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Abstract

The use of bending as self forming process allows the realization of shape-resistant

systems, such as grid shell structures. Here, a numerical method for optimisation

of the cross-section of actively bent structures is introduced. For a given load dis-

tribution, the optimisation objective consists of normalizing the bending stresses

to a given value on the entire structure. In addition, strength and geometric com-

patibility constraints are taken into account. The method is demonstrated by

numerical examples. Further, in order to handle the large displacements involved,

a co-rotational Finite Element formulation is adopted and modified to take into

account the changes in stiffness that occur in the forming process of active bending

systems. The modified co-rotational formulation is solved for static equilibrium

using a Dynamic Relaxation scheme, and is tested against the analytical solutions

of some preliminary test cases, as well as experimental results, and shown to be

‘accurate’.

Keywords: Active Bending, Grid Shell, Structural Optimisation, Co-rotational

Formulation, Dynamic Relaxation, Timber Structures

1. Introduction

The term ‘Active Bending’ defines a category of structural systems in which

bending is used as a self-forming process [1]. For instance, the realization of grid
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shell systems obtained by assembling an initially flat mat made of continuous elastic

rods (e.g fibre reinforced polymers [2] or timber [3, 4, 5, 6, 7, 8]) and successive5

forming by means of adjustable scaffolding or temporary crane-cable systems. Shell

systems derive their strength and stiffness from their inherent doubly curved shape,

allowing them to work mainly in membrane action under the effect of external

loads. Nevertheless, a certain amount of out-of-plane stiffness is required to resist

inextentional deformations [9].10

The double-layer technique, first adopted in the design of the Mannheim timber

grid shell for the Garden Festival [3] allows tighter curvatures to be obtained com-

pared to a single-layer mat made from rods with equivalent cross-sectional area.

Once the forming process is complete, sliding between overlapping laths is con-

strained by inserting shear blocks in between the laths making up the single rib15

(see Figure 1) thus enhancing the out-of-plane bending stiffness of the equivalent

continuous shell.

The shape of such (actively bent) grid shell systems can be modelled by per-

forming a preliminary simulation of the forming process by means of non-linear

finite element procedures. Thus the resulting geometry can then be used as a basis20

for further structural analyses. Nevertheless, the effect of residual pre-stress forces

on the overall structural behaviour, as well as the change in stiffness due to the

presence of shear blocks, needs to be taken into account when assessing the actual

load-carrying capacity of the structure.

A comprehensive numerical procedure is introduced here to solve the initial form25

finding phase, the construction process simulation and successive load calculations

of such actively bent grid shell systems. A modified co-rotational beam element

with six degrees of freedom (DoF), in conjunction with the Dynamic Relaxation

method (DR), allows the change in stiffness of the post-formed mat to be taken into

account whilst, maintaining the resulting equilibrium configuration of the double-30

layer mat with sliding connections. Consequently, an optimisation method for

deriving the double-layer cross-section is proposed. For a given load configuration,

the iterative method allows the bending stress ratios to be ‘consolidated’, resulting

in a grid shell geometry with members having variable cross-section. Practical

issues, rising from the fact of having a different cross-section for each member, can35

be handled by post-rationalizing members into groups, or providing fabrication’s

methods that allow to ‘accurately’ reproduce the linear variation of each member’s
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profile. Further discussion about this will be addressed in the conclusions with a

prospective from the structural point of view.

Figure 1: Savill Garden grid shell, Windsor, UK 2006 [10]: (a) Internal view; (b) Detail of the

shear block connection. (Photos courtesy - Richard Harris)

2. Preliminary Theory40

2.1. Co-rotational formulation

In order to handle the large displacements and rotations involved in the form

finding process of actively bent structures, a co-rotational formulation [11, 12] for

a three-dimensional beam element is adopted. Unlike the Total Lagrangian and
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Updated Lagrangian formulations [13], in the co-rotational approach the motion of45

the element is treated as a result of a rigid motion plus a deformation.

Assuming a geometry represented by a discrete set of nodes P with coordinate

p̄i with arbitrary initial position in the Cartesian coordinate system:

P = {p̄1 . . . p̄i . . . p̄m◦} ; p̄i = [x y z] (1)

and a connectivity list E storing the nodes’ indices of the element ends (1, 2):

E = {e1 . . . ej . . . en◦} ; ej = {i1, i2} (2)

the rigid motion of the j th element is determined by an auxiliary vector p̄j con-50

necting the element end nodes (p̄i1 , p̄i2). Then, assuming a ‘right-handed’ local

reference frame {x̄i, ȳi, z̄i} for the generic i node, the element deformation (local

rotational and axial displacements) is determined by computing the local frame

orientation of end nodes with respect to the element vector position p̄.

Figure 2: Co-rotational formulation for a three-dimensional beam element: (a) Rotations around

the local ȳ axes; (b) Rotations around the local x̄ axes; (c) Angle of twist; (d) Axial shorten-

ing/elongation; The dashed line represents the element’s cubic shape function.

With reference to Figure 2, the local rotations of the ēj element around the55

local (x̄i and ȳi) axes at its start node i1 are θx,1 and θy,1, while θx,2 and θy,2 are

the rotations around (the local frame) at its i2 end node. Whereas, ϕ is the angle of

twist while e is the axial shortening/elongation. The local shear displacements are

not explicitly set out because of the reference axes choice (at a nodal level instead

of element level).60
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From the element’s local rotations and displacements, the corresponding ele-

ment’s ends reactions can be obtained by differentiating the beam’s expression of

total strain energy U [14] thus obtaining the bending momentsMx,1, My,1, Mx,2 and

My,2, the torsion moment Mϕ and the axial force N . Again, the local shear forces

are missing due to the reference axes choice. Such an element’s local reactions are65

a function of its material and geometric stiffness i.e.: the second moments of area

(Ix and Iy), torsional constant (J), cross-sectional area (A), element’s unstressed

length (L0), Young’s and shear moduli (E and G):

N =
EA

L0
e ; Mϕ =

GJ

L0
ϕ (3)

Mx,1 =
NL0

30
(4θx,1 − θx,2) +

2EIx
L0

(2θx,1 + θx,2) (4)

70

Mx,2 =
NL0

30
(4θx,2 − θx,1) +

2EIx
L0

(2θx,2 + θx,1) (5)

My,1 =
NL0

30
(4θy,1 − θy,2) +

2EIy
L0

(2θy,1 + θy,2) (6)

My,2 =
NL0

30
(4θy,2 − θy,1) +

2EIy
L0

(2θy,2 + θy,1) (7)

