
MA40059 Coursework

The following questions form the coursework element of MA40059 Mathematical Methods 2 [M&P]. They concern
the application of Green’s function methods for solving PDEs in the analysis of advanced physical problems, and a
physical problem involving calculus of variations.

Answers to these questions should be handed in to the box marked “MA40059 – Maths Methods” to be found just
inside the door of the Undergraduate Physics Laboratory (3W3.19) by 12.15 on Thursday 9th May 2019. Following
standard practice in the Department of Physics, work handed in late will lose 20% of all available marks for each 24
hours (or part thereof) past the deadline.

Note that some marks are awarded for presentation. Full marks will be awarded for work which correctly answers the
questions, with sketches that are suitable drawn and annotated, and with answers logically structured with a concise
explanation of the mathematical steps performed. Marks will be lost for work which just gives intermediate and/or
final results, or consists of pages of algebra without explanation. Each problem carries equal weight.

Note that whilst I encourage you to discuss the problems with fellow students, the work that you hand in should be
substantially your own. Implicit in the handing in of your work is the declaration that it is your own, and where you
have used other sources of assistance that these are appropriately acknowledged and referenced.

If you do have questions/problems that you would like help with, ask in one of the scheduled drop-in sessions.

The marks available for this piece of assessed work are 20% of the total mark for this unit.

Dr S. Crampin
WH 3.41
tel: x4808
email: s.crampin@bath.ac.uk
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Problem 1

This is a problem in electrostatics, concerning the electrostatic potential Φ(r) due to a point charge outside a grounded
conducting sphere, radius R. Electrons are free to move in the conductor, and in the presence of the external charge
a charge distribution is generated which itself creates an electric field, such that when equilibrium is reached (in
typically 10−14 seconds) the charge distribution is static and the electric field in the sphere vanishes. Hence the
potential inside the sphere is constant, and the potential at the surface is an equipotential surface, which by definition
is Φ = 0.1

The starting point for determining the electrostatic potential outside the conductor is Poisson’s equation, which relates
the charge density ρ(r) and the electrostatic potential Φ(r), which in SI units is given by

∇
2
Φ(r) =−ρ(r)/ε0 (1)

where ε0 is the dielectric constant of free space. The solution of (1) in volume V with bounding surface S may be
written

Φ(r) =
1

4πε0

∫
V

G(r,r′)ρ(r′)dV +
1

4π

∮
S

[
G(r,r′)

∂Φ(r′)
∂n′

− ∂G(r,r′)
∂n′

Φ(r′)
]

dS′ (2)

where ∂/∂n denotes the derivative in the direction normal to the surface and G is the Green function satisfying

∇
2G(r,r′) =−4πδ(r− r′) (3)

where δ(r) is the Dirac-delta function ∫
V

δ(r)dV =

{
1 r ∈V
0 otherwise. (4)

a) Write down (2) when Φ vanishes on S and the Green function is chosen to satisfy Dirichlet boundary conditions
on S. Hence show that in the present problem of the grounded sphere and where the charge density in V is that of a
single electron at r0 ∈V [i.e. the charge density is ρ(r) =−|e|δ(r−r0)], the electrostatic potential is directly related
to the Dirichlet Green function GD.

b) Now find GD, assuming the sphere is centered on the origin. To do so, set

GD(r,r′) =
1

|r− r′|
+F(r,r′) (5)

and determine the equation satisfied by F and the corresponding boundary conditions.2 Expand the angular depen-
dence of F using spherical harmonics3

F(r,r′) =
∞

∑
`=0

l

∑
m=−l

F̀ ,m(r,r′)Y`,m(ϑ,ϕ), (6)

substitute, and solve. Hence obtain an expression for the electrostatic potential outside the sphere.

c). Use your result to show that the electron outside the sphere feels an attractive force due to the induced screening
charge, and obtain it’s asymptotic (r→ ∞) form. [you may find it useful to recall ∑

∞
n=0 xn = (1− x)−1, |x|< 1.]

d). By making appropriate substitutions/taking appropriate limits, use your answer to b) to determine the exact form
for the classical force on an electron a distance z above a plane surface of an ideal conductor.

1Because it is grounded. In theory this can be achieved by connecting the object to earth using an infinitesimally thin perfectly conducting
wire (available at all good electrical shops) so as not to otherwise disturb the electrostatic field.

2You may quote the results

∇
2
(

1
|r− r′|

)
=−4πδ(r− r′), and

1
|r− r′|

= 4π

∞

∑
`=0

l

∑
m=−l

1
2`+1

r`<
r`+1
>

Y`,m(ϑ,ϕ)Y ∗`,m(ϑ
′,ϕ′)

where Y`,m(ϑ,ϕ) is a spherical harmonic3 and r> (r<) is the greater (lesser) of r,r′.
3e.g. http://en.wikipedia.org/wiki/Spherical harmonics#Spherical harmonics expansion – I don’t normally recommend

wikipedia, but I’ve read the info and it looks sound. See also e.g. Arfken, Mathematical methods for physicists, Academic Press. Useful properties
of the spherical harmonics that you may quote are

∇
2Y`,m(ϑ,ϕ) =−

`(`+1)
r2 Y`,m(ϑ,ϕ),

`

∑
m=−`

Y`,m(ϑ,ϕ)Y ∗`,m(ϑ,ϕ) =
2`+1

4π
, and

∫
S

Y`,m(ϑ,ϕ)Y ∗`′,m′ (ϑ,ϕ)dS =

{
1 `= `′,m = m′

0 otherwise.

where S is the surface of a sphere.
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Problem 2

Let L be a differential operator of Sturm-Liouville form: Ly(x)≡ d
dx

(
p(x)

dy(x)
dx

)
+q(x)y(x).

