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Abstract
We have measured the phonon-drag thermopower of a periodically modulated
two-dimensional electron gas, and report on a complex series of oscillations
developing in the presence of a perpendicular magnetic field. At low electron
density these oscillations are in phase with the commensurability resistance
oscillations, however they become increasingly antisymmetrical with respect
to B at higher electron density. We are able to explain this magnetic field
dependence by proposing that the periodic potential lowers the symmetry of
electron–phonon interaction. We calculate the thermopower by solving the
Boltzmann equation given an electron–phonon scattering term with two-fold
symmetry. Our fit of the experimental curves shows that the Brillouin zone
folding enhances the electron–phonon scattering rate by a factor of two along
the periodic potential and that a small misalignment (6◦) of the heat gradient with
the direction of the periodic potential is sufficient to explain the antisymmetrical
oscillations. Our experiment demonstrates phonon drag as a very sensitive tool
to probe the electronic and vibronic anisotropy in mesoscopic systems.

1. Introduction

The resistance [1] and the diffusion thermopower [2–6] of mesoscopic systems has been
investigated intensively, yet no experiment to date has revealed the benefits of using the
phonon-drag thermopower (PDTP) to study confined electron and phonon systems. This
lack of interest can be partly traced to earlier studies of bulk semiconductors [7] and two-
dimensional electron gases (2DEGs) [8] that showed the phonon drag to depend only on
the electron–phonon coupling and phonon parameters, not the electrical conductivity (or its
derivative) as in the resistance (or the diffusion thermopower, respectively). It is, for example,
well known that magnetic field dependent phenomena such as weak localization and universal
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conductance fluctuations cannot be measured by phonon-drag experiments [9]. Of course, at
higher magnetic fields, Landau levels produce oscillations in the electron–phonon scattering
rate as they cross the Fermi level. This allowed PDTP measurements of the integer and the
fractional quantum Hall effect [10]. However, in the regime of low magnetic fields that
is relevant to us here, the Fermi density of states is constant and therefore quenches all
magnetic field dependence. A periodic electrostatic modulation only adds corrective terms
in the conductivity tensor [11–13] and since the PDTP is independent of the conductivity, no
magnetic field dependence is, a priori, expected in such systems either. This is what this paper
is set to investigate.

The principle of the experiment is simple. A temperature gradient is applied to the lattice
and phonons that propagate away from the heat source transfer part of their momentum to
conduction electrons. The resulting thermoelectric current carries electrons towards the cold
source. These charges cannot leave the sample since no net current is applied (J = 0), hence the
cold source charges negatively with respect to the hot source and an electric field is established
that prevents further charge build-up. This electric field is proportional to the temperature
gradient with E = S◦∇T where S◦ is the thermopower that we measure. The PDTP of bulk
systems was shown to be: S◦ = − �v

µepT [9] where � is the phonon mean free path, v the sound
velocity in acoustic branches and µep the mobility limited by the electron–phonon scattering
time τep.

We report on the PDTP of a periodically modulated 2DEG measured as a function of
a perpendicular magnetic field, B . Commensurability oscillations are obtained which are in
phase with the well known resistance oscillations. These oscillations become increasingly
antisymmetrical with respect to the change of sign of B as the electron density increases. We
trace these oscillations to anisotropy in the electron–phonon interaction. The 1D potential
modulation fragments the Fermi surface into Brillouin minizones introducing a two-fold
anisotropy in the electron–phonon interaction. We find that Brillouin zone folding enhances
acoustic phonon scattering along the superlattice because its matrix element diverges for
transitions between the edges of the Fermi surface (Kohn anomalies). The anisotropy breaks
the co-linearity between the temperature gradient and the electric field which explains the
magnetic field dependence of the PDTP.

The paper is organized as follows. The second section describes the sample preparation
and the experimental method. The magneto-thermopower curves are analysed and compared to
the commensurability oscillations in the resistance. The third section presents the theoretical
model of the PDTP and discusses the calculated magnetic field dependence. We used this
theory to fit the experimental thermopower and extract the magnitude and direction of the
electron–phonon anisotropy in the superlattice. The results and their meaning are discussed
together with the success and the limitations of the present theoretical framework. The fourth
section summarizes our results.