The element’s bowing effect is taken into account by the appearance of the axial

force term N in the equations of moment (4 - 7). The local element’s end scalar

reactions so found are then transformed into global vector reactions forces by im-75

posing static equilibrium to the element [15] or assuming equivalence of strain

energy [16] thus obtaining the global shear force vector components (missing at

a local reference frame level). With the global element’s end reactions so found,

an out-of-balance force R̄i and out-of-balance moment H̄i can be calculated for

the generic ith node as vector summation of global reactions of the elements sur-80

rounding the node, plus external applied forces (and moments). Accordingly, the

equilibrium geometry (nodes position and local frame orientations) such that the

residuals R̄i and H̄i are null, can be found by implementation of a explicit resolution

method such as Dynamic Relaxation (DR). The resolution of co-rotational beam-

element formulation by DR method was first developed by Williams (as reported85

by Adriaenssens [14]).
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2.1.1. The Dynamic Relaxation

The DR method, firstly proposed by Day [17] and Otter [18], is a fictitious time-

stepping scheme, where the positions of nodes representing a structural system are

obtained by iterative numerical integration of Newton’s second law of motion until90

the entire system reaches static equilibrium by the application of a viscous or kinetic

[19] damping term. For a given structural system, the finding of the equilibrium

geometry such that the residual forces and moments (R̄i and H̄i) are null, can

be pursued by implicit Finite Element analysis procedures (e.g. the well known

Newton-Raphson method). However, an explicit Finite Element approach (such95

as DR in conjunction with the co-rotational formulation) allows the solution to

converge independently of the magnitude of the initial deformed state, and thus is

more suitable for form finding analyses involving large displacements. Moreover,

since the DR operates at a vector level, it does not require the assembly and

manipulation of a global stiffness matrix, hence it is relatively easy to implement100

and suitable for parallel computing [20]. In order to increase numerical stability and

the size of the time step, a 4th order Runge-Kutta method (RK4) [21] is adopted

for the numerical integration of the translational and rotational acceleration terms,

thus briefly described as follow:

Assuming, for the ith node, the vector position p̄i as given in the second of Eqs.105

(1) and the corresponding acceleration and velocity terms (respectively āi and v̄i)

as:

āi = [ẍ ÿ z̈] ; v̄i = [ẋ ẏ ż] (8)

the node’s velocity at the time (t + ∆t) is computed from the acceleration and

velocity terms at time t:

k̄1 = āti =
1

mi
R̄t

i

k̄2 = āti +
∆t

2
k̄1

k̄3 = āti +
∆t

2
k̄2

k̄4 = āti + ∆tk̄3

v̄t+∆t
i = cv̄ti +

∆t

6

(
k̄1 + 2k̄2 + 2k̄3 + k̄4

)
(9)

with m = ‘fictitious’ lumped nodal mass and c = viscous damping factor ∈ [0, 1].110
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Accordingly, by assuming this time:

k̄1 = v̄t+∆t
i

k̄2 = v̄t+∆t
i +

∆t

2
k̄1

k̄3 = v̄t+∆t
i +

∆t

2
k̄2

k̄4 = v̄t+∆t
i + ∆tk̄3

(10)

the updated vector position at time (t+ ∆t) is given by:

p̄t+∆t
i = p̄ti +

∆t

6

(
k̄1 + 2k̄2 + 2k̄3 + k̄4

)
(11)

In the same way, indicating for the ith node, the pseudo vectors of angular accel-

eration and angular velocity as:

āi = [ϑ̈x ϑ̈y ϑ̈z] ; v̄i = [ϑ̇x ϑ̇y ϑ̇z] (12)

the pseudo vector of rotations ϑ̄i (to not be confused with the element’s local115

rotations) is:

ϑ̄i = [ϑx ϑy ϑz] (13)

Such pseudo vector contains the rotation angles of the local frame {x̄i, ȳi, z̄i} around

the global directions x, y and z, and can be computed by applying again Eqs. (9)

and (10) but substituting (in the first of Eqs. (9)) the nodal out of balance force

R̄i with the out-of-balance moment H̄i and the fictitious lumped mass m with the120

fictitious lumped moment of inertia (rotational mass) therefore obtaining:

ϑ̄t+∆t
i =

∆t

6

(
k̄1 + 2k̄2 + 2k̄3 + k̄4

)
(14)

The rotation angles ϑx, ϑy and ϑz obtained by Eq. (14) are non-additive (and

non-commutative) quantities, hence they cannot be updated in the same way as

for the translational displacements, which is why the recurrence Eq. (11) provides

an ‘absolute’ coordinate value, whilst Eq. (14) only provides an ‘increments’ of125

rotations (of the local ith frame) around the global directions. The local frame

orientation {x̄i, ȳi, z̄i}t is then updated to {x̄i, ȳi, z̄i}t+∆t by pre-multiplying each

unit vector with a rotation matrix, which is only as function of the previously found

pseudo vector ϑ̄t+∆t
i as described in [15].
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Figure 3: Built-up cross-section.

2.2. Modelling double-layer systems130

The double layer technique allows tighter curvatures to be obtained compared

to a single layer mat made of laths with equivalent cross-sectional area. Once the

forming process is complete, sliding between overlapping laths is constrained (thus,

enhancing the bending stiffness of the built-up rib) by inserting timber shear blocks

in between the laths making up the single rib. Accordingly, in order to perform135

load analyses continuously during the forming (construction) process, the change in

bending stiffness due to the presence of shear blocks needs to be taken into account.

For a built-up member subject to bending due to external loads, the slip between

overlapped laths leads to a discontinuity of strains at the interface, resulting in a

difference in curvature of the individual laths. Consequently, a ‘correct’ numerical140

model should consider a single element for each overlapping lath in order to fully

model the mechanical behaviour of the composite member. ‘An alternative, slightly

less accurate method’ [22] assumes compatibility in the displacements and curva-

tures at the interface of overlapped laths, by considering the fasteners of the shear

block connections as a series of linear springs having shear stiffness (K), therefore145

modelling the built-up member as a single element assuming an ‘equivalent’ EI

value as a function of the shear stiffness of the spring.

Since during the forming process, sliding between overlapping laths is allowed,

the values of cross-sectional area and second moment of area, used for the co-

rotational beam-model, are twice that of the corresponding single lath value (see150

Figure 3):

I∗x = bh3/6 (15)

Then, for a load analysis, the increase of bending stiffness due to presence of shear

blocks needs to be taken into account. Assuming an infinitely rigid connection
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between laths and shear blocks (absence of slip at the interfaces), the resulting

second moment of area around the local x̄ axis is:155

I∗∗x =
b(2h+ hs)

3

12
− bh3

s

12
(16)

On the other hand, assuming the contribution to stiffness given by shear blocks

as null, the resulting second moment of area is obviously that given by Eq. (15).

