical origins and have been introduced by La-
grange, Newton, and Leibniz, respectively. The first one is the most common
in theoretical treatments of the derivative. The notation ḟ is common in
science, especially if a function of time is studied. Leibniz’s notation is con-
venient for certain computations. It is no coincidence that it resembles a
quotient; in fact, it reminds us that the derivative is computed through ap-
proximations by difference quotients as in section 2.1.1. Nevertheless, when
using this notation, it is worth keeping in mind that the quotient structure
of the expression df

dx is merely symbolic. It does not represent an actual
quotient, but rather a limit of difference quotients.

Sometimes the derivative of a function is differentiated again. The result

is the second derivative, which is denoted by f ′′, f̈ , or d2f
dx2

. Similarly, the
third derivative is the derivative of the second derivative and denoted f ′′′ or
...
f or d3f

dx3
. For even higher derivatives, the first two types of notation become

too cumbersome and we write f (n) or dnf
dxn for the n-th derivative.

2.1.3 Derivatives of a few simple functions

As we have seen in Sect. 2.1.1, we can compute a derivative by considering
difference quotients. We don’t need to do this for all functions, however,
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because once we know the derivatives of certain functions, we can figure out
the derivatives of other functions composed from these by simple rules.

First we consider the simplest functions of all. For a fixed number a, let
f be the constant function with f(x) = a for all x. Then for h 6= 0, we have

f(x+ h)− f(x)

h
=
a− a
h

= 0. (2.1.1)

So f ′(x) = 0. In other words, a constant function has the derivative 0.
We have already seen the derivative of the function with f(x) = x2. But

more fundamental is the function f given by f(x) = x. For h 6= 0, we have

f(x+ h)− f(x)

h
=
x+ h− x

h
=
h

h
= 1.

Hence for this function, we have f ′(x) = 1. Every polynomial can be com-
posed from this function and constants. We will see later how this helps to
determine the derivative of any polynomial.

Now consider exponential functions. Let a > 0 and suppose that the
function f is defined by f(x) = ax. Then for h 6= 0, we have

f(x+ h)− f(x)

h
=
ax+h − ax

h
=
axah − ax

h
= ax

ah − 1

h
= ax

f(h)− 1

h
.

This does not immediately tell us what the derivative is, but it does give us
some information about it. Note that the expression

f(h)− 1

h

is the difference quotient of f at 0. So while the left-hand side will approach
f ′(x) when h approaches 0, the right-hand side will approach axf ′(0). That
is, we have f ′(x) = axf ′(0). Here f ′(0) is just a constant, albeit for the
moment an unknown one. Writing for convenience C = f ′(0), we have

f ′(x) = Cf(x).

In other words, the derivative of an exponential function coincides with the
function up to a constant. For the base e, that constant is 1. So

d

dx
ex = ex.

Now consider the trigonometric function sin. For h 6= 0, we use the
addition formula to compute

sin(x+ h)− sinx

h
=

sinx cosh+ cosx sinh− sinx

h

= sinx
cosh− 1

h
+ cosx

sinh

h
.
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It can be shown that cosh−1
h approaches 0 and sinh

h approaches 1 as h tends
to 0. Therefore, we have

d

dx
sinx = cosx.

Similarly, we compute

cos(x+ h)− cosx

h
=

cosx cosh− sinx sinh− cosx

h

= cosx
cosh− 1

h
− sinx

sinh

h
.

Hence
d

dx
cosx = − sinx.

Other trigonometric functions can be composed from the sine and the cosine,
and we will find their derivatives later.

2.2 Differentiation rules

In this section, we will see how to differentiate a an expression composed
from simpler functions.

2.2.1 The sum rule

Our first rule, the sum rule, is very simple: the derivative of a sum is the
sum of the derivatives of the summands. In other words, if f and g are
two functions and a third function h is given by h(x) = f(x) + g(x), then
h′(x) = f ′(x) + g′(x). The rule may also be expressed by the formula

(f + g)′(x) = f ′(x) + g′(x)

or
d

dx
(f + g) =

df

dx
+
dg

dx
.

Example 2.2.1. Find the derivative of the function f with f(x) = x2 + x.
Solution. We know that d

dxx
2 = 2x and d

dxx = 1, so

d

dx
(x2 + x) = 2x+ 1.

2.2.2 The product rule

The product rule, as the name suggests, is about products of functions. (It
is not as simple as the sum rule, and the false analogy with the latter is a
source of many mistakes.) For two given functions f and g, the rule is

(fg)′(x) = f ′(x)g(x) + f(x)g′(x),
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or, in different notation,

d

dx
(fg) =

df

dx
g + f

dg

dx
.

Why do we have this expression? Let’s look at the difference quotients.
For h 6= 0, we have

f(x+ h)g(x+ h)− f(x)g(x)

h

=
f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

=
f(x+ h)− f(x)

h
g(x+ h) + f(x)

g(x+ h)− g(x)

h
.

Keeping in mind that the difference quotients will tend to the corresponding
derivatives, and observing that g(x + h) will approach g(x) when we let h
approach 0, we conclude that the above formula holds true.

As an application, we can now compute the value of d
dxx

2 from d
dxx,

rather than deriving it from first principles. As x2 = x · x, we have

d

dx
x2 = 1 · x+ x · 1 = 2x.

Similarly, we have

d

dx
x3 =

d

dx
(x · x2) = 1 · x2 + x · 2x = 3x2.

More generally, for any positive integer n, we obtain

d

dx
xn = nxn−1.

(The formula is actually true not just for positive integers, but it’s easiest
to see in this case.)

Example 2.2.2. Differentiate x2 sinx.
Solution. By the product rule,

d

dx
(x2 sinx) = 2x sinx+ x2 cosx.

2.2.3 The quotient rule

For the derivative of a quotient, we have the formula(
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

(g(x))2
;

that is,

d

dx
(f/g) =

df
dxg − f

dg
dx

g2
.
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Example 2.2.3. Find the derivative of the function tan.
Solution. We know that tanx = sinx

cosx . Hence

d

dx
tanx =

d

dx

(
sinx

cosx

)
=

cos2 x+ sin2 x

cos2 x
= 1 + tan2 x.

By Pythagoras’ theorem, we have cos2 x + sin2 x = 1. Hence we have the
alternative representation

d

dx
tanx =

1

cos2 x
.

Example 2.2.4. Differentiate ex

x .
Solution. By the quotient rule,

d

dx

(
ex

x

)
=
xex − ex

x2
=
x− 1

x2
ex.

2.2.4 The chain rule

This rule is about the composition of functions in the sense of using the
output of one function as the input of another. Suppose that we have two
functions f and g. Then we can define another function h with h(x) =
f(g(x)). Then we have

h′(x) = f ′(g(x))g′(x).

This can be expressed very conveniently with Leibniz’s notation. For this
purpose, we write u = g(x) and y = f(u) = h(x). Then

dy

dx
=
dy

du

du

dx
.

Written like this, the formula looks obvious. (But remember that these are
not actual fractions. This may look like the reduction of a fraction, but it’s
really something more complicated.)

The chain rule can be extended to chains of more than two functions.
For example, in the case of three functions, we have

dy

dx
=
dy

dv

dv

du

du

dx
.

This is a convenient form to write it in, but it suppresses some information.
In particular, it’s not immediately clear in which way these quantities depend
on each other, and this can lead to some confusion. To make everything more
explicit: we have three functions here, say f , g, and h, and the composition
i with i(x) = f(g(h(x))). We write u = h(x), v = g(u) = g(h(x)), and
y = f(v) = f(g(h(x))). The formula can also be written as follows:

i′(x) = f ′(g(h(x)))g′(h(x))h′(x).
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Example 2.2.5. Given a constant c, differentiate ecx.

Solution. This is the composition of the exponential function (with base e)
and the function f with f(x) = cx, the derivative of which is f ′(x) = c. So

d

dx
ecx =

d

dx
ef(x) = ef(x)f ′(x) = cecx.

(In Leibniz notation, write u = cx and y = eu. Then

d

dx
ecx =

dy

dx
=
dy

du

du

dx
= eu · c = cecx.)

Using this example, we may now also give a more explicit expression for
the derivatives of exponential functions. Let a > 0 and consider ax. Recall
that

ax = ex ln a.

Thus setting c = ln a in Example 2.2.5, we find

d

dx
ax = ex ln a ln a = ax ln a.

Example 2.2.6. Differentiate cos2 x.

Solution. Set u = cosx and y = u2. Then

d

dx
cos2 x =

dy

dx
=
dy

du

du

dx
= 2u(− sinx) = −2x sinx cosx.

Example 2.2.7. Differentiate cos(x2).

Solution. Set u = x2 and y = cosu. Then

d

dx
cos(x2) =

dy

du

du

dx
= − sinu · 2x = −2x sin(x2).

Example 2.2.8. Differentiate esin
3 x.

Solution. Writing u = sinx, v = u3, and y = ev, we find

d

dx
esin

3 x =
dy

dx
=
dy

dv

dv

du

du

dx
= ev · 3u2 · cosx = 3esin

3 x sin2 x cosx.

2.3 Further differentiation techniques

In this section we discuss how to find the slope of a curve that is not neces-
sarily given by a simple expression as in the previous examples or where an
application of the rules would be too laborious.
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2.3.1 Logarithmic differentiation

Suppose that we want to differentiate a product of many functions. Then we
may use the product rule several times, but this can become complicated.
Often the following method is easier.

Let f be the product of the functions f1, f2, . . . , fn. That is,

f(x) = f1(x)f2(x) · · · fn(x).

Apply the natural logarithm to both sides of this equation. Then by the
rules for the logarithm,

ln f(x) = ln f1(x) + ln f2(x) + · · ·+ ln fn(x).

Now we can use the sum rule rather than the product rule. Differentiating
with the help of the chain rule, we obtain

f ′(x)

f(x)
=
f ′1(x)

f1(x)
+
f ′2(x)

f2(x)
+ · · ·+ f ′n(x)

fn(x)
.

Therefore,

f ′(x) = f1(x) · · · fn(x)

(
f ′1(x)

f1(x)
+ · · ·+ f ′n(x)

fn(x)

)
.

Example 2.3.1. Differentiate the expression y =
√
xex cosx coshx.

Solution. Using logarithmic differentiation, we find

dy

dx
=
√
xex cosx coshx

(
1

2
√
x ·
√
x

+
ex

ex
+
− sinx

cosx
+

sinhx

coshx

)
=
√
xex cosx coshx

(
1

2x
+ 1− tanx+ tanhx

)
.

2.3.2 Derivatives of inverse functions

We have seen some functions (namely logarithms and inverse trigonometric
functions) that we obtain by solving an equation of the form y = f(x) for x.
The resulting function is called the inverse of f and denoted by f−1. If we
know the derivatives of f , then we can easily compute the derivatives of the
inverse as well by the following formula, which is most easily represented in
Leibniz’s notation. Write y = f(x), so that x = f−1(y). Then

dx

dy
=

1
dy
dx

.

Written differently, that is

(f−1)′(y) =
1

f ′(f−1(y))
.
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Example 2.3.2. Differentiate
√
y.

Solution. The root is the inverse of the function y = x2. So

d

dy

√
y =

dx

dy
=

1
dy
dx

=
1

2x
=

1

2
√
y
.

Note that we can write
√
y = y1/2, and then the result from this example

is consistent with the formula

d

dy
yn = nyn−1,

which we have seen earlier, although n is no longer an integer here.
We can use the above formula to find derivatives of logarithms and in-

verse trigonometric functions. For a > 0, we write y = ax, so that x = loga y.
Then dy

dx = ax ln a, as we have seen earlier. Hence

d

dy
loga y =

1

ax ln a
=

1

y ln a
.

For base e, we have the particular case

d

dy
ln y =

1

y
.

Now suppose that y = sinx and x = arcsin y. Then

dx

dy
=

1
dy
dx

=
1

cosx
=

1√
cos2 x

=
1√

1− sin2 x
=

1√
1− y2

.

That is,
d

dy
arcsin y =

1√
1− y2

.

Similarly,
d

dy
arccos y = − 1√

1− y2
.

Finally, if we have y = tanx and x = arctan y, then dy
dx = 1+tan2 x = 1+y2.

Hence
d

dy
arctan y =

1

1 + y2
.

2.3.3 Parametric differentiation

Sometimes a curve in the plane is given not as the graph of a function,
but rather through a parametrisation. This is a pair of functions x and y
describing a motion along the curve as follows: if we think of the independent
variable t as time, then we reach the point with coordinates (x(t), y(t)) at
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the time t. We have already seen an example for this: when introducing the
trigonometric functions, we considered the functions given by x(t) = cos t
and y(t) = sin t. Because we think of t as time here, we denote the derivatives
by ẋ and ẏ.

A curve like this does not necessarily correspond to the graph of a func-
tion. But if it does, say if y is a function of x, then

dy

dx
=
ẏ

ẋ
,

provided that these derivatives exist and ẋ does not vanish. (Writing the
right-hand side in Leibniz notation may again help you memorise this.)