2. Experimental details

Hall bar devices were defined by optical lithography in a (GaAs/Al0.3Ga0.7As) modulation
doped heterostructure. The 1 mm spacing between the voltage probes shown in figure 1(a)
was chosen to be much larger than the energy relaxation length of hot electrons generated by
the heating line. An array of dysprosium stripes was fabricated by electron beam lithography
in order to modulate the 2DEG over the whole length of the Hall channel. The magnetic
properties of Dy were unintentionally destroyed by air exposure [14] and the modulation
was predominantly electrostatic [15] as we shall see below. Modulations with 500 nm
(sample A) and 1000 nm (sample B) periods, were easily obtained, as shown in figure 1(b).
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Figure 1. (a) Electron micrograph of a lateral superlattice showing the heating line (2–8) and
the voltage probes (3, 4, 6, 7). The probe separation is designed to be larger than the electron
energy relaxation length in the 2DEG. (b) A detail of the Dy finger gates that apply a piezoelectric
modulation over 4000 µm along the Hall bar. Shown here is a 1 µm-period grating.

The electrical contacts of the Hall bar were used to perform both resistance and thermovoltage
measurements. At 4.2 K the dark electron density and mobility were ns = 1.3×1011 cm−2 and
µ = 320 000 cm2 V−1 s−1 respectively; these values saturated at ns = 2.6 × 1011 cm−2 and
µ = 1070 000 cm2 V−1 s−1 after illumination with an infrared LED. A 1 T superconducting
solenoid was used to generate a magnetic field perpendicular to the 2DEG.

In the typical experimental configuration, an ac heating current ( f = 7 Hz) was injected
through contacts (2, 8) in figure 1(a) and the induced thermovoltage Vx was measured across
contact pairs (3, 4) using lock-in detection at a frequency 2f. This method is not a highly
efficient way to heat the lattice and the magnitude of the heating current was 1000 times
larger than typical current values used in diffusion thermopower experiments [2–4]. We are
nevertheless certain that we did measure the phonon drag and not the diffusion thermopower
for the three following reasons.

(i) The distance between the voltage probes, 1000 µm, is larger than the energy
relaxation length but smaller than the phonon mean free path (approximately the sample
dimensions) [7]. Hot electrons are thermalized long before reaching the first set of voltage
probes 1000 µm away from the heating line. The energy relaxation length was evaluated
as L = π

√
(µτepkBT )/(3e) ≈ 120 µm where we used τep ≈ 10−9 s [16] for the

electron–phonon relaxation time. The electron thermal energy at the (2, 8) Hall cross
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Figure 2. Dependence of the thermovoltage of three separate devices on the Joule power dissipated
per unit area of the heating line. Device A: 500 nm period superlattice (filled triangles) and
after scribing the 2DEG between the heating line (2, 8) and voltage probes (3, 7) (open circles).
Device B: 1000 nm period superlattice (filled squares). The top x-scale shows the increase in lattice
temperature at contacts (3, 7) relative to the base temperature (4.2 K). Inset: commensurability
thermovoltage oscillations are still seen after device A has been scribed. ns = 1.4 × 1011 cm−2

(device A) and ns = 1.9 × 1011 cm−2 (device B).

was calculated as kBT = (l I 2
h τei)/(wnseµ) ≈ 200 meV by taking l = 50 µm as the

width and w = 10 µm as the length of the Hall cross, Ih ≈ 0.1 mA as the typical heating
current and τei = m∗µ/e ≈ 10 ps as the mobility scattering time.

(ii) We also find good agreement between the magnitude of the measured thermopower and
the tabulated values of the PDTP published for similar GaAs heterostructures [7]. Figure 2
plots the thermovoltage Vx measured at B = 0 as a function of the heating power per unit
area of the heating line. On the experimental bench, we easily verified that Vx increases
proportionally to the square of the heating current. In addition, we find the same slope
for all three devices studied, once variations in electron density are accounted for in the
calculation of the heating power. The lattice temperature at node (3, 7) was evaluated
indirectly. We first evaluated the rise in lattice temperature in the heating line, node (2, 8),
by assuming that Joule power sinks in the lattice locally. By equating the electrical power
dissipated to the rate at which energy is absorbed in the lattice we obtain the formula:
�TL = (Phτep)/(CpρV ) where Cp = 0.335 J g−1 K−1 and ρ = 5.36 g cm−3 are the heat
capacity and crystal density of GaAs respectively. The second step was to evaluate �TL

at node (3, 7), 1000 µm away. For this we observed that Vx dropped by a factor of 10
when measured across the second nearest pair of probes 2000 µm away from the heating
line. Assuming an exponential decay of the lattice temperature away from the heater [7]
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allowed us to evaluate �TL at (3, 7) to be 10 times less than �TL calculated at (2, 8).
Following this procedure we converted the heating power to a lattice temperature scale
shown in the top axis of figure 2. The slope resulting from the linear fit of the data gives a
thermopower value S◦ = 110 ± 40 µV K−1 which lies within the range of phonon-drag
values, S0 = 95–220 µV K−1, reported for similar 2DEGs [7, 17]. The tabulated diffusion
thermopower in GaAs at 4.2 K is about ten times smaller than the phonon drag [7]. This is
beyond our experimental uncertainty and thus provides an additional argument supporting
the observation of phonon drag.