Therefore, by considering that:

I∗∗x =
b(2h+ hs)

3

12
− bh3

s

12
=
b

6
(4h3 + 6h2hs + 3hh2

s) =

=
4

6
bh3 +

b

6
(6h2hs + 3hh2

s) =
1

6
bh3 +

3

6
bh3 +

b

6
(6h2hs + 3hh2

s) =

=
bh3

6
+

(
h2

2
+
h2
s

2
+ hhs

)
bh

(17)

a general equation can be arranged:

Ix = cs
(h+ hs)

2

2
bh+

bh3

6
; cs ∈ [0, 1] (18)

where, cs is set to zero to simulate the forming process, while a value > 0 is set for160

load analyses in order to take into account the increase in bending stiffness due to

the presence of shear blocks. The connection efficiency factor cs of Eq. (18) will be

a function of the elastic modulus, cross-sectional area (A = bh), rod’s length (L),

horizontal shear spring stiffness (K) and springs (fastener) spacing (s):

cs = f(E, b, h, L,K, s) (19)

Where: for K ≈ ∞ (e.g. glued connection) then cs = 1 while, for K = 0 (e.g.165

no shear blocks) ⇒ cs = 0. For instance, according to Eq. B.5 in Annex B of

Eurocode 5 (EC5) [23]:

cs =
[
1 + π2EAs/(KL2)

]−1
(20)

Noting that EC5 Eq. (20) is based on the assumption that the element is pin

jointed at its ends.
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2.3. Modified force-displacement relations170

Setting up the numerical model by assuming an equivalent EI, it can be stated

that for preliminary numerical simulations of the forming process, a value cs = 0

is applied, while for successive load analyses, a cs > 0 is applied (obtained e.g. by

Eq. (20)) in order to take into account the increase in bending stiffness due to the

presence of shear blocks.175

Nevertheless, when setting the updated second moment of area to perform the

successive (load) analysis, the change in stiffness generates unbalance forces. In

other words, the system searches for the equilibrium configuration that would have

resulted by forming the double-layer mat with shear blocks in place at the flat

configuration. In order to maintain the equilibrium of the stress field obtained180

when the forming process is complete (with Ics=0
x ) the corresponding element end

reactions Mx,1, Mx,2 as from Eqs. (4 - 5) must maintain the equilibrium values

(M eq.
x,1, M eq.

x,2) regardless of the new Ics>0
x value. Therefore, the angular rotations

θeq.x,1 and θeq.x,2 need to be multiplied by a reduction factor corresponding to the ratio

(Ics=0
x /Ics>0

x ) [15].185

The difference between the local rotation angles at form finding equilibrium θeq.x

and the reduced values are:

θeq.x,1

(
1− Ics=0

x

Ics>0
x

)
; θeq.x,2

(
1− Ics=0

x

Ics>0
x

)
(21)

From a physical point of view, such differences can be conceived as the element’s

unstressed local rotations that would result if the bent rods were re straightened

leaving the shear blocks inserted. It is easy to imagine that in doing such an op-190

eration, the double layer mat would not recover the flat configuration anymore.

In addition, the reduction of pre-stress forces due to material (e.g. wood) relax-

ation can be modelled by introducing a reduction factor cR ∈ [0, 1] such that the

unstressed local rotation angles become:

θeq.x,1

(
1− Ics=0

x

Ics>0
x

cR

)
; (1− cR)θeq.y,1

θeq.x,2

(
1− Ics=0

x

Ics>0
x

cR

)
; (1− cR)θeq.y,2

(22)

Accordingly, by subtracting at each time increment the unstressed local rotation an-195

gles (Eqs. (22)) from the current element’s local rotations, the force-displacements
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Eqs. (4 - 7) become:

Mx,1 =
NL0

30
(4θx,1 − θx,2)+

+
2EIcs>0

x

L0

{
2

[
θx,1 − θeq.x,1

(
1− Ics=0

x

Ics>0
x

cR

)]
+

[
θx,2 − θeq.x,2

(
1− Ics=0

x

Ics>0
x

cR

)]} (23)

Mx,2 =
NL0

30
(4θx,2 − θx,1)+

+
2EIcs>0

x

L0

{
2

[
θx,2 − θeq.x,2

(
1− Ics=0

x

Ics>0
x

cR

)]
+

[
θx,1 − θeq.x,1

(
1− Ics=0

x

Ics>0
x

cR

)]} (24)

200

My,1 =
NL0

30
(4θy,1 − θy,2)+

+
2EIy
L0

{
2
[
θy,1 − θeq.y,1 (1− cR)

]
+
[
θy,2 − θeq.y,2 (1− cR)

]} (25)

My,2 =
NL0

30
(4θy,2 − θy,1)+

+
2EIy
L0

{
2
[
θy,2 − θeq.y,2 (1− cR)

]
+
[
θy,1 − θeq.y,1 (1− cR)

]} (26)

Eqs. (23 - 26) will be used for load analyses performed as a continuity of the205

simulation of the forming process. From these, can be seen that:

• For cR = 0 ⇒ the local rotation angles at form finding equilibrium θeq.

correspond to the unstressed local rotations, or in simpler words, the geometry

at completion of the forming process is stress-free (material fully relaxed).

• For cR = 1 ⇒ the terms θeq.y,1 and θeq.y,2 in Eqs. (25 - 26) disappear, meaning210

that the bending pre-stress due to the forming process is fully present. Nev-

ertheless, a ‘non-null’ component of the unstressed local rotations (as from

Eqs. (21)) around the local x̄ axis is still present in Eqs. (23 - 24) as a result

of the shear blocks insertion.

Although limited to the linear-elastic case, the described formulation can be215

straightforwardly extended to simulate more realistic material’s behaviour such as
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non-linear elasticity and elastic-plastic behaviour [35, 36] (i.e. by introduction of

plastic hinges during the analysis). In fact, provided a stable mass/time-step ratio,

explicit methods are insensitive to discontinuities of the stress-strain relationship

(i.e. due to the material non-linearity) in converging to the numerical solution.220

2.3.1. Stress field

On the basis of the co-rotational beam element formulation given in subsection

2.1, the distribution of normal stress σ at the external fibres of the beam cross-

section along the element can be obtained from the curvature values κx and κy.

