
PH20020 Maths for Scientists 4

Fourier notes, Prof Tim Birks

These notes only cover Fourier. Linear differential equations 

will be taught by Dr Laughton.

Fourier analysis is about the frequency content of functions of 

time - looking at the function from the frequency point of view. 

For example, the Fourier transform of a sound or light wave 

gives you its spectrum. But its applications generalise to 

anything that can be expressed in terms of periodic components.

The Mathematical Formula book contains important reference 

material on pp. 10-12 that you should familiarise yourself with 

in preparation for the exam.

Revision: You will need techniques from previous Maths for 

Scientists units, including:

defining and sketching functions

symmetry (even and odd functions)

integration by parts

sin and cos and their derivatives and integrals

complex numbers (Re & Im, |z| and arg z, eiq  cos & sin)

In the past, students have been particularly poor at recalling 

first-year complex numbers - you MUST revise this!
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The Moodle page for the unit contains:

Organisational information (when different lectures and 

problems classes will be held, etc). I will assume you have read 

this and will keep checking for changes from time to time, 

especially if you miss any announcements in lectures.

Problem sheets as pdf files. I will not be handing out paper 

copies. You can print them yourself, well before the associated 

problems classes. It should cost you about 20p in total. 

Model answers to problem sheets. These will become available 

after the corresponding problems classes. The idea is to attempt 

the problems before getting the answers!

Supplementary information. Links to background information.

Health warning for Nat Sci students:

Amongst other things, the unit description says "After taking 

this unit the student should be able to ... apply Fourier 

techniques to problems in the physical sciences."

Although I teach this material as mathematics, some of the 

examples will be physics based. (You did read the unit 

description before choosing your course options, didn't you??)

To contact me outside timetabled contact time, use email 

(t.a.birks@bath.ac.uk) or try my office (3W3.17B)
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These notes cover the following topics:

1. (p. 4) Fourier Series

Periodic functions, and how to work out their frequency content 

mathematically.

2. (p. 25) Fourier Transforms

Generalising the Fourier series to nonperiodic functions.

3. (p. 43) Special Functions

The Heaviside step function, the Dirac delta function and the 

comb function.

4. (p. 49) Convolution and Signal Processing

Convolution (the "product rule" of FTs) and the Nyquist 

criterion for the digital sampling of signals.

If you decide to print these notes I recommend double-sided, 

black and white, and "short edge" binding location using 

University MPS printers. That gives 16 double-sided sheets, 

which in 2014 costs 80p. The notes are designed to be 

comfortable to read at this size, without needing colour.

Headers summarise what's on each page, and also indicate a 

typical (no promises!) lecture number when it's covered.

The key equations in these notes have boxes around them. Some 

of them are in the formula book provided in exams, in which 

case you should familiarise yourself with where they can be 

found. Others are not, and you will definitely need to learn

them!
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1. Fourier Series

A Fourier series is the expression of a periodic function as a sum 

of sine and cosine functions.

1.1. Periodic Functions (things we need to know about them)

A function f(t) is periodic with period T iff

eg:

4

( ) ( )f t T f t t  
[      means "for 

all values of t"]

t

t

f(t)

f(t1) f(t1 + T)

t1 t1 + T

If T is a period, so is any integer × T. The fundamental period 

(or, the period) means the smallest positive value of T.

The fundamental angular frequency w0 is

"the" period T
also a period, 2T

0

2

T


w 

Example

f(t) = sin(t) has periods 2, 4, 6 etc because sin(t + 2) = sin(t) 

etc for all t. "The" period of f(t) is T = 2, and w0 = 2/T = 1.

we'll omit the word 

"angular" from now on

1. Fourier series / Periodic functions
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Defining a periodic function

Define f(t) within a single period (maybe in pieces), with a 

statement of its periodicity.

Example

This square wave:

5

t

f(t)

1

-1

 2 3 4-

is
1 0

( )
1 2

( 2 ) ( )

t
f t

t

f t f t t



 



 
 

-  

  

definition in a single 

period (in 2 pieces)

statement of periodicity

Like other functions, periodic functions can be even, odd, or 

neither even nor odd (revision needed?)

even:

odd:

Don't confuse even / odd functions with even / odd numbers!

eg, the above square wave is an odd function.

( ) ( )f t f t t-  

( ) ( )f t f t t-  - 
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Integrating over a period

The integral of a periodic function over exactly one period does 

not depend on where the integral starts.
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( ) ( )f t T f t t  

0

0

( )
t T

t
f t dt





If

then is independent of t0

t

f(t)

integral from t = 0

A B

t0

integral from t = t0

replaces 

contribution A 

with identical 

contribution B

When evaluating such an integral, you are free to choose the 

most convenient value for t0. Usually:

0
( )

T

f t dt
/2

/2
( )

T

T
f t dt

-

ort0 = 0 t0 = - T/2

a limit of 0 is often easy to 

substitute in the indefinite integral

a symmetric range is usually best 

for even and odd functions
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Sinusoidal functions

The simplest periodic functions are sin and cos

f(t) = sin(t)  T = 2 ; w0  1

f(t) = sin(at)  T = 2/a ; w0  a

You need to know special values for sin and cos, eg where they 

are 0, +1 and -1. Particularly useful results for integer n are:

7

The trigonometric system

The set of all independent sinusoidal functions that share a

period of T. Taking w0 = 2/T, here are the members of this set:

an infinite subset which all have a period of T (repeating n times 

within that period)

sin( ) 0

cos( ) ( 1)n

n

n







 -

0( ) sin( ) 1,2,3,...f t n t nw •

t

f(t)

T

sin(2w0t)sin(w0t)
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Similarly

another infinite subset which all have a period of T.

Finally, when n = 0, cos(nw0t) = 1:

a single function which also has a period of T. Yes, this constant 

function is trivially periodic, since f(t + T) = f(t) for all t.

Hence the trigonometric system with period T is the infinite set 

of functions:

The trigonometric system is like a set of "basis vectors", used to 

resolve an arbitrary periodic function into sinusoidal 

components as a Fourier series.

0

0

sin( ) 1, 2,3,...

cos( ) 1, 2,3,...

1

n t n

n t n

w

w








•

0( ) cos( ) 1,2,3,...f t n t nw •

( ) 1f t •
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1.2. Real Fourier Series

Fourier's Theorem

Any periodic function can be expressed as a sum of sinusoidal 

functions with the same period* - a Fourier series (FS).

Example

The square wave we looked at before

9

t

f(t)

1

-1

 2 3 4-

(with T = 2, w0 = 2/T = 1) can be expressed as

See Appendix A on page 59, which shows how adding each term 

gives a closer approximation to f(t), and also covers the 

important topic of the Gibbs phenomenon.

