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Abstract. The free-form grid structures have been widely used in various public buildings, and many 
of them are trimmed with complex curves including internal voids. Computational design software 
enables the rapid conceptual creation of such complex surface geometry, whereas it is neither a 
convenient nor an obvious task for engineers to create a discrete grid structure on a free-form surface 
with complex boundary conditions that manifest the designer’s intension. This emphasizes the 
importance of grid generation tools and methods in the initial design stage. This paper presents an 
efficient design tool for the synthesis of free-form grid structures based on the “guide line” and 
surface flattening methods, considering complex features of internal boundaries on trimmed free-form 
surface. The method employs a fast and straightforward approach which achieves grids with rods of 
balanced length and fluent lines. In order to generate grids on the trimmed free-form surface with 
complex boundaries, the grid generation method which combines surface flattening and improved 
guide line method is put forward. The data of trimmed surface includes a complete surface and the 
trimming curves. The parametric domain of the complete NURBS surface was firstly divided into a 
number of parts and a discrete free-form surface was accordingly formed by mapping dividing points 
onto surface. The free-form surface was then flattened based on the principle of identical area. 
Accordingly, the flattened rectangular lattices were fitted into the 2D surface where grids were formed 
applying the guide line method. Subsequently, the intersections of guide lines and the complex 
boundary were obtained and the guide lines were modified and divided equally to get grids by 
connecting dividing points. Finally, the 2D grids were mapped onto the 3D surface to achieve grid on 
free-form surface with complex boundaries. A spring-mass method was also employed to further 
improve the smoothness of the resulted grids. Examples were presented to shown the effectiveness of 
the proposed method. 

1 INTRODUCTION 

Grid shells as long spanning roof structures, is often the most striking part in a building 
from a designer’s perspective. Grid shells provide a sense of simplicity and elegance in terms 
of appearance. The important features of grid shells are their appeal of uninterrupted span, the 
smoothness of their continuum surface counterparts, the lightness of their grid cells, curve 
fluidity and most importantly their high structural efficiency that can resist external actions 
through membrane stiffness [1]. Grid shells with plane, cylinder, sphere, and parabolic shapes 
[2-4] have been widely used in engineering practice, where engineers easily use analytical 
equations to generate nodal positions and members for grid structural design use.  
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Free-form surface, however, is unable to be expressed accurately by means of several 
analytic functions and the curvature of such a surface is generally complex, as shown in Fig.1. 
In recent years, parametric modeling and scripting techniques in computer aided design have 
enabled a new level of sophistication in 3D free-form surface, allowing engineers searching 
for techniques to restructure the design process and inspire their imagination further. The 
aesthetically pleasing nature-designs also attract the attention from the construction market for 
new buildings. The number of new and complex free-form grid structures on complex curved 
surface is therefore increasing. Given the varying curvature and complex boundaries, it is a 
tedious job for designers to generate grid on a curved free-form surface, despite the fact that 
the advancement of CAD technology has allowed for freedom to control the architectural 
form.  

 

Figure 1: Free-form grid structures: the British Museum Great Court.  

 

The grid pattern of free-form grid shells are traditionally created by hand using computer-
aided design tools or automated by using tailored scripts for each individual project. As the 
free-form grid structures are becoming more popular and complex, a practical grid generation 
tool which can efficiently generate a structural grid on a given free-form surface is becoming 
more necessary to facilitate the design process, particularly in the early design stage. A highly 
efficient grid generation method for the design of free-form grid shells is distinct in 4 aspects: 
(1) Grids generated should be an approximation to the given surface; (2) as equal rod length 
of each member as possible for the ease of manufacturing and connecting, as shown in Fig. 2; 
(3) fluidity of each curve embedded into the surface to seed the general orientation of pattern 
(Fig.2) and (4) a standard tool for the automation of grid generation and fast evaluation on 
complex surfaces. 

 

Figure 2: Grid shell with curve fluidity and regular grid cells. 