By deriving the Hermite cubic shape function p̄(t) with respect to the parameter225

t ∈ [0, 1] representing the relative position along the element, thus p̄(0) = p̄i1 and

p̄(1) = p̄i2 , the curvature functions κx(t) and κy(t) around the element local axes

are1 [14]:

κx(t) =
(6t− 2)θx,1 + (6t− 4)θx,2

|p̄|

κy(t) = − [(6t− 2)θy,1 + (6t− 4)θy,2]

|p̄|

(27)

where |p̄| is modulus of the auxiliary vector connecting the element’s end nodes (to

not be confused with the node’s vector position). As previously done for the load-230

displacement functions, by subtracting at each time increment the unstressed local

rotation angles from the current element’s local rotations, the curvature functions

(Eqs. (27)) become:

κx(t) =
1

|p̄|
{(6t− c) · [θx − (1− cR)θeq.

x ]}

κy(t) = − 1

|p̄|
{

(6t− c) ·
[
θy − (1− cR)θeq.

y

]} (28)

where:

t =

[
t

t

]
; c =

[
2

4

]
; θx =

[
θx,1

θx,2

]
; θy =

[
θy,1

θy,2

]
(29)

Noting that:235

For cR = 0 ⇒ the curvatures generated by the forming process correspond to

the unstressed curvature values (stress-free geometry).

1In [14] κx(t) and κy(t) are parametrized assuming t ∈ [−0.5,+0.5].
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For cR = 1 ⇒ Eqs. (27) and (28) give the same result (geometry fully pre-

stressed).

Figure 4: Built-up cross-section: Normal stress distribution (σx) for different values of the

connection efficiency factor (cs).

Accordingly, assuming the bending stress as:240

σ(t) = σx(t) + σy(t) (30)

the bending stress σy can be obtained from the second of Eqs. (28) as:

σy(t) =
bEκy(t)

2
(31)

while σx will be a function of κx(t) plus some other term due to the presence of

shear blocks. With reference to Figure 4:

σx(t) = σx,a + σx,b =
hEκx(t)

2
+
Ns(t)

bh
(32)

where Ns(t) is obtained from the following lever-arm relation:

Ns(t) =
Mx,b(t)

(h+ hs)
(33)

and Mx,b(t) computed considering only the contribution to EIx due to shear blocks245

(only the first term of Eq. (18)):

Mx,b(t) = EIx,bκx(t) ; Ix,b = cs
(h+ hs)

2

2
bh (34)

Since the moment contribution Mx,b(t) and stress contribution σx,b (both) due

to shear blocks only occur after the grid shell is formed (bent); for θx,1 = θeq.x,1

and θx,2 = θeq.x,2 ⇒ Mx,b(t) and σx,b must be null. Therefore κx(t) in Eq. (34) is
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calculated by setting cR = 0 in Eq. (28) regardless of the cR value used to compute250

the element reaction forces (Eqs. (23 - 26)) and the bending stress σx,a.

Accordingly:

Mx,b(t) = Ecsbh
(h+ hs)

2

2|p̄|
[(6t− c) · (θx − θeq.

x )] (35)

with t, c and θx as given in Eqs. (29). Substituting then Eq. (35) into Eq. (33)

and (32):

σx,b(t) = Ecs
(h+ hs)

2|p̄|
[(6t− c) · (θx − θeq.

x )] (36)

Hence, Eq. (32) becomes:255

σx(t) =
E

2|p̄|

{
(hcs + hscs + h)

[
(θx,1 − θeq.x,1)(6t− 2) + (θx,2 − θeq.x,2)(6t− 4)

]
+

+hcR

[
θeq.x,1(6t− 2) + θeq.x,2(6t− 4)

]}
(37)

2.3.2. Shear blocks strength ratios

In order to verify the shear block connections, the shear reaction force Ts gen-

erated by the blocks can be obtained as the finite difference of the variation of axial

force Ns(t):

Ts = Ns(t = 1)−Ns(t = 0) (38)

From Eqs. (33) and (35):260

Ts = Ecsbh
3(h+ hs)

|p̄|
(θx,1 − θeq.x,1 + θx,2 − θeq.x,2) (39)

Thus, the shear block strength along the beam-element is verified by making sure

that:
|Ts|
TmS

≤ 1 (40)

where S is the number of blocks per element and Tm the shear block connection

strength [23]. Accordingly, the strength verification for the shear block connections

is performed at an element level rather than at single shear block connection level.265
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3. An optimisation method for variable cross-section

Shell structures derive their capacity to resist inextensional deformations [24]

from their inherent shape-resistant geometry. In fact, a (mainly) membrane stress

field is formed as a response to external loading forces, thus allowing shells a with

very low thickness/span ratio to be realized. Accordingly, the shape of a shell270

may be conceived as the result of an optimisation procedure, consisting of finding

the funicular geometry for which the corresponding out-of-plane bending is null

[25, 26, 27, 28]. However, very small perturbations, such as support displacements,

load or geometric imperfections, greatly reduce the theoretical load-carrying ca-

pacity of the funicular structure [9]. Therefore, even optimal (funicular) shapes275

require a ‘certain amount’ of bending stiffness for buckling and stability issues.

Further, in current building design practice, the geometric definition of a shape-

resistant structure (e.g. grid shell) is driven by a variety of design requirements,

such as architectural, functional, thus resulting in shapes that differ widely from

the funicular configuration [29]. Accordingly, additional stiffness may be required280

to enhance the structural capacity of such non-funicular shapes.

Designing the out-of-plane bending stiffness of a grid shell structure by ‘adjust-

ing’ the thickness of its members, can be expected that for a given dominant load

combination (e.g. dead load), the stiffness demand will vary among the members.

Accordingly, a variable cross-sectional thickness can be sought for the entire system285

in order to meet the required load-carrying capacity while minimizing the amount

of material. On this basis, a local search optimisation method for actively bent

(double-layer) grid shells is introduced here. The method computes the optimal

variable shear block’s height hs such that the bending stress σ at the external

fibre of the cross-section is ‘normalized’ to a given fm value for the entire struc-290

ture. More precisely, the cross-sectional thickness is proportionally scaled (at each

step) according to the linearised field of bending stress ratios σ/fm resulting from

a non-linear analysis (DR) with initially constant cross-section. The linearisation

error decreases as the number of DR steps increases, up to a point for which, no

substantial improvement is appreciated, thus the procedure is stopped.295

Clearly, the lower the fm limit stress is assumed to be, the higher the bending

stiffness will result from the optimisation process. As a consequence, for struc-

tural systems working mainly in bending action (the simply supported beam as
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‘extreme’ case), an fm value close to the material limit strength will be chosen.

