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Summary 

This paper describes a new method for the form-finding of funicular structures in two or three 
dimensions using a zero-length spring system with dynamic nodal masses. The resulting found 
geometry consists of purely axial forces under self-weight, with zero bending moment at nodes for 
both shells and tension net forms. A real-time solver using semi-implicit Euler integration with 
viscous damping is used to achieve system equilibrium. By using a real-time solver, the designer is 
able to alter the gravitational field or apply new point loads without re-starting the analysis, leading 
to an interactive experience in generating design options. The advantages of this method over 
existing approaches are discussed, with its successful application in a recent real case-study project 
also shown. 
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1. Introduction 

The form-finding of funicular structures has long been advantageous for designers of compression 
shells and tension nets due to their zero out-of-plane bending moment property under self-weight. 
There are many examples from the past of attempts by designers to generate such efficient funicular 
forms within certain boundary constraints including both physical and computational models or 
combinations of both. Antoní Gaudi’s physical hanging chain models have inspired many engineers 
to use similar methods in funicular form-finding including Heinz Isler, [1] Felix Candella [2] and 
Frei Otto [3] to name but a few. Such methods give a real-life understanding of the behaviour of 
material subject to self-weight but at the cost of having to model each design option individually 
which can be extremely time consuming and constraining, especially if the boundary conditions are 
complex or the exact requirements of the design are not known a priori. 

1.1 Computational methods 

Recent advances in computing power have made design exploration possible using direct 
simulation.  Active statics [4] for example is a development of Culmann’s graphic statics [5] that 
allows the user to interact with the system and directly see the feedback from various actions, 
although it is limited to solving problems in two dimensions.  

In three dimensions, Killian and Ochsendorf [6] have employed particle spring systems with stiff 
springs in order to approximate rigid links. By using real-time integration the designer is able to 
explore different funicular designs quickly by changing boundary conditions and adding or 
subtracting additional links. Such software aims to mimic simulations of natural systems such as 
Gaudi’s hanging chain models but allows for more flexibility in terms of design exploration than its 
physical counterpart. 



 

 

More recently Block and Ochsendorf [7] have developed Thrust-Network Analysis (TNA) using 
one-step linear optimisation in order to explore funicular forms in real-time, in particular vaulted 
masonry structures with additional rib and web elements.  

The goal with these last two approaches to funicular design is not to optimise for one objective but 
to instead apply constraints to free-form surface generation in order to maintain structural logic. It 
will be shown that the dynamic mass approach presented here is similar to the previous two 
methods but instead extends such processes beyond what can be modelled in the real world, in order 
to allow fast design exploration 

1.2 Zero-length springs 

In 1932, the physicist Lucien LaCoste [8] first discovered zero-length springs and applied them to 
the design of seismographs and gravimeters. The zero-length spring obeys Hooke's law of elasticity 
but has zero natural length. This means that the force exerted by such a spring is exactly 
proportional its length which is also its extension.  
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This paper explains how zero-length springs may be used in particle spring system in order to form-
find funicular structures through the innovative step of carefully varying the lumped mass applied at 
each node in real-time. We begin by introducing the approach to solving simple two-dimensional 
systems with known results using zero-length springs and then extend the method in sections three 
and four to account for variable mass and three dimensional situations. 

2. Two-dimensional Systems 

2.1 Overview of method 

A simple particle-spring system is constructed with nodes 
joined with zero-length springs (Fig.1). An equal mass is 
lumped at each node and stays constant for each node in 
the system. The springs are equally pre-stressed at the 
initial condition (a) with nodes equally spaced along the 
x-axis. The property of zero-length springs mean that we 
then need only solve for the y component of the force 
when a gravitational field is applied in the negative y 
direction as shown for the system in (b). For each node we 
therefore have the residual force in y given as: 

  

(2) 

 

where yi+1 and yi-1 are the coordinates of nodes adjacent to 
ni, k is a global stiffness constant equal for all the springs 
in the system and g is a gravitational constant. The 
equation of motion thus becomes (3) with static 
equilibrium reached by finding both sides of the equation 
equal to zero representing no residual force and 
acceleration. This is basically simple harmonic motion 
with viscous damping term within a bound that avoids an 
over-damped system. 
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Fig. 1. Zero-length springs form a 

parabola with equal mass applied at 

each node. 