* ie, the trigonometric system for the function's period T

4 1 1
( ) sin( ) sin(3 ) sin(5 ) ...

3 5
f t t t t



 
    

 
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In general, if f(t) has the period T and w0 = 2/T then its FS is

where the Fourier coefficients an and bn are
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0
0 0

1

( ) cos( ) sin( )
2

n n

n

a
f t a n t b n tw w





  

sum starts at n = 1

0

0
0

2
( )cos( ) 0,1,2,3,...

t T

n
t

a f t n t dt n
T

w


 

0

0
0

2
( )sin( ) 1,2,3,...

t T

n
t

b f t n t dt n
T

w


 

n = 0 gives us a0

no b0 because sin(0) = 0

You prove these expressions in problem sheet 1 but don't 

memorise them - they're in the formula book! They can be 

evaluated if you know f(t) and can do the integrals.

The constant (t-independent) term in the FS

has the factor 1/2 so that the expression for an works for n = 0 as 

well as n  0. Note that it is just the average of f(t). It is 

sometimes called the d.c. term, because in electronics it gives 

the direct current.

0

0

0 1
( )

2

t T

t

a
f t dt

T



 

find it in the 

formula book

find it in the 

formula book

find it in the 

formula book
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Symmetry (a valuable shortcut)

The effort of finding an and bn is halved if f(t) is either even or 

odd. First choose t0 = -T/2 to make the range of t symmetric 

about the origin, then consider the symmetry of the integrand:
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/2

0
/2

2
( )cos( )

T

n
T

a f t n t dt
T

w
-

 

contributions cancel

the integrand

/2

0
/2

2
( )sin( )

T

n
T

b f t n t dt
T

w
-

 

t

integrand

T/2

-T/2

If the integrand is odd, then 
/2

/2
integrand 0

T

T
dt

-


So, if f(t) is even then f(t) sin(nw0t) is odd

(even function × odd function = odd function) and  bn = 0

and, if f(t) is odd then f(t) cos(nw0t) is odd

(odd function × even function = odd function) and  an = 0

Also (much less useful, but...) if the integrand is even, then 
/2 /2

/2 0
integrand 2 integrand 

T T

T
dt dt

-
 
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Example (a simple one, if you know YR1 maths as you should)

Q. Express the following "saw tooth" function f(t) as a FS.

12

t

f(t)

1

-1

 2 3 4-

A. (note: it's an odd function ...)

[The Q gives f(t) as a graph, so write it algebraically. How? 

Well, it's a simple straight line from 0 to 2, so use y = mx + c. 

The slope m is Dy/Dx = -1/ (the line goes down from 1 to 0 as t

goes from 0 to ) and the y intercept is 1. So]

[Write down the parameters T and w0]

period T = 2  w0 = 2/T = 2/2 = 1

[Now we have everything ready to plug into the integrals for an

and bn that we can get from the formula book]

( ) 1 0 2
t

f t t 


 -  

( 2 ) ( )f t f t t  

• 0

0
0

2
( )cos( )

t T

n
t

a f t n t dt
T

w


 

[But f(t) is odd, so an must be zero. It is sufficient to write:]

f(t) is odd, so an = 0 by symmetry

1. Fourier series / Real Fourier series
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0

0
0

2
( )sin( )

t T

n
t

b f t n t dt
T

w


 

[Substitute for f(t), T and w0. By choosing t0 = 0 we can use our 

straight-line expression for f(t), which is valid for 0 < t < 2. We 

end up with an integral we can evaluate using YR1 methods]

2

0

2

2

0

1
1 sin( )

...

1 cos( ) sin( ) cos( )

2

t
nt dt

nt nt t nt

n n n

n





 

  



 
 - 

 



- 
 -  

 





[integration by parts]

[using cos(2n)  1 and sin(2n)  0 for integer n]

• So 0 0,1,2,3,...

2
1,2,3,...

n

n

a n

b n
n

 



 


• [Finally substitute into the general FS from the formula book]

0
0 0

1

1

( ) cos( ) sin( )
2

2 1
sin( )

2 1 1
sin( ) sin(2 ) sin(3 ) ...

2 3

n n

n

n

a
f t a n t b n t

nt
n

t t t

w w













  



 
    

 





See Appendix B on page 61.

NB your final answers should never contain the symbols T and 

w0 unless they're in the question! 

revise?!

substitute for w0

as well an and bn
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The next example is long and has some important "catches".

Example

Q. 

where w0 = 2/T

Sketch f(t) over three periods and express it as a FS.

A.

[It's a good idea to plot either side of t = 0 to see if f(t) is even or 

odd. Unfortunately, in this case it is neither.]

[Note that T and w0 are already given in the Q.]
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t

0sin( ) 0 / 2
( )

0 / 2

( ) ( )

t t T
f t

T t T

f t T f t t

w  
 

 

  

T/2

f(t)

1

3T/2T 2T-T/2-T

• 0

0
0

/2

0 0 0
0 /2

2
( )sin( )

2 2
sin( )sin( ) 0.sin( )

t T

n
t

T T

T

b f t n t dt
T

t n t dt n t dt
T T

w

w w w





 



 

[Chose t0 = 0 and substituted for f(t). Because f(t) is defined in 

two pieces we must break the integral up into two pieces, one for 

each range in the definition of f(t). Obviously in this case the 

second piece is zero, but I'm making a point ...]

1. Fourier series / Real Fourier series
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[To perform the integral we use a trig identity from the formula 

book to convert the trig product into a sum (see YR1 methods)]
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   

   

/2

0 0
0

/2

0 0

0 0 0

1
cos ( 1) cos ( 1)

sin ( 1) sin ( 1)1

( 1) ( 1)

T

n

T

b n t n t dt
T

n t n t

T n n

w w

w w

w w

 - -   

-  
 - 

-  



if n  1

*

[NB be very careful here - we are finding a general expression 

for bn for n = 1, 2, 3, ... but the last step fails for the special case 

n = 1 because there's a division by zero! What follows is 

therefore only valid for the other n values and we must say so. 

To find the special case b1 we will return to the last valid step 

(marked *) later. Always be alert for special cases like this.]