Conversely, for shape-resistant systems working mainly in compression, the choice300

of the ‘uniforming’ value (fm) will be mainly dictated by buckling.

3.1. Single-rod system

The method for cross-section optimization introduced here is suitable for the

resolution of single-rod systems. Then, an updated procedure for grid shell frame-

works, that takes into account additional geometric compatibility constrains, is305

illustrated in section 3.2.

Indicating the vector of design space h as:

h = {hs,1 . . . hs,j . . . hs,n◦} (41)

with hs,j the shear block’s thickness of the j th beam-element, and n◦ the total

number of elements of the system, the objective is to find the components of h

that minimize the deviation of combined bending stresses (at the beam’s external310

fibre) from the uniforming value (fm) and, at the same time, no stress ratio σ/fm

is higher than unity. Indicating with Σ the resultant of bending stress along the

element’s domain (from t = 0 to t = 1):

Σ = |Σx,a|+ |Σx,b|+ |Σy| (42)

The constrained optimisation problem can be formally stated as:

minimize : f(h) =

n◦∑
j=1

1

n◦

∣∣∣∣Σj

fm
− 1

∣∣∣∣ (43)

315

subject to :


Σj ≤ fm
Ts,j ≤ TmS
hs,j ≥ 0

(44)

The stress terms in Eq. (42) are so defined:

Σx,a =

∫ 1

0
σx,a(t)dt =

hE

2|p̄|

[
θx,1 − θx,2 − (θeq.x,1 − θ

eq.
x,2)(1− cR)

]
(45)

Σx,b =

∫ 1

0
σx,b(t)dt =

Ecs(h+ hs)

2|p̄|

(
θx,1 − θeq.x,1 − θx,2 + θeq.x,2

)
(46)
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Σy =

∫ 1

0
σy(t)dt = − bE

2|p̄|

[
θy,1 − θy,2 − (θeq.y,1 − θ

eq.
y,2)(1− cR)

]
(47)

Noting that: since t is a dimensionless parameter, Σx,a,Σx,b and Σy in Eqs. (45

- 47) are still stress quantities2 (e.g. N/mm2).320

The strength constraint in the second of Eqs. (44) is introduced to avoid concen-

trations of horizontal shear exceeding the strength limit value. The minimization

of Eq. (43) is performed by iteratively running a series of DR steps with updated

h list, until the chosen stopping criteria is satisfied.

Assuming a hns,j value for the j th element at the DRth step, the updated hn+1
s,j325

value to consider for the DRth+1 step is obtained by imposing the following equality:

|Σn
x,b| (h+ hns ) =

(
fm − |Σn

x,a| − |Σn
y |
) (
h+ hn+1

s

)
(48)

Hence, taking into account the optimisation constraints in Eqs. (44), an hn+1 list

is computed for the entire element set E as:

hn+1 =
{
dn1 . . . d

n
j . . . d

n
n◦
}

(49)

where:330

dj = max



[
|Σx,b| (h+ hs)

fm − |Σx,a| − |Σy|
− h
]
j(

hs
|Ts|
TmS

)
j

0

(50)

A flowchart of the described method is shown in Figure 5.

Figure 5: Flowchart of the method for cross-section optimisation.

2In fact:
∫ 1

0
σ(t)dt = σ(t = 0.5).
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3.2. Two-way grid shells

For three-dimensional systems, such as two-way grid shells (see Figure 1), con-

structional considerations mean that the thickness of the shear blocks needs to be

at least as thick as the single lath’s thickness (see Figure 6a). Accordingly, the335

third of Eqs. (44) becomes:

hs,j ≥ h (51)

consequently, the zero in the third of Eq. (50) is replaced with h. Additionally, the

thickness of the built-up cross-section of ribs in the two different directions need to

be equal at the nodal intersection (see Figure 6b). Such geometric compatibility

results in a further geometric constraint: Indicating with i the generic node index340

and u and v the two-way grid directions, then the following equality constraint is

added to Eqs. (44):

hus,i = hvs,i (52)

Noting that the superscripts u and v refer to the grid’s directions (Figure 6b)

while the superscript n (e.g in Eqs. (48 - 49)) refers to the thickness value at the

nth DR step. In order to solve the updated optimisation problem in an explicit345

way, the computing of hn+1 for a two-way grid shell system is performed (as before)

according to Eqs. (49 - 50) but, in order to assure geometric compatibility imposed

by Eq. (52), an additional operation is performed (at each DR step) on the hn+1

list resulting from Eq. (49).

Figure 6: Geometric compatibility of thicknesses: (a) hs ≥ h; (b) Shear block thicknesses at the

ith node as average of the surrounding elements (see Eqs. (53)).

3.2.1. Geometric compatibility350

The additional operation to perform on the hn+1 list (as from Eq. (49)) to

assure geometric compatibility, is described as follows: Firstly, an average hs,i
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value, for the ith node, is computed as a function of the shear blocks thickness of

the surrounding elements belonging to the u and v directions. With reference to

Figure 6b:355

hus,i =
hus,j−1 + hus,j+1

2
; hvs,i =

hvs,j−1 + hvs,j+1

2
(53)

Noting that the subscript i refers to the thickness hs interpolated at the ith node

while the subscript j refers to the (constant) thickness value hs of the jth element.

In other words, hs is assumed to vary ‘linearly’ along the element. Accordingly, for

each i node there will be two thickness values, each one interpolated according to

the grid direction (u, v). By taking, for the ith node, the maximum value:360

hmax
s,i = max

{
hus,i;h

v
s,i

}
(54)

and writing the linear (thickness) variation law along the j th element:

hus (t) = (hus,i2 − h
u
s,i1

)t+ hus,i1

hvs(t) = (hvs,i2 − h
v
s,i1

)t+ hvs,i1

; t ∈ [0, 1] (55)

the difference in values between hs as from the Eq. (49) and hs(t = 0.5) as from

Eqs. (55) is measured:

hus −
[
(hus,i2 − h

u
s,i1

)0.5 + hus,i1

]
hvs −

[
(hvs,i2 − h

v
s,i1

)0.5 + hvs,i1

] (56)

thus: the linear thickness variation law is updated this time by considering, for

each element’s end, the maximum value hmax
s,i as from Eq. (54). Accordingly, Eqs.365

(55) become:

hus (t) = (hmax
s,i2
− hmax

s,i1
)t+ hmax

s,i1

hvs(t) = (hmax
s,i2
− hmax

s,i1
)t+ hmax

s,i1

(57)