Example 2.3.3. Find the slope at the point (1, 0) of the curve parametrised
by x(t) = cos t+ t and y(t) = t4 + t.
Solution. We have ẋ(t) = − sin t + 1 and ẏ(t) = 4t3 + 1. The point (1, 0)
corresponds to a time t with x(t) = 1 and y(t) = 0; that is,

cos t+ t = 1,

t4 + t = 0.

The second equation gives t(t3 + 1) = 0. We have two solutions: t = 0 and
t = −1. But the second one does not satisfy the first equation. So we need
to consider the time t = 0 here. Now ẋ(0) = 1 and ẏ(0) = 1. Therefore, the
slope is

dy

dx
(1) =

ẏ(0)

ẋ(0)
= 1.

2.3.4 Implicit differentiation

Sometimes a curve is given only implicitly through an equation in x and y.
For example, the equation x2+y2 = 1 describes the unit circle. While in this
case, we can solve for y and then differentiate (namely, y = ±

√
1− x2 and

dy
dx = ± −x√

1−x2 ) or we can parametrise as in the previous section, in general it

may be difficult to do either. Nevertheless, we can still find the slopes of the
curve by the following process, demonstrated with the example x2 + y2 = 1.

We first differentiate both sides of the equation with respect to x:

d

dx
(x2 + y2) =

d

dx
1.

Using the chain rule for the terms involving y (in this case only one term),
we obtain

2x+ 2y
dy

dx
= 0.

Now we solve for dy
dx :

dy

dx
= −x

y
.
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(You can check easily that the result agrees with the calculations at the
beginning of this section.)

Example 2.3.4. Consider the curve implicitly given by the equation

yex + xey = 1.

The points (1, 0) and (0, 1) lie on this curve. Find the slopes at both points.

Solution. We differentiate both sides of the equation:

dy

dx
ex + yex + ey + xey

dy

dx
= 0.

We can simplify as follows:

dy

dx
(ex + xey) + yex + ey = 0.

Now we solve for dy
dx :

dy

dx
= −ye

x + ey

ex + xey
.

If we insert x = 1 and y = 0, we obtain dy
dx = 1

e+1 . For x = 0 and y = 1, we

obtain dy
dx = e+ 1.

2.4 Applications

2.4.1 Maxima and minima

Suppose that you are given a function and want to understand its behaviour.
One of the most notable features of a function are its local maxima and
minima, so it helps to find them.

Given a function f and a number c, we say that f has a local maximum
at c if f(x) ≤ f(c) for all x in the immediate neighbourhood of c. We say
that f has a local minimum at c if f(x) ≥ f(c) for all x in the immediate
neighbourhood of c.

If f has a local minimum or a local maximum at c and has a derivative
at c, then it must necessarily satisfy f ′(c) = 0. Therefore, if we look for local
maxima and local minima, then we may differentiate and solve the equation

f ′(x) = 0

for x. This, together with the set of points where the derivative does not
exist, gives a set of candidates for local maxima and minima. But there may
be solutions of the equation that are neither maxima nor minima.
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Example 2.4.1. Consider the function given by f(x) = (1−x2)2. We have
f ′(x) = −4x(1 − x2) = −4x(1 − x)(1 + x). The solutions of the equation
f ′(x) = 0 are x = −1, x = 0, and x = 1. Since f(x) ≥ 0 for all x (as it is
a square), while f(−1) = f(1) = 0, we have local minima at −1 and 1. We
will see later that we have a local maximum at 0.

Example 2.4.2. Consider the function given by f(x) = x3. Its derivative
is f ′(x) = 3x2, which vanishes at 0 and nowhere else. We have f(0) = 0,
but this function has positive and negative values in the immediate neigh-
bourhood of 0. So here we have no local minima or maxima.

Example 2.4.3. Consider the function given by f(x) = |x|. The derivative
is f ′(x) = −1 for x < 0 and f ′(x) = 1 for x > 0. At 0, the derivative does
not exist. The function satisfies f(0) = 0 and f(x) ≥ 0 for all x. Therefore,
it has a local minimum at 0.

Now that we have these candidates, how do we distinguish local maxima
and local minima from each other and from all the ‘false’ candidates? This
is not always easy, but in many cases, it helps to differentiate again.

Suppose that we have a point c where both the first and the second
derivatives exist. If f ′(c) = 0 and f ′′(c) < 0, then it is guaranteed that c is a
local maximum of f . If f ′(c) = 0 and f ′′(c) > 0, then c is a local minimum.
However, if f ′(c) = 0 and f ′′(c) = 0, then we are none the wiser.

Example 2.4.4. Consider the function f with f(x) = (1− x2)2 again. We
have f ′′(x) = 12x2 − 4. As f ′(0) = 0 and f ′′(0) = −4 < 0, it has a local
maximum at 0. (We have already seen in example 2.4.1 that f has local
minima at ±1, but if necessary, we could verify it with this method as well.)

Example 2.4.5. Find the local maxima and minima of the function given
by f(x) = sinx.
Solution. We have f ′(x) = cosx and f ′′(x) = − sinx. The equation f ′(x) =
0 (that is, cosx = 0) has solutions of the form π

2 + nπ for all integers n.
Now we test the sign of the second derivative

f ′′
(π

2
+ nπ

)
= − sin

(π
2

+ nπ
)

We note that − sin(π2 ) = −1 and − sin(−π
2 ) = 1. Therefore, we have a local

maximum at π
2 and a local minimum at −π

2 . By the periodicity, we also
have local maxima at π

2 +2πn and local minima at −π
2 +2πn for all integers

n.

2.4.2 L’Hopital’s rule

Finding limits can be tricky when we have fractions that give the formal
limits ∞∞ or 0

0 . Differentiation can help here. Suppose that you want to find
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a limit of the form

lim
x→c

f(x)

g(x)
,

where f and g are two functions and c may be a finite number or c =∞ or
c = −∞. If either

• limx→c f(x) = 0 and limx→c g(x) = 0 or

• limx→c f(x) = ±∞ and limx→c g(x) = ±∞,

then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Example 2.4.6. We have

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1.

Example 2.4.7. Find

lim
x→∞

x

lnx
.

Solution. We are in a situation where we can apply l’Hopital’s rule. So

lim
x→∞

x

lnx
= lim

x→∞

1

1/x
= lim

x→∞
x =∞.

Example 2.4.8. Find

lim
x→π

cosx− 1

(x− π)2
.

Solution. Again we can apply l’Hopital’s rule, as cosx−1→ 0 and (x−π)2 →
0 as x→ π. We obtain

lim
x→π

cosx− 1

(x− π)2
= lim

x→π

− sinx

2(x− π)
.

It is still not obvious what the limit is, but we can use the rule again:

lim
x→π

− sinx

2(x− π)
= lim

x→π

− cosx

2
=

1

2
.

Hence

lim
x→π

cosx− 1

(x− π)2
=

1

2
.
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2.4.3 Newton’s method

The following is another method to solve an equation approximately. It is
more efficient than the bisection method that we have seen in Sect. 1.5, but
it has a disadvantage, too: unlike the bisection method, it comes with no
guarantees. It works well most of the time, but sometimes it doesn’t, and it
is not always easy to predict its behaviour.

The basic idea is as follows. Suppose that you want to solve the equation
f(x) = 0, where f is a given function. This means finding a point where
the graph of f intersects the x-axis. We first take an initial guess for the
solution, say x0. Then we approximate the graph of f by the tangent line
at the corresponding point, given by the equation

y = f(x0) + f ′(x0)(x− x0).

Unless f ′(x0) = 0 (in which case this tangent line is parallel to the x-axis),
there exists a unique intersection with the x-axis. We can compute where
it occurs, namely, at

x1 = x0 −
f(x0)

f ′(x0)
.

We expect that this is a better approximation of the solution than x0. We
keep repeating the same steps until we are satisfied that we have a good
approximation. That is, we define recursively

xn+1 = xn −
f(xn)

f ′(xn)

and stop after a suitable number of steps.

Example 2.4.9. Find an approximate solution of the equation

lnx = 2.

Solution. Here we use the function with f(x) = lnx − 2, which satisfies
f ′(x) = 1

x . So the above formula becomes

xn+1 = xn − xn(lnxn − 2) = xn(3− lnxn).

Beginning with x0 = 8, we compute

x1 ≈ 7.364467667,

x2 ≈ 7.389015142,

x3 ≈ 7.389056099.

The result has not changed up to the fourth decimal place in the last step,
so we can be reasonably confident that this is a good approximation to that
precision (but it’s actually much better).

For comparison, with the bisection method, beginning with an interval
of length 1, it would have taken 10 steps to reach this precision. But we
would have been certain that our approximation is really that good, whereas
here, it’s an educated guess.
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2.5 Taylor polynomials

Consider a function f and a number a. What we have used for Newton’s
method is the fact that the graph of f can be approximated by its tangent
line near (a, f(a)). In other words, the function f is approximated by a
linear function near a, which is given by the formula

y = f(a) + f ′(a)(x− a).

This is the unique linear function with the value f(a) at a and slope f ′(a).
We can hope to find even better approximations of f by using higher

order polynomials. This is indeed possible, and in order to find these poly-
nomials, we have to make sure that as many derivatives as possible agree
with the derivatives of f at a.

Given a positive integer n, consider the formula

Tn,a(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

2 · 3 · · ·n
(x− a)n,

or in shorthand notation,

Tn,a(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k.

(Here k! = 1 · 2 · 3 · · · k, with the convention that 0! = 1.) The function Tn,a
defined thus is called the Taylor polynomial or Taylor expansion for f of
order n at a. It has the property that

T (k)
n,a(a) = f (k)(a)

for k = 0, . . . , n and is the polynomial of order n providing the best possible
approximation of f near a.

In the special case a = 0, the Taylor polynomial is also called Maclaurin
polynomial .

Example 2.5.1. For the function ln, we have

ln′(x) =
1

x
, ln′′(x) = − 1

x2
, ln′′′(x) =

2

x3
, ln(4)(x) = − 6

x4
.

Therefore, the fourth order Taylor polynomial for ln at 1 is given by

T4,1(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
.

As already mentioned, the Taylor polynomial approximates the function
f near a; that is,

Tn,a(x) ≈ f(x)



42 CHAPTER 2. DIFFERENTIATION

when x ≈ a. We can also say something about the quality of this approxi-
mation. Suppose that

Rn,a(x) = f(x)− Tn,a(x)

represents the error of the approximation and define

hn,a(x) =
Rn,a(x)

(x− a)n
.

Then Taylor’s theorem states the following. If f has derivatives up to order
n, then

lim
x→a

hn,a(x) = 0.

That is, if x is sufficiently close to a, then the error term is even smaller
than any multiple of (x − a)n, which is very small itself, especially if n is
chosen large. In most cases, the error behaves in fact like (x− a)n+1.

Instead of computing the terms of the Taylor polynomials up to a certain
order, we can just continue indefinitely and write down an infinite sum,
called the Taylor series or infinite Taylor expansion of f at a:

f(a)

0!
+
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · ,

or, in shorthand notation,

∞∑
k=0

f (k)(a)

k!
(x− a)k.

But we first have to think about whether this makes any sense. How can
we sum infinitely many terms? In fact, it does not always make sense, but
in many cases, we can interpret this series as a limit:

∞∑
k=0

f (k)(a)

k!
(x− a)k = lim

n→∞

n∑
k=0

f (k)(a)

k!
(x− a)k.

If this is the case, then we may hope that the approximation for Taylor
polynomials turns into equality for Taylor series and we have

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

But caution: this is not true for all functions, even if they have derivatives
of all orders, and not necessarily for all values of x. It is not easy to find
out if a given function satisfies the identity, but it is known, for example,
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for the following functions, giving rise to the following identities (all of them
for a = 0):

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · for all x,

cosx =
∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2
+
x4

24
− · · · for all x,

sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x− x3

6
+

x5

120
− · · · for all x,

1

1 + x
=
∞∑
k=0

(−1)kxk = 1− x+ x2 − x3 + x4 − · · · for −1 < x < 1,

ln(1 + x) =
∞∑
k=1

(−1)k−1xk

k
= x− x2

2
+
x3

3
− x4

4
− · · · for −1 < x < 1.

If you know that a function is represented in this way, then you can
calculate with Taylor series term by term as you do for polynomials.

Example 2.5.2. Using the above series for sinx, we obtain

x sinx =

∞∑
k=0

(−1)kx2k+2

(2k + 1)!
= x2 − x4

6
+

x6

120
− · · ·

and this hold for all x again. Moreover,

sinx

x
=
∞∑
k=0

(−1)kx2k

(2k + 1)!
= 1− x2

6
+

x4

120
− · · ·

for all x 6= 0 (because the left-hand side is meaningless for x = 0).

Example 2.5.3. We have

ex

1 + x
=

(
1 + x+

x2

2
+
x3

6
+
x4

24
+ · · ·

)(
1− x+ x2 − x3 + x4 − · · ·

)
= 1 +

x2

2
− x3

3
+

3x4

8
+ · · ·

for −1 < x < 1.