 

 

 

Fig. 2. Free body diagram. 



 

 

2.2 Solving for static equilibrium 

An analytical solution is of course known but we use a numerical approach here as it will be useful 
later. Although only first-order, the semi-implicit Euler method does not lead to instabilities that are 
present using the Euler method for harmonic oscillators, and so is a good choice for this problem as 
it is also suited to large time steps. The semi-implicit Euler is therefore: 
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(Where tstt s ∆+= 0 ) 

This is then iterated for each node in the system with an appropriate time step until the velocities 
and residual force tend to zero. The particle-system as a whole acts as a series of coupled oscillators 
with an additional term for the gravitational load for each node.  The result is known to form a 
parabola, a well known real-world example being a slinky supported from each end under self-
weight. An analytical solution to this problem can be found by setting Fi = 0 in equation (3) and 
defining a length for the first spring. The resulting parabola shows exact correlation with results 
from the numerical approach. 

2.2.1 Comment on solving process 

By using an iterative process to solve the equations of motion for each node independently we are 
effectively employing a dynamic relaxation method [9] in order to reach static equilibrium. The 
iterative force density method is another such example [10]. Such techniques have been 
traditionally applied to the form-finding of cable net, membrane and pneumatic structures [11] 
whereby an equal tension field is usually required, mainly because finite element methods do not 
converge for systems initially far from equilibrium. By assuming we wish to interact with our 
system in the generation of funicular forms (of which there are theoretically an infinite number for 
each boundary condition), a distributed approach such as dynamic relaxation therefore seems an 
appropriate choice. 

2.3 Extension to funicular forms 

An extension of the approach described in section 2.2 can now include a dynamic mass that is 
relative to the length of the adjoining springs. Such a modification gives rise to a discretised 
catenary once static equilibrium is reached. 

2.3.1 Dynamic Mass Method 

By assigning a variable lumped mass proportional to the 
length of the zero-length spring adjoining each node we 
essentially keep the mass density of all the springs constant, 
much like a catenary cable. This mass in turn affects the 
length of the spring itself and hence a coupled relationship 
is formed between the two. With reference to Fig.3, the 
lengths are now given by our x-axis spacing: w. 
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With the residual force for each node now being: 
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Fig. 3. Dynamic mass free body. 

 



 

 

With  Fi = 0  required for equilibrium, this equation is 
again non-linear and this time has no closed form. We 
may still use the method described in section 2 in order 
to solve for static equilibrium by substituting equation (8) 
into (4) & (5). Once again, we need only solve for the y 
component because the zero-length springs are all 
equally stiff and posses the same extension leading to 
equal spacing in the x-direction. In practice however we 
may also solve for x to allow for an initial condition that 
is not equally spaced. 

2.3.2 Real-time exploration 

Various forms may now be explored within the two 
pinned boundary conditions simply by varying the 
gravitational constant. Fig. 4 shows different length 
discretised catenaries formed quickly in real-time with 
the user varying g. 

2.3.3 Convergence 

The mass term will overpower the spring forces should g > k as the nodes continue to accumulate 
mass too quickly for the springs to resist the extra force. Even if this condition is met, the system 
can also be too stiff and not converge. In practice this is rectified by choosing a stiffness constant 
appropriate for the time-step. This is easily done manually even for the complex 3D forms 
discussed later because k is global and identical for all springs. This is another advantage of using 
zero-length springs. 

2.3.4 Generating forms 

Once static equilibrium is achieved we can now replace 
the springs with rigid links that give exactly the correct 
mass for a funicular form under self-weight assuming the 
mass per unit length is equal for all members. It may seem 
like the springs are pre-stressed and hence by replacing 
them with rigid links the form will somehow change - but 
this is not the case because each spring has zero natural 
length and will therefore - when converted to a rigid 
member – balance the x and y component forces at each 
node in the same proportion and hence direction. 