The new ‘constant’ h∗s value for the j th element is obtained by setting t = 0.5

in Eqs. (57) and adding them up to the quantities in (56) hence, obtaining the

following general equation:

h∗s = hs +
1

2

(
hmax
s,i2 − h

max
s,i1 − hs,i2 + hs,i1

)
+ hmax

s,i1 − hs,i1 (58)

in which hs is that obtained by Eq. (49). As it can be seen: for hs,i1 = hmax
s,i1

and370

hs,i2 = hmax
s,i2
⇒ h∗s and hs are equal, therefore, the consistency between ‘constant’

and ‘linear’ models, of thickness along the element, is held.
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It is important here to note that: an average value between hus,i and hvs,i in

replacement of hmax
s,i in Eq. (54), would allow for a greater minimization of the

objective function as stated in Eq. (43). Nevertheless, by considering hmax
s,i makes375

it possible to fulfil the strength (optimisation) constraint stated in the first of Eqs.

(44) according to which, no bending stress ratios higher than unity must occur. For

single-rod systems (Subsection 3.1) such strength constraint is ‘implicitly’ fulfilled

by Eqs. (50).

The accuracy of the co-rotational finite element theory, is tested by comparison380

with analytical and experimental results (Section 4) while Section 5 reports two

examples on the application of the optimization method described above.

Figure 7: Shallow arch subjected to a nodal load P applied at the mid-span: The bold line

represents the asymmetric buckled shape.

4. Preliminary Calculations

4.1. Elastic buckling of shallow arches

The described modified co-rotational formulation is firstly tested by computing385

the elastic buckling loads of a shallow arch subjected to an applied nodal load P

at the mid-span (see Figure 7). The arch geometry is obtained by pre-bending

a straight elastic rod. The rod’s length (L) is 320 mm, with an axial stiffness

EA = 5 MN and bending stiffness EI = 10 Nm2. A preliminary DR analysis was

performed to generate the pre-bent configuration, thus obtaining an arch with rise390

H = 20.6 mm and a span of circa 316.5 mm.

Two sets of analyses are carried out:

• Pre-stressed configuration: (cR = 1).

• Stress-free configuration: (cR = 0).

For each set of analyses, a displacement controlled technique is adopted, by395

imposing a vertical displacement increment of 0.1 mm to the mid-span node, and
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allowing the DR routine to reach the corresponding equilibrium configuration, after

which, the corresponding vertical reaction force at the midspan node (R = −P ) is

recorded and a further displacement increment is set.

Figure 8: Bifurcation paths for different imperfection’s amplitudes of the pre-stressed arch

(cR = 1).

The DR stopping criteria for equilibrium convergence (for all the analyses de-400

scribed in this paper) was set to: max|R̄i| ≤ 0.001 N, with R̄i the out-of-balance

force at the ith node. Further, for each set of analyses, a load imperfection is

introduced by offsetting the point load a certain distance (d) towards the right of

the arch centreline. Such load imperfection is numerically simulated by applying

the imposed vertical displacement at the centreline node but adding an applied405

torque to it as well. The torque’s magnitude is set according to the length of the

lever arm (d) and updated at each DR increment of time (t+ ∆t) as a function of

the reaction force (R = −P ) recorded at time t.

The bifurcation paths for different amplitudes of imperfection of the pre-stressed

configuration (cR = 1) are reported in Figure 8. Accordingly, for each analysis,410

the maximum recorded P value is assumed to be the elastic buckling load value as

reported in Figure 9, where a comparison with the corresponding analytical solution

is made. The analytical elastic buckling load of pre-stressed and stress-free shallow
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Figure 9: Comparisons of analytical and numerical buckling loads for different imperfection’s

amplitudes of the pre-stressed and stress-free arch.

arches is given by [30]:

Pre-stressed arch

P c
imp. =

(
3

2

π4EIH

L3

)[
1− 3.22

(
d

L

) 2
3

]
(59)

415

Stress-free arch

P c
imp. =

(
2
π4EIH

L3

)[
1− 2.92

(
d

L

) 2
3

]
(60)

As expected, the numerical buckling load decreases, together with the analytical

load, as the imperfection d is increased (see Figure 9). The numerical values are

consistently lower than the analytical values, with a maximum deviation, for d =

0.0625 mm, of circa -3.8% (-47.5 N) for the stress-free arch (and an absolute vertical

displacement of 3.1 mm at the buckling point). A max. deviation of -3.8% (-420

34.9 N) is found for the pre-stressed arch as well, with a vertical displacement of

2.5 mm at the buckling point. Such discrepancy may be due to the inextentional

theory adopted for the derivation of the analytical formulae [30] leading to buckling

load values of shallow arches with infinite axial stiffness. At the buckling point
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(for d = 0.0625 mm) both pre-stressed and stress-free arches were around 0.076%425

shorter (-0.24 mm). Such (apparently negligible) shortening is consistent with the

discrepancy between numerical and analytical buckling loads. In fact, according to

Timoshenko and Gere [31], the influence of axial deformation greatly reduces the

buckling load, as the rise/span ratio of the arch is reduced as well.

Figure 10: Simply supported beam: comparison of numerical and analytical outputs of deflection

at the midspan as a function of the spring (fastener) stiffness (K).

4.2. Double-layer simply supported beam430

In the following example, a double-layer simply supported beam is loaded with

a uniformly distributed load W of 50 N/m. The beam’s length (L) is 10 m and an

elastic modulus E of 10 kN/mm2 is chosen, while a cross-section with b = h = hs =

50 mm is set. Further, a spring (fastener) spacing s = 100 mm is considered (see

Eq. (19)). On this basis, the beam’s deflection at the midspan (δ) is analytically435

computed according to the following equation [3]:

δ =
WL4

26

12
b4E

{
5

384
+

3

8θ

[
1 +

2

θ

(
1

cosh
√
θ
− 1

)]}
; θ =

26KL2

4sb2E (61)

for different values of the shear stiffness of the springs (K) varying from 0.1 to

105 N/mm. In order to numerically compute the beam’s deflection, the connection

efficiency factor is derived by applying the EC5 Eq. (20) according to which:
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for K = 0.1 ⇒ cs = 0.0004 while for K = 105 ⇒ cs = 0.997. The analytical440

and numerical outputs of the midspan deflection are compared in Figure 10 as a

function of the spring stiffness (reported on a logarithmic scale with base 10): As

can be seen, for 1 < K < 1000 (0.0039 < cs < 0.8) the numerical model shows a

much lower bending stiffness compared to the analytical one. This is due to the

EC5 function in Eq. (20), which provides conservative values for the connection445

efficiency factor cs.

