
PH20029 Thermal Physics

Statistical Mechanics notes, Prof Tim Birks

These notes only cover statistical mechanics. Classical 

thermodynamics is taught by Dr Wolverson.

Statistical mechanics is where we admit that thermodynamic 

systems (such as an ideal gas) are in fact made up of atomic-

scale constituents, the motion of which is not known. 

Nevertheless the results of classical thermodynamics arise from 

averages of their properties.

Revision: You will need material from previous units, including:

discrete statistics: factorials, the nCr formula, averages

anything you may know about continuous distributions and 

probability density functions will be very useful

series: Taylor series, binomial theorem, geometric progressions

functions: hyperbolic functions (sinh, cosh, tanh) are useful

Properties of Matter

and (of course) the thermodynamics in the first part of the unit 
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The Moodle page for the unit contains:

Organisational information (when different lectures and 

problems classes will be held, etc). I will assume you have read 

this and will keep checking for changes from time to time, 

especially if you miss any announcements in lectures.

Problem sheets as pdf files. I will not be handing out paper 

copies. You can print them yourself, in time to attempt the 

questions well before the associated problems classes. In 2013 

this should cost you 15p in total using University printers. 

Model answers to problem sheets. These will become available 

after the corresponding problems classes. The idea is to attempt 

the problems before being given the answers!

These notes as a pdf file. I won't be handing out paper copies of 

these either. 

Health warning :

Our statistical mechanics is based on a quantum mechanical 

description of particles. If your course does not include quantum 

mechanics, it may help you to do some of your own studies of 

the subject, in order to follow the statistical mechanics. 

However, the key results are given to you in these notes.

FYI the symbol ħ "h-bar" is widely used in quantum mechanics 

and represents Planck's constant h divided by 2p.

To contact me outside timetabled contact time, use email 

(t.a.birks@bath.ac.uk) or try my office (3W3.17B)
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These notes cover the following topics (and there are appendices 

at the end):

1. (p. 4) Introduction

Three types of states, the postulates of statistical mechanics, the 

thermodynamic limit.

2. (p. 11) The closed system

Boltzmann's entropy, deriving the laws of thermodynamics, the 

statistical weight function, two-level systems.

3. (p. 24) System at constant temperature

The Boltzmann distribution, the partition function, levels and 

states, continuous distributions, many particle systems, the ideal 

classical gas, distinguishability.

4. (p. 44) System at constant T and m

The Gibbs distribution, the grand partition function, the ideal 

quantum gas, the Fermi-Dirac and Bose-Einstein distributions, 

fermion and boson gases, Planck's radiation law.

Headers summarise what's on each page, and also indicate a 

typical (no promises!) lecture number when it's covered.

If you decide to print these notes I recommend double-sided 

black and white, "2 on 1" page layout and "short edge" binding 

location. At 2013 prices this costs about 90p using University 

printers. The notes are designed to be comfortable to read at this 

size, without needing colour.
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1. Introduction: statistical mechanics

... is thermodynamics based on the statistics of microscopic (ie, 

atomic-level) degrees of freedom.

We consider three types of states - different ways of describing a 

complex system with many parts.

Macrostates are a coarse description of the system, specified by 

a few "macro" observables only. These are the states considered 

in classical thermodynamics, the first half of the unit.

eg, p, V and T (or U, V and N) for an ideal gas in eqm

Microstates are a complete description of the system on the 

atomic scale.

eg, the positions and velocities of all the molecules in a gas

A microstate that is consistent with a given macrostate (eg, with 

the right total U, V and N) is called accessible or available.

For each macrostate there are typically                accessible 

microstates! The microstate usually cannot be known in practice 

 analyse statistically.

Single-particle states (SPS's) are the states of one particle 

ignoring the others.

eg, the position and velocity of one molecule in a gas

The microstates of a system of weakly-interacting particles can 

be built up from the SPS's of each particle.
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eqm = my abbreviation for "equilibrium"

10 AN

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Distinguishability

The particles in a system are distinguishable if there is some 

way to identify individual particles and tell them apart from the 

others. You can imagine that they carry labels or ID numbers, or 

perhaps different colours, or fixed locations that act as 

addresses. They may also have different physical properties, but 

usually we assume that (apart from the distinguishing "labels") 

they are identical.

In contrast, we can't tell indistinguishable particles apart even in 

principle. A microstate may therefore be unchanged if two 

indistinguishable particles are exchanged. In due course we will 

see that this has profound physical consequences.
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Postulates of statistical mechanics

1. microstates exist

2. energy is conserved

3. the principle of equal a priori probabilities:

a closed system in eqm, in a given macrostate, is equally

likely to be in any of its accessible microstates

... because, if all we know is the macrostate, we have no reason 

to favour one unobservable microstate over another (we're 

ignorant) and the microstate is always changing anyway, eg as 

molecules collide (we can't keep up).

NB!(yawn...)

1. Introduction / Postulates
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Statistical weight of a macrostate

Different macrostates are not equally likely; they may have 

different numbers of (equally likely) accessible microstates. The 

probability of a given macrostate i is proportional to its number 

of accessible microstates, known as its statistical weight Wi:
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statistical weight number of accessible microstates

probability 

total number of microstates

i

i i

i

W

P W

W







Example (a deck of cards)

The statistical weight of a club card in a regular deck of cards is 

Wclub = 13, since there are 13 clubs in a deck. For a system 

comprising a card drawn at random from the deck, "club card" is 

an example of a macrostate and "ace of clubs" is an example of 

one of the microstates that are accessible to that macrostate.

The statistical weight of a queen is Wqueen = 4, since there are 4 

queens in a deck. A randomly-drawn card is Wclub/Wqueen = 13/4 

times more likely to be a club than a queen. This is just the 

definition of a statistical weight.

The probability of drawing a club card is

club
club

13 1

no. cards 52 4

W
P   

since there are 52 cards altogether in a deck.

1. Introduction / Statistical weight
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Example (tossing coins)

N = 10 distinguishable coins are thrown randomly onto a table.

Macrostate: the number n of "tails" T ( N - n "heads" H)

one variable with 11 possible values (eg, n = 6)

Microstate: the complete ordered list of T's and H's

10 variables with 2 possible values each (eg, "THHTTTHHTT")

SPS: one coin is either T or H

1 variable with 2 possible values (eg, "T")
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Each (ordered) microstate is equally likely, eg "TTTTTTTTTT" 

is just as likely as "THTHHHTTHT". But there are many more 

cases with n = 5 (all looking superficially similar) than with 

n = 10, so the macrostates are not equally likely:

all n = 5

all n = 10

1. Introduction / Example (coin tossing)
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The statistical weight W(n) of the macrostate with n tails 

= number of ways to divide N coins between 2 sets (tails and 

heads) with n coins in the first set and N - n in the second set.