Example 2.5.4. Using the expansion for 1
1+x and replacing x by x2, we

obtain

1

1 + x2
=

∞∑
k=0

(−1)kx2k = 1− x2 + x4 − x6 + x8 − · · · ,

which holds for −1 < x < 1 as well (because then 0 ≤ x2 < 1).
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Example 2.5.5. The derivative of ln(1 +x) is 1
1+x . This fact is reflected in

the Taylor expansions: every term in the expansion of 1
1+x is the derivative

of the corresponding term for ln(1 + x).

Example 2.5.6. If an unknown function f has the Taylor expansion

f(x) =
∞∑
k=0

kxk

for −1 < x < 1, what is its derivative?
Solution. Without further information, we will be able to give an answer
only in terms of the Taylor series again, which is

f ′(x) =

∞∑
k=0

k2xk−1 =

∞∑
`=0

(`+ 1)2x`.

This is again true for −1 < x < 1. (In the last step of the computation we
have substituted ` = k − 1 in order to obtain a nicer expression.)

2.6 Numerical differentiation

With the rules that we’ve seen so far, we can differentiate any function
that is composed of the standard functions for which we already know the
derivative (and we also have some methods for implicitly given functions).
In practice, however, the functions may not be in the required form or you
may even have to deal with functions that you don’t know exactly. (For
example, you may only know the values at certain data points.) For this
reason, you may sometimes have to make do with numerical approximations.

As the derivative is defined as a limit, there is an obvious way to obtain
approximations. We have

f ′(x) ≈ f(x+ h)− f(x)

h
(2.6.1)

and the approximation gets better the smaller h is chosen. But there is a
better approximation, and we can see why using Taylor series.

We assume here that the function f is represented by its Taylor series
near x. (This is not true for all functions, but we can still use similar
arguments with finite Taylor polynomials otherwise.) Hence

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(x)

6
h3 + · · · . (2.6.2)

This implies that

f(x+ h)− f(x)

h
= f ′(x) +

f ′′(x)

2
h+

f ′′′(x)

6
h2 + · · · .
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So when we approximate f ′(x) by f(x+h)−f(x)
h , the error is

f ′′(x)

2
h+

f ′′′(x)

6
h2 + · · · .

When h is small, the first term is dominant and the error is of the order h.
Evaluating the Taylor series at x− h, we also obtain

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f ′′′(x)

6
h3 + · · · . (2.6.3)

Using (2.6.2) and (2.6.3) simultaneously, we obtain

f(x+ h)− f(x− h)

2h
= f ′(x) +

f ′′′(x)

6
h2 + · · · .

So when we approximate f ′(x) by f(x+h)−f(x−h)
2h , the error is

f ′′′(x)

6
h2 + · · · ,

which is of order h2.

Example 2.6.1. The following table gives the values of the above approx-
imations for f(x) = x3 at 1. Note that f ′(1) = 3.

h 1
h(f(1 + h)− f(1)) 1

2h(f(x+ h)− f(x− h))

1 7 4
0.1 3.31 3.01
0.01 3.0301 3.0001
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Chapter 3

Integration

3.1 Two approaches to integration

3.1.1 Antidifferentiation and the indefinite integral

Consider the following question: for a given function f , is there another
function F such that F ′ = f? In other words, is there a way to reverse
differentiation? For reasonably nice functions, the answer is typically yes.

Example 3.1.1. Is there a function F such that F ′(x) = x5 + 6?

Solution. It is easy to check that F (x) = x6

6 + 6x provides a solution.

If F is a function that satisfies F ′ = f , then we say that F is an an-
tiderivative of f (also called primitive of f). In practice, the difficulty is
usually not in deciding whether an antiderivative exists, but rather to find
it. We will see some methods for this later. First, we discuss a few general
facts.

Note that antiderivatives are not unique. In Example 3.1.1, we could
have given the answer x6

6 + 6x + 10, and you can write down many more
similar answers. In fact, whenever F is an antiderivative of a function f and
C is a constant, then F + C is another antiderivative of f . We can verify
this by differentiation: if F ′ = f , then

d

dx
(F (x) + C) = F ′(x) = f(x)

for all x by the summation rule and (2.1.1). Moreover, it is also true that
any two antiderivatives of a function differ by a constant. Therefore, by
combining these two facts, we obtain the following statement.

If F is an antiderivative of a given function f , then all antiderivatives of
f are of the form F + C, where C is a constant.

The indefinite integral of f is a symbolic representation of a generic
antiderivative. When we write ˆ

f(x) dx,

47
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we mean an unspecified antiderivative of f , with the understanding that
adding various constants will produce all antiderivatives. When evaluat-
ing an indefinite integral, we usually use the symbol C to represent this
unspecified constant. For example,

ˆ
x2 dx =

1

3
x3 + C.

Example 3.1.2. Evaluate

ˆ
(x5 + 6) dx.

Solution. This is ˆ
(x5 + 6) dx =

x6

6
+ 6x+ C.

3.1.2 Area and the definite integral

Consider the graph of a function f , describing a curve in the plane. Given
an interval (a, b) (meaning that a and b are two numbers with a < b), we
also consider the vertical lines given by x = a and x = b and the x-axis,
given by y = 0. These four components generally form the boundary of a
region in the plane (see Fig. 3.1.1). We now study the area of regions like
this.

Figure 3.1.1: The region under the curve y = f(x) between x = −1 and
x = 2

It is convenient here to modify the usual notion of area a bit and consider
signed area instead: if a region is above the x-axis, we regard its area as
positive, but if it is below the x-axis, we regard the area as negative. (If a
region has parts on either side, we split it in two and subtract the area of
the lower part from the area of the upper part.)

Example 3.1.3. The curve given by y =
√

1− x2, together with the lines
given by x = 0 and y = 0 (and, for completeness, x = 1, although this plays
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no role here), bounds a quarter disk of radius 1 above the x-axis. The area
is π

4 .

On the other hand, if we consider the curve given by y = −
√

1− x2,
then we have a quarter disk below the x-axis. According to our convention,
the area of this region is −π

4 .

We use the following notation for this concept. The definite integral

ˆ b

a
f(x) dx

is the signed area (in the above sense) of the region bounded by the curve
described y = f(x) and the lines given by x = a, x = b, and y = 0. The
numbers a and b are called the (lower and upper) limits of the integral.
(The symbol x here is a dummy variable and may be replaced by any other
symbol.)

Why do we use notation and terminology so similar to the indefinite
integral discussed in Sect. 3.1.1? It turns out that computing area is closely
related to antidifferentiation. In order to see why this is the case, fix the
lower limit a, but replace the upper limit by a variable t. Then we may
define a function F by the formula

F (t) =

ˆ t

a
f(x) dx.

Now let h be a number with h 6= 0 and compare the value F (t) with F (t+h).
The difference F (t+h)−F (t) corresponds to the area of the region bounded
by the graph of f , the x-axis, and the lines given by x = t and x = t + h.
Assuming that h is small, this is a narrow strip, and assuming that f is
continuous (and therefore does not vary much between t and t+h), the area
is approximately hf(t). Hence

F (t+ h)− F (t)

h
≈ f(t).

In fact, taking limits, we obtain

F ′(t) = lim
h→0

F (t+ h)− F (t)

h
= f(t).

In other words, we have found an antiderivative for f .

The following statement is known as the first fundamental theorem of
calculus. Suppose that f is a continuous function and a is a fixed number.
Let the function F be defined through

F (x) =

ˆ x

a
f(t) dt.
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Then F ′(x) = f(x) for all values of x.
Now remember that any other antiderivative differs from F by a con-

stant. So if we consider an arbitrary antiderivative of f , say G, then there
exists a constant C such that G = F + C. It is clear that F (a) = 0 (as this
is the area of a strip of width 0), so G(a) = C. On the other hand,

ˆ b

a
f(x) dx = F (b) = G(b)− C = G(b)−G(a).

This is the second fundamental theorem of calculus. If f is a continuous
function and F is an antiderivative of f , then

ˆ b

a
f(x) dx = G(b)−G(a).

Because expressions like this appear a lot when we work with definite
integrals, we use the following shorthand notation:

[G(x)]ba = G(b)−G(a).

If it may be unclear what the relevant variable is, we may instead write

[G(x)]bx=a.

The condition that f be continuous can be relaxed, although it takes a
sophisticated theory to determine a more appropriate condition. In practice,
the condition can almost always be ignored. It is important, however, that
the condition F ′(x) = f(x) is satisfied for all x in the interval [a, b], unless
you add other conditions instead.

Example 3.1.4. Consider the functions f and F with f(x) = x
|x| and

F (x) = |x|. Then F ′(x) = f(x) at any x except when x = 0, and we
still have ˆ 1

−1
f(x) dx = 0 = F (1)− F (−1).

However, the function given by G(x) = |x| + x
|x| also satisfies G′(x) = f(x)

everywhere except when x = 0, and we have G(1)−G(0) = 2. So we cannot
replace F by G in the above formula.

3.2 Integration techniques

Since we can think of integration as the reverse of differentiation, it is no
surprise that the differentiation rules in Sect. 2.2 give rise to integration
rules. However, with integration, it is often far less obvious which rule to
apply, and so this often takes some experience.
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3.2.1 The substitution rule

The substitution rule is the counterpart of the chain rule for differentiation.
Recall that the chain rule says that for two functions F and g, we have

d

dx
F (g(x)) = F ′(g(x))g′(x).

Thus if we write f = F ′, then
ˆ
f(g(x))g′(x) dx = F (g(x)) + C. (3.2.1)

We can write the same rule in more convenient notation: write u = g(x), so
that du

dx = g′(x). Then we may substitute du = g′(x) dx and thus

ˆ
f(g(x))g′(x) dx =

ˆ
f(u) du = F (u) + C = F (g(x)) + C.

(As before, expressions such as dx or du should be thought of as convenient
symbols rather than objects in their own right. In this context, they can
actually be given precise meaning, but this theory is outside of the scope of
this course.)

While it appears that you need a very special integrand for this, in
practice many functions can be written in this form.

Example 3.2.1. Evaluate ˆ
xex

2
dx.

Solution. Write u = x2, so that du = 2x dx. Then
ˆ
xex

2
dx =

1

2

ˆ
2xex

2
dx =

1

2

ˆ
eu du =

1

2
eu + C =

1

2
ex

2
+ C.

Example 3.2.2. Evaluate
ˆ

cos(7x) dx.

Solution. The substitution u = 7x gives du = 7dx and
ˆ

cos(7x) dx =
1

7

ˆ
cosu du =

1

7
sinu+ C =

1

7
sin(7x) + C.

Example 3.2.3. Evaluate ˆ
dx

(2− x)2
.

Solution. The substitution u = 2− x gives du = −dx and
ˆ

dx

(2− x)2
= −
ˆ
du

u2
=

1

u
+ C =

1

2− x
+ C.
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Instead of writing u = g(x), we may turn the substitution around and
write x = h(u) for some function h. This amounts to the previous method
if we choose h = g−1. Then by Sect. 2.3.2, we have h′(u) = 1

g′(x) and thus

we still have dx = h′(u) du, as expected.

Example 3.2.4. Evaluate ˆ
dx√

1− x2
.

Solution. Use the substitution x = sinu, so that dx = cosu du. Then
ˆ

dx√
1− x2

=

ˆ
cosu√

1− sin2 u
du =

ˆ
du = u+ C = arcsinx+ C.

When we want to evaluate a define integral, then one method is to first
evaluate the indefinite integral (perhaps using the substitution rule) and
then insert the limits. But when we use the substitution rule, then there
is a more direct method. Using the functions F and g again and setting
f = F ′, we have

ˆ b

a
f(g(x))g′(x) dx = F (g(b))− F (g(a))

by (3.2.1). That is,

ˆ b

a
f(g(x))g′(x) dx =

ˆ g(b)

g(a)
f(u) du.

Thus after the substitution u = g(x), there is no need to go back to the
variable x, provided that we substitute the limits as well.

Example 3.2.5. Evaluate

ˆ 1

0

√
x+ 1 dx.

Solution. With the substitution u = x+1, giving rise to du = dx, we obtain

ˆ 1

0

√
x+ 1 dx =

ˆ 2

1

√
u du =

[
2

3
u3/2

]2
u=1

=
4
√

2− 2

3
.

Example 3.2.6. Evaluate

ˆ 4

0

x

x2 + 1
dx.

Solution. The substitution u = x2 + 1 gives du = 2x dx and

ˆ 4

0

x

x2 + 1
dx =

1

2

ˆ 17

1

du

u
=

1

2
[lnu]171 =

1

2
(ln 17− ln 1) =

1

2
ln 17.
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It can happen that after the substitution, the lower limit is larger than
the upper limit. But this is no problem. We may just ignore this issue or
use the convention ˆ b

a
f(x) dx = −

ˆ a

b
f(x) dx.

Example 3.2.7. Evaluate ˆ 0

−
√
π/2

x cos(x2) dx.

Solution. The substitution u = x2 givesˆ 0

−
√
π/2

x cos(x2) dx =
1

2

ˆ 0

π/2
cosu du =

1

2
[sinu]0u=π/2 = −1

2
.