 

Curve fluidity 

Regular grid cell 
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 Traditional mesh generation methods have been developed and applied to finite-element 
analysis, with the mainstream and standard methods such as Advancing Front Technique [5], 
Mapping Method [6] and Delaunay Triangulation [7, 8]. These methods can be adapted for 
the gird generation for the design of shells, whereas the resulted topology does not necessarily 
meet the requirement of equal rod length and the architectural grid fluidity.  

Grid generation methodologies on free-form surface are attracting researchers’ attention 
whilst the research is rather limited. Early method for the grid generation on a 3D surface is 
known as Chebyshev net design proposed in 1878 [9]. Two arbitrary intersecting curves were 
first defined on the given surface; each curve was then divided into segments with the same 
rod length. The rest of points was then produced by using the intersection between 2 adjacent 
circles on the surface with each circle has a radius of the same rod length. Due to the use of 
3D circles over the surface, this method is more specific as “Compass Method”, as shown in 
Fig.3. Lefevre et al. [10] used the “Compass Method” to generate grid shell for instability 
analysis while a method with denser Chebyshev net was proposed to improve the quality of 
resulted grid. Shepherd and Richens [11] proposed the Subdivision Surface method, where an 
initial triangular or quadrilateral mesh is first imposed onto a free-form surface and then 
subdivided over a number of iterations and fit the original surface. More recently, Douthe et al. 
[12] proposed a method to generate the shape of grid shells covering with quadrilateral grid 
cells. Using two intersection curves as guide lines, a circular mesh was generated, the duality 
between a circular mesh with a unique radius and Tchebycheff net was used to obtain 
quadrilateral grid. In their method of grid generation, the planarity of each grid cell has been 
taken into account.  

 

Figure 3: Compass method. 

 

Recently, Gao et al. [13] proposed a “guide line method” for the synthesis of free-form 
grid structures. The method is straightforward and is able to obtain grids with rods of 
balanced length and fluent lines. The process started with defining a limited number of curves 
(named the guide lines) on the surface, the guide lines were then advanced over the surface 
which were then used to determine the directions of the ‘rods’ of the grid. It was shown that 
the generated grids were generally with approximate rod length and fluidity. Gao et al. [14] 
proposed a more advanced grid generation method that combined a surface flattening 
technique with the guide line method. Dividing points were firstly generated on the 
parametric domain and were then mapped to the free-form surface. Using a principle of 
identity area, the surface was then flattened and grids were generated by advancing the guide 
line on the flattened surface. The resulted grids were finally mapped back onto the surface and 
a quality index was used to evaluate the regularity of grid cells. It was found that the grid 
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shape quality index and the deviation of rod length of the grid structure were reduced by up to 
47%, with and without using the surface flattening technique.  

In practice, the free-form surfaces of grid shells are more complex with trimmed boundary 
conditions. The free-form surface is usually trimmed by a curve or a sub-surface so that the 
free-form surface with complex boundary is obtained. Cases are presented in Fig.4, where the 
free-form surface is with internal boundaries, which is trimmed by one or several closed space 
curves. The available research on grid generation was generally conducted for the 
development of grid generation on complete free-form surface, while there is no emphasis on 
the grid generation method that considering complex boundary conditions for the design of 
free-form grid shells.  

 

Figure 4:  Free-form grid structures with complex boundaries: Shenzhen Bay Sports Center. 

 

Compared to previous studies, the main development of this paper is to take into account 
the complex boundary conditions for grid generation on a given free-form surface, by 
combining surface flattening technique with improved guide line method. Using the guide 
line method to generate grids on a surface, the fluidity is guaranteed by an input curve that 
manifests the designer’s intention for the direction of grids and defines initial seed features to 
control the final results. 3D free-form surface can be flattened into a 2D plane by using a 
surface flattening technique, which facilitates the guide line advancing process. The 
intersection points are therefore calculated by using the intersection of resulted guide lines 
and the given complex boundary curves. Members of structural geometry which are outside 
the design domain will then be deleted. This paper also optimises the smoothness of the 
resulted grids by using a spring-mass method. A grid pattern that satisfy the requirement of 
equal rod length and fluidity will be obtained and more importantly, the resulted grid pattern 
will be strictly compatible to the given irregular boundary conditions, which has not been 
highlighted in previous research.  