   2 2

2 2

0

sin ( 1) sin ( 1)1

( 1) ( 1)

T T

T T
n n

T n n

 

w

 - 
  -

-   

[Substituted integral limits, sin(0) = 0 and w0 = 2/T]

0 [sin(integer × )  0]

[Now do n = 1, from the step* before the division by 0]

 

 

/2

1 0
0

/2

0

0 0

1
1 cos 2

sin 21

2

T

T

b t dt
T

t
t

T

w

w

w

 -  

 
 - 

 

 [* with n = 1]

if n  1
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0

0
0

/2

0 0
0

2
( ) cos( )

2
sin( ) cos( )

t T

n
t

T

a f t n t dt
T

t n t dt
T

w

w w











[Derivation is like bn (trig identity, division by zero when n = 1, 

substitutions) but the answer for n  1 is nonzero]

didn't bother writing 

the zero term ...

   

   

/2

0 0
0

/2

0 0

0 0 0

1
sin ( 1) sin ( 1)

cos ( 1) cos ( 1)1

( 1) ( 1)

T

T

n t n t dt
T

n t n t

T n n

w w

w w

w w

  - -  

-  - 
  

 - 



if n  1

†

   2 2

2 2

0

cos ( 1) 1 cos ( 1) 11

( 1) ( 1)

1 1 1
1 ( 1)

2 1 1

T T

T T

n

n n

T n n

n n

 

w



 -   - -
  

 -  

 
   - -    - 

[Used: w0 = 2/T, cos(0)  1, cos[(n ± 1)]  -(-1)n]

get it? work it 

out / revise!

2

[1 ( 1) ]

( 1)

n

n

 -
 -

-
[common denominator]if n  1

[Now do n = 1, from the step† before the division by 0]

 
/2

1 0
0

1
sin 2

T

a t dt
T

w 
[† with n = 1]

 2

2

0

sin 21 1

2 2 2

T

TT

T



w

 
  - 
  

[sin(2)  0]
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• So
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1

2

1

0

[1 ( 1) ]
0, 2,3, 4,...

( 1)

1/ 2

0 2,3, 4,...

n

n

n

a

a n
n

b

b n






 -  - 
-

 


 

• FS: 0
0 0

1

0 02
2

( ) cos( ) sin( )
2

1 1 1 [1 ( 1) ]
sin( ) cos( )

2 ( 1)

n n

n

n

n

a
f t a n t b n t

t n t
n

w w

w w
 









  

 -
  -

-





That example was full of complications, including: lack of 

symmetry, a variable as the period T, special-case values of n, 

and use of trig formulae like cos(n) = (-1)n.

Some of these complications may appear in exam questions.

all n except n = 1

0 0 0 0

1 1 2 1 1 1
sin( ) cos(2 ) cos(4 ) cos(6 ) ...

2 3 15 35
t t t tw w w w

 

 
  -    

 

a0/2 b1 an for n > 1

This is where the material in Appendix C (page 62) fits in.

 

 

/2

0

0 0

2

2

0

cos 21

2

1
cos 2 1 0

2

T

T

T

t

T

T



w

w

w

- 
  

 

  -  
  [cos(2)  1]
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1.3. Complex Fourier Series

Replace sin and cos in the FS with complex exponentials

[if you don't follow the line above, you need to revise complex 

numbers NOW because you're seriously going to need it]

ie we can write

where the coefficients cn are to be determined for all integers n

(including negative n).

The component           has frequency w = nw0, which is negative 

for negative n.

[-ve frequency? just the other half of, eg,                                     ]

Derivation of cn (similar to that for an and bn)

We will need the following integral for non-zero integer N:

18

0 0 0 0

0
0 0

1

0

1

( ) cos( ) sin( )
2

( ) ( )

2 2 2

n n

n

in t in t in t in t

n n

n

a
f t a n t b n t

a e e e e
a b

i

w w w w

w w




- -



  

 -
  





0( )
in t

n

n

f t c e
w



-

  [complex FS]

0in t
e

w

( )
cos( )

2

i t i te e
t

w w

w
-



0

0

0
0 0

2

0

1

0

T
iN t

T
iN t

iN T
T

e
e dt

iN

e

iN

w
w



w

w

 
  

 

-




 [only for N  0, else 0]

[subst w0 = 2/T]

[eiN2 = cos(2N) + i sin(2N)

= 1 for integer N] 

find it in the 

formula book
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Now the derivation - start with the complex FS:

Multiply both sides by         , where m is an arbitrary integer, 

then integrate both sides over one period: 

Now we showed above that the integral on the RHS is zero if

N = n - m  0, so in the infinite sum only n = m survives:

Hence

In general the cn are complex, but there's only one integral to 

work out. Symmetry is not very useful for complex FS because

(and hence the integrand) is neither even or odd.

A plot of cn against frequency w = nw0 is call the spectrum of 

f(t). If cn is complex this requires two plots:

amplitude spectrum: |cn| against w

phase spectrum: fn = arg(cn) against w
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0( )
in t

n
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m
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c T




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[choose t0 = 0]

0
0

0

1
( )

t T
in t

n
t

c f t e dt
T

w


-
  [rename n  m]

remember what these mean? if not, revise complex numbers NOW!!!

0in t
e

w-

find it in the 

formula book
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Example

Q. Find the complex FS for

and plot its amplitude and phase spectra.

A. Sketch f(t): it's a square wave, though not the same as the one 

before
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t

f(t)

1

1 2 3 4-1

1 0 1
( )

0 1 2

( 2) ( )

t
f t

t

f t f t t

 
 

 

  

T = 2    w0 = 2/T = 

0
0

0

1

0

1

0

1
( )

1
1.

2

1

2

1
( 1)

2

[1 ( 1) ]
2

t T
in t

n
t

in t

in t

in

n

c f t e dt
T

e dt

e

in

e
in

i

n

w














-

-

-

-





 
  

- 

 -
-

-
 - -





[from formula book]

[subst T, w0 and f(t), and the 

piece from 1 to 2 is zero]

if n  0 [else 0]

[e-in = cos(-n) + i sin(-n)

= cos(n) = (-1)n ] 

[also 1/i = -i]

*
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Now go back to * to do special case n = 0:

So the complex FS is
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1

0
0

1 1
1.

2 2
c dt 

0

( 0)

1 [1 ( 1) ]
( )

2 2

n
in t in t

n

n n
n

i
f t c e e

n

w 



 

- -


- -
  - 

c0 term separate because 

it doesn't fit the pattern

The Q also wants the amplitude and phase spectra. It's worth 

being methodical. Start with a table for small-ish values of n:

n w cn |cn| arg(cn)

0 0 1/2 1/2 0

1  -i/ 1/ -/2

-1 - i/ 1/ /2

2 2 0 0 undefined

-2 -2 0 0 undefined

3 3 -i/3 1/3 -/2

-3 -3 i/3 1/3 /2

4 4 0 0 undefined

-4 -4 0 0 undefined

modulus is always 

real and non-negative

arg(0)

arg (if it exists) is always 

between - and 

w = nw0
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Plot spectra using "blobs on sticks"

Amplitude spectrum: |cn| against w
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1/2

 2 3 4-2-5 -4 -3 - 5 w

Phase spectrum: arg(cn) against w

-/2

2 3 4-2-5 -4 -3 - 5 w

/2

|cn|

arg(cn)

NB versus w not n

cn = 0, arg(0) not 

defined  no blob
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Example

Q. A high-pass filter circuit has a transfer function

meaning that if the input signal is a single-frequency sinusoidal 

wave eiwt then the output signal is g(w)eiwt :

What is the output signal if the non-sinusoidal square wave f(t) 

from the previous example is the input signal?

