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Artificial ion channels and spike computation
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PACS. 73.63.-b – Electronic transport in nanoscale materials and structures.

PACS. 87.18.Sn – Neural networks.

Abstract. – Semiconductor pn microwires are shown to replicate the physical characteristics
of biological nerve fibres that condition the propagation and summation of electrical spikes.
The spatio-temporal response of the nanowire to sequences of synaptic impulses is modelled
using finite elements. We explain how networks of pn wires could be interconnected to construct
fully asynchronous neural networks. These ideas are applied to the elementary XOR problem.

Introduction. – Semiconductor pn junctions are used in electronic devices as a means
of controlling slowly varying currents [1]. The well-known exponential conductance of the pn
junction describes what is essentially a one-dimensional transport property since translational
invariance is always assumed in the plane. Modulated semiconductors may however be per-
ceived as richer and subtler physical systems capable of modelling the dynamic behaviour of
ionic solutions in the solid state. As already noted by Shockley, a close analogy exists between
electrons, holes, donors, acceptors in semiconductors and acids, bases, cations, anions in water
solutions [2]. One information processing device that functions by regulating the passage of
ions across a semipermeable membrane is the nerve cell of living organisms. The signalling
of electrical impulses along its nerve fibres was investigated by Hodgkin and Huxley in the
1950s [3]. They found that electrical signals would propagate and interfere according to a uni-
versal diffusion equation parametrised by the conductance of the membrane to each ion specie
and the geometry of the fibre. This diffusion equation continuously integrates all synaptic in-
puts over space and time and as such is responsible for the parallel processing of information
in the nerve cell. Electronic sum and threshold neurons have been realised at the integrated
circuit level to add weighted synaptic inputs, although in a synchronous manner [4]. On the
other hand, the temporal response of a nerve fibre to an excitatory current has successfully
been replicated by modelling the membrane conductance [5] or by asynchronous circuits using
cryo-cooled diodes [6, 7]. Recent clinical experiments [8, 9] and stochastic models of neural
activity [10–14] have shown that traditional semiconductor devices are not ideally suited to
computing spikes. A new physical medium is therefore needed for propagating depolarisation
waves analogue to signalling in biological nerve fibres.
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Fig. 1 – (a) Nerve capillary; (b) pn wire; (c) equivalent electrical circuit.

In this paper, we outline the electrical similarity between the semiconductor pn junction
and the membrane of biological nerve cells. We show that the propagation and summation
of synaptic inputs in the plane of pn wires is determined by a non-linear diffusion equation.
A finite-element solver allows us to study the effect of the wire parameters, the amplitude
and the duration of synaptic inputs on the speed and diffusion length of spikes. We found
that the non-linearity of the diffusion equation manifests through a memory effect of the pn
wire to the passage of earlier spikes that has the effect of enhancing spike interferences. We
explain how networks of pn wires could be interconnected to perform spatio-temporal neural
computations and illustrate this by solving the XOR problem. Our approach paves the way
to massively parallel computation on ultra-small scales in simpler, analogue, asynchronous
networks and is a step closer to replicating actual neural behaviour. The maturity of the
technology on pn junctions together with the advances of modern nanofabrication suggest
that artificial networks of spiking neurons could be constructed to study the emergence of
synchrony and learning in parallel with experiments on living organisms.

Artificial ion channels. – The examination of nerve fibres and pn wires in fig. 1a) and
b) reveals a number of elements that perform a similar electric function. At rest the fibre
membrane maintains a gradient of ion concentration that segregates potassium ions inside
the membrane and sodium ions outside. Each action potential drives the diffusion of its ion
specie across the membrane. At rest, the membrane is more permeable to K+ than to Na+.
This predominantly results in the accumulation of positive charge outside the fibre until the
induced electric field prevents further K+ outflow. At equilibrium, drift and diffusion currents
compensate each other and a potential barrier is established across the membrane. The barrier
height (Vm) is given by Nernst equation in table I. Now considering the pn junction in fig. 1b),
the chemical imbalance of majority and minority electrons across the depletion region leads
to a potential barrier (Vb) that is defined by the same equation —see table I. This barrier is
considerably higher in semiconductors because the energy gap is very effective in segregating
majority and minority carriers.
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Table I – The physical properties of nerve membranes and pn junctions. ni, NA, ND are the concen-
trations of intrinsic carriers, acceptor and donor impurities. [K+]in/out, [Na

+]in/out are the potassium
and sodium concentrations, respectively, inside and outside the nerve fibre.