2 DESCRIPTIONS OF CURVES AND SURFACES 

NURBS (Non-uniform rational B-Splines) expressions [15] are used in this paper to 
represent the free-form surface. NURBS has been the industry standard that is used for shape 
representation, design and data exchange when geometric information is processed by 
computer. As a result, NURBS is a powerful tool in standard geometric design. NURBS 
realizes the arbitrary shape of surface by adjusting its control points, knots weights and 
establishes a mapping relation between surface and parametric domain which is convenient 
for surface flattening and grid generation.   

A pth-degree NURBS curve is shown in Fig.5 and is defined by [15]: 
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where {���} are the control points, {� �} are the weights, and ��,�(�) are the pth-degree B-
spline basis functions which are: 
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defined on the non-periodic and non-uniform knot vector: 
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where � = � + � + 1. 

 

Figure 5: Relationship between a curve and its control points. 

 

An NURBS surface (shown in Fig.6) of degree p in the u direction and degree q in the v 
direction is a bivariate vector-valued piecewise rational function with the following form [15]: 

S(�,�)=
∑ ∑ � �,� (�)⋅� �,�(�)⋅� �,�⋅���,�
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���

�
�� �

∑ ∑ � �,� (�)⋅� �,�(�)⋅� �,�
�
�� �

�
�� �

   � ≤ � ≤ �,� ≤ � ≤ �                (4) 

where ����,�� forms a bidirectional control net, �� �,�� are the weights, and ��,�(�), ��,�(�) are 
the non-rational B-spline basis functions defined on the knot vectors: 
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where � = � + � + 1 and � = � + � + 1. 
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Figure 6: The relationship between a curved surface and its control points and mapping from 
parametric domain to the NURBS surface. 

 

The curve mentioned above is defined in the three-dimensional space. However, in the 
current paper, the curves are always lying on the surface. It should be described by a two-time 
mapping rather than a single function, as shown in Fig.6. It is defined by an NURBS surface 
S(�,�) and a two-dimensional NURBS curve C(� ) which lies on the parameter field of the 
surface. The value domain of the curve C(� ), is in the definitional domain of the 
surface S(�,�). The pair of (�,�) is calculated from a parameter �  by the function C(� ). The 
three-dimensional coordinate is subsequently calculated from the pair of parameters (�,�) by 
the function S(�,�). It is obvious that all of the coordinates obtained by this two-time 
mapping method are exactly on the surface. 

3 SURFACE FLATTENING 

Surface flattening is a technique that transfers 3D surface into a plane surface, further 
operations can therefore be conducted on the plane surface which is less difficult compared to 
direct operations on 3D curved surface. Therefore, the surface flattening technique has been 
widely used in engineering practice, for example, to calculate and design blank shape in 
manufacture industry [16]. Surfaces are classified as developable and undevelopable surfaces 
according to the developability of a surface. Gaussian curvature is used to define 
developability of surface and the sufficient/necessary condition for a developable surface is 
that Gaussian curvature of surface is zero everywhere [17]. The surface flattening technique 
has been used in the design of membrane structures, Topping and Iványi [18] introduced a 
method to transform the 3D strips of membrane surface to planes for membrane cutting 
pattern generation based on the dynamic relaxation algorithm. In their method, the surface 
flattening process does not require the strip to be developable. At present, there are three 
methods of surface flattening including geometric flattening, mechanical flattening and 
combined geometric flattening and mechanical amendment [16, 19, 20]. This paper will use 
geometric flattening method to unfold surface based on the rule of identical area.  