A. The complex FS from the previous example

expresses the signal in terms of single-frequency components 

eint with frequency w = n. The n-th component therefore 

becomes g(n)eint after passing through the circuit. Hence the 

output summing all the components is
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( )
1

i
g

i

w
w

w




( ) in t

in n

n

f t c e 


-

 

( 0)

( ) ( )

[1 ( 1) ]

2 1

in t

out n

n

n
in t

n
n

f t c e g n

i in
e

n in









 



-



-




- -  
 -  

 





[Substituted cn from before and g(w) from the Q. The c0 term 

doesn't survive because g(0) = 0.]

Suitably-many terms of this series can be summed to show what 

happens if you pass a square wave into an a.c. coupled 

oscilloscope: see Appendix D on page 64.

g(w)eiwteiwt
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Time and frequency domains

The high-pass filter example typifies the use of Fourier 

techniques. The input signal f(t) has a simple form as a function 

of t, "in the time domain". On the other hand the response of the 

circuit has a simple form as a function of w, "in the frequency 

domain". Its response to a single-frequency input is simple, but 

different for different frequencies. We need Fourier techniques to 

transform our description of the signal between the two domains 

- to look at the signal from the time or frequency point of view.

f(t) tells us how much of the signal exists at time t while cn tells 

us how much of the signal exists at frequency w = nw0. Each 

description of the signal is complete. If you know it in the time 

domain as f(t) then you can find it in the frequency domain as cn

by performing the integral. If you know it in the frequency 

domain as cn then you can find it in the time domain as f(t) by 

summing the FS.
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0
0

0

1
( )

t T
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n
t

c f t e dt
T

w


-
 

0( )
in t

n

n

f t c e
w



-

 

Fourier analysis

f(t)

time domain

cn (with w = nw0)

frequency domain

Fourier synthesis
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2 Fourier Transforms

2.1. Development from Fourier Series

Firstly, a specific example:
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Q. Find the complex FS of

A. Sketch the function:

It's a train of "top hat" pulses, width d, separated by T.

1 | | / 2
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
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[                           ] sin
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Now special case n = 0:

so happens to be right even for n = 0.0sinc
2

n

n dd
c

T

w 
  

 

1

sinc(t)

t

2
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where "sinc" represents the very-useful continuous function

sin( )
0

sinc( )

1 0

t
t

t t

t




 
 

Hence the FS for f(t) is

00( ) sinc
2

in t

n

n dd
f t e

T

ww

-

 
  

 


The spectrum of f(t)

The spectrum is the variation of cn with frequency w, where

0

2 n
n

T


w w  (1)

/2

0
/2

1 d

d

d
c dt

T T-
 

0sinc
2

n dd

T

w 
  

 
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cn is real so we can plot its spectrum directly - no need to plot 

amplitude and phase spectra separately. We will multiply cn from 

the previous example by constant T before plotting the spectrum:

27

(2)

The spectrum is this function of w, sampled at a comb of 

discrete values separated by Dw =2/T as given by (1). For 

example if T = 3.4 d:

So, referring back to the original function f(t), the shape of the 

spectrum (2) depends only on the width of each pulse d while 

the discrete sampling of it (1) depends only on the separation of 

the pulses T.

 sinc
2

n

d
c T d

w 
  

 

zeros of sinc

comb frequencies
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A non-periodic version of f(t)

If the pulse separation T

increases while the pulse

width d stays the same,

then

•the comb of frequencies (1) becomes more densely packed,

•but the sinc "envelope" (2) of the spectrum doesn't change.

eg for T = 6.8 d:
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As T  , the pulses become infinitely spaced: the central pulse 

remains but the others are "banished" to infinity. Simultaneously 

the comb of frequencies in the spectrum becomes zero-spaced:

•f(t) becomes non-periodic (a single top-hat pulse)

w in the spectrum (2) becomes a continuous variable

This spectrum is called the Fourier transform of f(t).

unchanged

closer packed
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Now, the general case:

To define the Fourier transform of an arbitrary non-periodic 

function f(t), consider the complex FS of the periodic function 

fT(t) formed by repeating f(t) with period T
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/2

/2

( )

( )

T n

T
i t

T
T

F c T

f t e dtw

w

-

-



  [choose t0 = -T/2]

where "allowed" frequencies are w = 2n/T so their spacing is

2

T


w 

As T  :

( ) ( ) ( ) i t

TF F f t e dtww w


-

-
  

(4)

(5)

In (4), w  0 and w becomes a continuous variable. The 

continuous function F(w) replacing the discrete coefficients cn is 

the Fourier transform of f(t) and is defined by (5).

(3)

then recover f(t) by letting T  .

Fourier transform: Consider the function

T 2T-T 0

fT(t)

original f(t)
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Inverse Fourier transform: Meanwhile, the Fourier series itself 

becomes

( )

( )
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

-













[FS with implicit

w = nw0 from (1)]

[cn from (3)]

[T from (4)]

FT(w)eiwt

w

wn
w

strip area 

The sum is the area of an infinite set of rectangular strips:

As T   and w  0, the strips narrow to zero and the sum 

becomes the area under the smooth curve, ie an integral:

This integral recovers f(t) from its Fourier transform F(w), and 

so is the inverse Fourier transform of F(w). Generalising the 

Fourier series, it expresses non-periodic f(t) as a continuous

distribution of sinusoids eiwt, with amplitudes  F(w).

(6)
1

( ) ( ) ( )
2

i t

Tf t f t F e dww w
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( ) ni t
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2.2. Fourier Transforms by Integration

In summary, the Fourier transform (FT) from (5) is a definite 

integral performed on a function of one variable f(t) that returns 

a new function of a different variable F(w):

In this integral, t is a dummy variable of integration and w is 

treated as a constant.

An equally-simple inverse Fourier transform (IFT) integral (6) 

recovers f(t) from F(w):

Now w is the variable and t is treated like a constant.

The Fourier transform operator represents the act of taking 

the FT, and         is the inverse:

The integrals are similar but the variables are swapped, the sign 

of the exponent changes, and the IFT has a factor of 1/2.

