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$25,000,000,000 Eigenvectors 
 
How Google Finds Your Needle in the Web's Haystack 
 
Imagine a library containing 25 billion documents but with no centralized 
organization and no librarians. In addition, anyone may add a document at 
any time without telling anyone. You may feel sure that one of the documents 
contained in the collection has a piece of information that is vitally important 
to you, and, being impatient like most of us, you'd like to find it in a matter of 
seconds. How would you go about doing it?  
 
Posed in this way, the problem seems impossible. Yet this description is not 
too different from the World Wide Web, a huge, highly-disorganized collection 
of documents in many different formats. Of course, we're all familiar with 
search engines (perhaps you found this article using one) so we know that 
there is a solution. This article will describe Google's PageRank algorithm 
and how it returns pages from the web's collection of 25 billion documents 
that match search criteria so well that "google" has become a widely used 
verb.  
 
Most search engines, including Google, continually run an army of computer 
programs that retrieve pages from the web, index the words in each 
document, and store this information in an efficient format. Each time a user 
asks for a web search using a search phrase, such as "search engine," the 
search engine determines all the pages on the web that contains the words in 
the search phrase. (Perhaps additional information such as the distance 
between the words "search" and "engine" will be noted as well.) Here is the 
problem: Google now claims to index 25 billion pages. Roughly 95% of the 
text in web pages is composed from a mere 10,000 words. This means that, 
for most searches, there will be a huge number of pages containing the 
words in the search phrase. What is needed is a means of ranking the 
importance of the pages that fit the search criteria so that the pages can be 
sorted with the most important pages at the top of the list.  
 
One way to determine the importance of pages is to use a human-generated 
ranking. For instance, you may have seen pages that consist mainly of a 
large number of links to other resources in a particular area of interest. 
Assuming the person maintaining this page is reliable, the pages referenced 
are likely to be useful. Of course, the list may quickly fall out of date, and the 
person maintaining the list may miss some important pages, either 
unintentionally or as a result of an unstated bias.  
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Google's PageRank algorithm assesses the importance of web pages without 
human evaluation of the content. In fact, Google feels that the value of its 
service is largely in its ability to provide unbiased results to search queries; 
Google claims, "the heart of our software is PageRank". As we'll see, the trick 
is to ask the web itself to rank the importance of pages. 
 
How to Tell Who Is Important 
If you've ever created a web page, you've probably included links to other 
pages that contain valuable, reliable information. By doing so, you are 
affirming the importance of the pages you link to. Google's PageRank 
algorithm stages a monthly popularity contest among all pages on the web to 
decide which pages are most important. The fundamental idea put forth by 
PageRank's creators, Sergey Brin and Lawrence Page, is this: the 
importance of a page is judged by the number of pages linking to it as well as 
their importance.  
 
We will assign to each web page P a measure of its importance I(P), called 
the page's PageRank. At various sites, you may find an approximation of a 
page's PageRank. (For instance, the home page of The American 
Mathematical Society currently has a PageRank of 8 on a scale of 10. Can 
you find any pages with a PageRank of 10?) This reported value is only an 
approximation since Google declines to publish actual PageRanks in an effort 
to frustrate those would manipulate the rankings.  
 
Here's how the PageRank is determined. Suppose that page Pj has lj links. If 
one of those links is to page Pi, then Pj will pass on 1/lj of its importance to Pi. 
The importance ranking of Pi is then the sum of all the contributions made by 
pages linking to it. That is, if we denote the set of pages linking to Pi by Bi, 
then: 

( ) ( )
∑
∈

=
ij BP j

j
i I

PI
PI  

 
Let's first create a matrix, called the hyperlink matrix, [ ]ijHH =  in which the 
entry in the ith row and jth column is: 
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Notice that H has some special properties. First, its entries are all 
nonnegative. Also, the sum of the entries in a column is one unless the page 
corresponding to that column has no links. Matrices in which all the entries 
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are nonnegative and the sum of the entries in every column is one are called 
stochastic; they will play an important role in our story.  
 
We will also form a vector ( )[ ]iPII =  whose components are PageRanks--that 
is, the importance rankings--of all the pages. The condition above defining 
the PageRank may be expressed as I=HI 
In other words, the vector I is an eigenvector of the matrix H with 
eigenvalue = 1. We also call this a stationary vector of H.  
 
Let's look at an example. Shown below is a representation of a small 
collection (eight) of web pages with links represented by arrows. 