(iii) To eliminate the possibility of electron diffusion we scribed the section of 2DEG between
the heater and the voltage probes in device A using a diamond tip. The thermovoltage
measured after this operation is shown by the open circles in figure 2. In the presence
of a magnetic field this thermovoltage exhibits the commensurability oscillations shown
in the inset to figure 2. Scribing a groove across the 2DEG was a rather crude way of
insulating the voltage probes since the groove was also likely to attenuate the transmission
of the surface phonon modes. Both the noise and modest amplitude of the λ = 1, 2
commensurability oscillations point to this explanation. Nevertheless, by completely
eliminating the diffusion contribution, the inset shows that phonon drag is the only possible
explanation for the commensurability oscillations.

The electron density was increased incrementally by illuminating the sample with an
infrared LED and each time was extracted from the Hall resistance. Above |B| > 0.45 T, a
parasitic out of phase voltage component was picked up that restricted our investigation of the
thermopower to low magnetic fields. The four-terminal resistance was also measured under
the same conditions of temperature and illumination but at a frequency f = 30 Hz and with a
driving current of 100 nA.

Figure 3 plots the thermovoltage and the resistance as a function of the magnetic field for
sample A. The resistance exhibits the now well known series of 1/B periodic commensurability
oscillations [1]. Up to 6 resistance minima are seen at the highest electron density that we label
with integer index λ. It is useful to plot these minima as a function of 1/B in order to clarify the
nature of the modulation: magnetic, electrostatic or a combination of both [18]. This result is
shown in the inset to figure 3. The straight lines, each corresponding to one illumination state,
were fitted by the relation [1]: 2Rc = (λ − φ)a where Rc is the cyclotron radius at the Fermi
level, a is the superlattice period and φ is the phase of the oscillations and the intercept common
to all lines. We find φ = +0.18, a value close to 1/4, the theoretical phase for pure electrostatic
oscillations [18]. We therefore conclude that piezoelectric modulation dominates [15]. This
is likely to have occurred from the prolonged exposure of dysprosium to air [19].

The thermovoltage, in the top panel of figure 3, exhibits a complicated magnetic field
dependence. At the lowest electron density (top curve) the thermovoltage oscillates in phase
with the resistance (lower panel, top curve). However, we note a small antisymmetrical
component, Vx(B) = −Vx(−B), that grows dramatically as the electron density increases
to ns = 2.5 × 1015 m−2. At this density, the phase of the thermopower oscillations changes
by 180◦ through B = 0. At the same time, the symmetrical component in the thermovoltage
is dramatically quenched. For example Vx(B = 0) drops from 23 µV in the dark to nearly
zero after full illumination. It is true that part of this drop is accountable to the weaker Joule
dissipation in the heating line that reduces the temperature gradient. The lower panel of figure 3
shows Rxx (B = 0) dropping by 1/6 from 2600 to 430 � which is a small variation compared
to the near cancellation of Vx(B = 0). The difference must be ascribed to the decrease in
the PDTP with increasing electron density. This behaviour was robust against both thermal
cycling between 4 K and room temperature, and reversal of the temperature gradient. The
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Figure 3. The thermovoltage (top panel) and resistance (lower panel) plotted as a function of the
magnetic field for three values of the electron density (ns = 1.3, 1.7 and 2.5 × 1015 m−2) for
device A. Inset: the index of the minima in Rxx plotted as a function of 1/B . ns = 1.3 (filled
squares), 1.7 (open triangles) and 2.5 (open diamonds) ×1015 m−2.

latter was realized by exchanging heater and voltage probes between any of the five contact
pairs. We finally recall that the diffusion thermopower is 90◦ out of phase with the resistance
oscillations [2, 6]. The fact that our thermovoltage oscillations are either in phase or 180◦ out
of phase with the resistance concurs with our previous argumentation that we are measuring
the phonon drag.

A magnetic field dependence in the phonon drag was unexpected but the antisymmetrical
behaviour is puzzling because it cannot be separated in the conventional way as the sum
of symmetrical oscillations and a linear magnetic field dependence [20]. The quantities
(Vx(B)+Vx(−B))/2 and (Vx(B)−Vx(−B))/2 instead gave two series of oscillations. Sample
imperfections such as inhomogeneous electron density or misaligned voltage probes may be
ruled out as the resistance oscillations are nearly ideal. One therefore ought to interpret the
antisymmetrical oscillations as a property intrinsic to the PDTP in modulated 2DEGs.