2.3.5 Catenary comparison. 

An analytical solution to the continuous catenary in two 
dimensions is well known and is given by the hyperbolic 
cosine function. The dynamic mass method generates 
accurate funicular forms for discretised catenaries with 
straight members, however by increasing the number of 
nodes in the system we can very closely approximate a 
continuous system even for a relatively small amount of 
nodes. Figure 5 shows the form-finding of a 16m wide by 
14 meter high catenary arch with nodes at 1m spacing in 
the x-axis. 

With this problem, the maximum error was found to be 
only 3mm where the curvature of the catenary was 
greatest. By increasing nodes this error converges to zero 
monotonically (Figure 6) but at the cost of calculation 
time. 

 

 

 

Fig. 5. 17 node system in comparison to 

actual catenary. 

 

 

Fig. 4. Exploration of catenaries by 

varying the gravitational constant. 



 

 

2.3.6 Discussion 

In practice, at the design exploration stage of a 
project a particle system with only a small 
number of nodes is quicker to solve and hence 
feedback to the designer is faster. As a design 
is settled upon, if a curved form is desired, it is 
then possible to increase the node number for 
example let 10 nodes represent 10 positions on 
one member as it curves between connections. 

For most real projects however, cost 
constraints or even aesthetics often dictate that 
a discretised solution is required anyway. 

 

3. Three-Dimensional Systems 

3.1 Introduction 

So far approaches to 2D problems with known analytical solutions have been investigated and 
hence have no additional value in terms of finding form. However, the method applied to 3D 
systems has much more use for the design of funicular shells in compression or tension. The 
method can also be applied to statically indeterminate structures due to the low stiffness 
requirement of the springs during the iterative process. As has been discussed, transferring from 2D 
to the complexity of doubly curved structures embedded in 3d space can be challenging for some 
other approaches. However if the initial condition of the zero-length springs form an equally spaced 
grid when projected vertically onto the ground plane it will now be in equilibrium in both x and y 
directions and we need only solve for the z coordinate. 

3.2 Extension to 3D 

Figure 7 shows a particular node in a spring system with 4 adjoining springs. The residual force in 
the z direction now given as (9) with the spring lengths also a function of z if a square grid is used 
when projected to a plane perpendicular to the gravitational force (i.e. the ground plane). 

 

(9)  

 

Once again the system is solved for static equilibrium 
until all the residual forces and velocities are zero. As 
before, varying the gravitational constant g allows the 
designer to explore many potential funicular forms. 

Once a suitable shape has been found, the springs are 
replaced with rigid links. As with the 2D system, since the 
lumped masses are coupled to the length of the adjoining 
springs for each node, the form is perfectly balanced for 
the self-weight of the structure assuming all members are 
of equal mass density. 

Figure 8 shows such a design whereby the first step (a) in 
the process is to find static equilibrium with the zero-
length springs with no gravity applied. This forms a 
doubly curved tension net structure. Step (b) shows how 
increasing g allows the shell to begin to find a form in 
arching action. The results of an analysis of the final 
design are shown in (c) – in this case scaled to a 
16x16x6m structure under self-weight with a 76.1x4mm 

 

Fig. 6. Increasing of nodes reduces error 

 

 

Fig. 7. Node in a 3d system 
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CHS used for each member.  

All axial forces were compressive with magnitudes at 
the boundary edge were in the region of 4kN, however 
the maximum moment in the structure was minimal in 
comparison (approximately 0.03kNm) solely due to the 
self-weight bending of the members exerting a small 
local moment at the joints. Buckling of compressive 
struts thus becomes the most important factor with such 
structures and future ways of extending the method to 
include these considerations are discussed in section 
five. 

3.3 Boundary conditions 

At present the method requires a continuous pinned 
boundary around the edge of the springs to keep the 
nodes located on a grid throughout the process. This 
boundary can vary in z height however, and additional 
supports internal to the outside boundary may be 
included.  

3.4 Additional Loads 

So far, we have been solely concerned with a linear 
relationship between the length of the spring and the 
mass applied at each node. This assumes that all 
members will be of equal mass per unit-length when the 
springs are replaced with rigid links which for large 
shells of varying axial force, this may not be the case.  