 
The corresponding matrix is H, with stationary vector I: 
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This shows that page 8 wins the popularity contest.  
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Here is the same figure with the web pages shaded in such a way that the 
pages with higher PageRanks are lighter: 

 
 
Computing the Eigenvector 
There are many ways to find the eigenvectors of a square matrix. However, 
we are in for a special challenge since the matrix H is a square matrix with 
one column for each web page indexed by Google. This means that H has 
about n = 25 billion columns and rows. However, most of the entries in H are 
zero; in fact, studies show that web pages have an average of about 10 links, 
meaning that, on average, all but 10 entries in every column are zero. We will 
choose a method known as the power method for finding the stationary 
vector I of the matrix H.  
 
How does the power method work? We begin by choosing a vector I 0 as a 
candidate for I and then producing a sequence of vectors Ik by: kk HII =+1  
 
The method is founded on the following general principle that we will soon 
investigate: 
 

 
 
 
 
 
 

The sequence Ik will converge to the stationary vector I. 



AR10367  Mathematics1 Fun Matrices 

© American Mathematical Society  2006 5

 
We will illustrate with the example above.  

I 0  I 1  I 2  I 3  I 4  ...  I 60  I 61  
1 0 0 0 0.0278 ... 0.06 0.06 
0 0.5 0.25 0.1667 0.0833 ... 0.0675 0.0675 
0 0.5 0 0 0 ... 0.03 0.03 
0 0 0.5 0.25 0.1667 ... 0.0675 0.0675 
0 0 0.25 0.1667 0.1111 ... 0.0975 0.0975 
0 0 0 0.25 0.1806 ... 0.2025 0.2025 
0 0 0 0.0833 0.0972 ... 0.18 0.18 
0 0 0 0.0833 0.3333 ... 0.295 0.295 

 
It is natural to ask what these numbers mean. Of course, there can be no 
absolute measure of a page's importance, only relative measures for 
comparing the importance of two pages through statements such as "Page A 
is twice as important as Page B." For this reason, we may multiply all the 
importance rankings by some fixed quantity without affecting the information 
they tell us. In this way, we will always assume, for reasons to be explained 
shortly, that the sum of all the popularities is one. 
 
Three important questions 
Three questions naturally come to mind: 
• Does the sequence Ik always converge?  
• Is the vector to which it converges independent of the initial vector I0?  
• Do the importance rankings contain the information that we want? 
 
Given the current method, the answer to all three questions is "No!" However, 
we'll see how to modify our method so that we can answer "yes" to all three.  
 
Let's first look at a very simple example. Consider the following small web 
consisting of two web pages, one of which links to the other: 
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Here is one way in which our algorithm could proceed: 
I 0 I 1 I 2 I 3=I
1 0 0 0 
0 1 0 0 

In this case, the importance rating of both pages is zero, which tells us 
nothing about the relative importance of these pages. The problem is that P2 
has no links. Consequently, it takes some of the importance from page P1 in 
each iterative step but does not pass it on to any other page. This has the 
effect of draining all the importance from the web. Pages with no links are 
called dangling nodes, and there are, of course, many of them in the real web 
we want to study. We'll see how to deal with them in a minute, but first let's 
consider a new way of thinking about the matrix H and stationary vector I. 
 
A Probabilitistic Interpretation of H 
Imagine that we surf the web at random; that is, when we find ourselves on a 
web page, we randomly follow one of its links to another page after one 
second. For instance, if we are on page Pj with lj links, one of which takes us 
to page Pi, the probability that we next end up on Pi page is then 1/lj. 
As we surf randomly, we will denote by Tj the fraction of time that we spend 
on page Pj. Then the fraction of the time that we end up on page Pi page 
coming from Pj is Tj/lj. If we end up on Pi, we must have come from a page 
linking to it. This means that: 

∑
∈

=
ij BP j

j
i l

T
T  

where the sum is over all the pages Pj linking to Pi. Notice that this is the 
same equation defining the PageRank rankings and so I(Pi)=Ti . This allows 
us to interpret a web page's PageRank as the fraction of time that a random 
surfer spends on that web page. This may make sense if you have ever 
surfed around for information about a topic you were unfamiliar with: if you 
follow links for a while, you find yourself coming back to some pages more 
often than others. Just as "All roads lead to Rome," these are typically more 
important pages.  
 
Notice that, given this interpretation, it is natural to require that the sum of the 
entries in the PageRank vector I be one.  
 
Of course, there is a complication in this description: If we surf randomly, at 
some point we will surely get stuck at a dangling node, a page with no links. 
To keep going, we will choose the next page at random; that is, we pretend 
that a dangling node has a link to every other page. This has the effect of 
modifying the hyperlink matrix H by replacing the column of zeroes 
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corresponding to a dangling node with a column in which each entry is 1/n. 
We call this new matrix S.  
 