This is a binomial distribution (see Appendix A.4):
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!
( )

!( )!

N

n

N
W n C

n N n
 

-

eg for N = 10:

10!
(5) 252

5! 5!

10!
(10) 1

10! 0!

W

W

 


 


The n = 5 macrostate is 252 more likely than the n = 10 

macrostate, even though all the microstates are equally likely.

The probability of the macrostate n is

10

10

(5) 252
(5) 25%

2 1024

(10) 1
(10) 0.1%

2 1024

W
P

W
P

  

  

( )
( )

2N

W n
P n  [2N cases in total]

eg for N = 10:
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The "thermodynamic limit" (large N)

Statistical weight functions W(x) usually peak near the mean 

value of the macrostate variable x.
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W(x)

x
x

dx

For large numbers of particles N, the peak becomes very narrow 

(dx  1/N) and the mean value of x becomes the 

overwhelmingly likely value of x. The probability that the 

observed macrostate differs significantly from the most probable 

macrostate becomes negligible.

Therefore, in the so-called thermodynamic limit N ,

the system will appear to choose the macrostate with the 

greatest statistical weight (ie, with the most accessible 

microstates).

so the mean macrostate variable x of the system is found by 

solving

0
W

x





[calculus max/min]

1. Introduction / Thermodynamic limit
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Example (tossing coins)

Consider the system of N coins:
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!
( )

!( )!

N
W n

n N n


-

To compare this distribution for different values of N, express it 

in terms of the fraction x = n/N of coins that are tails, which 

always lies between 0 and 1. Also, because W becomes very 

large, (eg the peak value of W for N = 10 000 is ~103000), plot 

W(x) divided by its peak value:

All the distributions are peaked at x = 1/2, but the width of the 

peak gets narrower as N increases. For values of N of the order 

of Avogadro's number NA, which are typical in statistical 

mechanics, the width of the peak is truly insignificant.

For large N, the observed value of x will be negligibly different 

from 1/2, the value at the peak of W(x).

1. Introduction / Thermodynamic limit
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In these lectures we will look at three generic thermodynamic 

systems, with different physical quantities held constant.

2. The closed system

(a.k.a. micro-canonical ensemble)

By studying this system we will derive the laws of 

thermodynamics!

A closed system is completely isolated: it does not exchange 

energy, volume or particles with its surroundings.
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  internal energy 

constant               volume 

      no. particles 

U

V

N







Divide it into sub-systems SS1 and SS2 with a wall that can 

transfer energy (as heat), volume (by moving) and particles 

(permeable) between the sub-systems. 

2. Closed system
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SS1 SS2

energy:

volume:

particles:

U1

V1

N1

U0 = U1 + U2

V0 = V1 + V2

N0 = N1 + N2

U2

V2

N2

total  fixed



Entropy

The macrostate of SS1 is determined by its macro variables U1, 

V1 and N1. Hidden beneath this simple description is a vast 

number of accessible (but unobservable) microstates, all with 

matching values for these three "summary" variables. SS1 could 

be in any of these microstates. Counting them gives the 

statistical weight W1(U1, V1, N1) of the macrostate.

Likewise the statistical weight of the corresponding macrostate 

of SS2, with macro variables U2, V2 and N2, is W2(U2, V2, N2) .

The macrostate of the whole system is determined jointly by the 

macrostates of SS1 and SS2. Since the microstate of SS1 is 

independent of the microstate of SS2, the statistical weight of 

the whole system is



Note that ln(W) behaves just like entropy:

•it is an extensive (additive) variable

•it is maximised in closed systems in eqm

Boltzmann defined entropy in statistical mechanics to be

with Boltzmann's constant kB introduced to match units and 

values with the "old" entropy of thermodynamics.
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1 2W W W  [Appendix A.2]

1 2ln( ) ln( ) ln( )W W W 

[thermodynamic limit - page 9]

lnBS k W

this is where we use the principle of a priori probabilities

2. Closed system / Entropy
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The conditions for eqm

At eqm, ln(W) is a maximum (thermodynamic limit). We 

maximise ln(W) with respect to three variables U2, V2 and N2, 

because U1, V1 and N1 are not independent of them. (For 

example U1 is given by U0 - U2 where U0 is the constant total 

internal energy of the whole system.)

1. With respect to energy U2 (thermal eqm)
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[calculus max/min]

2 2
2 ,

2 1

2 2

2 1 1

2 1 2

1

1

ln
0

ln ln
0

ln ln

ln

V N

W

U

W W

U U

W W dU

U U dU

W

U

 
 

 

 
 

 

 
 - 

 






[lnW = lnW1 + lnW2]

[chain rule]

[U1 = U0 - U2

 dU1/dU2 = -1]

Therefore there is a quantity b = lnW/U which must be equal

for two systems to be in thermal eqm, so that heat doesn't flow 

between them. The existence of such a quantity 

 the zeroth law of thermodynamics 

with b determining the temperature T. To match units:

,

1 ln

V NB

W

k T U
b

 
   

 

2. Closed system / Conditions for eqm
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2. With respect to volume V2 (mechanical eqm)
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[calculus max/min]

2 2
2 ,

2 1

2 1

ln
0

ln ln

U N

W

V

W W

V V

 
 

 

 


 

[same reasoning 

as before]

Therefore lnW/V must be equal for mechanical eqm, so the 

subsystems don't exchange volume by movement of the wall. It 

therefore determines the pressure p. To match units:

,

ln
B

U N

W
p k T

V

 
  

 



3. With respect to no. particles N2 (diffusive eqm)

[calculus max/min]

2 2
2 ,

2 1

2 1

ln
0

ln ln

U V

W

N

W W

N N

 
 

 

 


 

[same reasoning 

as before]

Therefore lnW/N must be equal for diffusive eqm, so the 

subsystems don't exchange particles. It therefore determines the 

chemical potential m, an intensive variable related to N like p

relates to V. To match units:

,

ln
B

U V

W
k T

N
m

 
 -  

 



2. Closed system / Conditions for eqm
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The thermodynamic identity

Since entropy S is a function of U, V and N: 
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[chain rule for partials]

ln ln ln
B B B

S S S
dS dU dV dN

U V N

W W W
k dU k dV k dN

U V N

dU pdV
dN

T T T

m

  
  
  

  
  

  

  -

[S = kB lnW]

[found in last 2 pages]

Rearrange for dU:

dU TdS pdV dNm - 

the thermodynamic identity (generalised to variable N) 

 the first law of thermodynamics.