The geometric flattening method is applied to flatten surface based on the rule of 
equivalent area. A trimmed crescent shape surface is taken as example, as shown in Fig.7, 
which are the trimmed surface with complex boundaries and its complete surface, respectively. 
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Figure 7: Trimmed crescent shape surface with complex boundary and its complete surface. 

 

3.1 Surface discretizing 

The parametric domain of the free-form surface is divided into a number of segments in u 
and v direction on the basis of a relationship between surface adjacent boundary lengths. The 
parametric domain can be discretized into N×M grids corresponding to approximate equality 
or inequality of surface adjacent boundary lengths. Discrete free-form surface is therefore 
generated by mapping dividing points of the parametric domain onto the surface, as shown in 
Fig.8. 

 

Figure 8: Surface discretizing. 

 

3.2 Flattening of the central point and surrounding points 

The central point of the surface mesh is then taken as the flattening center. The coordinates 
of unfolded plane points corresponding to the flattening center and its surrounding 8 points on 
the surface should be firstly determined, as shown in Fig.9. 
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Figure 9: Flattening center and its surrounding points before and after flattening. 

 

The corresponding point of the flattening center �� is point 0a on the plane that is regarded 
as origin of the flattening plane. Suppose γ is added value of the summation of internal angles 
around the flattening center before and after flattening:  

γ = 2π − (�� + �� + �� + ��)                                                      (6) 

Value γ will be allocated to 4 regions so that the corresponding angles on the plane after 
flattening can be obtained. After the flattening: 

�� = �� + γ× �� ∑ ��⁄                                                                   (7) 

Suppose � and � directions have the same rate of expansion that is called � before and after 
flattening, as the following equation: 

� =
|����|

|����|
=

|����|

|����|
=

|����|

|����|
=

|����|

|����|
     (8) 

According to the rule that the sum of triangles � ������, � ������, � ������, � ������ 
areas after flattening is equal to the sum of the corresponding triangle areas before flattening, 
value of � is obtained: 

  |����||����| sin �� + |����||����| sin �� + |����||����| sin �� + |����||����| sin ��                  

= ��(|����||����| sin �� + |����||����| sin �� + |����||����| sin �� + |����||����| sin ��)  (9) 

Substituting  �  into the formula (8),  |����| ,  |����| ,  |����|  and |����|  are obtained. 
Combined with formula (7), the coordinates of points ��, ��, ��, �� can therefore be achieved. 
Finally, according to the principle of identical area, the coordinates of points ��, ��, ��, �� 
can be calculated. Taking �� as an example, suppose ��, ��, �� represent the area of triangle 
� ������ , � ������ , � ������  individually. Likewise, �� , �� , ��  represent the area of 
corresponding triangle after flattening. If there are three points ��(��,��), ��(��,��), �(�,�) 
to be in an anticlockwise arrangement on any plane. ��, �� are fixed points and � is a moving 
point. The area of the triangle made up of these three points is as follows: 
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    ε =
�

�
�

�� �� 1
�� �� 1
� � 1

�                                                                (10) 

Assume ∆S represents the summation of the squares of variation of the quadrilateral area 
before and after flattening: 

∆S = ∑ (S� − E�)
��

���                                                              (11) 

In order to get the minimum value of ∆S, the following formula is applied: 

   �

�∆�

��
= 0

�∆�

��
= 0

                                                                      (12) 

The � and � values which are the coordinates of point �� will then be obtained by solving 
the equations (7). Similarly, the coordinates of ��, ��, �� can be obtained in the same way. 

3.3 Grids flattening of the whole regions  

The entire surface is divided into four regions when the surface flattening center is 
determined, the regions will then be flattened in sequence. Following the flattening of �� and 
the surrounding 8 points, point ��, which is on the right of point �� (Fig.9) is used as the 
center to flatten its surrounding points according to the principle of identical area. All grids 
will be flattened by repeating the above steps and the detailed flattening steps are shown in 
Fig.10. 

 

Figure 10: The steps of grids flattening: (a) Grid nodes of the first region flattening in a row (b) Grid 
nodes of the first region flattening and (c) Grid nodes of four regions flattening. 