Other definitions of FT and IFT handle the 2 and/or the signs 

differently. We're following the definition in the formula book. 

You may therefore find expressions for FTs in the wider world 

that differ from ours by multiplying factors and/or sign changes. 

However, all that matters is that                                .

FT

IFT

1-
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

find it in the 

formula book

find it in the 

formula book
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The integral definitions appear on p. 11 of the formula book and 

so do not need to be memorised. Note the useful information in 

the formula book, including the short list of transforms on p. 12 

that can save you some effort.

Time and frequency domains (again)

Fourier transforms are the generalisation of the Fourier series, 

and give the frequency content (or spectrum) of a time 

dependence that need not be periodic. f(t) represents something 

(like a wave) in the time domain, and its Fourier transform F(w) 

represents that thing in the frequency domain. 

The functions f(t) and F(w) in the Fourier transform pair 

contain the same information: given either, you can deduce the 

other through the appropriate integral. They are just different 

ways of looking at the same thing. 

Spatial Fourier transforms

The two variables t and w are described as being conjugate to 

each other. If t represents time then w represents ordinary 

temporal frequency (in angular "rad/s" units of course: "hertz" 

frequency is w/2). 
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FT (Fourier analysis)

f(t)

time domain

F(w)

frequency domain

IFT (Fourier synthesis)

time  t   w "temporal" frequency
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Other conjugate pairs of variables include position x and wave 

constant or spatial frequency k. 

Hence                             etc, where the integrals have x and k

instead of t and w but otherwise work in exactly the same way.

However, unlike time, we can have more than one dimension of 

space and hence 2-D and 3-D Fourier transforms. Indeed in 

abstract spaces we can have arbitrarily many dimensions.

eg, 2-D:

FT

IFT

33

( , ) [ ( , )] ( , ) yx
ik yik x

x yF k k f x y f x y e e dxdy
  --

- -
   

( ) [ ( )]F k f x

The mathematical connection between real space and the 

reciprocal space of solid-state physics (a.k.a. k-space or 

momentum-space, in which Brillouin zones exist) is a FT.

Also 2-D FTs are important in the theory of diffraction.

space  x   k "spatial" frequency

2
1 1

2
( , ) [ ( , )] ( , ) yx
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x y x y x yf x y F k k F k k e e dk dk
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 
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   

2-D  double integral

one factor of 2 per dimension

In general, in n-D where position r = (x, y, z, ...) and spatial 

frequency (or wave-vector) k = (kx, ky, kz, ...):
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[split 

exponentials]

[defn of FT]

[subst f(t)]

[to handle |t|]

[combine 

exponentials]
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1

"width" Dt = 2/a

1/e

-1/a 1/a

Sketch the function:

Example

Q. Find the FT of f(t) = e-a|t|, where a > 0.

A. Actually this one is in the table in the formula book (check 

before ploughing ahead!), but here's how to do it by integration:
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Example

Q. Find the IFT of 

A. 
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[defn of IFT]

[subst F(w)]
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[by parts]

[Careful here! In an IFT make sure you integrate with respect to 

w not t. Likewise, when you substitute the limits, make sure you 

replace w not t. There should be no w in the answer!]

[scruffy - can't 

simplify further]

"width" Dw = 2a

1/a

-a a

2/a
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The Bandwidth Theorem

In the first of the previous two examples, note how the width of 

f(t) and the width of F(w) depend on the parameter a in 

reciprocal ways, so that:

ie a narrow f(t) gives a wide F(w) and vice versa. This 

relationship holds in general for all functions and their FTs.

Aside (not exam material): The constant of proportionality 

depends on the functional form of f(t) but has a lower bound. A 

rigorous treatment replaces the ad hoc definitions of width we 

used in the example: if Dt is the standard deviation of |f(t)|2 and 

Dw is the standard deviation of |F(w)|2, then

A wave packet that extends over a time Dt has a spread of 

(angular) frequencies of at least 1/(2Dt).

Applying the bandwidth theorem to a quantum particle with

energy               (Einstein) and momentum              (de Broglie):

 Heisenberg's uncertainty principle comes directly from the 

theory of Fourier transforms, given the wave-particle duality of 

quantum mechanics.
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1 . Linearity

where A and B are constants. This most basic of properties is 

actually not listed in the formula book, but you are expected to 

know about it.

2. Time shift

where t is a constant

Proof:

2.3. Properties of Fourier Transforms

There are several properties listed on p. 11 of the formula book 

that can help you to find new FTs and IFTs from old ones 

without evaluating any more integrals.

In the following, let

37

[ ( ) ( )] [ ( )] [ ( )]

( ) ( )

Af t Bg t A f t B g t

AF BGw w

  

 

( ) [ ( )]

( ) [ ( )]

F f t

G g t

w

w





[ ( )] ( )ig t e Gwtt w 

[defn of FT]

( ' )

'

'

( )

( ') '

( ') '

( ') '

( )

i t

i t

i t i

i i t

i

LHS g t e dt

g t e dt

g t e e dt

e g t e dt

e G RHS

w

w t

w wt

wt w

wt

t

w


-

-


- -

-


-

-


-

-

 







 









[t' = t + t]

[constant factor]

[factorise exp]

[defn of FT]

find it in the 

formula book

2. Fourier transforms / Properties of Fourier transforms 

Lecture 6



3 . Reflection

4. Frequency shift

where w0 is a constant

5. Scale change

where T is a positive constant

6. Conjugate

where * denotes the complex conjugate

7. Derivative

Repeating:

In other words, FT converts differential equations into algebraic 

equations, often making them easier to solve.

Another version of this property applies to derivatives of the 

function of w instead:
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[ ( )] ( )g t G w-  -

0

0[ ( )] ( )
i t

e g t G
w w w -

[ ( / )] ( )g t T TG Tw

* *[ ( )] ( )g t G w -

( )
( )

dg t
i G

dt
w w

 
 

 

( )

( )

( )
( ) ( )

n
n

n

d g t
i G

dt
w w

 
 

 

( )
[ ( )]

dG
tg t i

d

w

w


find it in the 

formula book

find it in the 

formula book

find it in the 

formula book

find it in the 

formula book

find it in the 

formula book

find it in the 

formula book
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8 . Symmetry (also known as Inversion)

Look carefully at what's going on here. The transform function 

now acts on t instead of w - the roles of the two 

variables are reversed. We can use this property to find the FT of 

a function f(t) which we notice has the same form as a known 

transform function G(w).

NB common student mistake! Note that g(-w) is g(t) with every

t replaced by -w.