3. Theory and discussion

An isotropic phonon scattering rate [7, 9, 21] cannot lead to magneto-oscillations in the phonon
drag. This is because both the thermoelectric current and the drift current are proportional
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to the conductivity tensor and have the same magnetic field dependence. The requirement
that these two currents cancel each other out implies that the temperature gradient and the
induced electric field always remain collinear. The assumption that the thermoelectric current
is proportional to the conductivity can be understood simply. An electron gains momentum
from phonons at a slow rate, 1/τep ≈ 109 s−1, compared to the rate at which it is randomized
by collisions with impurities, 1/τei ≈ 1011 s−1. The acceleration, bending of the trajectory
in the magnetic field and momentum scattering are identical to the Drude picture for the
conductivity. The thermoelectric current is therefore the conductivity tensor times a constant
that accounts for the strength of electron–phonon coupling. A first consequence of this is that
there is no transverse induced electric field: Ey(B �= 0) = 0. Secondly, the longitudinal
induced electric field is completely independent of quantum and classical corrections in the
conductivity: Ex(B �= 0) = constant [9]. We verified that this model works well with
our bare 2DEGs but it starts breaking down as soon as the modulation is applied. The
most obvious explanation is that the 1D periodicity introduces a two-fold anisotropy in the
electron–phonon scattering rate. The formation of Brillouin minizones means that only a
small phonon wavevector, q = 2π/a = 1.3 × 107 m−1, will mediate transitions between
opposite edges of the Fermi surface for which transitions the electron–phonon scattering
diverges (Kohn anomaly [7]). The wavevector of thermal phonons that one easily calculates
to be qth = kBT/h̄v ≈ 108 m−1 at 4 K, spans up to 10 Brillouin minizones. By contrast, the
opposite edges of the Fermi surface, in the transverse direction (or in the bare 2DEG), stand
separated by 2kF ≈ 2.3 × 108 m−1 which is significantly larger that qth. For this reason, it
is plausible to assume that Kohn anomalies enhance the scattering probability in the direction
of the periodic potential. Anisotropic scattering gives the thermoelectric current a complex
magnetic field dependence that is no longer proportional to the conductivity. The drift current
has now to compensate the thermoelectric current without the induced electric field being
collinear to the temperature gradient. As a result the Ex and Ey components reflect to some
extent the commensurability of the open orbits in the superlattice potential.

The full mathematical derivation of the PDTP has been published elsewhere [22]. Here
we concentrate on the physics. We introduce an anisotropic electron–phonon scattering rate
in the form of a Fourier expansion in which we retain the lower terms with two-fold angular
symmetry:

1/τep = 1/τ 0
ep

{
a0

2
+ a2 cos(2θ) + b2 sin(2θ)

}
(1)

where a0 is the isotropic Fourier component, and a2 and b2 are the anisotropy parameters used
to fit the data. a2 warps the angular dependence of the scattering rate along the superlattice.
If a2 > 0, scattering is high in the direction normal to the stripes otherwise it is high in
the direction parallel to the stripes. Having b2 �= 0 has the effect of rotating the warping
(the principal axes of anisotropy) away from the x- and y-axes—we apply the temperature
gradient along x . We inserted equation (1) into the Boltzmann equation to calculate the charge
distribution function and from there the thermoelectric current [22]. The effect of anisotropy
is to modify the symmetry of tensor components with respect to the magnetic field. If the
temperature gradient is applied along one axis of anisotropy, the diagonal components of
the thermopower are symmetric with respect to B whereas the off diagonal components are
antisymmetric. If, however, the temperature gradient is tilted with respect to the anisotropy
axes, its projection on those axes gives two vector components. These induce a mixing of
the symmetric and antisymmetric behaviour in each thermopower tensor component. Note
that this mixing is more complicated than a linear superposition due to cross product terms
between the vector components of the temperature gradient [22]. In the simpler situation
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Figure 4. The PDTP oscillations solution of the Boltzmann equation. The electron–phonon
scattering rate is anisotropic in the plane of the 2DEG with Fourier components a0 = a2 = +45
and b2 = +11 (see text). b2 �= 0 indicates a finite angle between the temperature gradient and
one of the principal axes of anisotropy that is responsible for the asymmetric part of Sxx . a2 �= 0
is responsible for the symmetric commensurability oscillations and more generally the magnetic
field dependence of Sxx . These are the only fitting parameters of the model. A tiny tilt angle
(dashed/dot dashed curves) is sufficient to induce asymmetric oscillations of the right magnitude.
Here a = 500 nm, τ = 14, 21 and 38 ps (for ns = 1.3, 1.7 and 2.5 × 1015 m−2 respectively),
a0 = a2 = 45, b2 = 11 and S0 = 110 µV K−1.

where the anisotropy axes are aligned with the axes of the coordinates (b2 = 0), the off
diagonal component of the thermopower vanishes whatever the magnetic field. In this case,
the longitudinal oscillations are symmetric and their amplitude is proportional to a2.