(Although the most important consequence of the first law - that 

energy is conserved - was in fact one of our three postulates...)

2. Closed system / Conditions for eqm
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Approaching thermal eqm

The two subsystems exchange some energy (with V and N fixed) 

as they approach eqm. The total entropy S0 increases: 
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0 1 2 0S S Sd d d   [total entropy S0 increases]

ie, SS2 gains energy (dU2 > 0) if and only if T2 < T1  heat 

always flows from the hotter sub-system to the colder one 

 the second law of thermodynamics.

1 2
1 2

1 2

2 1
2

2 1

2

2 1

0

0

1 1
0

S S
U U

U U

S S
U

U U

U
T T

d d

d

d

 
 

 

  
-  

  

 
-  

 

[chain rule, fixed V and N]

[constant total U  dU1 = -dU2]

1 S

T U

 
  

Conclusions

1. If you can find an expression for the number of accessible 

microstates W of a closed system (ie, a single function), you can 

deduce S, T, p, m and hence other thermodynamic functions.

2. The statistics of coin tossing  the laws of thermodynamics!

3. Thermodynamics is statistical: in a given experiemnt there is 

in theory a (very very small) chance that heat will flow from a 

colder subsystem to a hotter one.

2. Closed system / Conditions for eqm
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"Two level" systems (just two SPS's)

Example: spin system

Q. Each of N atoms (N large) in a magnetic field can be in one of 

two SPS's: 

"spin up" with energy E0, or 

"spin down" with energy -E0. *

Find the temperature T as a function of internal energy U. 

(Assume the atoms are distinguishable, eg they are fixed and so 

can be identified by their locations.)

A. To find T we need to find W(U) and then use

We can find W(n) from binomial statistics: the number of 

microstates with a total of n "spin up" atoms is equal to the 

number of different ways to divide N items into two sets, with n

items in one set ("spin up") and N - n items in the other set 

("spin down"): 

[See Appendix A.4, or the discussion on coin tossing on page 8]
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* spin is a quantum mechanical phenomenon, but this question does not 

require you to know anything about it!

1 ln

B

W

k T U






!
( )

!( )!

N
W n

n N n


-
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To get W(U) we need to relate U to n: if n atoms are "spin up", 

and N - n are "spin down" then the total internal energy is

We can invert this expression to find n as a function of U:

and substitute it into W(n):

To find T we need to differentiate this wrt U. To differentiate the 

factorial function we can use Stirling's approximation for each 

term because N is large (see Appendix A.6)

messy; but now we can differentiate, with N and E0 constant:
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0 0

0

( ) ( )( )

(2 )

U n nE N n E

n N E
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 -

0
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N U
n U

E
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0 0

!
( )

! !
2 2 2 2

ln ln ! ln ! ln !
2 2 2 2

N
W U

N U N U

E E

N U N U
W N

E E


   

 -   
   

   
 -  - -   

   

ln( !) lnx x x x -





0 0 0

ln ln ln
2 2 2 2 2 2

N U N U N U
W N N N

E E E

     
 - -         

     

0 0 0

ln
2 2 2 2 2 2

N U N U N U

E E E

     
- - -  -     
     
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[using the product rule on each "x ln x" term] 
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
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2
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B
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T
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 

 

To sketch this function, you can derive approximate forms for 

when n  0 (nearly all spin "down"), n  N (nearly all spin "up") 

and n  N/2 (roughly equal split). Instead here's a computer plot:

2. Closed system / Two level systems / Example (spin system)
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Negative temperatures are possible in closed systems with an 

upper bound on the SPS energy.

Negative temperatures are hotter than positive ones, and the 

hottest of all approaches absolute zero from below!

There is nothing paradoxical. It just means that b = 1/kBT (or, 

better still, -b) would be a much more natural and continuous 

way of describing how hot a system is!

T

U
+NE0-NE0 0

all in 

lower 

state

most in 

lower 

state

most in 

upper 

state

all in 

upper 

state

equal 

split

positive T ... negative T !

colder

(less energy)

hotter

(more energy)

2. Closed system / Two level systems / Example (spin system)
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Two-level systems - review of method

This example was quite long and gave a surprising result, so let's 

review how we got there.

1. We needed to find one thermodynamic variable (T) in terms of 

another (U), and started with a "closed-system" expression (a 

derivative of ln W) linking the two.

2. Binomial statistics gave us W as a function of n, the number 

of atoms in one of the SPS's.

3. We could write W (and hence ln W) as a function of U because 

there was an obvious connection between U and n.

4. Stirling's approximation got rid of the factorials and made the 

expression differentiable.

5. The differentiation was quite messy but only needed first-year 

methods (product rule, chain rule, derivative of ln). A lot of the 

mess cancelled out and gave a reasonable final result.

6. Then we looked at the physics of the result and had to come to 

terms with negative temperatures ...
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Example: rubber band

Q. Model the polymer in a rubber band as a chain of N links of 

length d, each of which can lie in the -ve or +ve x direction. 

Find the tension F(l) in the band if N is large and the overall 

length l << Nd.
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2. Closed system / Two level systems / Example (rubber band)

d x direction

l

+ve link

-ve link

A. This is one of those problems where you realise that -pdV is 

just work done, which in a 1-D problem becomes -Fdl

so we need W(l). As with the spin system, we find W(n) from 

binomial statistics, with a total of n links in the +ve direction and 

N - n links in the -ve direction:

ln
B

dU TdS Fdl

S W
F T k T

l l

 -

 
 

 
[S = kB ln W]

[1-D 1st law]

!
( )

!( )!

N
W n

n N n


-
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Then with n +ve links shifting the end of the band to the right 

and N - n -ve links shifting it to the left, and taking the overall 

length to be the distance between the start and end of the band:

so

Hopefully you can see that the maths is the same as for the spin 

system: substitute into W(n) to get W(l), take logs, apply 

Stirling's formula and differentiate messily to find F(l):

The Q invites us to take l << Nd:
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( ) ( )( ) (2 )l n nd N n d n N d  - -  -

( )
2 2

N l
n l

d
 

2. Closed system / Two level systems / Example (rubber band)

( ) ln
2

Bk T Nd l
F l

d Nd l

- 
  

 

2

( ) ln 1 ln 1
2

2

B

B

B

k T l l
F l

d Nd Nd

k T l l

d Nd Nd

k Tl

Nd

    
 - -     

    

 
 - - 

 

 -

[Taylor series for ln(1 + x)]

We have deduced Hooke's law (F  l) and found that the tension 

increases with T: physical and testable predictions from a "bean 

counting" statistical model.
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3. System at constant temperature

(a.k.a. canonical ensemble)

By studying this system we will derive the Boltzmann 

distribution. We will then spend quite some time applying it to 

the definitive thermodynamic system: the ideal gas.