For example, if

then

39

[ ( )] 2 ( )G t g w -

( ) [ ( )]G g tw 

1 0 1
( )

0

t t
g t

otherwise

  
 



1 0 1
( )

0

1 1 0

0

g
otherwise

otherwise

w w
w

w w

-  - 
-  



- -  
 



[including the 

t in the 

inequality!]

[then tidy up 

the inequality]

NB, all these properties are written as Fourier transforms. They 

can of course equivalently be written as inverse Fourier 

transforms by applying        to both sides.

eg frequency shift:

1-

01

0[ ( )] ( )
i t

G e g t
ww w- - 

find it in the 

formula book
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Example

Q. Find the FTs of 

(a)

(b)

(c)

given that the FT of                     is

A. (a)

[First spot that f1(t) looks like f(t) with a scale change. Start each 

answer by writing the function you want in terms of the function 

you've got:] 

So

40

9| | |9 |

1( ) (9 )t tf t e e f t- -  

[scale change property 

with T = 1/9]

9| |

1( ) tf t e-

| 2|

2 ( ) tf t e- -

3 2

1
( )

1
f t

t




| |( ) tf t e-
2

2
( ) [ ( )]

1
F f tw

w
 



1

2

2

1
( )

9 9

1 2

9 1 ( / 9)

18

81

F F
w

w

w

w

 
  

 

 





Important point! In an exam question you are of course expected 

to show how you obtain your answer. So if you use a FT 

property you need to say so, eg like this.

[F from the 

question]
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(b)

(c)

41

| 2|

2 ( ) ( 2)tf t e f t- -  -

[time shift 

property with 

t = -2]

2

2

2

2

( ) ( )

2

1

i

i

F e F

e

w

w

w w

w

-

-






3 2 2

1 1 2 1
( ) ( )

1 2 (1 ) 2
f t F t

t t
  

 

3

| |

| |

1
( ) 2 ( )

2
F f

e

e

w

w

w  w





- -

-

  -





[symmetry 

property]

Example

Q. Use the formula book to find the IFTs of

(a)

(b)

A. (a) formula book p. 12: if                                 [let a = 1/4] 

then 

(b)

2

1( )F e ww -
2( 3)

2 ( )F e ww - 
2 2 /4( ) at tf t e e- - 

2 21/2 /4( ) [ ( )] ( / ) 2aF f t a e ew ww  - -  

2

1

/4

1

( ) ( ) / 2

1
( )

2

t

F F

f t e

w w 



-





["want" in 

terms of "got"]

2

2

( 3)

2 1

3

2 1

/4 3

( ) ( 3)

( ) ( )

1

2

it

t it

F e F

f t f t e

e e

ww w



- 

-

- -

  




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2.4. Summary: Strategy for finding FTs

You now have three methods for finding Fourier transforms and 

inverse transforms. You will need to recognise which is the most 

profitable for a given problem.

1. Evaluate the integral

Fine in principle but can be tedious and the answer you get may 

not be in the neatest form. Do this if you have no alternative or if 

the integral looks quick and easy.

2. Use the table on p. 12 of the formula book

Obviously the quickest method, but there aren't many functions 

in the table. Familiarise yourself with the ones that are, to save 

time in an exam!

The commonly-encountered "top hat" function is called rect in 

the table. Note that the formulae to the right of the curly bracket 

are two equivalent definitions, not one compound definition!

3. Use the properties on p. 11 of the formula book

Do this if the function you want to transform is suitably related 

to another whose transform you already know.

Don't forget about the trivial-looking linearity property, which is 

not in the formula book.
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[one definition]

[another definition]
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3. Special Functions

It is useful to define special functions to represent various kinds 

of discontinuity that can be encoutered in physical problems.

3.1. The Heaviside (Unit Step) Function H(t)

Definition:

t

43

0 0
( )

1 0

t
H t

t


 



H(t)

1

0

• A step from 0 to 1 at t = 0:

• It represents "something switching on or off"

• H(t - a) is a step from 0 

to 1 at t = a, ie where the 

argument t - a = 0:

t

H(t - a)

1

0 a

• combine with other 

functions, eg e-t H(t) is 

an exponential decay 

starting at t = 0:
t

e-t H(t)

1

0

(The first definition of rect in the formula book is another example.)

3. Special functions / Heaviside step function
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• An infinitely-thin infinitely-high "spike" at t = 0, with unit 

area underneath:

3.2. The Dirac Delta (Impulse) Function (t)

Definition

(2 parts):

t

44

( ) 0 0

( ) 1

t t

t dt






-

 



(t)

0

y axis shifted left, so as 

not to obscure what's 

happening at t = 0

• It represents "something that happens all at once"

(eg an impulsive force F = Dp (t) causes change of 

momentum Dp at t = 0)

• (t - a) is a spike 

at t = a:

t

0 a

(t - a)

• Mathematicians are not comfortable about calling (t) a 

function - but physicists (like Dirac) can be less scrupulous!

( )
( )

dH t
t

dt
 

 (t) can be thought of as the derivative of the step function:

[NB the value 

of (0) is not 

defined!]

(proof: integrate both sides from - to t)

3. Special functions / Dirac delta function
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t

45

e(t)

0

• There are numerous ways to define (t) as the limit of a 

sequence of well-behaved functions. eg consider the top-hat 

function e(t), with width 2e and height 1/2e. 

area of rectangle 

2e × 1/2e  1

-e e

1/2e

As e gets smaller the function becomes taller and narrower while 

its area stays equal to 1. Hence
0

( ) lim ( )t te
e

 




Sift property of (t) 

Consider the integral of a delta function multiplied by an 

arbitrary other function f(t):

( ) ( ) ( )f t t a dt f a


-
- 

( ) ( ) ( ) ( )f t t a dt f a t a dt 
 

- -
-  - 

[Since (t - a) is zero except at t = a, f(t) in the integral can be 

replaced by f(a)]

( ) ( )

( )

f a t a dt

f a




-
 -



 [f(a) is a constant]

[integral of (t) is 1]

 Sift property:

Integration with  picks out the value of f at the spike of the .

The sift property is not in the formula book, but you are 

expected to know it.

3. Special functions / Dirac delta function
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Fourier Transform of (t) 

46

[sift property of ]

( ) [ ( )]

( ) i t

i a

F t a

t a e dt

e

w

w

w 




-

-

-

 -

 -





Inverse Fourier Transform of (w) 

Repeating the exercise with the IFT integral gives

 [ ( )] i at a e w -- 

In particular: [ ( )] 1t 

The spectrum of a delta function is independent of w: an impulse 

 has equal amounts of every frequency.