3.4.1 Varying Member Cross-Sections 

An example of the above is where the cross-sectional area of each member should vary according to 
stress to ensure an efficient utilisation of material. This requirement can be handled by setting up a 
non-linear relationship for the amount of dynamic mass applied at the node. The residual force now 
becomes: 

 

(10) 

 

In practice this system still converges so long as g<k
2
 and still gives very fast calculation for static 

equilibrium, certainly enough for real-time results for systems of around 2000 nodes. 

3.4.2 Area elements 

It is also possible to form-find continuous shells using this method by approximating the self-
weight of an area element and applying it at the node. This is achieved by calculating the cross 
product of the four adjacent area elements and taking the mean average as the nodal lumped mass. 
Like the size of the links, this area changes dynamically as the process runs but still converges upon 
static equilibrium for a similar choice of g and k.  

3.4.3 Additional point loads 

The designer can further modify the shape within the current boundary conditions then by adding 
additional point loads in addition to the dynamic masses at each node. The form can then be 
manipulated whilst still maintaining funicularity. This occurred in the following real case-study 
project, whereby the range of funicular forms did not suit the requirements of the architect. 
Interestingly, although the addition of load increased the axial force, as the bending moment was 
greatly reduced at each node the connection details became much simpler as a result. 

 

 

Fig. 8. Discretised funicular surface. 
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4. Application in Practice 

4.1 Interactive applet 

The method has been recently applied on a design competition at Ramboll Engineers. An interactive 
Java applet was developed for use by the project team in a competition design for a 360m long 
timber roof for a new terminal at Riga airport, Latvia. Figure 9 shows a screenshot from the applet. 
Initial conditions came from the design brief and the architect’s initial internal design options. 
Interestingly, these internal layouts were not fixed from day one and hence the applet was able to 
adapt to new conditions as the design progressed. 

4.2 Design process implementation 

By using a real-time solver, the architect was again 
able to alter the gravitational field and apply new 
point loads without re-starting the analysis, leading 
to a interactive experience in generating design 
options. Information on material cost was also then 
fed-back in real-time via the applet.  

By maintaining the nodes on a plan grid throughout 
the form-finding process, column locations for the 
internal supports were able to be preserved. There 
were also further advantages to maintaining a grid at 
the construction stage whereby temporary props and 
construction tolerance datum points were easily 
located on a regular grid on the ground plane. 

Figure 10 shows a finite element analysis conducted 
with all hinged joints. The structure remains in its 
found form shape indicating zero-residual moment 
and is made up of tension only components with a 
sound distribution of force. 

Due to the zero-length spring calculation being 
reasonably simple, the process is very fast: running 
2000 nodes with ease on a standard desktop 
computer. In the opinion of the authors it is this 
speed and real-time feedback made possible by the 
low-stiffness springs that makes this approach very 
appealing in encouraging structural logic at the 
concept design stage. By doing so, the requirement 
to post-rationalise the complex doubly curved roof 
shape later becomes far less likely. 

5. Discussion 

This paper has presented a new approach for developing funicular forms, both discrete and 
continuous in a way that is not easily re-creatable using physical models alone. In applying the 
approach in practice it has also been shown how the development of such tools can lead to more 
efficient outcomes later on in the design process. This is a response to the proliferation of post-
rationalised free-form surfaces in architecture as modelling tools become more widely available to 
designers. 

There are limitations in the boundary conditions for this method and that a regular grid is required 
as an initial condition. Current research indicates that this may not be necessary although this will 
need to be investigated further, as does the possible inclusion of Euler buckling criteria as an 
additional term for the dynamic mass. With the recent increase in computing power allowing for 
real-time interaction of structures, the authors hope that by using such tools designers can embed 
funicularity into the design process right from the start, and reduce today’s preference for free-form 
surfaces that require extensive post-rationalisation. 

 

Fig. 9.Java applet allowing various forms to 

be explored by altering the gravitational 

constant. 

 

 
Fig. 10.Analysis of the found-form showing 

all tension only components. Thickness of the 

lines is proportional to stress. 
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