A closed system with sub-systems SS1 and SS2 that can 

exchange energy (as heat) but not volume or particles. (The wall 

is conducting but immobile and non-porous.)

SS2 is a small system of interest.

SS1 is a heat reservoir or heat bath - so big that exchange of 

energy with SS2 has negligible effect on the temperature of SS1. 

(For example, imagine that SS2 is a pebble and SS1 is the 

Atlantic Ocean.)
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       temperature 

constant               volume 

      no. particles 

T

V

N







3. System at constant T
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SS1 SS2

energy: U1

U0 = U1 + U2

U2

total fixed



Boltzmann distribution

We want to find the probability P(E) that SS2 is in a certain one 

of its microstates with energy U2 = E. The statistical weight of a 

single microstate is by definition W2(U2) = 1.

We can find W1(U1) by integrating with T constant:

The principle of equal a priori probabilities applies only to 

closed systems in eqm. The only closed system here is the 

composite system SS1+SS2. The number of accessible 

microstates for the composite system (when SS2 is in the chosen 

microstate of energy E) is the product of the accessible 

microstates of the two subsystems:

Probability is proportional to statistical weight. Since U0, T and 

B are constant (constant V1 and N1):
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/
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
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0

1 1 2 2

1 0

/ /

( ) ( ) ( )

( ) 1

B BU k T E k TB

W E W U W U

W U E

e e e
-

 

 - 

 

[U1 + U2 = U0; W2 = 1]

[page 13]

["constant of integration" 

can depend on V1 and N1]

[W1 from above]

/
( ) ( ) BE k T

P E W E e
-

 
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or

the Boltzmann distribution, a.k.a. Maxwell-Boltzmann statistics. 

(You will remember the Boltzmann factor from the Properties of 

Matter unit, right? Well this is where it comes from!)

This is the probability that SS2 is in a given microstate with 

energy E, when it is in thermal eqm at temperature T.

The constant of proportionality A is determined by the fact that 

the total probability of all the microstates of SS2 is 1:

If we define the partition function Z to be 1/A

then

It turns out that the partition function has more uses than just to 

normalise the Boltzmann distribution. For example, it is the 

starting point of a massive derivation (from here until page 41!) 

of the properties of ideal gases.

26

[A constant]
/

( ) BE k T
P E Ae

-

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all microstates 

/
( ) 1i B

i

i i

E k T
P E A e

-
  

all microstates 

/i B

i

E k T
Z e

-
 

/

( )
BE k T

e
P E

Z

-


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Partition function

We can use Z(T, V, N) to find all the thermodynamic variables of 

a system at constant temperature. (Like W for a closed system.)

•Internal energy

27
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 
  
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


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[defn of Z]

[Ei constant]

[Boltzmann distribution]

[S E P(E)  mean of E = U]



2

,

ln
B

V N

Z
U k T

T

 
  

 
or

• Helmholtz free energy

F U TS

dF SdT pdV dNm

 -

 - - 



,V N

F
S

T

 
 - 

  ,T N

F
p

V

 
 - 

  ,T V

F

N
m

 
  

 

[chain rule for partials]

[from thermodynamics]

 the mean of a 

probability distn
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We'll use the preceding results to find the other thermodynamic 

variables. First the Helmholtz free energy itself:

Identify

Now we can get everything else in terms of F:

•pressure

•chemical potential

•entropy
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 
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Example (two level system)

Q. A two-level system has states with energies -E0 and +E0. 

Find Z and hence the internal energy U and the heat capacity C

of the system in eqm at temperature T.

A.
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   

 
 -  

 

   -
  -    

   





2
20 0

2
sech

B B

E

k T k T

 
 
 

[just 2 states]
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Levels and states

It's often easier to deal with energy levels rather than 

microstates. More than one microstate can have a given energy, 

so they share the same energy level. The number of states with a 

given energy E is called the degeneracy g of the energy level.

The probability that a system has energy E is g  the probability 

of it being in any one of the states with that energy.

Example (rotating molecule)

Q. A rotational quantum state of a molecule is defined by 

angular momentum quantum numbers* l (non-negative integers) 

and m (integers between -l and +l inclusive) and has energy

where ħ (reduced Planck's constant) and I (moment of inertia) 

are constants.

(a) What is the degeneracy gl of energy level El?

30
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[Boltzmann P(E)]
/

( ) B
g

E k T
P E g Ae

-
 

2( 1)

2
l

l l
E

I




* this question involves quantum mechanical angular momentum, but tells you 

all you need to know about it
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(b) If ħ2/2I = 2  10-21 J and T = 300 K, what is the probability 

that the molecule is in the state with l = 3 and m = 1, relative to 

the probability that it is in the state with l = 1 and m = 1?

(c) What is the probability that the molecule has energy E3, 

relative to the probability that it has energy E1?

A. (a) El is independent of m, so states with the same l are 

degenerate. How many? For given l, list the different m:

Total number of states (different m's) is                   

[... a general QM result for angular momentum. If you memorise 

nothing else about QM, memorise this! For example, spin s is a 

type of angular momentum and can replace l. A spin-½ level has 

g½ = 2  ½ + 1 = 2 states: spin up and spin down.]

(b) is about states:

(c) is about levels:
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    

Lecture 5

2 1lg l 



Continuous distributions

In big systems with closely-spaced energy levels, the states 

approximately form continuous bands rather than discrete levels. 

We need the equivalent of g but for continuous distributions.

Let G(E) be the number of states* with energy E. Then the 

number of states with energy between E and E + dE is

dG/dE is called the density of states per unit E.