There are a few substitutions that are far from obvious but very useful.
We will discuss these later.

3.2.2 Integration by parts

This is the counterpart to the product rule for differentiation, which tells us
that for two functions f and g, we have

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Hence ˆ
(f ′(x)g(x) + f(x)g′(x)) dx = f(x)g(x) + C.

We will rarely have an integrand of this precise form, but we can rearrange
the terms as follows:ˆ

f(x)g′(x) dx = f(x)g(x)−
ˆ
f ′(x)g(x) dx.

This only expresses one integral in terms of the other, but we can hope that
the one on the right-hand side is easier to evaluate.

Again it is convenient to use the following notation: write u = f(x) and
v = g(x). Then du = f ′(x) dx and dv = g′(x) dx. Substituting this in the
above formula yields ˆ

u dv = uv −
ˆ
v du.

Example 3.2.8. Evaluate ˆ
xex dx.

Solution. We apply the integration by parts formula for f(x) = x and
g(x) = ex. That is, we write u = x and v = ex. Then du = dx and
dv = ex dx. Soˆ

xex dx =

ˆ
u dv = uv −

ˆ
v du = xex −

ˆ
ex dx = xex − ex + C.
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Example 3.2.9. Evaluate ˆ
x2ex dx.

Solution. Setting u = x2 and v = ex, we obtain
ˆ
x2ex dx =

ˆ
u dv = uv −

ˆ
v du = x2ex − 2

ˆ
xex dx.

We already know how to evaluate the last integral by Example 3.2.8. In-
serting the expression, we obtain

ˆ
x2ex dx = x2ex − 2(xex − ex) + C = (x2 − 2x+ 2)ex + C.

Example 3.2.10. Evaluate
ˆ
ex cosx dx

Solution. With u = ex and v = sinx, we have
ˆ
ex cosx dx =

ˆ
u dv = uv −

ˆ
v du = ex sinx−

ˆ
ex sinx dx.

In order to evaluate the last integral, we use integration by parts again. Let
ũ = ex and ṽ = − cosx. Then

ˆ
ex sinx dx =

ˆ
ũ dṽ = ũṽ −

ˆ
ṽ dũ = −ex cosx+

ˆ
ex cosx dx.

Insert this into the first formula:ˆ
ex cosx dx = ex sinx+ ex cosx−

ˆ
ex cosx dx.

Add
´
ex cosx dx on both sides, then divide by 2. This yields

ˆ
ex cosx dx =

ex

2
(sinx+ cosx) + C.

The method is exactly the same for definite integrals. We use the formula

ˆ b

a
f(x)g′(x) dx = [f(x)g(x)]ba −

ˆ b

a
f ′(x)g(x) dx

or we first find an antiderivative and then insert the limits.

Example 3.2.11. Evaluate

ˆ 7

4
x lnx dx.
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Solution. Using the functions f(x) = x2/2 and g(x) = lnx, we observe that

ˆ 7

4
x lnx dx =

ˆ 7

4
f ′(x)g(x) dx = [f(x)g(x)]74 −

ˆ 7

4
f(x)g′(x) dx

=

[
x2

2
lnx

]7
4

−
ˆ 7

4

x2

2x
dx =

49

2
ln 7− 8 ln 4−

[
x2

4

]7
4

=
49

2
ln 7− 8 ln 4− 49

4
+ 4.

3.2.3 Partial fractions

In this section we study quotients of polynomials, which are called rational
functions. The method discussed here is not just for integration. It is a
method to decompose a rational function into simpler parts, which helps in
particular for integration, but may be useful for other purposes, too.

In order to motivate the following, we first observe what happens when
we add some simple rational functions. For example,

1

x+ 3
+

8

x− 2
=
x− 2 + 8(x+ 3)

(x+ 3)(x− 2)
=

9x+ 22

x2 + x− 6
.

The idea is now to reverse this process. That is, given a rational function,
we want to split it up into simpler rational functions. It turns out that this
is always possible up to a certain point.

Suppose that we have a rational function, that is, a function of the form

p(x)

q(x)
,

where p and q are polynomials.

Step 1: Use polynomial long division This will give two polynomials
p1(x) and r(x) such that

p(x)

q(x)
=
p1(x)

q(x)
+ r(x)

and the degree of p1(x) is strictly less than the degree of q(x).

Example 3.2.12. Consider the rational function

x2 − x+ 1

x+ 2
.
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Polynomial long division gives:

x− 3

x+ 2
)

x2 − x+ 1
− x2 − 2x

− 3x+ 1
3x+ 6

7

Thus
x2 − x+ 1

x+ 2
=

7

x+ 2
+ x− 3.

Example 3.2.13. Consider the rational function

x3 − 5x2 + 7x− 19

x2 − 8
.

Polynomial long division gives:

x − 5

x2 − 8
)

x3 − 5x2 + 7x− 19
− x3 + 8x

− 5x2 + 15x− 19
5x2 − 40

15x− 59

Thus
x3 − 5x2 + 7x− 19

x2 − 8
=

15x− 59

x2 − 8
+ x− 5.

Step 2: decompose the denominator into irreducible factors Here
‘irreducible’ means that it is not possible to factorise any further. In prin-
ciple, it is possible to decompose any polynomials into a constant and the
following two types of irreducible factors:

• linear factors of the form x− a, where a is a zero of q(x); and

• quadratic factors of the form x2 + bx+ c with b2 < 4c. (Note that the
condition b2 < 4ac means that there are no zeros. If a polynomial has
any zeros, then it is not irreducible.)

Unfortunately, these are not always easy to find. It helps if we can find the
zeros of q(x), although this can be difficult too. In fact, if q(x) has a zero
at a point a, then x− a is automatically a factor of q(x).

Example 3.2.14. Consider the polynomial q(x) = x2 − 3x + 2. This has
zeros at 1 and 2, and we have q(x) = (x− 1)(x− 2).
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Example 3.2.15. Consider the polynomial q(x) = x3 + x. We have a zero
at 0, and q(x) = x(x2 + 1). The quadratic factor has no zeros, so this is an
irreducible factorisation.

Example 3.2.16. Consider the polynomial q(x) = x4 + 2x2 + 1. We note
that q(x) = (x2 + 1)2 = (x2 + 1)(x2 + 1). These factors have no zeros, so
they are irreducible.

An irreducible factor in the factorisation of q(x) may appear just once,
as all factors in Example 3.2.14 and Example 3.2.15 do, or several times, as
in Example 3.2.16. In any case, we combine all factors of the same form and
write them as a power. That is, for linear factors, we have (x− a)n and for
quadratic factors we have (x2 + bx+ c)n for some positive integer n and for
certain numbers a, b, and c.

Step 3: find the partial fractions For each factor of q(x) of the form
(x− a)n, we may expect partial fractions of the form

A1

x− a
,

A2

(x− a)2
, . . . ,

An
(x− a)n

for certain numbers A1, . . . , An. So if n = 1, we only have a partial fraction
of the form

A

x− a
.

For any factor of the form (x2 + bx+ c)n, where x2 + bx+ c is an irreducible
quadratic polynomial, we may expect partial fractions of the form

B1x+ C1

x2 + bx+ c
,

B2x+ C2

(x2 + bx+ c)2
, . . . ,

Bnx+ Cn
(x2 + bx+ c)n

for certain numbers B1, . . . , Bn, C1, . . . , Cn. So if n = 1, we only have

Bx+ C

x2 + bx+ c
.

It then suffices to determine the coefficients A1, . . . , An or B1, . . . , Bn,
C1, . . . , Cn. We demonstrate with some examples how this is done.

Example 3.2.17. Decompose the rational function

7x− 13

x2 − 4

into partial fractions.
Solution. The denominator has the zeros ±2, so x2 − 4 = (x − 2)(x + 2).
We look for A1, A2 such that

7x− 13

x2 − 4
=

A1

x− 2
+

A2

x+ 2
.
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Simplifying the right-hand side, we obtain

A1

x− 2
+

A2

x+ 2
=
A1(x+ 2) +A2(x− 2)

(x− 2)(x+ 2)
=

(A1 +A2)x+ 2A1 − 2A2

x2 − 4
.

In order to obtain the desired rational function, we need to solve the system
of equations

A1 +A2 = 7

2A1 − 2A2 = −13.

The solution is A1 = 1
4 and A2 = 27

4 . Hence

7x− 13

x2 − 4
=

A1

x− 2
+

A2

x+ 2
=

1

4(x− 2)
+

27

4(x+ 2)
.

Example 3.2.18. Decompose

x+ 6

x2 + 8x+ 16

into partial fractions.

Solution. We have x2 + 8x + 16 = (x + 4)2. Note that we have a repeated
factor here. Thus we look for A1, A2 such that

x+ 6

x2 + 8x+ 16
=

A1

x+ 4
+

A2

(x+ 4)2
=
A1(x+ 4) +A2

x2 + 8x+ 16
=
A1x+ 4A1 +A2

x2 + 8x+ 16
.

We have to solve the system

A1 = 1,

4A1 +A2 = 6.

The solution is A1 = 1 and A2 = 2. So

x+ 6

x2 + 8x+ 16
=

1

x+ 4
+

2

(x+ 4)2
.

Example 3.2.19. Decompose

5x2 − 6x+ 3

x3 + x2 − 2

into partial fractions

Solution. Here it is not obvious how to find the irreducible factors of the
denominator. However, we can check that 1 is a zero. Hence x−1 is a factor.
Polynomial long division reveals that x3 + x2 − 2 = (x − 1)(x2 + 2x + 2).
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Since the quadratic polynomial x2 + 2x+ 2 has no zeros, it is irreducible as
well. Therefore, we look for A,B,C such that

5x2 − 6x+ 3

x3 + x2 − 2
=

A

x− 1
+

Bx+ C

x2 + 2x+ 2
=
A(x2 + 2x+ 2) + (Bx+ C)(x− 1)

(x− 1)(x2 + 2x+ 2)

=
(A+B)x2 + (2A−B + C)x+ 2A− C

x3 + x2 − 2
.

We need to solve the system

A+B = 5,

2A−B + C = −6,

2A− C = 3.

The solution is A = 2
5 , B = 23

5 , and C = −11
5 . So we have found that

5x2 − 6x+ 1

x3 + x2 − 2
=

2

5(x− 1)
+

23x− 11

5(x2 + 2x+ 2)
.

Step 4: find the integrals Assuming that we can find the partial frac-
tions of our rational function, we now have a sum of simpler expressions.
We finally need to integrate these.

This is quite easy for an expression of the form

A

(x− a)n
.

We can use the substitution u = x− a to compute
ˆ

A

x− a
dx = A

ˆ
du

u
= A ln |u|+ C = A ln |x− a|+ C

andˆ
A

(x− a)n
dx = A

ˆ
du

un
=

A

(1− n)un−1
+ C =

A

(1− n)(x− a)n−1
+ C

if n ≥ 2.
Now we have a closer look at the partial fractions of the form

Bx+ C

x2 + bx+ c
,

where b2 < 4c. Here the first step is to rewrite the denominator. Recall that
we have solved quadratic equations in Sect. 1.2.1 by completing the square.
We do the same thing here, finding that

x2 + bx+ c =

(
x+

b

2

)2

+ c− b2

4
.
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Set β = b
2 and γ =

√
c− b2/4. Then

Bx+ C

x2 + bx+ c
=

Bx+ C

(x+ β)2 + γ2
=

Bx+ C

γ2
((

x+β
γ

)2
+ 1

) .
In order to evaluate the integral, use the substitution u = x+β

γ . Then
x = γu− β and thus

ˆ
Bx+ C

x2 + bx+ c
dx =

ˆ
B(γu− β) + C

γ(u2 + 1)
du

= B

ˆ
u

u2 + 1
du+

C −Bβ
γ

ˆ
du

u2 + 1
.

The first of the integrals on the right-hand side we can evaluate with the
substitution v = u2 + 1, giving dv = 2u du andˆ

u

u2 + 1
du =

1

2

ˆ
dv

v
=

1

2
ln v + C =

1

2
ln(u2 + 1) + C.

For the second one, we use the fact that d
du arctanu = 1

u2+1
. Hence

ˆ
du

u2 + 1
= arctanu+ C.

Combining everything, we obtainˆ
Bx+ C

x2 + bx+ c
=
B

2
ln(u2 + 1) +

C −Bβ
γ

arctanu+ C

=
B

2
ln

((
x+ β

γ

)2

+ 1

)
+
C −Bβ

γ
arctan

x+ β

γ
+ C,

where β = b
2 and γ =

√
c− b2/4.

We may also have partial fractions of the form

Bx+ C

(x2 + bx+ c)n

for some integer n ≥ 0. In practice, however, this is rare, and so we discuss
this only briefly. The first steps are the same as in the case n = 1 above.
This will now give rise to integrals of the formˆ

u

(u2 + 1)n
du and

ˆ
du

(u2 + 1)n
.