 

The discrete surface in Fig.8 is flattened based on above method. The flattening result is 
shown in Fig.11. 

 

Figure 11: Rectangular lattices of the unfolded plane 
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It is worth noting that the method used here takes into account of a number of factors such 
as the shape of surface and relationship between surface adjacent boundary lengths when 
discretizing the surface. Geometric flattening method based on the principle of equivalent area 
can avoid cracks and overlaps during the surface flattening process. In addition, this method is 
easier to implement, therefore, has a preferable applicability. 

4 GRID GENERATION BASED ON IMPROVED GUIDE-LINE METHOD 

After the flattening of the free-form surface, the flattened rectangular lattices are fitted onto 
the 2D surface where grids are generated by employing the improved guide line method. The 
fitted 2D surface is shown in Fig.12.  

 

Figure 12: The fitted 2D surface and the trimming boundary on the flattened 2D surface. 

 

The fitted 2D flattened surface share the same parametric field with the original 3D free-
form surface. So, the original trimming boundary could be mapped to the 2D flattened surface 
as shown in Fig.12. 

The guide line method to generate grids on free-form surface is in a way that a curve which 
is sketched on the surface by the architect determines the grid trend. The basic idea of grid 
generation is that the entire surface will be covered with multiple guide lines by advancing the 
predefined guide line which can manifest the designer’s intuition. The fluency and regularity 
of the grid cells have been largely determined by the advanced guide lines, therefore, the 
guide line advancing technique is the key feature of grid generation [13]. The guide line 
method presented by Gao et al. [13] is improved in this paper which can generate grids on 
free-form surface with complex boundary conditions. 

4.1 The guide line advancing 

First the initial guide line should be sketched on the original surface by the designer, as 
shown in Fig.13. This guide line will directly be mapped to the flattened 2D surface, since the 
original surface and the flattened surface are in the same parametric field, as shown in Fig.13. 

 

Figure 13: The initial guide line on the original surface and on flattened complete surface. 
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The new guide lines will be generated by advancing all the control points of the preceding 
guide line in a fixed distance in the same direction. The advancing distance is generally 
decided by the required member length (l) of the grid shell. Taking the NURBS surface in 
Fig.9 as an example and starting from the initially defined guide line (Fig.13), the resulted 
plane covered with guide lines is shown in Fig.14. 

 

Figure 14: The flattened complete surface covered with guide lines. 

 

4.2 The intersections between guide lines and boundaries 

After the flattened 2D complete surface is covered with guide lines, the intersections 
between each guide line and the boundaries are calculated. This allows the guide lines to be 
trimmed. A special case is that the guide line is tangent to the boundary curve so the 
intersection point should be neglected. Suppose that the number of intersection points on each 
guide line starts from 1. If the 1st intersection is on the boundary, then the curves with even 
value of intersection number to odd intersection number (such as 2-3, 4-5) should be deleted, 
otherwise the curves from odd intersection number to even intersection number (such as 1-2, 
3-4) should be deleted. The resulted of trimmed guide lines on the flattened surface is shown 
in Fig.15. 

 

Figure 15: The trimmed guide lines on the flattened 2D surface. 

4.3 Mapping the guide lines to original surface 

Since the original surface share the same parametric field with the flattened 2D surface, the 
guide lines can therefore be mapped to the original surface directly. 

   

Figure 16: Guide lines on the original surface. 
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As shown in Fig.16, the guide lines on the surface are smooth and fluent. If guide lines of 
two directions are generated, the quadrilateral grids can be obtained. The final results of grids 
will be shown in the case studies. 