Use chain rule to change variable, eg if E = ħw then the density 

of states per unit w is

Partition function for a continuous distribution

The partition function is the sum of Boltzmann factors for all 

microstates:

32
3. System at constant T / Continuous distributions

( ) ( )
dG

G E E G E E
dE

d d -  [defn of differentiation]

dG dG dE dG

d dE d dEw w
 

/ B

states

E k T
Z e

-
 

* Why use G (not N) for number of states? I use N for number of particles and I don't want them to be 

confused! Also, some people write density of states as a function like g(E), but I write it as a derivative 

dG/dE to be obvious (a) how to change variable, and (b) to multiply by dE to get a number of states.
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For a continuous distribution, the number of states between E

and E + dE is (dG/dE)dE. If one state contributes one Boltzmann 

factor to the sum for Z, then (dG/dE)dE states contribute

Then the total partition function is the sum (but continuous  an

integral) of these contributions across all energies:

Example (particle in a box)

Q. Find the partition function Z1 for a single particle of mass m

with gI internal degrees of freedom in a box of volume V, given 

that the density of states per unit energy is

A.
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[Appendix B.4]
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 

 
  
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 
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





[standard integral, 

Appendix C]

[subst x2 = E/kBT]

this result, for Z1, will be the first step in our analysis of ideal gases
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Many-particle systems

When a system contains many particles it is only profitable for 

us to consider the case where they are weakly interacting.

we can neglect interaction energies 

energy of system = sum of energies of N particles

34
3. System at constant T / Many particle systems

non-interacting weakly interacting strongly interacting

never exchange 

energy and never 

reach eqm

particles in definite 

SPS's (eg in 

between collisions) 

but they can 

exchange energy 

and reach eqm

interaction energies 

 SPS's are not 

well-defined

maybe lots of 

thermo, but no 

dynamics ...

too complicated

Goldilocks: we can 

make progress! 

it's definitely time to recall that SPS = single-particle state,

a state of one particle on its own without reference to other particles

energy of the SPS that 

particle i is in

1 2 ... ...i NE E E E E     
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Occupancy and number distribution

The occupancy n(E) of an SPS is defined to be the mean number 

of particles in that state. If the probability of one particle being 

in the state is P(E), then

With a continuous distribution, the mean number of particles 

with energy between E and E + dE 

=

where dN/dE is the number distribution function of the particles 

per unit E. The total number of particles with energy in an 

extended range of E can be found by integrating.

A number distribution dN/dE is normalised so that the total 

number of particles is N, whereas a probability density function

dP/dE is normalised so that the total probability is 1. Hence

As with density of states, we can use the chain rule to change 

variable, eg if E = ħw then the number distribution per unit w is

35

( ) ( )n E N P E 

( )
dG dN

n E E E
dE dE

d d  

mean number of particles in one state  number of states 

with energy between E and E + dE

[defn of n(E) and dG/dE]

dN dN dE dN

d dE d dEw w
 

remember and understand the definition of "occupancy"!
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Ideal classical gas

An ideal gas is a collection of many indistinguishable weakly-

interacting particles. If the gas is hot and dilute then the quantum 

nature of the particles is unimportant and the gas is classical. 

36
3. System at constant T / Ideal classical gas

lots of available 

energy

weakly 

interacting hot and dilute

big volume  SPS 

energies closely 

spaced (appendix 

B.5)
lots of 

accessible 

SPS's

relatively 

few particles

occupancy of (average 

number of particles in) 

each SPS << 1

negligibly few 

SPS's with 2 or 

more particles

E

dynamic eqm

in SPS's

(we'll restrict ourselves to monatomic gases - no vibrational modes)
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Partition function for N distinguishable particles

To derive the thermodynamics of the ideal classical gas we need 

its partition function ZN.

given that E is the sum of the energies of the particles. Assuming 

(falsely!) that the particles are distinguishable (see page 5), the 

microstates of the system can separately have each particle in 

each SPS and the sum for ZN factorises:

Because the SPS's of the particles are all the same, the factors 

are the same and

where

is the partition function for one particle on its own. (Recall that 

we found Z1 earlier, on page 33.)

However, the particles are in fact indistinguishable.

37

1 2 ... )/ ( /NB B
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states states
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Z e e
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  

1 2
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/ / /
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Z e e e
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/ BE k T
Z e
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 

[distinguishable]
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Partition function for N indistinguishable particles

The indistinguishability of the particles has a big effect on the 

number of microstates the system can have. Consider just two 

particles (A & B) and two SPS's (1 & 2):

These are two diffferent microstates of the system if the particles 

are distinguishable, but they are the same microstate if not:

"one in 1 and one in 2". Our ZN formula

therefore overcounts the number of microstates - we summed 

over many microstates that were in fact the same.

Classical gas: no SPS's containing 2 or more particles 

 N particles in N different SPS's. 

There are N! ways to arrange N distinguishable particles among 

N SPS's (N! ordered lists - see Appendix A3), but for 

indistinguishable particles these are all the same microstate

(1 unordered list). The ZN formula therefore overcounts by a 

factor of N!
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1

N

NZ Z [distinguishable]

1

!

N

N

Z
Z

N
 [indistinguishable]
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possible SPS's 121110987654321

one microstate for a system of

N indistinguishable particles

becomes N! different 

microstates for a system of 

N distinguishable particles

(the N! factor assumes no SPS is occupied by two or more particles -

ie, only for a classical gas)

Illustration for N = 4:

3. System at constant T / Ideal classical gas / Indistinguishable particles

Lecture 6



Thermodynamics of the ideal classical gas

Now we can finally write down the partition function for the 

classical gas, and hence all of its thermodynamic variables.

For a single particle in a box we found

so

•

or

where

n = number of moles

NA = Avogadro's number

R = molar gas constant
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•

or

the equation of state of an ideal gas: "ideal gas law"

•



the Sackur-Tetrode equation: for the first time, a closed-form 

expression for the entropy of an ideal gas!

Note that it contains Planck's constant ħ - this result cannot be 

obtained using classical physics.

Note also that S is an extensive variable  N, as it should be 

(given that N/V is concentration, an intensive variable). 

Derivation from ZN = Z1
N gives a non-extensive (and 

therefore wrong) answer - see problem sheet  2 Q 10. 

Indistinguishability is important and has real-world physical 

consequences!

•



(see problem sheet 2 Q 9)
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Example (Joule expansion)

Q. A wall divides a box into sections 1 and 2, each of volume V0. 

X and Y are different ideal gases. The sections contain:

section 1 section 2

(a) N particles of X nothing

(b) N particles of X N particles of Y

(c) N particles of X N particles of X

In each case, what is the change of entropy after the wall is 

removed and the contents are allowed to reach eqm?

A. Energy                           conserved  T constant.

Sackur-Tetrode:

where a is a constant for a given gas.

(a) before: 

after:


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expansion: 
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S > 0]
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(b) before: 

after:



(c) before: 

after:



Case (c) is reversible - we can put the wall back and recover the 

initial conditions. Since the particles of gas A are 

indistinguishable, we have no way of telling which particles 

were originally in which section.
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[NY in volume 2V0]
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S = 0]
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Equipartition theorem

In PH10002 Properties of Matter you encountered the 

"equipartition of energy theorem", which states that each 

quadratic degree of freedom of a thermodynamic system in eqm

contributes an average of ½kBT to the internal energy.