Figure 11: Experimental test: (a) Styrene lath; (b) Pre-stressed single-layer arch; (c) Symmetric

buckling of the pre-stressed single-layer arch; (d) Pre-stressed double-layer arch; (e) Failure of

pre-stressed double-layer arch.

4.3. Double-layer pre-stressed arch

To further assess the effectiveness of the the modified co-rotational formula-

tion for double-layer members (assuming an equivalent EI), the load-deflection

curves of a single and double-layer pre-stressed arch, subjected to point load P450

at the midspan, are evaluated by experimental physical test and compared to

the corresponding numerical values. The initially straight lath (see Figure 11) is

made from Styrene (polymer) with a length L = 320 mm, cross-section b × h =
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3.97 mm × 1.48 mm and Young’s modulus E = 2140 N/mm2, which was assessed

by a preliminary tension test carried out according to EN ISO 527-1 [32]. The455

resulting arches have a span of 280 mm. Pinned restrains are provided at ends of

the arches, thus allowing only rotational degrees of freedom.

4.3.1. Experimental set-up

A first physical test is carried out on the single Elastica arch (Figures 11b and

11c) thus, assuming the recorded experimental load P as halved the load that460

would result from a double-layer pre-stressed arch without shear blocks. A second

test is then conducted on the double-layer arch (Figures 11d; 11e) in which, the

built-up cross-section is obtained by welding (with Dichloromethane) 32 evenly

spaced shear blocks (hs = h = 1.48 mm) on the pre-bent single arch, then, with

the lower (pre-bent) lath in place, the upper lath is bent and welded on the shear465

blocks as well. Since the end restraints are aligned with the cross-section of the

lower lath, the resulting experimental set-up does not perfectly match with the

numerical model (where the end restraints are aligned with the barycenter of the

double-layer cross-section). Nevertheless, the described set-up faithfully resembles

the construction method of a real (actively bent) arch.470

Lateral and asymmetric buckling are prevented by positioning vertical supports

sideways, along the arch centreline, therefore, the displacements are recorded on

a metric scale positioned perpendicular to the arch. The load is incrementally

applied by placing nails (weighing 2.18 g each) into a basket hanging underneath

the structure and tied to the arch midspan by means of wire.475

4.3.2. Comparison of results

Unlike physical tests, a displacement controlled technique (displacement incre-

ment = 2.5 mm) was adopted to numerically trace the load-displacement curves

of the double-layer arches over the buckling point. In order to assess the effect of

pre-stress forces, two analyses were performed for each shear block configuration,480

a total of four numerical analyses:

• K = 0 (cs = 0) ; Stress-free arch (cR = 0).

• K = 0 (cs = 0) ; Pre-stressed arch (cR = 1).

• K =∞ (cs = 1) ; Stress-free arch (cR = 0).
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• K =∞ (cs = 1) ; Pre-stressed arch (cR = 1).485

For a better comparison of results, both experimental and numerical curves have

been normalized according to the corresponding (numerical) elastic buckling loads

P c(cR = 0) and reported in Figure 12.

Figure 12: Comparison of experimental and numerical load-displacement curves: (a) Shear block

connection stiffness K = 0 (cs = 0); (b) Shear block connection stiffness K =∞ (cs = 1).

As can be seen, the numerical curves are in good agreement with those obtained

experimentally, with the exception of the last piece of experimental curve for the490

double layer arch (see Figure 12b) where, due to plastic failure of styrene (Figure

11e) the experimental load does not reach the elastic buckling value. As expected,

the effect of shear blocks massively increases the buckling load from 2.057 N to

26.440 N (over 1100%). Interestingly, in Figure 12a the negative effect of resid-

ual pre-stress on the buckling load is shown, which reduces of circa 14%, thus in495
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agreement with previous investigations [33]. Nevertheless, as already pointed out

[34], Figure 12b shows that the lowering effect of pre-stress forces on the buckling

load of double-layer arches, reduces with the increase of the shear blocks stiffness

K, up to K =∞ (cs = 1) at which point, pre-stress forces have a negligible effect

(the buckling load reduction is only 1.12%).500

5. Variable cross-section optimisation: Calculation

The theory introduced in Section 3 for an iterative optimisation of the double-

layer cross-section is applied to the resolution of a simply supported beam and

grid-shell structure.

Figure 13: Simply supported beam: (a) Static scheme; (b) Initial cross-section; (c) Optimized

cross-section for TmS = 40 kN; (d) Optimized cross-section for TmS = 20 kN.

5.1. Simply supported beam505

A 10 m long beam, subjected to a uniformly distributed load of 1 kN/m, is

selected for the first analysis test. The static scheme of the system is shown in

Figure 13a. The rectangular cross-section of the single lath is b = 80 mm and

h = 30 mm, while a constant shear blocks thickness hs = 90 mm is initially

assumed. The elastic modulus E is set to 10 kN/mm2.510

Since the numerical investigation is conducted on a straight beam, the value of

cR does not affect the solution and is thus neglected, while, a connection efficiency

factor cs = 1 and a stress limit value fm = 28 N/mm2 are assumed. The beam is

discretised into 32 elements of uniform length.

27



Figure 14: Simply supported beam: Optimisation’s history for two different values of the strength

constrain TmS. The objective function f(h) is computed according to Eq. (43).

The optimisation method was run twice, assuming shear strength limits TmS =515

40 kN and 20 kN respectively (see Figure 14). Both analyses were stopped when:

max{|hn+1
s,j −hns,j |} ≤ 2 mm. The initial and optimized beam profiles obtained with

TmS = 40 kN and TmS = 20 kN are shown in Figures 13c and 13d respectively,

while in Table 1 the stress ratio Σ/fm and the shear reaction Ts are reported

according to the element index (as reported in Figure 13a).520

As can be seen in the third and fourth columns of Table 1, the bending stress

ratios of the optimised beam are all unitary, with the exception of those in prox-

imity of the beam supports as a consequence of the geometric and shear strength

constraints (second and third of Eq. (44) respectively). As one would expect, in the

fifth column of the same table, it can be seen that the beam with constant cross-525

sectional height experiences a maximum horizontal shear reaction at the supports

(left node of element 1) which decreases linearly up to zero at the beam midspan

(right node of element 16). It is worth noting also that the reduced shear strength

parameter TmS = 20 kN, used to generate the values in the seventh column of

Table 1, resulted in a beam with thicker cross-section at its end supports, as shown530

in Figure 13d in comparison to the one obtained by TmS = 40 kN (Figure 13c).
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Table 1: Simply supported beam: Comparisons, between the initial and optimized cross-section,

in terms of bending stress ratios and shear reactions.