In our previous example, we now have 
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In other words, page P2 has twice the importance of page P1, which may feel 
about right to you.  
 
The matrix S has the pleasant property that the entries are nonnegative and 
the sum of the entries in each column is one. In other words, it is stochastic. 
Stochastic matrices have several properties that will prove useful to us. For 
instance, stochastic matrices always have stationary vectors.  
 
For later purposes, we will note that S is obtained from H in a simple way. If A 
is the matrix whose entries are all zero except for the columns corresponding 
to dangling nodes, in which each entry is 1/n, then S = H + A.  
 
How does the power method work? 
In general, the power method is a technique for finding an eigenvector of a 
square matrix corresponding to the eigenvalue with the largest magnitude. In 
our case, we are looking for an eigenvector of S corresponding to the 
eigenvalue 1. Under the best of circumstances, to be described soon, the 
other eigenvalues of S will have a magnitude smaller than one; that is, |l|<1 if 
l is an eigenvalue of S other than 1. 
 
We will assume that the eigenvalues of S are lj and that: 

1 = l1 > |l2| ¥ |l3| ¥ … ¥ |ln| 
 
We will also assume that there is a basis vj of eigenvectors for S with 
corresponding eigenvalues lj . This assumption is not necessarily true, but 
with it we may more easily illustrate how the power method works. We may 
write our initial vector I0 as: 

I0 = c1v1 + c2v2 + c3v3 + ... + cnvn 
 
Then: 

I1 = SI0 =  c1v1 + c2l2v2 + c3v3 + ... + cnlnvn 
I2 = SI1 =  c1v1 + c2l2

2v2 + c3v3 + ... + cnln
2vn 

... 
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Ik = SIk-1 =  c1v1 + c2l2
kv2 + c3v3 + ... + cnln

kvn 
 
Since the eigenvalues lj with j¥2 have magnitude smaller than one, it follows 
that lj

k 0 if j¥2 and therefore Ik I = c1v1, an eigenvector corresponding to 
the eigenvalue 1.  
 
It is important to note here that the rate at which Ik I is determined by |l2| . 
When |l2| is relatively close to 0, then l2

k 0 relatively quickly. For instance, 
consider the matrix: 

⎥
⎦
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⎣

⎡
=

65.035.0
35.065.0

S  

 
The eigenvalues of this matrix are l1=1 and l2=0.3. In the figure below, we 
see the vectors Ik, shown in red, converging to the stationary vector I shown 
in green. 

 
 
Now consider the matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=

85.015.0
15.085.0

S  

 
Here the eigenvalues are l1=1 and l2=0.7.  Notice how the vectors Ik 
converge more slowly to the stationary vector I in this example in which the 
second eigenvalue has a larger magnitude. 
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When Things Go Wrong 
In our discussion above, we assumed that the matrix S had the property that 
l1=1 and |l2|<1. This does not always happen, however, for the matrices S 
that we might find.  
 
Suppose that our web looks like this: 
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In this case, the matrix S is: 
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Then we see: 

I 0 I 1 I 2 I 3 I 4 I 5

1 0 0 0 0 1 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 
 
In this case, the sequence of vectors Ik fails to converge. Why is this? The 
second eigenvalue of the matrix S satisfies |l2|=1 and so the argument we 
gave to justify the power method no longer holds.  
 
To guarantee that |l2|<1, we need the matrix S to be primitive. This means 
that, for some m, Sm has all positive entries. In other words, if we are given 
two pages, it is possible to get from the first page to the second after 
following m links. Clearly, our most recent example does not satisfy this 
property. In a moment, we will see how to modify our matrix S to obtain a 
primitive, stochastic matrix, which therefore satisfies |l2|<1. 
 
Here's another example showing how our method can fail. Consider the web 
shown below: 
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In this case, the matrix S is: 
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Notice that the PageRanks assigned to the first four web pages are zero. 
However, this doesn't feel right: each of these pages has links coming to 
them from other pages. Clearly, somebody likes these pages! Generally 
speaking, we want the importance rankings of all pages to be positive. The 
problem with this example is that it contains a smaller web within it, shown in 
the blue box below. 

 
Links come into this box, but none go out. Just as in the example of the 
dangling node we discussed above, these pages form an "importance sink" 
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that drains the importance out of the other four pages. This happens when 
the matrix S is reducible; that is, S can be written in block form as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

??
0?

S  

 
Indeed, if the matrix S is irreducible, we can guarantee that there is a 
stationary vector with all positive entries.  
 