5 GRID RELAXATIONS 

The grid generated in previous method are generally fluent and with regular grid cells. 
However, a relaxation method may be needed to further smooth of the generated grids, as 
implemented by Williams [21] in the form design of the British Museum Great Court. The 
Particle-spring method has been successfully used by Kilian and Ochsendorf [22] at 
Massachusetts Institute of Technology, for form-finding of structural forms in pure 
compression or tension. In their method, axial springs connecting lumped masses were used 
to represent the physical behavior of a grid shell with truss members. The external gravity 
forces were then applied at the structural system while a final equilibrium of the structure was 
achieved. The method has been improved and adapted for the optimisation of generated grids 
by introducing a “pulling force”, as shown in Fig.17 and this force prevents the particles from 
moving outside of the pre-defined surface. The particle-spring system serves as an excellent 
approximation for the grids generated and the equilibrium position of each mass on the 
surface is therefore achieved through an iterative process. 

 

Figure 17: The equilibrium of the particle-spring system. 

 

In the grids resulted from the surface flattening and guide line method, each node of the 
grids can be regarded as a particle and the members considered as springs in the particle-
spring system. It is worth noting that the resulted grids are on the pre-defined surface. 
However, when the springs with different lengths are introduced with an initially expected 
equal rod length l, the forces in the particle-spring system will not be equilibrium. To prevent 
the particles in the particle-system from moving outside of the original surface, a constraining 
force pointing at the surface and the boundary curves are therefore introduced. 

 There are three types of forces in the particle-spring system, as shown in Fig.17. First, the 
force between two particles with a spring connected is introduced. The second force stems 
from a particle which is fixed, such particles are generally defined on the boundries of the 
resulted grids. Finally, forces are defined to preventing the particles from moving outside the 
surface and the boundary curves. 

Each particle is assumed to have a constant lumped mass m. In the meantime, each rod is 
taken as a linear elastic spring with a constant free length l, and a constant axial stiffness 
�������. The lumped mass m can be set as unit. The stiffness ������� will therefore affect the 

convergence speed. The stiffness is set as a larger value during the initial iterations to 
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accelerate the convergence, and gradually reduced to achieve stable results. Each spring loads 
with a force along its length as: 

� = (��� − �)⋅�������                                                              (13) 

where the ���  is the deformed length of the spring. Each particle i will be subjected to 
unbalanced internal forces from its connecting springs as: 

�������,� = ∑ ��,�(�,�)∈{�}                                                             (14) 

in which the {S} is a set containing all springs. 

For the particles on the boundaries, a force ������,� with a normal direction through itself 
will be used to pull the particles back to the boundary curve. 

������,� = ������ ⋅������,�
��                                                           (15) 

in which ������ is a coefficient, larger values of ������ indicate a stronger constraint on the 
particles.  ������,� is the distance between the particle and the boundary curve which can be 
calculated by a computational geometry method presented by Piegl [15]. e1 is an exponent and 
a penalty parameter of the distance. A larger factor of e1 means the particle further from the 
boundary curves will be subjected to more constraints to accelerate the convergence while the 
particles closer to the boundary curves will be subjected to less constraints to avoid oscillation.  

For the other particles, a force ��������,� with a fictional force will be used to keep the 

particles sliding on the surface: 

��������,� = �������� ⋅��������,�
��                                                 (16) 

where �������� is a coefficient similar to ������. ��������,� is the distance between the particle 

and the surface. e2 is the exponent parameter, which is similar to e1. 

The resultant force of each particle can be calculated by: 

�� = �������,� + �
������,�       ��� ��������� �� �������� ������

��������,�      ��� ��ℎ�� ���������                            
                  (17) 

Then motion equations of all particles with viscous damping are shown as: 

��,� =
��,�� �⋅��,�

�
                                                            (18) 

����,� = ��,� + ��,� ⋅� �                                                   (19) 

����,� = ��,� +
�

�
�����,� + ��,�� � �                                      (20) 

These formulas are the classical kinematic equations of particles in a viscous damping 
environment. ��,�, ��,� , ��,� and ��,�  are the force, acceleration, velocity and position for the 
mass particle i of time t, respectively. c is the viscous damping coefficient. � � is the length 
of the discrete time step.  