The first of these can be evaluated with the substitution v = u2 + 1 again,
which yieldsˆ

u

(u2 + 1)n
du =

1

2

ˆ
dv

vn
=

1

2(1− n)vn−1
=

1

2(1− n)(u2 + 1)n−1
.
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For the second integral, we use the substitution u = tan v. Then u2 + 1 =
tan2 v + 1 = 1

cos2 v
and du = dv

cos2 v
. Hence

ˆ
du

(u2 + 1)n
=

ˆ
cos2n−2 v dv.

These integrals can now be evaluated with a repeated integration by parts.
We have already found the partial fractions of some rational functions,

so we can now evaluate their integrals.

Example 3.2.20. Evaluate
ˆ

7x− 13

x2 − 4
dx.

Solution. We have seen in Example 3.2.17 that

7x− 13

x2 − 4
=

1

4(x− 2)
+

27

4(x+ 2)
.

Hence ˆ
7x− 13

x2 − 4
dx =

1

4
ln |x− 2|+ 27

4
ln |x+ 2|+ C.

Example 3.2.21. Evaluate
ˆ

x+ 6

x2 + 8x+ 16
dx.

Solution. We have seen in Example 3.2.18 that

x+ 6

x2 + 8x+ 16
=

1

x+ 4
+

2

(x+ 4)2
.

Hence ˆ
x+ 6

x2 + 8x+ 16
= ln |x+ 4| − 2

x+ 4
+ C.

Example 3.2.22. Evaluate

ˆ
5x2 − 6x+ 3

x3 + x2 − 2
dx.

Solution. We have seen in Example 3.2.19 that

5x2 − 6x+ 1

x3 + x2 − 2
=

2

5(x− 1)
+

23x− 11

5(x2 + 2x+ 2)
.

Moreover, we have
ˆ

2

5(x− 1)
dx =

2

5
ln |x− 1|+ C.
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In order to evaluate the remaining integral, we write

x2 + 2x+ 2 = (x+ 1)2 + 1.

We use the substitution u = x+ 1, which gives
ˆ

23x− 11

5(x2 + 2x+ 2)
=

ˆ
23(u− 1)− 11

5(u2 + 1)
du

=
23

5

ˆ
u

u2 + 1
du− 34

5

ˆ
du

u2 + 1

=
23

10
ln(u2 + 1)− 34

5
arctanu+ C

=
23

10
ln(x2 + 2x+ 2)− 34

5
arctan(x+ 1) + C.

3.3 Further integration techniques

3.3.1 Integrating an inverse function

Recall that we have seen in Sect. 2.3.2 how to differentiate the inverse f−1

of a function f . We can use this information, combined with integration by
parts and the substitution rule, to find antiderivatives of f−1 as well.

We demonstrate the method with an example. Consider the integralˆ
arcsinx dx.

Use integration by parts with u = arcsinx and v = x, giving rise toˆ
arcsinx dx = x arcsinx−

ˆ
x√

1− x2
dx.

Now substitute w = 1− x2, so that dw = −2x dx. Thusˆ
arcsinx dx = x arcsinx+

1

2

ˆ
dw√
w

= x arcsinx+
√
w + C = x arcsinx+

√
1− x2 + C.

In general, if we want to integrate an inverse function f−1, then we can
always use integration by parts with u = f−1(x) and v = x, followed by a
substitution. The resulting formula becomes particularly simple when we
write y = f(x) (and therefore x = f−1(y) is the expression that we want to
integrate). Then we have

ˆ
x dy = xy −

ˆ
y dx.

But because this is so terse, using this formula blindly may result in confu-
sion. In practice, it is often better to do the above steps directly.
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Example 3.3.1. Evaluate ˆ
lnx dx.

Solution. Note that ln is the inverse of the exponential function with base
e, so we can use the above method. Set u = lnx and v = x. This gives

ˆ
lnx dx = x lnx−

ˆ
x

x
dx = x lnx− x+ C.

3.3.2 Trigonometric rational functions

It’s easiest to understand what trigonometric rational functions are by look-
ing at some examples such as the following:

sin3 x− cos2 x+ 2

cos3 x− sin3 x+ 8 cosx
,

cosx

14 sin8 x+ 5 cos7 x+ sin3 x
,

cos4 x+ sin4 x

cos3 x
.

A standard trick to integrate these is the substitution

u = tan
x

2
.

Then

cosx =
1− u2

1 + u2
, sinx =

2u

1 + u2
, and dx =

2 du

1 + u2
.

It is clear that inserting all of this, we obtain the integral of a rational
function, which we can, in principle, evaluate with the method of partial
fractions. In practice, however, this can give very complicated expressions.
(Imagine using it for the above examples.) But for simple trigonometric
rational functions, this works well.

Example 3.3.2. Evaluate ˆ
secx dx.

Solution. Note that sec is a trigonometric rational function, as secx = 1
cosx .

The standard substitution u = tan x
2 gives

ˆ
secx dx =

ˆ
1 + u2

1− u2
2

1 + u2
du =

ˆ
2

1− u2
du.

The method of partial fractions gives

2

1− u2
=

1

u+ 1
− 1

u− 1
.

Henceˆ
2

1− u2
du =

ˆ
du

u+ 1
−
ˆ

du

u− 1
= ln |u+ 1| − ln |u− 1|+ C.
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We finally obtainˆ
secx dx = ln

∣∣∣tan
x

2
+ 1
∣∣∣− ln

∣∣∣tan
x

2
− 1
∣∣∣+ C.

(Note that there are other methods to compute this and there are other
ways to represent the result.)

3.3.3 Trigonometric substitution

This is a method that is often useful for integrals involving the expression√
1− x2. The trick is to substitute x = sinu. Then dx = cosu du and√

1− x2 =
√

1− sin2 u =
√

cos2 u = cosu.

(Here we have used the assumption that −π
2 ≤ u ≤

π
2 .)

Example 3.3.3. Evaluate ˆ √
1− x2 dx.

Solution. Using the above substitution x = sinu, we obtainˆ √
1− x2 dx =

ˆ
cos2 u du =

1

2
(u+ sinu cosu) + C.

In order to reverse the substitution, we note that u = arcsinx. Moreover,

we have sinu = x and cosu =
√

1− sin2 u =
√

1− x2. Thusˆ √
1− x2 dx =

1

2
(arcsinx+ x

√
1− x2) + C.

Integrals involving
√
ax2 + bx+ c can often be treated similarly, because

we can transform them by completing the square.

Example 3.3.4. Evaluate ˆ √
8 + 2x− x2 dx.

Solution. We have

8 + 2x− x2 = 9− (x− 1)2 = 9

(
1−

(
x− 1

3

)2
)
,

which suggests the substitution u = x−1
3 . Thenˆ √

8 + 2x− x2 dx = 9

ˆ √
1− u2 du

=
9

2
(arcsinu+ u

√
1− u2) + C

=
9

2
arcsin

x− 1

3
+

1

2
(x− 1)

√
8 + 2x− x2 + C.
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For integrals involving
√

1 + x2, the substitution x = tanu is sometimes
useful. Then dx = du

cos2 u
and

√
1 + x2 =

√
1 + tan2 u =

√
1

cos2 u
=

1

cosu

(again assuming that −π
2 ≤ u ≤

π
2 ).

Example 3.3.5. Evaluate ˆ
dx√

1 + x2
.

Solution. With the above substitution, we obtain

ˆ
dx√

1 + x2
=

ˆ
du

cosu
=

ˆ
secu du.

We have computed this integral in Example 3.3.2, but it is more convenient
to use a different method here. Note that

ˆ
du

cosu
=

ˆ
cosu

cos2 u
du =

ˆ
cosu

1− sin2 u
du.

With v = sinu, we obtain the integral

ˆ
dv

1− v2
=

1

2

ˆ
dv

1 + v
+

1

2

ˆ
dv

1− v

=
1

2
ln |1 + v| − 1

2
ln |1− v|+ C =

1

2
ln

∣∣∣∣1 + v

1− v

∣∣∣∣+ C.

Since x = tanu and v = sinu, we have v = x√
1+x2

. Hence

1 + v

1− v
=

1 + v

1− v
1 + v

1 + v
=

(1 + v)2

1− v2
=

(
1 + x√

1+x2

)2
1− x2

1+x2

= (1 + x2)

(
1 +

x√
1 + x2

)2

=
(
x+

√
1 + x2

)2
.

It follows that
ˆ

dx

1 + x2
=

1

2
ln
(
x+

√
1 + x2

)2
+ C = ln

(
x+

√
1 + x2

)
+ C.

3.3.4 Hyperbolic substitution

Recall the functions

coshx =
1

2
(ex + e−x) and sinhx =

1

2
(ex − e−x),
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which satisfy
cosh2 x− sinh2 x = 1

and
d

dx
coshx = sinhx and

d

dx
sinhx = coshx.

If we have an integral involving the expression
√

1 + x2, then they can
be useful as well. The substitution x = sinhu then gives√

1 + x2 =
√

1 + sinh2 u =
√

cosh2 u = coshu

and dx = coshu du.

Example 3.3.6. Evaluate ˆ
dx√

1 + x2
.

Solution. We have already found the answer in Example 3.3.5, but we now
use a different method. With the above substitution, we obtainˆ

dx√
1 + x2

=

ˆ
coshu

coshu
du =

ˆ
du = u+ C.

Now we need to express u in terms of x; that is, we need to find the inverse
of the function sinh. To this end, we solve sinhu = x for u. Recalling the
definition of sinh, we obtain

1

2
(eu − e−u) = x.

If we substitute v = eu, this becomes

v

2
− 1

2v
= x.

Multiply by 2v:
v2 − 1 = 2xv.

Rearrange:
v2 − 2vx− 1 = 0.

This is a quadratic equation in v. The solutions are

v = x±
√
x2 + 1.

But since v = eu > 0, while x −
√
x2 + 1 < 0, we can only use the positive

solution v = x+
√
x2 + 1. Hence

u = ln v = ln
(
x+

√
x2 + 1

)
.

It follows that ˆ
dx√
x2 + 1

= ln
(
x+

√
x2 + 1

)
+ C.
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3.4 Numerical integration

Up to now we have calculated our integrals symbolically. But often this is
impossible and we have to resort to numerical approximations. As a definite
integral, such as ˆ b

a
f(x) dx,

is the area of a region in the plane, the basic idea is to approximate this
region by simpler shapes. One common way to do this is to divide the
interval [a, b] into lots of smaller intervals and thereby divide the region into
lots of thin strips. Each of these strips can then be approximated by a
rectangle, and we know how to compute the area of a rectangle.

Suppose that we want to divide [a, b] into n intervals of equal length.
Then h = b−a

n is this length and the numbers

xk = a+ hk, k = 0, . . . , n,

are the end points of the intervals. If wk denotes the height of the k-th
rectangle, then its area is hwk. (This may be negative, as we still consider
signed area here.) So the total area of the approximation is

h
n∑
k=1

wk.

The question is now how to choose wk. There are several common ways to
do it.

Left point rule Choose the value of f at the left end point of the cor-
responding interval, so wk = f(xk−1). Then the total area of the
approximation is

h
n∑
k=1

f(xk−1).

Right point rule Use the right end point instead. Then wk = f(xk) and
we obtain

h
n∑
k=1

f(xk).

Mid-point rule Use the mid-point
xk−1+xk

2 . Then wk = f(
xk−1+xk

2 ) and
we have the expression

h

n∑
k=1

f

(
xk−1 + xk

2

)
.
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Trapezium rule This rule is motivated by an approximation by trapezia

rather than rectangles. It corresponds to wk =
f(xk−1)+f(xk)

2 and gives
rise to

h

n∑
k=1

f(xk−1) + f(xk)

2
=
h

2
f(x0) + h

n−1∑
k=1

f(xk) +
h

2
f(xn).

In addition, there is another important method that does not quite fit in
this framework. We will see later why it works (and works very well).

Simpson’s rule Here we assume that n is even and we use the formula

h

3

n/2∑
k=1

(f(x2k−2) + 4f(x2k−1) + f(x2k)) .

Example 3.4.1. Suppose that we want to integrate

ˆ 1

0
x5 dx

numerically. We know that the exact answer is 1
6 ≈ 0.166667, and this will

allow us to compare the results for different methods.

Here we have a = 0 and b = 1. We first choose n = 2, giving rise to
h = 1

2 . Then we have the following approximations

Left point rule 1
2

(
0 + 1

32

)
= 1

64 ≈ 0.0156,

Mid-point rule 1
2

(
1

1024 + 243
1024

)
= 61

512 ≈ 0.1191,

Right point rule 1
2

(
1
32 + 1

)
= 33

64 ≈ 0.5156,

Trapezium rule 1
2

(
0+ 1

32
2 +

1
32

+1

2

)
= 17

64 ≈ 0.2656,

Simpson’s rule 1
6

(
0 + 4

32 + 1
)

= 3
16 ≈ 0.1875.