0

0[ ] 2 ( )
i t

e
w  w w -

[Intuitively this is hardly surprising - it says that the spectrum of 

a single-frequency wave contains only one frequency ...]

In particular: [1] 2 ( ) w

Now we can Fourier-transform constants, something you may 

not have guessed from looking at the integral definition of FT.

The FT and IFT of  are given in the formula book, so no need 

to memorise them. Nevertheless they are very easy to re-derive, 

given the sift property of .

find it in the 

formula book

find it in the 

formula book

NOT in the formula book: 

use time-shift on the next 

result, or do the integral
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Example

Q. Find a solution of the differential equation

[This could be the equation of motion of a pendulum struck by a 

hammer (an impulsive force) at t = 0]

A. FT both sides, writing                            :

47

2

2
( ) ( )

d f
f t t

dt
-  

[derivative property on 

LHS, FT of  on RHS]

2( ) ( ) ( ) 1i F Fw w w-  

Now IFT both sides:

[ ( )] ( )f t F w

2

1
( )

1
F w

w



[rearrange for F(w)]

| |1
( )

2

tf t e- [using tables]

Transform techniques are a powerful way of solving differential 

equations, even with "strange" inhomogeneous parts like (t).

Using the FT here, we have only found a particular integral. To 

obtain the general solution we need to add the complementary 

function found by solving LHS = 0 by other methods (see YR1 

differential equations). 
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3.3. The Dirac Comb (Shah) Function DT(t)

Definition:

t

48

( ) ( )T

n

t t nT


-

D  -

0

• An infinite train of  functions separated by T:

• It represents "something impulsive that happens repeatedly" 

• DT(t) is a periodic function. You can show (problem sheet) 

that its FT is proportional to another Dirac comb, with 

separation w0 = 2/T:

DT(t)

-2T -T T 2T

. . .. . .

nT

(t - 2T) (t - nT)

00

0 0

[ ( )] ( )

( )

T

m

t

m

ww w

w  w w


-

D  D

 -

. . .

3. Special functions / Dirac comb function

Lecture 7



4. Convolution and Signal Processing

4.1. Convolution

The impulse response or "point spread function" (g(x), say) of an 

imperfect instrument is what the instrument records when the 

input is an ideal point source, represented by (x). For example, 

diffraction in a telescope may make it image a point-like star 

(x) as a finite spot g(x).

49

x

input

0

x

output

0

(x) g(x)

What if the input signal f(x) is spread out instead of point-like? 

(For example, point the telescope at a planet or nebula.)

Express f(x) as a continuous distribution of point sources

(x - x'), each centred at x = x' with "weight" f(x'):

( ) ( ') ( ') 'f x f x x x dx


-
 - [sift property of ]

The instrument then distorts each of the distribution's point 

sources (x - x') into the point spread function g(x - x'), so the 

recorded output is

( ) ( ') ( ') 'outf x f x g x x dx


-
 -

4. Convolution and signal processing / Convolution
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x

x1'

x

f(x2')g(x - x2')

This operation on functions f and g is called their convolution

and is written:

dummy 

variable x'( * )( ) ( ') ( ') 'f g x f x g x x dx


-
 -

x2' x3' x1' x2' x3'

f(x2')(x - x2')f(x) fout(x)

[schematic diagrams / poetic licence: eg all the  functions go to , but 

with different weights f(x')  different "areas under the curve"]

• The result of convolution is a function whose name is f *g, 

which here takes x as its argument. When performing the 

integral, x is treated as a constant.

• ie, in this context, * does not represent multiplication or 

complex conjugate

• It doesn't matter which way round f and g go:

• The verb for convolution is "convolve"; we say f and g are 

convolved together

• It can be awkward working out the convolution integral, but 

it's very simple when one of the functions is a delta function:

( * )( ) ( * )( )f g x g f x

find it in the 

formula book
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Convolution with  function

If

then

51

( ) ( )g x x a -

( * )( ) ( ') ( ') '

( ') ( ') '

( )

f g x f x g x x dx

f x x a x dx

f x a





-



-

 -

 - -

 -





[defn]

[spike where 

x' = x - a]

[sift property]

• convolution with (x - a) reproduces the original function but 

with the argument x replaced by x - a;

• equivalently, it replaces the  symbol with f;

• equivalently, it shifts the function to the right by Dx = a.

x = a Dx = a

* =

Example

Q. Find (f * g)(x), where

f(x) = 

g(x) = 3(x + 2) - (x - 1)

1-1

1

( )* ( ) ( )f x x a f x a -  -That is,

4. Convolution and signal processing / Convolution
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A. (f * g)(x) = 3f(x + 2) - f(x - 1)

52

3× copy of f(x) 

shifted by -2

[convolution with ]

1-2

3

-1

- copy of f(x) 

shifted by +1

4.2. Convolution Theorem

If

it can be shown that

( ) [ ( )]

( ) [ ( )]

F f t

G g t

w

w





[( * )( )] ( ) ( )f g t F Gw w  convolution 

theorem

The transform of the convolution = the product of the transforms

Similarly (in the other direction) it can be shown that

1
[ ( ) ( )] ( * )( )

2
f t g t F G w


 

frequency 

convolution 

theorem

The transform of the product = 1/(2) × the convolution of the 

transforms

The frequency convolution theorem is a kind of "product rule" 

for FTs, while the convolution theorem does the same for IFTs.

find it in the 

formula book

find it in the 

formula book
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-3-4-5 -2 1

Example

Q. f(t) =

Given that

what is

where g(t) =

53

1-1

1
t

f(t)

( ) [ ( )] 2 sinc( )F f tw w 

( ) [ ( )]G g tw 

-1

t

2 3 4 5-1

1

g(t)

A. Write g(t) as the convolution of f(t) with some  functions:

Apply the convolution theorem:

 

( ) ( 4) ( 2) ( ) ( 2) ( 4)

( )* ( 4) ( 2) ( ) ( 2) ( 4)

g t f t f t f t f t f t

f t t t t t t    

  -   - -  -

  -   - -  -

 

4 2 2 4

( ) ( ) [ ( 4) ( 2) ( ) ( 2) ( 4)]

( ) 1

2 sinc( ) 1 2cos(2 ) 2cos(4 )

i i i i

G F t t t t t

F e e e ew w w w

w w     

w

w w w

- -

   -   - -  -

   -  -  

  - 

[FT of ]

Of course this question could also be answered using the time 

shift property...
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4.3. Sampling Theorem

A digital instrument samples a continuous signal f(t) with a time 

interval Ts, ie at (angular) frequency ws = 2 / Ts :

54

t

f(t)

The recorded data is proportional to a function fs(t):

which represents the sampling process by multiplication with a 

Dirac comb of spacing Ts.