pn junction Nerve capillary

Charge carriers electrons, holes K+, Na+

Membrane Depletion region 100–1000 nm Lipid-protein membrane 8–1000 nm

Membrane resting potential Vb = kBT
e

ln(
n2
i

NAND
) ≈ −1.0V Vm = kBT

e
ln( [K+][Na+]out

[K+][Na+]in
) ≈ −0.07V

High-res. channel p+ GaAs electrode, r ≈ 1010 Ω/m Intra-cellular, r ≈ 1012–1014 Ω/m

Low-res. channel n+ GaAs electrode Extra cellular

Capacitance Depleted region C ≈ 0.1µF/cm2 Cell capacitance C ≈ 1–1000µF/cm2

Non-linearity Exponential conductance Voltage gated Na+ channels

Electrical signaling along the membrane depends on both the radial conductivity through
the membrane and the axial resistivity along the core of the nerve capillary [3]. Because of
steric constraints, the resistivity of the capillary is larger than outside. In fig. 1b), the p-type
electrode substitutes to the core of the capillary whereas the n-type electrode models the
low-resistivity ionic solution outside. In a semiconductor like GaAs, the p-type mobility is 20
times lower than the n-type. To a good approximation, the n-type resistivity may therefore
be neglected. The p-type doping level is a useful parameter that will simulate the effect of
varying the capillary diameter without the need to adopt a tubular geometry. As shown in
table I, p-doped GaAs wire (NA = 1 × 1021 m−3) will have a lower resistivity per unit length
than a capillary of similar cross-section.

The radial conductivity through the nerve membrane exhibits strong non-linearity. This is
because Na+ channels are voltage controlled and only open when the membrane depolarisation
crosses a threshold voltage. In fig. 1a) the depolarisation front opens Na+ channels which
triggers a diffusive influx of Na+ ions. The accumulation of positive charge inside the capillary
reverses the K+ drift, and produces an outflow of K+ in an attempt to restore the membrane
resting potential. For the pn wire the physical picture looks a priori simpler as there is only
one exponential conductivity for both electrons and holes which causes the equivalent non-
linearity. We argue, however, that in the dynamical regime, Shockley’s assumption of charge
neutrality may not hold [15]. Instead the appropriate boundary condition requires that the
current be zero at the edges of the pn wire. It follows that electrons that have diffused across
the depletion region will then spread along the p-type electrode until they are sucked back
by the electric field of the depletion region further down the wire. The cross-section of the
p-type electrode in fig. 1b) being smaller than the electron diffusion length, few electrons are
expected to be lost be recombination. In real pn junctions, the drift current increases as the
square root of the depletion width [1], therefore electrons will return to the n-type electrode
through a different path shown in fig. 1b). Because of the boundary condition both drift and
diffusion current will cancel. To summarize, the opposite dependence of the drift and diffusion
current upon the width of the depletion region induces a spatial separation of the diffusion
and drift currents similar to that of Na+ and K+ currents in the nerve membrane.

The third electrical parameter is the capacitance of the nerve membrane that determines
its charging/discharging rate and thus the speed of signals. In our pn wire, this is simply the
depletion layer capacitance. The diffusion capacitance [1] is completely negligible in GaAs due
to the exceedingly low concentration of minority carriers. Table I compares the capacitance
per unit length of a nerve capillary and a pn junction. The difference is explained by the three
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Fig. 2 – A binary network of two sum and threshold neurons Σ1 and Σ2 computing the XOR truth ta-
ble. The synaptic weights are shown above each connection and the threshold for a neuron to fire is 1.5.

orders of magnitude higher dielectric constant of living tissues and emphasizes the significant
advantages to be gained in terms of speed and miniaturisation in working with semiconductors.

Diffusion model. – The equivalent electrical circuit of the pn wire is shown in fig. 1c).
g(V ) and γ(V ) are the pn conductance and capacitance per unit length, r(V ) is the axial
resistance of the p-type electrode per unit length and the resistance of the n-electrode is
neglected. Simple circuit analysis applied to a portion dx of the wire gives

∂V

∂t
=

1
γ(V )

∂

∂x

(
1

r(V )
∂V

∂x

)
− g(V )

γ(V )
V. (1)

Equation (1) means that a transient voltage applied via a synaptic input at one point of
the wire will diffuse along it. The voltage dependence of r and γ arises from local variations
in the p-type depletion layer (wp(V )). In particular, r(V ) is close to divergence because the
p-doped region (lp) is only marginally thicker than wp(V = 0). We model g(V ) with the
conductance of the non-ideal pn junction which is appropriate for GaAs [1]. A small-signal
analysis of eq. (1) (for V < kBT/e) is useful to have an analytical estimation of the diffusion
parameters. If the synaptic voltage is held constant, the bias will decay exponentially along
the wire with diffusion length λ = 1/