An iterative process to solve the equations of motion of each particle has been presented in 
dynamic relaxation method in order to achieve static equilibrium. Such technique has 
traditionally been widely applied to the form-finding of cable-net and membrane structures 
[18, 21, 23, 24]. A discussion on the effects of parameters on convergence of the solver has 
been discussed in the dynamic relaxation method [25, 26] 



Jun Ye et al. 

 14

6 CASE STUDIES 

The steel and glass roof of the British Museum Great Court covers a rectangular area 
which is 70 m in width and 100 m in length. The Reading Room, which has a cylindrical 
shape with a diameter of 44 m, is located slightly off the centre of the court. The shape of the 
roof can be expressed as a mathematical function and more information is provided by 
William [21]. The original trimmed surface is shown in Fig. 18. 

 

Figure 18: Original trimmed surface of British Museum Great Court Roof. 

 

The complete surface was obtained as shown in Fig. 19 using the analytical equations [21]. 
The original complete surface had a sharp corner at the center of the surface, is therefore not 
suitable for surface flattening and the following grid generation. 

                                        

(a) Right view                                                         (b)Perspective view 

Figure 19: Complete surface of British Museum Great Court Roof. 

 

A surface reconstruction procedure was therefore employed to the surface. The control 
points at the center of the original surface shown in Fig.19 were lifted by a distance. Then the 
surface was reconstructed with some of the control points replaced while the weights and 
knots were kept the same, as shown in Fig.20. The reconstructed surface was discretized, 
flattened and fitted by employing the procedures presented above and the flattened surface is 
shown in Fig. 20. 
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Figure 20: Reconstructed complete surface and fitting the trimming boundary to the flattened and 
reconstructed surface.  

 

Since the surface is symmetrical along its horizontal axis, the diagonals with different 
shapes were chosen as the initial guide lines. Crossing guide lines were used to generate the 
quadrilateral mesh on the flattened surface, and the generated grids were then mapped to the 
surface. It is shown that the trends of the generated grids vary with the initial guide lines 
definition. The grids were generally fluent even without any grid relaxation process. 

Initial guide lines with 3 different directions were taken as examples to show the grid 
generation process. The initially defined guide lines in Case 1 are assumed to be along the 
diagonals of the surface (Fig.21) and the results are shown in Fig. 22-27. Fig. 22 shows the 
result from 2 different directions of initially defined guide lines without any post process. The 
resulted grids are fluent whereas there were several short rods at the boundaries of the surface. 
The vertices which are close to each other at the boundaries were merged given a certain 
threshold. The grids shown in Fig.22 are then relaxed and the results are shown in Fig. 23. 
Compared to the results in Fig.22, less short rods along their boundary curves are observed in 
the results presented in Fig.23. Fig.24 shows the decreased variance of member length with 
regard to the iterations of grid relaxation, the relaxed grids are shown to be more fluent. 

If the diagonals of each quadrilateral grid cell were generated, as shown in Fig. 25, the 
triangular grids were obtained. Since the rods were not very smooth with kinks at the 
diagonals of the grids, the grid relaxation procedure was employed and the results are shown 
in Fig. 26. It can be shown that the resulted grids are more fluent when the grid relaxation 
procedure is used. Fig.27 shows the decreased variance of member length with regard to the 
iterations of grid relaxation. Compared to the results in Fig.25, the kinks presented at the 
diagonals have been eliminated after the grid relaxation process. 

     

Figure 21: Case 1: initially defined guide lines on (a) reconstructed complete surface and (b) flattened 
surface. 

     

Figure 22: Quadrilateral grids of case 1. 
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Figure 23: Relaxed quadrilateral grids of case 1. 

 

 

Figure 24: Change of member length to the iterations for the quadrilateral grid. 

 

     

Figure 25: Triangular grids of case 1. 

     

Figure 26: Relaxed Triangular grids of case 1. 
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Figure 27: Variance of member length to the iterations for the triangular grid. 