This is only true if ½kBT is large compared to the splitting 

between the quantum energy levels - it is a classical result. 

However, for us it provides a useful check for high-temperature 

limits.

For example, each particle in an ideal classical gas of N particles 

has 3 degrees of freedom for translational motion (ie, in the x, y

and z directions). The equipartition theorem then says that the 

internal energy should be N  3  ½kBT, or

This is exactly what we found from the partition function earlier.
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3. System at constant T / Ideal classical gas / Example (Joule expansion)

3

2
BU Nk T
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4. System at constant T and m

(a.k.a. grand canonical ensemble)

By studying this system we will derive the Gibbs distribution 

and apply it to ideal quantum (fermion and boson) gases.

A closed system with sub-systems SS1 and SS2 that can 

exchange energy and particles but not volume. (The wall is 

conducting and porous but immobile.)

SS2 is a small system of interest.

SS1 is a heat and particle reservoir - so big that exchange of 

energy and particles with SS2 has negligible effect on the 

temperature and chemical potential of SS1. 
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            temperature 

constant                     volume 

  chemical potential 

T

V

m







4. System at constant T and m
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energy:

particles:

U1

N1

U0 = U1 + U2

N0 = N1 + N2

U2

N2

total fixed



Gibbs distribution

The following derivation is a generalisation of the one for the 

Boltzmann distribution.

We want to find the probability P(Ei, ni) that SS2 is in a certain 

one of its microstates with energy U2 = Ei and number of 

particles N2 = ni. By definition W2(U2, N2) = 1.

We can find W1(U1) by integrating with T constant:

and integrating with T and m constant:

The expressions for lnW1 are consistent if

46
4. System at constant T and m / Gibbs distribution
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Then the statistical weight for the composite system is

Probability is proportional to statistical weight. Since U0, N0, T

and D are constant (constant V1):

or

the Gibbs or grand canonical distribution. This is the probability 

that SS2 is in a given microstate with energy Ei and number of 

particles ni, when it is in thermal eqm with a heat and particle 

reservoir at temperature T and chemical potential m.

Total probability = 1 gives the grand partition function X

We will use the Gibbs distribution for just one specialist 

purpose: to analyse quantum gases.
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4. System at constant T and m / Gibbs distribution
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[Appendix A.2]
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Ideal quantum gas

If an ideal gas is "cold and dense" then there are few accessible 

SPS's compared to the number of particles to occupy them (in 

contrast to the "hot and dilute" ideal classical gas of page 36). 

We must consider the possibility of more than one particle 

occupying the same SPS, depending on the quantum nature of 

the particles.

We use the Gibbs distribution, where:

SS2 is the set of particles in one SPS with energy E. If there are 

ni = n of these particles, the total energy in SS2 is Ei = nE.

SS1 is all the other particles, acting as a heat and particle 

reservoir for SS2 with constant T and m.

There are two types of quantum particle: fermions and bosons, 

depending on whether or not the particle obeys the Pauli 

exclusion principle.

The Pauli exclusion principle states that two (or more) identical 

particles cannot occupy the same SPS.

What determines whether a particle is a fermion or a boson is its 

spin. This is the most fundamental distinction between particles, 

and gives rise to quite different statistical properties. (Why 

angular momentum should have such a profound effect on 

statistics is a bit of a mystery: the spin-statistics theorem has no 

simple proof.)
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4. System at constant T and m / Ideal quantum gas
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Fermions

A fermion is any particle with half-odd-integer spin:

s = 1/2, 3/2, 5/2, ...                  (eg, electrons, protons, 3He nuclei)

Fermions obey the Pauli exclusion principle: two (or more) 

identical fermions cannot occupy the same SPS.

Our small system therefore has only two microstates, n = 0 or 1:

either ni = 0, Ei = 0 (no fermion in this SPS)

or ni = 1, Ei = E (one fermion in this SPS)

The occupancy* of the SPS is



the Fermi-Dirac distribution function - the average number of 

fermions in a single-particle state of energy E.

m normalises the distribution so that                              , the total 

number of particles.

m is also the value of E such that an SPS has a 50% chance of 

being occupied: nFD(m) = ½. (Note that nFD  1 for all E.)
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4. System at constant T and m / Ideal quantum gas / Fermions

* remember that "occupancy of" = average number of particles in

all microstates 
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Bosons

A boson is any particle with integer spin:

s = 0, 1, 2, ...                  (eg, photons, phonons, 4He nuclei)

Bosons do not obey the Pauli exclusion principle: any number of 

identical bosons can occupy the same SPS.

Our small system therefore has an infinite number of 

microstates, n = 0, 1, 2, ...

the n-th microstate: ni = n, Ei = nE (n bosons in this SPS)

The occupancy of the SPS is



the Bose-Einstein distribution function - the average number of 

bosons in a single-particle state of energy E.

m normalises the distribution so that                              , the total 

number of particles.

m must be less than the lowest ("ground state") energy E, to 

avoid unphysical infinite or negative occupancies nBE.

(Note that nBE can take any positive value for E > m.)
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The classical regime

How can we tell if an ideal gas is classical or quantum? Saying 

that a classical gas is "hot and dilute" is not quantitative enough!

Our treatment of the ideal classical gas assumed occupancy 

n(E) << 1 and a negligible chance of two particles trying to 

share one SPS. In that case, whether the particles are fermions or 

bosons is irrelevant.

in which case

 both FD and BE reduce to the Boltzmann distribution.

Criterion for a classical gas

Since all E for a particle in a box are positive but the ground 

state E is very close to zero (Appendix B.5), it is sufficient that

but for an ideal classical gas (see page 41):
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So an ideal gas is classical if

ie, for high temperatures T and/or low concentrations N/V: 

"hot and dilute".