√
gr. The impedance of the wire, as viewed by a synaptic

connection, is Zin = 1/(gλ) ∼ 100 MΩ, the diffusion speed along the wire is s = γ−1
√

g/r.
If two synaptic inputs are applied at different points of the pn wire, the diffusion equation

will integrate these two signals and compute the sum at a remote point. The sum will be
compared to a voltage threshold so that the signal be eventually regenerated. For our pn
wires to have any use in neural computations, they must incorporate synaptic weights, either
positive or negative so that voltage spikes interfere constructively or destructively. A simple
device that integrates positive and negative weights is the XOR network shown in fig. 2 [16].
If one assumes neurons Σ1 and Σ2 to fire above a threshold of 1.5, the input combinations
(A,B) = (0, 1), (1, 0) give a weighted sum of 2 at the input of Σ2 that will then fire. When
(A,B) = (1, 1), Σ1 fires thus inhibiting the two other inputs to Σ2. Σ2 does not fire thus
fulfilling the XOR truth table.

The XOR function. – The equivalent XOR circuit implemented with pn wires is shown
in fig. 3a). The essential difference between the two networks is that in fig. 3a), the spatio-
temporal summation is a mathematical property of the diffusion equation instead of being
the product of binary computation. The weights may be set in two ways, either by giving
each wire a width that allow them to carry different power. This presents the advantage of
not perturbing the signal propagation since eq. (1) is independent of the wire width. Weights
may also be set via the amplitude of the synaptic voltage. This is a more attractive method
with respect to learning as the weights may be changed dynamically. This, however, has a
small effect on the signal speed. Systematic modelling of eq. (1) in a straight pn wire showed
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Fig. 3 – (a) Analogue XOR network performing parallel computation with pn wires. Inputs A and B
supply 0.1 ns square pulses delayed by ∆t. These pulses reach pn wires through four synapses whose
weights w1 and w2 are set by choosing the appropriate resistances in series with Zin. Signals interfere
at Σ1,2, where they are eventually regenerated by a positive-feedback device grown atop the junction.
(b) Summation of spikes A and B at Σ1. t = 0 corresponds to the start of pulse A. The dotted
contour (m-n) shows the 80mV regeneration threshold. (c) Signal waveform at Σ2 showing signal
inhibition. (d) Dependence of the peak voltage in (c) upon ∆t. Parameters used in the model are:
NA = ND = 1021 m−3, ni = 2 × 1012 m−3, µn = 0.8m2V−1s−1, µp = 0.04m2V−1s−1, lp = 900 nm,
wp(V = 0) = 850 nm, τ = 10−8 s (GaAs recombination time), NT = 5× 1018 m−3 (trap density), for
practical purposes the wire width is 50–200 nm. (b), (c) in colour on-line.

that the diffusion speed is divided by two when the synaptic voltage drops from +0.8 V to
+0.2 V; a consequence of the voltage-dependent coefficients of eq. (1). Negative weights may
be realised, as shown in fig. 3a), by connecting together n and p ends of two wires so that
positive spikes annihilate at the junction.

The circuit in fig. 3a) was modelled by solving eq. (1) with a finite-element code for each
wire section and by matching the appropriate boundary conditions at the wire ends. Open
ended wire terminations were set at V = 0 to avoid spike reflections. Synaptic inputs were
connected at the centre of each 1.0 µm wire section by a Ohmic contact. The weights, w1

and w2, were set by the resistances in series with the pn wire. These were chosen so that
inputs A and B would give a pulse of amplitude 0.3 V (0.5 V) across the wire at locus w1