The following table contains the results for various values of n.

n 2 4 8 16

Left point rule 0.0156 0.0674 0.1107 0.1370
Mid-point rule 0.1191 0.1539 0.1634 0.1659
Right point rule 0.5156 0.3174 0.2357 0.1995
Trapezium rule 0.2656 0.1924 0.1732 0.1683
Simpson’s rule 0.1875 0.1680 0.1667 0.1667
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In order to explain the different performances of these methods, we com-
pare their errors for the integrals over two consecutive intervals in the subdi-
vision of [a, b]. More precisely, for a given number c and h > 0, we examine
the errors in the approximation of

I(h) =

ˆ c+h

c−h
f(x) dx

when the interval [c − h, c + h] is divided into two subintervals. The total

error for the integral
´ b
a f(x) dx will then be roughly this error times n/2.

We assume that f is represented by its Taylor series near c (otherwise
we can use similar arguments with finite Taylor polynomials). Then

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 +

f ′′′(c)

6
(x− c)3 + · · · , (3.4.1)

and therefore

I(h) =

[
f(c)(x− c) +

f ′(c)

2
(x− c)2 +

f ′′(c)

6
(x− c)3 + · · ·

]c+h
c−h

= 2f(c)h+ 2
f ′′(c)

6
h3 + 2

f (4)(c)

5!
h5 + · · · .

Now we compute the results of the approximation methods. The left
point rule and the right point rule are similar, and we only treat the latter
here. It gives the approximation

h(f(c) + f(c+ h)).

Using (3.4.1) for the second term, we obtain

2f(c)h+ f ′(c)h2 +
f ′′(c)

2
h3 + · · · .

The error is of order h2. The mid-point rule gives

h(f(c− h/2) + f(c+ h/2)) = 2f(c)h+
f ′′(c)

4
h3 + · · · ,

with an error of order h3. The trapezium rule gives

h

2
(f(c− h) + 2f(c) + f(c+ h)) = 2f(c)h+

f ′′(c)

2
h3 + · · · ,

again with an error of order h3. Finally, Simpson’s rule gives

h

3
(f(c− h) + 4f(c) + f(c+ h)) = 2f(c)h+

f ′′(c)

3
h3 +

f (4)(c)

36
h5 + · · · .

This is an error of order h5.
Once we add up the errors over the whole interval [a, b], we obtain

• order h for the left and right point rules,

• order h2 for the mid-point and trapezium rules, and

• order h4 for Simpson’s rule.
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3.5 Improper integrals

So far we have considered the area of regions bounded by the graph of a
function f , the x-axis, and two vertical lines, given by x = a and x = b. But
sometimes we want to remove one or both of these vertical lines and consider
regions stretching to infinity. A similar situation occurs if f(x) tends to ∞
or −∞ as x approaches a or b. It is not always clear what the area of such
a region is, but in some cases the notion still makes sense.

We define ˆ ∞
a

f(x) dx = lim
b→∞

ˆ b

a
f(x) dx,

provided that this limit exists. Similarly,
ˆ b

−∞
f(x) dx = lim

a→−∞

ˆ b

a
f(x) dx,

provided, again, that the limit exists.

Example 3.5.1. We have
ˆ b

0
e−x dx = 1− e−b → 1

as b→∞. Hence ˆ ∞
0

e−x dx = 1.

Similarly, ˆ 0

a
ex dx = 1− ea → 1

as a→ −∞. Hence ˆ 0

−∞
ex dx = 1.

But ˆ 0

−∞
e−x dx =∞

and ˆ ∞
0

ex dx =∞.

If limx→a+ f(x) = ±∞, then we define
ˆ b

a
f(x) dx = lim

c→a+

ˆ b

c
f(x) dx,

provided that the limit exists. If limx→b− f(x) = ±∞, then
ˆ b

a
f(c) dx = lim

c→b−

ˆ c

a
f(x) dx,

provided that the limit exists.
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Example 3.5.2. We have

ˆ 1

c

dx√
x

= 2(1−
√
c)→ 2

as c→ 0+. Hence ˆ 1

0

dx√
x

= 2.

But ˆ 1

0

dx

x
= lim

a→0+
(− ln a) =∞.

All integrals of this type are called improper .
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Chapter 4

Differential equations

4.1 Introduction

If an equation involves a function and some of its derivatives, then it is called
a differential equation. For example, the following is a differential equation:

f ′ = f. (4.1.1)

This expresses the fact that a function coincides with its own derivative.
Often the equation is written in the form

f ′(x) = f(x),

and then this is usually meant to be true for all x. If we write y for the
dependent variable (so that y = f(x)), then we may also write

dy

dx
= y

for the same equation.
To solve a differential equation means to find the functions that make

it a true statement. For example, we know that the exponential function
with base e, i.e., the function with f(x) = ex, satisfies (4.1.1). You can also
check that for any constant c, the function defined by f(x) = cex is another
solution. In fact these are all the solutions of this equation.

When we solve a differential equation, we typically obtain infinitely many
solutions. For this reason, a differential equation often comes together with
additional conditions that are designed to pick a specific solution. For the
type of equations that we study here, the most common condition is one of
the form

f(x0) = y0, (4.1.2)

where x0 and y0 are given numbers. That is, we prescribe the value of the
solution at a specific point. Very often in problems of this sort, the indepen-
dent variable represents time and condition (4.1.2) represents a measurement

73
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of the quantity y at an initial time. Therefore, a problem consisting of a
differential equation and a condition of this sort is called an initial value
problem.

For example, equations (4.1.1) and (4.1.2) constitute an initial value
problem. Any function of the form f(x) = cex is a solution of (4.1.1). We
can now use (4.1.2) to determine the value of c. It must satisfy

cex0 = y0,

so c = y0e
−x0 . Therefore, the unique solution of the initial value problem is

f(x) = y0e
−x0ex = y0e

x−x0 .

In general, it can be rather difficult to solve a given differential equation,
but there are methods for equations of a specific form.

4.2 Separation of variables

A differential equation is called separable if it can be written in the form

f ′(x) = g(x)h(f(x))

for some functions g and h. If y = f(x), then we can also write

dy

dx
= g(x)h(y).

These equations are relatively easy to solve. The basic idea is to separate
variables, meaning that we write all expressions involving the independent
variable (including the derivative) on one side and all expressions involving
the dependent variable on the other side of the equation. That is,

f ′(x)

h(f(x))
= g(x).

It is convenient to represent this in the form

dy

h(y)
= g(x)dx, (4.2.1)

keeping in mind, as ever, that these expressions have only symbolic charac-
ter. Now we integrate:

ˆ
f ′(x)

h(f(x))
dx =

ˆ
g(x) dx.

By the substitution rule, we have
ˆ

f ′(x)

h(f(x))
dx =

ˆ
dy

h(y)
,
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so ˆ
dy

h(y)
=

ˆ
g(x) dx.

(This is what we also get by just writing the integral sign in front of the
expressions in (4.2.1).) Assuming that we can evaluate these indefinite in-
tegrals, say ˆ

g(x) dx = G(x) + C1

and ˆ
dy

h(y)
= H(y) + C2,

we obtain

H(y) = G(x) + C.

(Here C = C1 − C2 is another generic constant.) Thus we have turned
a differential equation into an algebraic equation, which we can now try to
solve for y. There is still an undetermined constant C in that equation, which
reflects that fact that differential equations normally have many solutions.
We will obtain one solution for every value of C.

Example 4.2.1. Solve the differential equation f ′ = f .

Solution. First we introduce more convenient notation. Write y = f(x).
Then the equation becomes dy

dx = y, which gives rise to

dy

y
= dx.

Integration gives ˆ
dy

y
=

ˆ
dx.

As ˆ
dx = x+ C1 and

ˆ
dy

y
= ln |y|+ C2,

we obtain

ln |y| = x+ C.

Solving for y, we conclude that

y = ex+C = eCex or y = −ex+C = −eCex.

Writing c = eC or c = −eC , we obtain the solution

y = cex.

We can check that this is a solution for any constant c.
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Example 4.2.2. Solve the equation dy
dx = x

y .
Solution. We first separate variables:

y dy = x dx.

Thus ˆ
y dy =

ˆ
x dx.

We have ˆ
y dy =

y2

2
+ C1 and

ˆ
x dx =

x2

2
+ C2.

Hence
y2

2
=
x2

2
+ C.

Solving for y, we obtain

y =
√
x2 + 2C or y = −

√
x2 + 2C.

Again we can check that these are indeed solutions.

Example 4.2.3. Solve the initial value problem

dy

dx
= ex+y, y(0) = 8.

Solution. Using the fact that ex+y = exey, we separate variables:

e−ydy = ex dx.

Thus ˆ
e−y dy =

ˆ
ex dx.

We have ˆ
e−y dy = −e−y + C1 and

ˆ
ex dx = ex + C2.

Therefore,
−e−y = ex + C.

Solving for y, we obtain

y = − ln(−ex − C).

Now we use the initial condition to determine C. We must have

8 = − ln(−1− C).

Hence C = −e−8 − 1. We finally obtain

y = − ln(e−8 + 1− ex).
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4.3 Linear equations

Here we study differential equations that can be written in the form

p(x)
dy

dx
+ q(x)y(x) = r(x) (4.3.1)

for certain functions p, q, and r. If either q(x) = 0 or r(x) = 0, then this
is a separable equation and we can normally solve it with the method from
the previous section. Otherwise, we need a different method.

We say that equation (4.3.1) is homogeneous if r(x) = 0 for all x.

4.3.1 Integrating factors

The main idea behind this method is that the equation may become easier
if we multiply y by another function, say m. Setting z = my, we obtain,
using the product rule

dz

dx
=
dm

dx
y(x) +m(x)

dy

dx
.

If y is to solve (4.3.1), then

dz

dx
=
dm

dx
y(x) +

r(x)

p(x)
m(x)− q(x)

p(x)
m(x)y(x).

If we choose m such that is solves the equation

dm

dx
=
q(x)

p(x)
m, (4.3.2)

then two of these terms cancel each other, and we have

dz

dx
=
r(x)

p(x)
m(x). (4.3.3)

This is then an equation that is easy to solve.
In order to implement this idea, we need to solve (4.3.2). We can do this

by separation of variables, as we can write the equation in the form

dm

m
=
q(x)

p(x)
dx,

which gives

lnm =

ˆ
q(x)

p(x)
dx+ C.

For our purpose here, it is sufficient to find one solutions. So we may set
C = 0. Then

m = e
´
q(x)/p(x) dx.
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Once we have determined m, we can solve (4.3.3) just by integration. We
have

z =

ˆ
r(x)

p(x)
m(x) dx.

From this we now easily obtain y.
So the method works as follows.

Step 1 Evaluate ˆ
q(x)/p(x) dx.

Step 2 Set
m = e

´
q(x)/p(x) dx.

Step 3 Evaluate

z =

ˆ
r(x)

p(x)
m(x) dx.

Step 4 The desired solution is y = z/m.

Example 4.3.1. Solve the equation

dy

dx
+
y

x
= x2.

Solution. We first note that ˆ
dx

x
= lnx+ C.

Our integrating factor is m = elnx = x. Next we set

z =

ˆ
x3 dx =

x4

4
+ C.

So

y =
x4

4 + C

x
=
x3

4
+
C

x
.

At the end it is usually a good idea to check if this is really a solution.

Example 4.3.2. Solve the equation

dy

dx
+ 2y = x.

Solution. We use the integrating factor

m = e
´
2 dx = e2x
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here. Then

z =

ˆ
xe2x dx =

x

2
e2x − 1

4
e2x + C

and

y = e−2xz =
x

2
− 1

4
+ Ce−2x.

4.3.2 The method of undetermined coefficients

This method typically works only for equations of the specific form

a
dy

dx
+ by = r(x), (4.3.4)

where a and b are constants, and only when the function r has a special
structure.1 The idea is to find solutions that mimic the structure of r(x).
This is easiest explained with some examples.

Example 4.3.3. Consider the equation

dy

dx
+ 2y = x.

The right-hand side is a polynomial of degree 1. We conjecture that there is
a solution that is also a polynomial of degree 1, so y(x) = ax+ b. Inserting
this into the equation, we obtain

a+ 2(ax+ b) = x.

Rearrange the terms:
(2a− 1)x+ a+ 2b = 0.

This is satisfied if we choose a and b such that

2a = 1,

a+ 2b = 0.

This system has a unique solution, which is a = 1
2 and b = −1

4 . So we obtain
the solution

y =
x

2
− 1

4

of the differential equation.

Example 4.3.4. Consider the equation

2
dy

dx
+ 3y = e2x.

1It also works for certain equations involving higher order derivatives, but this is outside
the scope of this course.
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Here we conjecture that there may be a solution of the form y(x) = ce2x for
some constant c. Inserting this into the equation, we obtain

4ce2x + 3ce2x = e2x.

That is,
(7c− 1)e2x = 0.

This is satisfied for c = 1
7 . So we have the solution

y =
1

7
e2x.