(a) If y1(x) and y2(x) are two different solutions of the homogeneous Sturm-Liouville equation Ly = 0, show that
the quantity

∆[y1,y2] = p(x)
(
y1(x)y′2(x)− y2(x)y′1(x)

)
(where ′ ≡ d/dx) is a constant. ∆ is called the Wronskian. [Hint: show d∆/dx = 0.]

(b) Let G(x, x̃) be the Green function corresponding to L, i.e. G satisfies

LG(x, x̃) =
d
dx

(
p(x)

dG(x, x̃)
dx

)
+q(x)G(x, x̃) = δ(x− x̃), Eqn. 1

where the right hand side is the Dirac delta function. Let ya(x) and yb(x) be solutions of Ly = 0 that satisfy the
boundary conditions at a and b.

(i) Write down expressions for G(x, x̃) valid for x < x̃ and x > x̃ in terms of ya, yb, and x̃-dependent coeffi-
cients.

(ii) Integrating Eqn. 1 across the delta function, identify matching conditions at x = x̃, and use these to
establish expressions for the coefficients.

(iii) Hence show G(x, x̃) can be written in terms of solutions of the homogeneous problem satisfying boundary
conditions at a and b, and their Wronskian.

(c) The solution of Ly = f where L is a linear second order differential operator is

y(x) = y0(x)+
∫

G(x, x̃) f (x̃)dx̃

where y0 is the solution of the homogeneous equation Ly = 0, and the Green function satisfies

LG(x, x̃) = δ(x− x̃).

L contains derivatives with respect to x.

(i) Find G(x, x̃) corresponding to L=−(h̄2/2m)d2/dx2−E, where E is a constant with infinitesimal positive
imaginary part, and requiring that G be well behaved as x→±∞. Explain carefully your working.

(ii) Hence show that the solution ψ(x) of the one-dimensional time-independent Schrödinger equation for
arbitrary potential V (x),

− h̄2

2m
d2ψ

dx2 +V ψ = Eψ

can be written as
ψ(x) = ψ0(x)−

im
h̄2k

∫
eik|x−x̃|V (x̃)ψ(x̃)dx

where k =
√

2mE/h̄2 and ψ0(x) is a free-space (V = 0) solution.

Aside: Written formally the solution is ψ = ψ0−GV ψ. Rearranging ψ = (1+GV )−1ψ0, or ψ = T ψ0 where T is
the transition operator. We have T = (1+GV )−1, so (1+GV )T = 1 or explicitly in one-dimension

T (x, x̃) = δ(x− x̃)−
∫

G(x, x̃′)V (x̃′)T (x̃′, x̃)dx̃′,

an integral equation for T . The transition operator plays as important role in scattering problems. There, we are
interested in how an incident free particle described by a wave function ψ0 is scattered by a localised object, described
by potential V . ψ = T ψ0 tells us just that.
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Problem 3

a). The gravitational potential energy U(rrr) of a mass m due to a mass density ρ(rrr) satisfies ∇2U = 4πGmρ, where
G is the gravitational constant. If the earth is considered to be a uniform sphere of mass M, radius R, show that the
gravitational potential energy of a mass m inside the earth a distance r from the center is

U(r) =
mg
2R

(r2−3R2)

where g = GM/R2 = 9.81 m/s2.

b.) A tunnel is to be constructed through the earth, along which a frictionless train will run between cities at A and B.
The track is described by the curve r(φ) (polar coordinates).

A B

R

r
φ

d`

Use energy conservation to derive an expression for the speed v of a train which starts at rest at A as it passes through
segment d` of the curve at r(φ), and hence show that the journey time is

T =
∫

dt =
∫ d`

v
=

√
R
g

∫
φB

φA

√
r2 + r′2

R2− r2 dφ.

where r′ = dr/dφ.

c). The tunnel is to be constructed so as to minimise the journey time. Taking care to note the nature of the integrand,
write down an Euler-Lagrange equation for the extremal curve r(φ) [you are not asked solve this].
Let a be the minimum distance of the tunnel from the center of the earth, where dr/dφ = 0. Use this to obtain an
expression for dr/dφ in terms of r, R, and a.

d). Noting dφ = dr/(dr/dφ), reexpress T as an integral

T = 2
∫ R

a
. . .dr

and evaluate. (You may quote tables or use https://www.wolframalpha.com/calculators/integral-calculator
where necessary).

e). If R = 6,400 km determine the journey time in minutes through the center of the earth.