If the ideal gas does not satisfy the criterion for a classical gas, 

we must consider the fermion and boson cases separately.
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4. System at constant T and m / Ideal quantum gas / Classical regime
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Ideal fermion gas

eg, free electrons in metals, atoms in helium-3, electrons in 

white dwarf stars, neutrons in neutron stars

Look at occupancy nFD and number distribution dN/dE at 

different temperatures T, recalling that

•absolute zero, T  0, "completely degenerate fermion gas"

All SPS's up to E = m are fully occupied, the rest are empty. The 

chemical potential m at T  0 is called the Fermi energy eF, with 

the Fermi temperature TF defined by eF = kBTF.
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4. System at constant T and m / Fermion gas

3/2

1/2

2 2

( )

2
( )

4

FD

I
FD

dN dG
n E

dE dE

g m
VE n E

p



 
  

 

[density of states dG/dE]

[particle in a box]

)( /

1
( )

1B
FD E k T

n E
e

m-




1

0

E

E

m

m




T  0

E

1

m = eF eF E

 E1/2

E

0

eF

occupancy occupied SPS's number distribution

nFD(E)
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• cold, T << TF , "degenerate fermion gas"

Still m  eF, but slightly smaller. Some particles are excited from 

SPS's below eF to SPS's above eF. This mainly affects states 

within ~kBTF of eF . If |E - m| >> kBTF, nFD(E) remains close 

to 0 or 1*.

• hot, T >> TF , "classical fermion gas"

All occupancies are small (certainly less than ½) so m becomes 

negative. nFD(E) becomes the Boltzmann distribution.
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4. System at constant T and m / Fermion gas
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dE

* don't take my word for it - check for yourself from nFD(E)!

nFD(E) dN

dE

Lecture 9



Thermodynamic variables

•chemical potential m

We find m by normalising the number distribution dN/dE:

This can be solved for m, which appears on the RHS inside the 

expression for nFD(E). However, the integral can't be found 

analytically so in general a numerical solution is needed.

•Fermi energy eF (m as T  0)

However, we can integrate as T  0 because nFD(E) simplifies:




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• internal energy U (as T  0)

Again, the functional form of nFD(E) means we can only perform 

our integrals as T  0.

Evaluate the sum of particle energies E, given (dN/dE)dE

particles in energy range dE:

Use our expression for eF to eliminate ħ, m, etc:

Unlike in a classical gas, U is finite even as T  0, because the 

Pauli exclusion principle forces particles into states well 

above the ground state.

• pressure p (as T  0)
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* while differentiating, note that eF depends on V

Lecture 9



Again use our expression for eF to eliminate ħ, m, etc:

Unlike in a classical gas, p is finite even as T  0, because the 

Pauli exclusion principle resists attempts to compress fermions 

into a smaller volume. Indeed this degeneracy pressure is what 

stops white dwarf and neutron stars collapsing under gravity and 

forming black holes!
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4. System at constant T and m / Fermion gas / Thermodynamics
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Ideal boson gas

eg, photons in a black-body cavity, phonons in a solid, atoms in 

helium-4

•absolute zero, T  0, "completely degenerate boson gas"

All N particles are in the ground state (E = 0):

This limit requires m to be just below E = 0.

•cold, T << TB , "degenerate boson gas"

Some particles are excited out of the ground state, but a large 

fraction of them (ie, a macroscopic number) remain there. The 

Bose temperature TB is the temperature below which the ground 

state population is macroscopic. The formation of a macroscopic 

ground state population is called Bose-Einstein condensation. 

•hot, T >> TB , "classical boson gas"

See classical fermion gas. nBE(E)  Boltzmann distribution.
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4. System at constant T and m / Boson gas

)( /

1
( )

1B
BE E k T

n E
e

m-


-

0

0 0

N E

E




T  0

E

0

T >> TB

E

0
m

T << TB

E

0
m

T  0

m

Lecture 10



Radiation

Consider a photon gas with volume V and internal energy U in 

thermal eqm at temperature T. Unlike many other particles, 

photons can be readily created and destroyed: photon number is 

not conserved. Consider variable N while U and V are fixed:



But S is maximised at eqm, so

 m = 0 for non-conserved particles.

Photons have spin s = 1 so they are bosons, and the occupancy 

of a photon SPS is the Bose-Einstein distribution function with 

E = ħw and m = 0:

The photon density of states per unit w is
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4. System at constant T and m / Boson gas / Radiation
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The mean number of photons between w and w + dw is

The mean photon energy between w and w + dw is

Putting all this together, the mean energy density (energy per 

unit volume) for the photons between w and w + dw is

•Radiated intensity

From the kinetic theory of gases (PH10002 Properties of 

Matter), the number of particles striking a wall per unit time per 

unit area is ¼nv, where n is the number density of the particles 

and v is their mean speed.

By analogy, the photon energy per unit range of w striking a 

wall per unit time per unit area is 

where du/dw is the energy density per unit range of w of the 

photons and c is their speed. (All photons have the same speed, 

of course).
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4. System at constant T and m / Boson gas / Radiation
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A black body absorbs all radiant energy incident upon it. In 

thermal eqm, the black body must radiate the same amount of 

energy per unit time per unit area (or else it will gain or lose 

energy and so not be in eqm).

Hence the intensity (power per unit area) radiated per unit range 

of w by a black body in eqm at temperature T is

The classical Rayleigh-Jeans law of radiation can be obtained 

from Planck's law by setting ħ = 0, and predicts dI/dw  w2. 

This is the so-called ultraviolet catastrophe: the intensity rises 

without limit at high frequencies, and the total radiated intensity 

(integrated over all w) is infinite!

Planck's law avoids this unphysical outcome because dI/dw turns 

over around ħw ~ kBT and decreases for higher w.

This was how quantum theory got started - and where Planck's 

constant h (or ħ) was first introduced. 
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The frequency wpeak where the curve dI/dw is a maximum can be 

found by setting the derivative equal to zero:



The frequency of maximum radiated intensity is proportional to 

T. That's why white-hot iron is hotter then red-hot iron, and blue 

stars are hotter than red stars. It's the basis of "colour 

temperature" in photography, and pyrometry for temperature 

measurement. The black-body "cosmic background" radiation 

from shortly after the Big Bang has cooled so much as the 

Universe expanded that it now peaks at microwave frequencies 

wpeak/2p = 160 GHz, which is characteristic of T = 2.7 K.

The constant of proportionality implicit in the last sentence is 

(kB/ħ)  a dimensionless number that can be found numerically.

The total intensity radiated over all frequencies can be found by 

integrating dI/dw:



Hot stars lose energy (and die) much faster than cool stars.
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Appendix A: Binomial statistics

A1. The factorial function

Clearly it obeys the recurrence relation

Substituting n = 1 gives the result that 0! = 1.

A2. Sub-systems SS1 and SS2 have N1 and N2 accessible microstates 

respectively. How many accessible microstates does the combined system 

have?

For each state of SS1 there are N2 states of SS2. Since there are N1 states of SS1, the 

total number of states is N1  N2. This result generalises for more than two sub-

systems: statistical weights multiply. (Implicit assumption: that the state of SS1 is 

independent of the state of SS2.)