Although the signal between the samples is ignored, under 

certain circumstances the entire original signal can be 

reconstructed from the sampled data!

Let                               be the FT of the original signal.

The FT of the recorded data is

( ) ( ) ( )s s

n

f t f t t nT


-

  -

Ts

sampled data
signal

( ) [ ( )]F f tw 

( ) [ ( )]

( )] ( )

1
( )* ( )

2

s s

s

n

s

n

F f t

f t t nT

F t nT

w



w 




-



-



 
  - 

 

 
 - 

 





[subst fs(t)]

[frequency 

convolution 

theorem]
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ws-wm

55

0

gap

( )* ( )
2

1
( )

s
s

m

s

ms

F m

F m
T

w
w  w w



w w



-



-

 -

 -





[FT of Dirac comb]

[convolution with 

 function]

ie, an infinite train of copies of F(w) separated by ws.

If the transform of the original signal looks like

2ws

Fs(w)

ws-ws

wm

0

F(w)

wm-wm

where wm is the highest significant frequency component in the 

signal, then the transform of the recorded data looks like

So F(w) (and hence the original signal f(t) by IFT) can be 

completely recovered from the data by filtering out frequency 

components |w| > wm in the data, provided the copies of F(w) do 

not overlap.

w

w
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To avoid this overlap, the marked gap must be greater than zero:

In terms of "hertz" frequency, f = w/2 :

56

2s m m s mw w w w w-   

The sampling rate (fs) must be at 

least twice the highest frequency 

in the signal (fm):

2s mf f

Nyquist sampling 

theorem / criterion

Aliasing

If the Nyquist criterion is not satisfied, adjacent copies of F(w) 

in Fs(w) overlap and the original F(w) cannot be recovered. 

Spurious low-frequency components are introduced within

-wm > w > wm , a degradation called aliasing:

signal sub-sampled data

spurious "alias" frequency 

can also be fitted to the data

In the above diagram: the Nyquist criterion indicates that the 

high-frequency signal should be sampled at least twice per 

period. Because it is not sampled that often, it is possible to fit a 

lower-frequency cos function to the same data points. This is the 

alias, and represents a low frequency that is completely absent 

from the original signal.

4. Convolution and signal processing / Sampling theorem

Lecture 9



In the frequency domain:

57

Examples of aliases:

•wagon wheels appearing to rotate backwards in old westerns

•water appearing to slow down or drip upwards in strobe light

•spurious squeals in over-compressed audio files

•artifacts in over-compressed image or movie files

Two ways to prevent aliasing:

1. (obviously) increase the sampling rate until fs > 2 fm; or

2. filter the signal before sampling, to remove high-frequency 

components until 2 fm < fs. This blurs or smooths the data, but at 

least it doesn't introduce non-existent components.

high-f component shows 

up as a low-f alias

Fs(w)

ws-wm

w
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Computing FTs of sampled data

58

( ) ( ) ( )

( ) ( )

s s

n

s s

n

f t f t t nT

f nT t nT





 -

 -





[from before; put f inside S]

[because (t - nTs) = 0 

except when t = nTs]

constant!

( ) ( ) si nT

s

n

F f nT e
ww -

   [FT of ]

This is the discrete Fourier transform (DFT).

On a computer, it is most efficiently calculated using an 

algorithm called the Fast Fourier Transform (FFT).
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Appendix A: Fourier series of a square wave

59
Appendix A. Fourier series of a square wave

0 2 4 6 8
2

0

2

0 2 4 6 8
2

0

2

0 2 4 6 8
2

0

2
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Appendix A. Fourier series of a square wave
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Appendix B: Fourier series of a sawtooth wave
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Appendix B. Fourier series of a sawtooth wave
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Appendix C: Finite-range functions

Fourier series represent infinite periodic functions as sums of sinusoidal

components. Consider these three functions, each shown with its FS summed over

the first 5 terms:
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Appendix C. Finite-range functions
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Although the three functions (and their FS) are quite different, they do coincide

when 0 < t < . Each FS can therefore represent the finite range function g(t),

which is only defined for 0 < t < :
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Such finite-range functions can arise as solutions of differential equations with

boundary conditions, where values outside the range are meaningless or irrelevant.

(One example might be a solution of the heat conduction equation applied to an

insulated metal bar whose ends are held at fixed temperatures.)

There's an infinite number of ways to represent such a finite-range function as a

FS, depending on what values are taken outside the range of interest. The functions

on the previous page represent the three simplest ways:

g1(t): Just repeat the function g(t) with period equal to the range of interest (ie,

T = ). This yields the infinite periodic function g1(t). Because g1(t) is neither even

nor odd it is necessary to evaluate both an and bn integrals to find the FS (although,

as you can see, in this case a0 is the only non-zero an).

g2(t): Artificially extend g(t) to negative t as an even function (shown as a broken

line in the g2(t) plot) then repeat this unit with period equal to twice the range of

interest (ie, T = 2). Because the resulting infinite periodic function g2(t) is now

even, it is enough to evaluate only the an integral. This gives what is called a

Fourier cosine series.

g3(t): Artificially extend g(t) to negative t as an odd function (shown as a broken

line in the g3(t) plot) then repeat this unit with period equal to twice the range of

interest (ie, T = 2). Because the resulting infinite periodic function g3(t) is now

odd, it is enough to evaluate only the bn integral. This gives a Fourier sine series.

Which method is best? It depends on the function ... Two things to consider:

1. How much effort is involved? g1(t) requires the least thought but more effort,

because we must work out both integrals an and bn. However, in some cases the

repeated function is even or odd anyway.

2. How good is the FS for a given number of terms? In the example above, the FS

for g2(t) looks much better than the others for the same number of terms. This is

because the other two functions have step discontinuities, so their FS suffer from

the Gibbs phenomenon. Therefore it's usually best to choose an extended function

without step discontinuities.
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Appendix D: High-pass filter
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Appendix D. High-pass filter

A high-pass filter removes low frequencies from a signal and transmits just the

high frequencies. Physical devices can filter real waves (eg an electronic high-pass

filter can be built from resistors and capacitors), or computers can perform the task

on digital signals by calculations based on Fourier analysis.

Here are the sums to n = 50 of two complex Fourier series. The one on the left is

is an input square wave, and the one on the right is the output after the lowest-

frequency components have been removed:

The flat tops of the square wave have become slanted, like exponential decays.

Notice also that the "d.c." component has gone - the output function averages zero

whereas the input averages 0.5.

An oscilloscope will do this sort of thing to a square wave from a signal generator

if "ac coupling" (a kind of electronic high-pass filter) is selected:
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