The following table gives expressions that may fruitfully be tried for
different forms of r(x).

r(x) y(x)

anx
n + · · ·+ a0 bnx

n + · · ·+ b0
aeαx beαx

(anx
n + · · ·+ a0)e

αx (bnx
n + · · ·+ b0)e

αx

a cos(αx) b cos(αx) + c sin(αx)
a sin(αx) b cos(αx) + c sin(αx)
(anx

n + · · ·+ a0) cos(αx) (bnx
n + · · ·+ b0) cos(αx)+
+(cnx

n + · · ·+ c0) sin(αx)
(anx

n + · · ·+ a0) sin(αx) (bnx
n + · · ·+ b0) cos(αx)+
+(cnx

n + · · ·+ c0) sin(αx)

But even if this works, we are not done yet. We have found just one
solution out of infinitely many, and it is unlikely to be the one we are looking
for. Fortunately, it is now easy to generate all other solutions as well. Here
the idea is to solve the corresponding homogeneous equation, i.e.,

a
dz

dx
+ bz = 0.

This can be done by separation of variables, and because we have an equation
of a specific form, we can immediately write down the general solution:

z(x) = Ce−
bx
a .

The general solution of the original equation (4.3.4) is the sum of this and
the particular solution found earlier.

Example 4.3.5. The general solution of

dy

dx
+ 2y = x.

is

y =
x

2
− 1

4
+ Ce−2x.

(Cf. Example 4.3.2.)
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Example 4.3.6. The general solution of

2
dy

dx
+ 3y = e2x.

is

y =
1

7
e2x + Ce−

3x
2 .

Example 4.3.7. Solve the differential equation

dy

dx
− 2y = 3x cosx.

Solution. We want to find the general solution, but first we try to find one
particular solution of the form

y = (ax+ b) cosx+ (cx+ d) sinx.

This gives

dy

dx
= a cosx− (ax+ b) sinx+ c sinx+ (cx+ d) cosx

= (cx+ a+ d) cosx+ (−ax+ c− b) sinx.

Inserting this into the equation, we obtain

((c− 2a)x+ a+ d− 2b) cosx+ (−(a+ 2c)x+ c− b− 2d) sinx = 3x cosx.

We now want to solve the system

−2a+ c = 3,

a− 2b+ d = 0,

a+ 2c = 0,

−b+ c− 2d = 0.

This has the unique solution a = −6
5 , b = − 9

25 , c = 3
5 , d = 12

25 . Thus a
solution of the equation is

y = −30x+ 9

25
cosx+

15x+ 12

25
sinx.

The general solution of the homogeneous equation is z = Ce2x, and so the
general solution of the full equation is

y = Ce2x − 30x+ 9

25
cosx+

15x+ 12

25
sinx.
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4.4 Numerical methods

For more complicated differential equations, we typically cannot find ex-
act solutions and therefore we have to resort to numerical approximations.
Consider an initial value problem of the form

dy

dx
= F (x, y(x)), y(x0) = y0, (4.4.1)

where F is an arbitrary function in two variables. (We will discuss functions
in two variables in more detail later. For the moment, just think of some
quantity depending on x and y.)

The basic idea for almost all numerical methods is the same as for inte-
gration: divide the x-axis (or an interval) into small intervals and find an
approximation in each interval. But in contrast to integration, we now have
to compute the approximations in the right order and use the output from
one computation as an input for the next.

4.4.1 Euler’s method

The following is a very simple method, called Euler’s method (or sometimes
called forward Euler method to distinguish it from the backward version
discussed below). Here we divide the interval [x0,∞) into small intervals of
the same length, say h. Define xn = x0 + nh; then [xn, xn+1] is one of these
intervals for n = 0, 1, 2, . . . . Set yn = y(xn). Now use a difference quotient
to approximate the derivative in (4.4.1). More precisely,

dy

dx
(xn) ≈ y(xn+1)− y(xn)

h
=
yn+1 − yn

h
.

Inserting this into the equation, we obtain

yn+1 − yn
h

≈ F (xn, y(xn)) = F (xn, yn).

Replace the approximation by equality and solve for yn+1:

yn+1 = yn + hF (xn, yn).

The equation yn+1 = y(xn+1) is no longer true exactly, but we expect
that it is true approximately; so yn+1 ≈ y(xn+1). Therefore, we can use this
idea to compute approximations for y(xn) recursively. Using the value y0
from (4.4.1), we set

yn+1 = yn + hF (xn, yn), n = 0, 1, 2, . . . .

In the end we expect that
y(xn) ≈ yn.

The results will of course depend on the choice of h, which is called the step
size, and we will get better approximations the smaller the values of h.
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Example 4.4.1. Consider the initial value problem

dy

dx
=

1

y
, y(0) = 1.

In this case, we have the formula

yn+1 = yn +
h

yn

and we choose y0 = 1. The following table gives the approximations for the
values of y up to y(2) for h = 0.5 and h = 0.25.

h y(0) y(0.25) y(0.5) y(0.75) y(1) y(1.25) y(1.5) y(1.75) y(2)

0.5 1 1.5 1.8333 2.1061 2.3435
0.25 1 1.25 1.45 1.6224 1.7765 1.9172 2.0476 2.1697 2.2849

In this case, the equation is separable and we can calculate the exact
solution, namely y(x) =

√
2x+ 1, with y(2) =

√
5 ≈ 2.2361.

In order to understand more sophisticated methods, we now have a look
at Euler’s method from a different point of view. If y is a solution of (4.4.1),
then the fundamental theorem of calculus implies that

y(xn+1) = y(xn) +

ˆ xn+1

xn

F (x, y(x)) dx. (4.4.2)

If we imagine that we know what F (x, y(x)) is and approximate the integral
by the left point rule, we obtain

y(xn+1) ≈ y(xn) + hF (xn, y(xn)).

This is exactly the approximation formula underpinning the method. We
may now replace the left point rule by something else and see what happens.

4.4.2 Backward Euler method

As the name suggests, this method is closely related to Euler’s method. The
relationship between the two is similar to the relationship between the left
point rule and the right point rule for numerical integration. But when
we solve differential equations, the fact that we need to treat the points
x1, x2, . . . consecutively, gives rise to some new complications.

Again we divide the interval [x0,∞) into small intervals of the same
length h, giving rise to xn = x0 + nh for n = 1, 2, . . . , and set yn = y(xn).
But now we use the approximation formula

dy

dx
(xn+1) ≈

yn+1 − yn
h

.
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Using (4.4.1), this gives rise to

yn+1 − yn
h

≈ F (xn+1, yn+1)

If we replace the approximation by equality and rewrite the formula, we
obtain

yn+1 = yn + hF (xn+1, yn+1).

The next step is to solve this equation for y(xn+1). But since it appears
on both sides of the equation, this may be difficult to do. The way out of
this difficulty is to solve the equation numerically. For example, we may use
Newton’s method at this step.

Assuming that we have successfully done this, we expect that

y(xn+1) ≈ yn+1.

Just like for the previous method, we then feed yn+1 into the next step and
construct an approximate solution step by step.

Because this method does not provide explicit formulas, but rather re-
quires an additional numerical method as an intermediate step, it is called an
implicit method (in contrast to the forward Euler method, which is explicit).

Example 4.4.2. Consider the initial value problem

dy

dx
= −y, y(0) = 1.

If we want to solve this with the backward Euler method, we obtain the
formula

yn+1 = yn − hyn+1.

In this case, we can solve for yn+1 exactly:

yn+1 =
yn

1 + h
.

Thus for h = 0.25, we obtain the following values.

h y(0) y(0.25) y(0.5) y(0.75) y(1) y(1.25) y(1.5) y(1.75) y(2)

0.25 1 0.8 0.64 0.512 0.4096 0.3277 0.2621 0.2097 0.1678

The exact solution is y(x) = e−x and y(2) ≈ 0.1353.

This is example is not typical; in general we will need to use Newton’s
method or something similar in each step, which means that this method
will require a lot more computation than the forward Euler method. The
reason why implicit methods are used nevertheless is that they are more ro-
bust. Certain differential equations require an extremely small step size h for
explicit methods, making them impractical. In contrast, implicit methods
typically work well for these equations.
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4.4.3 Other methods

We have seen that for numerical integration, the trapezium rule is better
than the left or right point rule. If we use it to approximate the integral in
(4.4.2), it gives rise to

yn+1 = yn +
h

2
(F (xn, yn) + F (xn+1, yn+1)). (4.4.3)

This is the trapezium method . It is an implicit method, because in order to
solve (4.4.3) for yn+1, we typically have to use numerical methods again.

There are many other methods. For example, we could have approxi-
mated the integral by Simpson’s rule. This would have given one of a family
of methods called Runge-Kutta methods. These methods are among the
most commonly used, because they are very efficient, but as they are also
slightly complicated, we do not discuss them in detail.
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Chapter 5

Functions of several variables

5.1 Background

So far we have considered functions of one variable, where the input is a
single quantity. But some quantities depend on several things. For example,
the volume of a box depends on the length, width, and height; so this
corresponds to a function of three variables, say `, w, h, which is determined
by the formula

V = `wh.

If we denote this specific function by f , then we can write V = f(`, w, h).

A function of several variables still has a graph. For a function of two
variables, this is a surface in a three-dimensional space. For example, if we
have z = f(x, y), then the graph of f comprises all points with coordinates
(x, y, z) satisfying this equation. This can still be visualised, even though it
is more difficult to draw. The graph of a function of three variables is an
object in a four-dimensional space, which is difficult to imagine.

Example 5.1.1. The graph of the function given by z = x2y2

1000 is depicted
in Fig. 5.1.1.

Figure 5.1.1: The graph of the function in two variables given by z = x2y2

1000 .

87
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Most of the things we have seen so far have generalisations for functions
in several variables. We will discuss differentiation in particular here.

5.2 Partial derivatives

The easiest way to differentiate a function in several variables is to treat
it like a function in one variable. That is, we single out one variable and
pretend that the other variables are constants. This has the advantage that
we can use all the techniques seen earlier, but it has the disadvantage that we
will get only partial information, as we have ignored all the other variables.

Suppose, for example, that we have a function f , depending on the
variables x and y. If we ‘freeze’ y, then we have a function depending only
on x. The derivative of this function is called the partial derivative of f with
respect to x and denoted by ∂f

∂x . This is still a function of x and y, so if we

evaluate it at a specific point, we write ∂f
∂x (x, y). More formally, we have

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
.

Similarly, if we ‘freeze’ x and then differentiate, we obtain the partial deriva-
tive with respect to y, denoted ∂f

∂y . Thus

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

For functions of more than two variables, we can define partial derivatives
the same way, ‘freezing’ all variables but one. For a function of n variables,
this gives rise to n different partial derivatives.

Example 5.2.1. For f(x, y) = xy2, we have

∂f

∂x
(x, y) = y2 and

∂f

∂y
(x, y) = 2xy.

Example 5.2.2. For f(x, y, z) = xey + cos z, we have

∂f

∂x
(x, y, z) = ey,

∂f

∂y
(x, y, z) = xey, and

∂f

∂z
(x, y, z) = − sin z.

5.3 Tangent plane and linear approximation

We restrict our attention to functions of two variables here, because it is
useful to visualise the following concepts geometrically. Nevertheless, similar
statements are also valid for functions of more than two variables.

Just like the graph of a function of one variable can be approximated by
the tangent line near a specific point, for functions of two variables, we have
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an approximation by tangent planes. Suppose that we have z = f(x, y) for a
certain function f . Fix a point (x0, y0) in the plane. Then for z0 = f(x0, y0),
the point (x0, y0, z0) belongs to the graph of f . If we want to determine the
tangent plane at this point, we can again ‘freeze’ one variable. If we fix
y0, then effectively we consider the intersection of the graph with the plane
given by y = y0. The intersection of the tangent plane with the plane
y = y0 corresponds to the tangent line to the graph of the function given by
z = f(x, y0), which is now a function in one variable (see Fig. 5.3.1). This
tangent line is given by the equations

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0),

y = y0.

If we ‘freeze’ x = x0, we obtain another line, given by

Figure 5.3.1: The graph of the function f with f(x, y) = 1 − x2+y2

20 (blue)
together with its tangent plane at (2, 2, 35) (green), the plane given by y = 2
(grey) and the intersection of these planes (red)

z = f(x0, y0) +
∂f

∂y
(x0, y0)(y − y0),

x = x0.

The tangent plane is the plane containing both of these lines. It is given by
the equation

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

Why is this useful? Sometimes we want to compute approximate values
of a function using a linear approximation, and for a function in two vari-
ables, the tangent plane tells us what the appropriate linear approximation
is. Recall the Taylor polynomials for functions in one variable from Sect.
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2.5. In its simplest form, Taylor’s theorem says that for a function g of one
variable, we have

g(x) ≈ g(x0) + g′(x0)(x− x0),
provided that x is near x0. For a function f of two variables, the corre-
sponding statement is:

f(x, y) ≈ f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

Again this holds if x is near x0 and y is near y0. Sometimes it is more
convenient to write the formula in terms of the differences δx = x− x0 and
δy = y − y0. Then it becomes

f(x0 + δx, y0 + δy) ≈ f(x0, y0) +
∂f

∂x
(x0, y0)δx+

∂f

∂y
(x0, y0)δy.