A3. How many ways are there to order N distinguishable objects in a list?

There are N options for 1st place in the list, with N - 1 objects left unplaced.

N - 1 remaining options for 2nd place, with N - 2 objects left unplaced.

N - 2 remaining options for 3rd place, with N - 3 objects left unplaced.

...

2 remaining options for (N - 1)th place, with 1 object left unplaced.

1 remaining option for Nth place, with no objects left unplaced.

So the total number of ways of ordering the objects is

N(N - 1)(N - 2) ... 21 = N!

Conclusion: there are N! times as many (ordered) sets of N distinguishable objects 

as there are (unordered) sets of N indistinguishable objects.
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A4. How many ways are there to divide N distinguishable objects between two

sets, with n objects in the first set and N - n objects in the second set?

Let the answer to the question be M.

For each way of dividing the objects, there are n! ways of ordering the n objects 

within the first set, and (N - n)! ways of ordering the N - n objects within the 

second set.

Since there are M ways of dividing the objects, the total number of ways of 

ordering the N objects is M  n!  (N - n)!

But the total number of ways of ordering N distinguishable objects is N!

Hence M  n!  (N - n)! = N! and

A5. How many ways are there to divide N distinguishable objects between p

sets, so that there are n1 objects in the first set, n2 objects in the second set, ... 

ni objects in the i-th set?

(Obviously we must have S ni = N so that every object gets put in exactly one set.)

This is just the generalisation of the previous question. For each way of dividing 

the objects, there are ni! ways of ordering the ni objects within the i-th set, etc. 

Following the same argument, we get
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A6. Stirling's approximation for large  factorials

The factorial of a large number is (a) very very large (for example, 100!  10158, 

and 100 is a lot less than NA) and (b) not a function we know how to differentiate.

Fortunately, in statistical mechanics we can manage these problems because we're 

usually interested in ln(N!) rather than N!, which is a much more managable 

number. For example, ln(100!)  364 and ln(NA)   3  1025.

There's an excellent approximation for ln(N!) that gets more accurate as N gets 

bigger:

Here are two plots of the exact value of ln(N!), together with Stirling's 

approximation for it. The red data are the exact values, while the black curves are 

the approximation. On the right hand graph you can see that the approximation is 

indistinguishable from the exact values for large N.

The approximate form is straightforward to differentiate, for example when finding 

thermodynamic variables from statistical weights.
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Appendix B: Particle in a box

To analyse quantum gases, we need to know about the quantum states of a single 

particle in a box. The particles can be gas molecules, atoms, elementary particles 

eg electrons or neutrons, or photons. (The results do not need to be memorised.)

B1. Allowed wavevectors

It is a result of quantum theory (de Broglie's equation) that a particle of momentum 

p can behave as a wave with wavevector k such that

(1)

We therefore need to know the values of k that are allowed for any wave inside a 

box. For simplicity we assume the box is cubic with length of side L and volume 

V= L3, with opposite corners at (0, 0, 0) and (L, L, L), and the wave function y = 0 

at the walls. (These assumptions do not change the final result but do make it easier 

to derive.)

The wave function for a quantum state must therefore be a standing wave

(2)

(so that y = 0 at the walls where each co-ordinate = 0) with each wavevector 

component

(3)

where each "quantum number" nx, ny, nz is a positive integer 1, 2, 3, ... (so that y = 

0 at the walls where each co-ordinate = L). Hence the allowed wave constants k

(magnitudes of the wavevector k) are

(4)

with a single state for each ordered set of natural numbers nx, ny, nz.
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B2. Number of states with wave constant  k

In an abstract space with co-ordinate axes nx, ny, nz, each allowed state is 

represented by a point with positive integer co-ordinates. Note that eq. (4) is the 

equation of a sphere in this space with radius Lk/p. Thus the total number G(k) of 

states with wave constant  k is the number of points within the 1/8 of the sphere 

that has all-positive co-ordinates. If we consider that each state "owns" the unit 

cube whose outer corner is the point that represents the state, then G(k) is 

approximately the volume of 1/8 of a sphere of radius Lk/p. This is a very good 

approximation when k is large because only a small proportion of the states being 

counted lie near the surface of the sphere, which is where any discrepancies arise.

From the formula for the volume of a sphere:

(5)

We assumed that each nx, ny, nz corresponds to one state. But if the particle has 

internal degrees of freedom (eg spin) so that each point corresponds to gI states, 

then

(6)

B3. Density of states in terms of k

The derivative of eq. (6)

(7)

is called the density of states per unit k, such that (dG/dk)dk is the number of states 

with wave constant between k and k + dk (see main text).
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B4. Density of states in terms of E

The density of states per unit E (or any other variable) can be found by the chain 

rule

(8)

Eq. (7) for dG/dk is universal for any wave in a box. But the conversion to dG/dE

(or to a related quantity such as photon frequency) depends on its "dispersion 

relation" k(E), which in turn depends on what kind of particle it is.

B4.1. Ordinary non-relativistic (massive) particles

First relate E and k using the kinetic energy formula

(9)

(10)



(11)

Substitute eqs. (7) and (11) into eq. (8) and use eq. (10) to eliminate k, giving

(12)

The degeneracy gI will depend on further details of the nature of the particle, eg its 

spin.
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B4.2. Photons (and other "ultra-relativistic" particles)

As before, relate E and k using what you know about the physics of the particle. In 

this case, photon energy

(13)

Photons can exist in two independent states of polarisation, so gI = 2:

(14)

More useful is the density of states per unit w, using eq. (13):

(15)

B5. Energy of a particle in a box

Substitute eq. (4) for the allowed wave constants into the appropriate dispersion 

relation E(k). For non-relativistic particles, that's eq. (10):

(16)

and for photons use w = ck:

(17)
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Appendix C: Integrals of gaussian functions

It can be shown that, for a positive

where (for avoidance of doubt) the factorial function acts on (n - 1)/2. This is 

straightforward when n is an odd number, but when n is even we need the factorial 

of a fraction. To handle this, take (as given) the following value for the factorial of 

minus one half:

which can be derived from the integral with n = 0, and use the familiar recurrence 

relation

for higher values. For example,

Although fractional factorials are unfamiliar, the formula works well.
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Appendix D: Geometric progression

D1. Sum of e-am

This is just a geometric progression. See the second result on p. 6 of the formula 

book, with r = e-a and n .

D2. Sum of me-am

Take minus the previous result and differentiate with respect to a:
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