The Boltzmann equation was solved analytically [22] and the parameters a2 and b2

obtained by fitting the numerical results to the experimental plots of figure 3. All other
parameters of the calculation are either measured from the bare 2DEG or given by the structural
parameters. The best fit is obtained for a2 = 45 ± 20 and b2 = 11 ± 5, see figure 4. The
positive value of a2 demonstrates that acoustic phonon scattering is enhanced by the periodic
potential which supports our argument on Kohn anomalies. The increase in ns from 1.3 to
2.5 × 1011 cm−2 reduces the theoretical phonon drag by a factor of 5 in figure 4 which is
close to the experimental dependence of the thermopower in figure 3. This drop is because
electrons become less affected by anisotropic scattering as their kinetic energy increases. It
is interesting to note that increasing the impurity scattering time τ has no effect here. On
the one hand, it enhances the cyclotron lifetime and thus further perturbs the guiding centre
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Figure 5. The influence of misalignment between the temperature gradient and a principal axis
of anisotropy (parameter b2) on the thermopower oscillations: b2 = +45 (dashed curves), +11
(thick solid curve), −11 (dotted curve) and −45 (short dashed curve). The effect of b2 on the
electron–phonon scattering rate is shown in the inset where the 0◦–180◦ line is the superlattice
direction.

(This figure is in colour only in the electronic version)

drift; on the other hand, the longer mean free path averages anisotropy over the length of the
electron trajectory4. Our anisotropic theory is superior to the isotropic result presented in the
introduction since it explains the dependence of the thermopower on ns. The anisotropic theory
also explains the development of antisymmetrical oscillations when ns increases, including the
change in sign of the PDTP at ns = 2.5 × 1011 cm−2. Figure 5 shows the effect of b2 on the
antisymmetrical behaviour of the thermopower while the inset plots the corresponding contours
of the electron–phonon scattering rate calculated according to equation (1). The 0◦–180◦ and
90◦–270◦ axes are the x- and y-axes respectively. The optimum fit b2 = +11 ± 5 suggests that
the temperature gradient is misaligned by 6◦ with respect to the superlattice axis. This is an
acceptable assumption considering that the distribution of ballistic phonons reaching node (3, 7)
in figure 1 has an angular aperture of (5/100)×180/π = 3◦. Our theory presents the advantage
(and limitations) of being almost entirely analytical. The formation of skipping orbits that are
responsible for the low field magnetoresistance and magneto-thermopower in figure 3 cannot
accounted be for by the present model [23]. This is the reason why the calculated curves show
a maximum rather than a minimum at B = 0 in figure 4. A more accurate description of the
experiment could be obtained by including in the model the real piezoelectric potential which
is usually more complex than a sine function [15]. Secondly, a more accurate description of
the anisotropy would require computing the effect of higher angular harmonics with two-fold
symmetry, not just the a2 and b2 components. Finally, although the relative values of a2 and
b2 are satisfactory, their absolute values are too large by a factor of 20. This discrepancy is
likely to arise from our indirect estimate of �TL.

4 Mathematically speaking the αm coefficients in equation (15) of [22] vanish at higher electron density.
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4. Summary

In summary, we have measured commensurability oscillations in the PDTP of a lateral
superlattice. We fitted our data with our recent theory [22] that builds upon the isotropic
Boltzmann theory to predict the effect of an anisotropic electron–phonon scattering induced by
Brillouin zone folding on the thermoelectric properties of lateral superlattices. The longitudinal
temperature gradient induces symmetrical thermopower oscillations that are in phase with the
resistance oscillations. A slight misalignment of the temperature gradient with a principal axis
of anisotropy induces an effective transverse temperature gradient that gives commensurability
oscillations antisymmetrical in B . The theory for this effect is in full agreement with the
dependence on electron concentration. It may also explain the phase of the commensurability
oscillations at high temperature [24]. It is hoped that the present demonstration of magnetic
field dependent effects in the PDTP together with the recent observation of the universal
quantum of thermal conductance [25–27] will stimulate further investigation of the PDTP of
mesoscopic systems.
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