 

Case 2 presented the results from 2 different initially defined guide lines in Fig.28 and the 
results are compared to those from case 1. The generated grids without any post process were 
shown as Fig. 29. The relaxed quadrilateral grids were shown in Fig. 30. The triangular grids 
were generated by connecting diagonals of each quadrilateral cell and are shown in Fig. 
31while the relaxed triangular grids were shown in Fig. 32. 

       

Figure 28: Case 2: initially sketched guide lines on (a) reconstructed complete surface and (b) 

flattened surface. 

 

          

Figure 29: Quadrilateral grids of case 2. 
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Figure 30: Relaxed quadrilateral grids of case 2. 

            

Figure 31: Triangular grids of case 2. 

 

            

Figure 32: Relaxed Triangular grids of case 2. 

 

Case 3 is the third example with the intersection of initially defined guidelines on the left 
side of the circle (Fig.33). The results were shown as Fig. 34 – 37. The guide lines to generate 
the quadrilateral girds without any post process were shown as Fig. 34. The relaxed 
quadrilateral grids were shown in Fig. 35. The triangular grids by connecting diagonals in 
each quadrilateral grid cell were shown in Fig. 36 while the relaxed triangular grid pattern 
was shown in Fig. 37. 

         

Figure 33: Case 3: initially sketched guide lines on (a) reconstructed complete surface and (b) 
flattened surface. 
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Figure 34: Quadrilateral grids of case 3. 

 

        

Figure 35: Relaxed quadrilateral grids of case 3. 

       

Figure 36: Triangular grids of case 3. 

 

       

Figure 37: Relaxed triangular grids of case 3. 

 

It is also shown in these 3 cases that by defining different guide lines on the surface, 
various solutions can be obtained. The initially defined guide lines can therefore set the tone 
of the grid and reveals the intent of the designer.  
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7 SOFTWARE DEVELOPMENT 

The grid generation and the spring-mass method was programmed into software ‘ZD-
Mesher’[13], specifically developed by the authors for the purpose of free-form grid 
generation. The software was developed for a Microsoft Windows operating system with C++. 
The GUI framework was based on MFC (Microsoft Foundation Classes). A screen shot of the 
GUI is shown in Fig. 38. 

 

Figure 38: GUI of the ZD-Mesher software 

 

Apart from implementing the algorithms for grid generation, the software provides 
essential visualization and data exchange functions. It also provides commands assisting with 
sketching a curve on the surface, dividing a curve into segments by number or by length and 
merging several curve sections into a single curve for further operations. The software is also 
able to exchange data with other commercial software packages as part of an integrated 
design process. Data formats such as IGES, STEP, BREP, and STL are supported. As a result, 
the software can communicate with almost any industrial CAD/CAM product. In addition, the 
software can export the geometric data to commercially available structural analysis packages 
such as ANSYS [27], ABAQUS [28] and SAP2000 [29].  

8 CONCLUSIONS 

A grid generation and relaxation technique on free-form surface with complex boundary 
for grid shell structure design is put forward, based on the surface flattening technique and the 
improved guide line method. The parametric domain of the complete NURBS surface was 
firstly divided into a number of parts and a discrete free-form surface was formed by mapping 
dividing points onto surface. The free-form surface was then flattened based on the principle 
of identical area. Accordingly, the flattened rectangular lattices were fitted into the 2D surface 
where grids were formed by employing the guide line method. Subsequently, the intersections 
of guide lines and the complex boundary were obtained then the guide lines were therefore 
divided equally to obtain grids by connecting dividing points while the grids outside the 
design domain were deleted. Finally, the 2D grids were mapped onto the 3D surface to 
achieve the grid on free-form surface with complex boundary for design use. A spring-mass 
method was also employed to further improve the smoothness of the resulted grids. The grids 
generated by this method on the complex surface not only met the requirements of regular 
shape and fluent lines, embodied the trends of grids and the connotation of architecture, but 
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also had high quality of grids around the inner boundary. The method was programmed and 
added into software developed by the team of authors in order to facilitate the grid generation 
process. 
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