A web is called strongly connected if, given any two pages, there is a way to 
follow links from the first page to the second. Clearly, our most recent 
example is not strongly connected. However, strongly connected webs 
provide irreducible matrices S.  
 
To summarize, the matrix S is stochastic, which implies that it has a 
stationary vector. However, we need S to also be (a) primitive so that |l2|<1 
and (b) irreducible so that the stationary vector has all positive entries. 
 
A Final Modification 
To find a new matrix that is both primitive and irreducible, we will modify the 
way our random surfer moves through the web. As it stands now, the 
movement of our random surfer is determined by S: either they will follow one 
of the links on his current page or, if at a page with no links, randomly choose 
any other page to move to. To make our modification, we will first choose a 
parameter a between 0 and 1. Now suppose that our random surfer moves in 
a slightly different way. With probability a , they are guided by S. With 
probability 1-a, they choose the next page at random.  
 
If we denote by [1] the nxn matrix whose entries are all one, we obtain the 
Google matrix: 

( ) [ ]111
n

SG αα −+=  

Notice now that G is stochastic as it is a combination of stochastic matrices. 
Furthermore, all the entries of G are positive, which implies that G is both 
primitive and irreducible. Therefore, G has a unique stationary vector I that 
may be found using the power method.  
 
The role of the parameter a is an important one. Notice that if a=1, then G=S. 
This means that we are working with the original hyperlink structure of the 
web. However, if a=0, then G=1/n [1]. In other words, the web we are 
considering has a link between any two pages and we have lost the original 
hyperlink structure of the web. Clearly, we would like to take a close to 1 so 
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that we hyperlink structure of the web is weighted heavily into the 
computation.  
 
However, there is another consideration. Remember that the rate of 
convergence of the power method is governed by the magnitude of the 
second eigenvalue |l2|. For the Google matrix, it has been proven that the 
magnitude of the second eigenvalue |l2|=a . This means that when a is close 
to 1 the convergence of the power method will be very slow. As a 
compromise between these two competing interests, Serbey Brin and Larry 
Page, the creators of PageRank, chose a=0.85. 
 
Computing Big Eigenvectors 
What we've described so far looks like a good theory, but remember that we 
need to apply it to nxn matrices where n is about 25 billion! In fact, the power 
method is especially well-suited to this situation.  
 
Remember that the stochastic matrix S may be written as: S = H + A and 
therefore the Google matrix has the form: 

( ) [ ]11
n

AHG ααα −
++=  

 

Therefore: 
( ) [ ] kkkk I

n
AIHIGI 11 ααα −

++=  

 
Now recall that most of the entries in H are zero; on average, only ten entries 
per column are nonzero. Therefore, evaluating H Ik requires only ten nonzero 
terms for each entry in the resulting vector. Also, the rows of A are all 
identical as are the rows of [1]. Therefore, evaluating AIk and [1]Ik amounts to 
adding the current importance rankings of the dangling nodes or of all web 
pages. This only needs to be done once.  
 
With the value of a chosen to be near 0.85, Brin and Page report that 50 - 
100 iterations are required to obtain a sufficiently good approximation to I. 
The calculation is reported to take a few days to complete.  
 
Of course, the web is continually changing. First, the content of web pages, 
especially for news organizations, may change frequently. In addition, the 
underlying hyperlink structure of the web changes as pages are added or 
removed and links are added or removed. It is rumoured that Google re-
computes the PageRank vector I roughly every month. Since the PageRank 
of pages can be observed to fluctuate considerably during this time, it is 
known to some as the Google Dance. 
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Summary 
Brin and Page introduced Google in 1998, a time when the pace at which the 
web was growing began to outstrip the ability of current search engines to 
yield useable results. At that time, most search engines had been developed 
by businesses who were not interested in publishing the details of how their 
products worked. In developing Google, Brin and Page wanted to "push more 
development and understanding into the academic realm." That is, they 
hoped, first of all, to improve the design of search engines by moving it into a 
more open, academic environment. In addition, they felt that the usage 
statistics for their search engine would provide an interesting data set for 
research. It appears that the federal government, which recently tried to gain 
some of Google's statistics, feels the same way.  
 
There are other algorithms that use the hyperlink structure of the web to rank 
the importance of web pages. One notable example is the HITS algorithm, 
produced by Jon Kleinberg, which forms the basis of the Teoma search 
engine (AskJeeves). In fact, it is interesting to compare the results of 
searches sent to different search engines as a way to understand why some 
complain of a Googleopoly. 
 
This article was adapted from an article written by David Austin of Grand 
Valley State University, published by the American Mathematical Society at: 
http://www.mathjournals.org/samplings/feature-column/fcarc-pagerank 
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