This is valid for small values of δx and δy.
For a function of three variables, the corresponding formula is:

f(x, y, z) ≈ f(x0, y0, z0) +
∂f

∂x
(x0, y0, z0)(x− x0)

+
∂f

∂y
(x0, y0, z0)(y − y0) +

∂f

∂z
(x0, y0, z0)(z − z0)

or

f(x0 + δx, y0 + δy, z0 + δz) ≈ f(x0, y0, z0) +
∂f

∂x
(x0, y0, z0)δx

+
∂f

∂y
(x0, y0, z0)δy +

∂f

∂z
(x0, y0, z0)δz

For functions of more than three variables, we have to modify it accordingly.

5.4 Total derivatives

Suppose that z = f(x, y) for a certain function f , and the quantities x and
y both depend on another quantity, say t (so they correspond to certain
functions, too). This makes z depend on t, and we may ask what dz

dt is. This
is called the total derivative of z with respect to t.

In order to answer this question, we need a version of the chain rule from
Sect. 2.2.4 for functions in several variables. For the situation described
above, this is

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
. (5.4.1)

Similar rules hold for functions of three or more variables. For example, if
w = f(x, y, z), and x, y, and z all depend on t, then

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
.
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A situation that is very common, especially if t stands for time, is that
we have z = f(t, x, y) (possibly involving other variables as well). Then we
can use the same chain rule and observe in addition that dt

dt = 1. This gives

dz

dt
=
∂z

∂t
+
∂z

∂x

dy

dt
+
∂z

∂y

dy

dt
.

We can see why we have these formulas using the linear approximations
from the preceding section. For example, in the situation z = f(x, y), we
have

f(x+ δx, y + δy) ≈ f(x, y) +
∂z

∂x
δx+

∂z

∂y
δy.

Moreover,

δx ≈ dx

dt
δt and δy ≈ dy

dt
δt,

so that
f(x+ δx, y + δy)− f(x, y)

δt
≈ ∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

The left-hand side is a difference quotient and will converge to dz
dt when we

let δt→ 0. This gives rise to formula (5.4.1).

Example 5.4.1. A particle moves in a circular motion on the plane, so that
its coordinates at time t are given by x = cos t, y = sin t. The concentration
c of some chemical at time t at the point (x, y) is given by exy sin t. What
is the rate of change of the concentration experienced by the particle?
Solution. We have

dc

dt
=
∂c

∂t
+
∂c

∂x

dx

dt
+
∂c

∂y

dy

dt
= exy cos t− exy sin2 t+ ex sin t cos t.

5.5 Second derivatives

If we compute the partial derivatives of a function f(x, y) of two variables, we
obtain two new functions ∂f

∂x (x, y) and ∂f
∂y (x, y). Both of them are functions

of two variables again. So we can try to differentiate them as well. If
successful, we get the second order partial derivatives of f . These are

∂2f

∂x2
(x, y) =

∂

∂x

(
∂f

∂x
(x, y)

)
,

∂2f

∂x∂y
(x, y) =

∂

∂x

(
∂f

∂y
(x, y)

)
,

∂2f

∂y∂x
(x, y) =

∂

∂y

(
∂f

∂x
(x, y)

)
,

∂2f

∂y2
(x, y) =

∂

∂y

(
∂f

∂y
(x, y)

)
.

Example 5.5.1. If f(x, y) = x3 cos y, then

∂f

∂x
(x, y) = 3x2 cos y and

∂f

∂y
(x, y) = −x3 sin y.
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Hence

∂2f

∂x2
(x, y) = 6x cos y,

∂2f

∂x∂y
(x, y) = −3x2 sin y,

∂2f

∂y∂x
(x, y) = −3x2 sin y,

∂2f

∂y2
(x, y) = −x3 cos y.

It is no coincidence that two of the expressions in this example are the
same. It is in fact always true that

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y).

Thus we only need to calculate three second derivatives for a function of two
variables.

For a function f(x, y, z) of three variables, we may differentiate the par-
tial derivatives ∂f

∂x (x, y, z), ∂f
∂y (x, y, z), and ∂f

∂z (x, y, z) once more and we
obtain

∂2f

∂x2
(x, y, y),

∂2f

∂x∂y
(x, y, z),

∂2f

∂x∂z
(x, y, z),

∂2f

∂y∂x
(x, y, z)

∂2f

∂y2
(x, y, z),

∂2f

∂y∂z
(x, y, z),

∂2f

∂z∂x
(x, y, z)

∂2f

∂z∂y
(x, y, z),

∂2f

∂z2
(x, y, z).

In practice, we don’t have to calculate all of these, as

∂2f

∂x∂y
=

∂2f

∂y∂x
,

∂2f

∂x∂z
=

∂2f

∂z∂x
, and

∂2f

∂y∂z
=

∂2f

∂z∂y
.

Of course we can differentiate more than twice, and we use similar no-
tation for these higher order partial derivatives, e.g.,

∂3f

∂y3
or

∂5f

∂x3∂y2
.

5.6 Applications

5.6.1 Maxima and minima

Just as for functions of one variable, a function of two variables, say z =
f(x, y), has a local maximum at a given point (c, d) if f(x, y) ≤ f(c, d) for
all points (x, y) in the immediate neighbourhood of (c, d). Similarly, we say
that f has a local minimum at (c, d) if f(x, y) ≥ f(c, d) for all points (x, y)
in the immediate neighbourhood of (c, d).
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For functions of one variable, we can typically find the local minima and
maxima by considering the derivative. For functions of several variables, we
can apply similar principles.

Suppose that f has a local maximum at the point (c, d). Then consider
the function g obtained by ‘freezing’ the second variable. That is, g(x) =
f(x, d). This function automatically has a local maximum at c, and if a
derivative exists, then we know that it has to vanish at c. But of course the
derivative of g is the partial derivative of f . So

∂f

∂x
(c, d) = 0.

Similarly, ‘freezing’ the first variable, we see that

∂f

∂y
(c, d) = 0.

Also, the same applies to local minima. Therefore, if we look for local
maxima or minima, we can get a set of candidates by solving this pair of
equations for c and d.

Example 5.6.1. Find the local maxima and minima of z = f(x, y) =
(1− x2)2 + y2.
Solution. We compute

∂f

∂x
(x, y) = −4x(1− x2),

∂f

∂y
(x, y) = 2y.

Thus we need to solve the system of equations

−4x(1− x2) = 0,

2y = 0.

The second equation is easy to solve: y = 0. The first one we can factorise,
as

−4x(1− x2) = −4x(1− x)(1 + x).

We obtain the solutions x = 0, x = 1, and x = −1. For the system consisting
of both equations, we have the solutions (0, 0), (1, 0), and (−1, 0).

It is not difficult to see that (1, 0) and (−1, 0) are local minima. This is
because f(±1, 0) = 0, while f(x, y) ≥ 0 everywhere. The other point, (0, 0),
is less obvious. Here we need other ways to decide.

As for the case of functions of one variable, we can usually (but not
always) distinguish between local maxima, local minimia, and other candi-
dates using second derivatives. The following criteria apply
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• If ∂f
∂x (c, d) = 0 and ∂f

∂y (c, d) = 0, and in addition,

∂2f

∂x2
(c, d) +

∂2f

∂y2
(c, d) < 0

and
∂2f

∂x2
(c, d)

∂2f

∂y2
(c, d)−

(
∂2f

∂x∂y
(c, d)

)2

> 0,

then f has a local maximum at (c, d).

• If ∂f
∂x (c, d) = 0 and ∂f

∂y (c, d) = 0, and in addition,

∂2f

∂x2
(c, d) +

∂2f

∂y2
(c, d) > 0

and
∂2f

∂x2
(c, d)

∂2f

∂y2
(c, d)−

(
∂2f

∂x∂y
(c, d)

)2

> 0,

then f has a local minimum at (c, d).

• If ∂f
∂x (c, d) 6= 0 or ∂f

∂y (c, d) 6= 0 or

∂2f

∂x2
(c, d)

∂2f

∂y2
(c, d)−

(
∂2f

∂x∂y
(c, d)

)2

< 0,

then f has neither a local maximum nor a local minimum at (c, d).

Example 5.6.2. In Example 5.6.1, we compute

∂2f

∂x2
(x, y) = 12x2 − 4,

∂2f

∂x∂y
(x, y) = 0,

∂2f

∂y2
(x, y) = 2.

Thus
∂2f

∂x2
(0, 0)

∂2f

∂y2
(0, 0)−

(
∂2f

∂x∂y
(0, 0)

)
= −8.

So we have neither a local minimum nor a local maximum at (0, 0).

The method is not restricted to two variables. For example, for a function
f(x, y, z) of three variables, we would solve the system

∂f

∂x
(x, y, z) = 0,

∂f

∂y
(x, y, z) = 0,

∂f

∂z
(x, y, z) = 0,

in order to find candidates for local maxima or minima. It is still possible
to use second derivatives in order to distinguish between local maxima and
local minima, but this is rather more complicated for functions in three
variables and is not discussed here.
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5.6.2 Exact differential equations

Occasionally problems for functions of one variable become easier when we
reformulate it in terms of functions of several variables. Here we consider
ordinary differential equations of the form

M(x, y) +N(x, y)
dy

dx
= 0, (5.6.1)

where M and N are two given functions in two variables.

Example 5.6.3. The differential equation

y
dy

dx
= sin(x+ y)

can be written in this form, where M(x, y) = − sin(x+ y) and N(x, y) = y.
(But there are other ways to do it. For example, the choice M(x, y) =

− sin(x+y)
y and N(x, y) = 1 would have produced the required form, too.)

Suppose that we look for solutions y(x) of (5.6.1) that are given implicitly
through an equation of the form h(x, y) = 0. Then the total derivative of
z = h(x, y) with respect to x is

dz

dx
=
∂h

∂x
+
∂h

∂y

dy

dx
.

But since z = h(x, y) = 0, we must have the equation dz
dx = 0. So

∂h

∂x
+
∂h

∂y

dy

dx
= 0.

(This is in fact just an example of implicit differentiation. If we consider a
function y = y(x) given implicitly by the equation h(x, y) = 0, then implicit
differentiation gives this formula.) Comparing this equation with (5.6.1), we
see that we will get a solution if we can find h such that

∂h

∂x
(x, y) = M(x, y) and

∂h

∂y
(x, y) = N(x, y).

It is not always possible to solve this system of equations. In fact, if we
have a solution, then it will necessarily satisfy

∂2h

∂x∂y
=

∂2h

∂y∂x
,

as we have seen in Sect. 5.5. In terms of M and N , this is expressed as
follows:

∂M

∂y
=
∂N

∂x
. (5.6.2)
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If (5.6.2) is satisfied, then we say that the differential equation (5.6.1) is
exact . If (5.6.2) is not satisfied, then there is no chance to solve (5.6.1) with
this method. On the other hand, if our equation is exact, then it turns out
that we can solve the above system for h, and this will give a solution of
(5.6.1) in implicit form.

Example 5.6.4. Consider the differential equation

2x+ y2 + (2xy + 1)
dy

dx
= 0.

This is of the form (5.6.1) with M(x, y) = 2x + y2 and N(x, y) = 2xy + 1.
We first check that the equation is exact, computing

∂M

∂y
= 2y and

∂N

∂x
= 2y.

Thus we may attempt the method, to which end we need to solve

∂h

∂x
(x, y) = 2x+ y2 and

∂h

∂y
(x, y) = 2xy + 1.

In order to find h, we first consider the first equation only. If we fix y,
then this just means that we need to find an antiderivative of the function
2x+ y2 (with respect to the variable x). Hence

h(x, y) = x2 + xy2 + C(y)

for some integration ‘constant’ C(y), which is important here and may de-
pend on y. (So it is a function of y rather than a proper constant.) We now
need to determine C(y), and to this end, we consider the second equation
for h. Inserting the expression that we already have, we obtain

2xy +
dC

dy
= 2xy + 1.

So we find that dC
dy = 1, which implies that C(y) = y + c for another

integration constant c. This finally gives

h(x, y) = x2 + xy2 + y + c.

That is, we have found implicit solutions of the differential equations in
terms of the equation

x2 + xy2 + y + c = 0.

If we want the solution explicitly, we have to solve this for y. It is a
quadratic equation in y, so we can do that and we get

y =
−1±

√
1− 4x(x2 + c)

2x
.
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Example 5.6.5. Consider the equation

y cosx+ 2xey + (sinx+ x2ey − y2)dy
dx

= 0.

Here we set M(x, y) = y cosx + 2xey and N(x, y) = sinx + x2ey − y2 and
check that

∂M

∂y
= cosx+ 2xey =

∂N

∂x
.

So the equation is exact. We need to solve

∂h

∂x
= y cosx+ 2xey and

∂h

∂y
= sinx+ x2ey − y2.

The first equation implies that

h(x, y) = y sinx+ x2ey + C(y)

for some function C(y). The second equation implies that

sinx+ x2ey +
dC

dy
= sinx+ x2ey − y2.

Hence C(y) = c− y3

3 , and we have solutions of the differential equation given
implicitly in terms of the equation

y sinx+ x2ey − y3

3
+ c = 0.

In this case, it’s difficult to find an explicit representation, so we leave it in
this form.
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