(w2, respectively). Inputs A and B were assumed to generate 0.1 ns wide square pulses of
constant height. Pulse A starts at t = 0 whereas pulse B is delayed by time ∆t. The signal is
regenerated through the positive feedback of a negative differential device fabricated in series
with the wire at points Σ1 and Σ2. Under an appropriate external bias, this monostable
changes state above a 80 mV threshold and a square 0.5 V pulse is applied to the wire for
a 0.1 ns duration. Figure 3b) shows the time evolution of the voltage at Σ1 as the delay
between A and B increases. If the two synapses w1 fire simultaneously (∆t = 0), the spikes
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they induce meet at Σ1 t = 20 µs later when the voltage peaks at 70 mV. In contrast, if
the synaptic shots are too far apart to interfere (∆t = 10−2 s), see fig. 3b), the spike due to
A or B has a peak voltage of only 41 mV. The difference in spike amplitude when a single
synapse or two synapses fire simultaneously, already demonstrates the analogue summation
performed by eq. (1). An interesting and rather unexpected situation occurs between points
m and n. Here the spike peaks almost immediately after B fires. The interference of the
two spikes is maximum at ∆t = 20 µs when it reaches 190 mV. This is well above the 80 mV
threshold represented by the dashed line. The wire behaves as if the passage of the first spike
facilitates the diffusion of the second spike. The reason for this memory effect lies in the
non-linear conductance of the pn junction. As mentioned above, the signal speed varies as
the square root of the conductance and is therefore an exponential function of the voltage.
Consequently, a residual elevation of the wire bias on the path of the second spike, will have
the effect of considerably increasing its speed, hence the observed effect. We note that Σ1 will
only fire when two synapses fire at a relatively close interval of < 200 µs which corresponds
to segment m − n.

Figure 3c) shows the voltage waveform at the input of Σ2. At ∆t = 10−7 s, the pulses
incoming from the w2 synapses are annihilated by the pulse from Σ1. Since the peak is less
than the 80 mV threshold, Σ2 does not fire. The short positive spike preceding the negative
dip is because the inhibitory action is delayed by the firing of Σ1. As ∆t increases, destructive
interference becomes incomplete. At point p, ∆t ≈ 2 µs, the peak amplitude crosses the
80 mV threshold and Σ2 starts firing. If ∆t increases further up to point n, ∆t ≈ 0.5 ms, Σ1

stops firing all together and inhibitory action stops. When ∆t → ∞, the network behaves
as if only input A is firing. The resulting spike has a maximum voltage of 92 mV which
exceeds the 80 mV threshold (dashed line). Σ2 will thus fire giving the required XOR output
for (VA, VB) = (0.5 V, 0), (0, 0.5 V). If both synapses fire at sufficiently short interval, i.e.
before point p, destructive interference prevent Σ2 from firing. Figure 3d) plots the voltage
peak value at Σ2 as a function of ∆t: when ∆t < 2 µs the peak voltage is below the 80 mV
threshold thus the network outputs zero for (VA, VB) = (0.5 V, 0.5 V). For A and B firing
within this time interval, the network fulfills the XOR truth table.

Discussion. – The principles of parallel analogue computation implemented in the above
example may be generalised to more complex networks. Weights will be set by synaptic
voltages without these affecting too much spike propagation. We have seen, for example, that
it takes 20 µs for the spike to reach the regeneration point whether the synaptic pulse is 0.3 V
or 0.5 V. Among the salient features of pn networks is that the width of the p-type electrode
(lp − wp(V )) must not be allowed to cancel, otherwise the axial resistance will diverge and
charge will accumulate at an inhibitory junction. The annihilation of two spikes requires that
charges spread along reverse biassed junctions, therefore the width of the p-type electrode
ought to be finite. Another important aspect is the time constant describing the decay of the
voltage spike at t > 20 µs in fig. 3. One may establish a parallel between this time constant
and the inactivation time of biological membranes [17]. Our decay time depends on the rate
at which the spike current sinks at the extremities of the wire and, to a lesser extent, on
the electron-hole recombination time. The wire lengths of the XOR example give a decay
time of 500 µs to be compared with a few milliseconds for the inactivation time of biological
membranes. If the pn wire is re-excited within the decay time, it will have conserved the
memory of previous spikes.

Analogue neural computation otherwise presents a number of advantages. The propaga-
tion and summation is an intrinsic property of the diffusion equation rather than the result
of a digital operation [4, 5]. Diffusion length and time scales may be precisely engineered
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by the semiconductor growth conditions, doping and structural parameters. Since there is no
stringent material requirement, one might envision using MBE re-growth for integrating dense
3D networks of pn wires. There is also no theoretical limit to miniaturisation, since eq. (1)
is independent of the wire width. As compared with biological networks, the use of semicon-
ductors means that the charging rate (rγ)−1 is considerably faster than in nerve membranes.
As compared to other schemes like quantum computation, parallelism is implemented with
established technology and at room temperature. Our pn networks, however, present areas of
improvement. One is the rather large inactivation time. Another is the computational effort
required to calculate weights which will grow with the complexity of the network.

In summary, we have demonstrated that networks of pn wires are capable of performing
analogue parallel computation. Artificial networks with no equivalent in nature could be
constructed to test spike computation theories over a wider range of conditions than realised
in biological networks in order to understand them.
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