Cross-section: Constant Optimized Constant Optimized

fm [N/mm2] 28 28 28 28 28

TmS [kN] 40 20 40 20

Elem. indexa Bending stress ratio (Σ/fm) Shear reaction (Ts [kN])

1 0.120 0.562 0.218 12.0 37.4 20.0

2 0.336 0.991 0.685 11.3 25.1 20.0

3 0.538 0.999 0.998 10.5 16.9 17.3

4 0.725 0.999 1.001 9.7 12.7 12.7

5 0.898 0.999 1.000 9.0 9.9 9.9

6 1.058 0.999 1.000 8.2 7.9 7.9

7 1.202 0.999 1.000 7.4 6.4 6.4

8 1.333 1.000 1.000 6.7 5.2 5.2

9 1.450 1.000 1.000 5.9 4.3 4.3

10 1.552 1.000 1.000 5.1 3.5 3.5

11 1.640 1.000 1.000 4.4 2.8 2.8

12 1.713 1.000 1.000 3.6 2.2 2.2

13 1.771 1.000 1.000 2.8 1.7 1.7

14 1.816 1.000 1.000 2.0 1.2 1.2

15 1.845 1.000 1.000 1.2 0.7 0.7

16 1.860 1.000 1.000 0.4 0.2 0.2

aas shown in Figure 13.

5.2. Grid shell system

The optimisation method is further tested on a simple grid shell system obtained

by the preliminary bending of a flat mat geometry as shown in Figure 15. The initial

two-way mat is made out of straight elastic rods evenly spaced at a distance of 2 m.535

Then, an anti-gravitational load is applied at the central nodes, while the boundary

nodes at the mat’s corners are constrained to translate in the horizontal plane.

Then, in a second preliminary step, the rollers at the supports are substituted by

pinned restraints and the anti-gravitational load is removed, thus allowing the post

formed grid shell to settle in its final configuration. The resulting geometry has a540

size of 18.7 m × 18.7 m in plan and an elevation of 4.25 m (see Figure 15b).

On the equilibrium geometry so found, a connection efficiency factor cs = 1

and a cR factor = 0 (Stress-free geometry) are set.

A gravitational load of 2 kN per node is considered for the optimization process.
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Figure 15: Grid shell System: (a) Initial flat mat; (b) post formed shape.

The initial cross-sectional geometry (with constant hs) is set in accordance with545

the test described in Section 5.1 (see Figure 17a) as well as the Young’s modulus.

In addition, a shear modulus G = 700 N/mm2 and a fm value of 8 N/mm2 are

considered. As for the simply supported beam, the convergence criterion was set

according to: max{|hn+1
s,j − hns,j |} ≤ 2 mm.

As can be seen from Figure 16, after five DR steps, the average stress ratio f(h)550

of Eq. (43) does not experience any minimization but maintains a steady value of

circa 0.5. Nonetheless, the maximum bending stress ratio Σ/fm converges to unity,

dropping from 1.8 (at completion of the first DR step) to 1.03 (at completion of

the fifth DR step) therefore fulfilling the optimisation constraint stated in the first

of Eqs. (44). The optimized geometry is shown in Figure 17b.555

Figure 16: Grid shell System: Optimisation history in terms of maximum bending stress ratio

Σ/fm and average stress ratio f(h) as expressed in Eq. (43).
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6. Conclusions

In this paper, a method for optimisation of the cross-section of actively bent

structural systems is introduced. For a given load distribution, an optimal thickness

variation of the built-up members (represented by the vector of design space h)

is sought in order to homogenize the bending stress to a given value fm, thus560

allowing for optimal material distribution. Strength limit constraints are taken

into account in the optimisation problem, as well as ‘constructional’ constraints,

which are expressed in terms of geometric compatibility.

To model the effect of residual forces (due to the forming process) and change

in stiffness of actively bent members, a modified co-rotational beam-element for-565

mulation for handling large displacements, is developed and checked against the

analytical solutions of standard test cases, such as a simply supported beam and a

shallow arch, as well as small scale physical tests. The modified co-rotational for-

mulation is based upon assumption of an ‘equivalent’ EI for the modelling of the

built-up members. As pointed out in Subsection 2.2, such a ‘simplified’ approach570

does not takes into account the effect of shear flexibility, thus its applications should

be limited to relatively thin members.

In addition to the construction (bending) process simulation and structural

analysis, the design of actively bent structures provides a preliminary form find-

ing stage, in which the initial configuration may be far enough from equilibrium575

to be practically intractable with implicit Finite Element schemes using Newton-

Raphson solver (lack of numerical convergence). Accordingly, an explicit resolution

method (DR) is here adopted in conjunction with the Finite Element co-rotational

formulation. The material formulation was limited in here to the linear-elastic

case, nevertheless, it can be easily extended to take into account material’s non-580

linearities.

Although focus was only given in here on two-way grid shells with constant

member’s length, the described formulations can be applied to any kind of actively

bent structural system involving the use of initially straight or naturally curved

beams/rods, as for instance, geodesic rib shells [37, 38], interlaced space structures585

[39] or hybrid systems, such as tension structures with integrated actively bent

elements [40].

In section 5, the method’s efficiency in finding an optimal distribution of the
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member’s thickness is demonstrated on a single-rod structural system as well as a

grid shell framework, for which, a linear variation law hs(t) is adopted (see Eqs.590

(55, 57)) to allow the inclusion of constructional (geometric) constrains into the

optimization problem. As previously mentioned in the introduction, such linear

function, describing the thickness variation along the element, can be used to in-

form the fabrication process by providing a mass-customized ‘trapezoidal’ profile

(±hs(t)/2) for the shear blocks, to be fabricated e.g by CNC cutting machinery,595

thus allowing minimization of ‘gaps’ at the connection interface between shear block

and upper/lower lath. The gap’s reduction at the interfaces, rises the potentials for

realization of glued connections for the shear blocks, therefore providing a ‘mas-

sive’ increment of the out-of-plane bending stiffness (as shown in section 4.3.2) as

well as the vanishing of the lowering effect (due to pre-stress forces) on the elastic600

buckling load.
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Figure 17: Grid shell System: (a) Constant cross-section (hs = 90 mm); (b) Optimized cross-

section.
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