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Abstract  
Architects and structural engineers are increasingly embracing the use of optimization tools for use in 
the design of building structures. One tool is numerical layout optimization, which provides a powerful 
and highly efficient means of generating theoretically optimal lightweight structures. However, the 
layouts so obtained are often impractical due to their complex forms. In this paper, a means of generating 
families of more practical solutions for use as inspiration at the conceptual design stage is described. 
With layout optimization simpler solutions can be generated by running the optimizer with penalization 
parameters, e.g. to represent the cost of joints. Alternatively, a family of frame designs can be 
automatically generated by minimizing structural complexity indices (e.g. the total number of members, 
number of intersecting members at joints, etc) in a post-processing step. This is here shown to provide 
a pragmatic and computationally efficient means of identifying families of practical, near-optimal, truss 
designs. In the paper the aforementioned techniques are first briefly outlined; a Rhino-Grasshopper 
plugin tool incorporating the techniques is then used to generate families of 2D and 3D design concepts, 
which clearly indicate the promise of the methods involved. 
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1. Introduction 
Digital design tools have become popular in the design of modern spatial structures. A number of 
optimization software modules have also been developed to help engineers identify lightweight 
structures, sometimes using nature-inspired optimization methods (e.g. genetic algorithms). Since no 
mathematical derivations (e.g. gradient information) are required, these methods can work well in 
parametric modelling software. However, the lack of underlying mathematics also leads to 
computationally expensive processes with local optima identified in general [1]. For spatial structures, 
an alternative approach is numerical layout optimization, which provides a powerful and highly efficient 
means of generating lightweight truss structures [2,3]. Using this method, a linear programming (LP) 
problem is formulated, leading to very efficient optimization processes with global optimum solutions 
identified in general. In addition, geometry optimization can be performed in a post-processing step to 
generate textbook-like solutions by solving a sequence of nonlinear programming (NLP) problems, 
where the sizes of members and the positions of joints are simultaneously optimized [4]. 

The standard layout and geometry optimization formulations do not include structural complexity 
measures; therefore, driven by mathematical derivations, the process will normally identify optimal 
layouts which include complex features, e.g. joints. Thus although structurally efficient, these forms 
may be impractical to construct due to high associated fabrication costs. To address this, one option is 
to include additional constraints, e.g. to restrict the number of members via the use of mixed integer 
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linear programming (MILP) methods, as described in [5]. However, these can be computationally 
expensive to apply, rendering them unsuitable for use at the conceptual design stage. Alternatively, an 
incremental approach, involving several optimization phases, can be used to drive solutions towards 
more practical designs. Although this means that a global optimum is no longer guaranteed, various 
near-optimal solutions can be generated by utilizing a number of controlling parameters, creating a 
family of layouts which can be used as inspiration at the conceptual design stage. Structural complexity 
indices considered here include the number of members in the design as well as joint complexity.  

The methods described, including basic layout and geometry optimization methods, have been 
programmed in a Rhino-Grasshopper plugin, providing an interactive modelling environment designed 
to meet the needs of designers. 

The paper is organized as follows: firstly, the truss layout and geometry optimization formulations are 
outlined. Secondly, structural complexity indices are considered, and methods of including these in the 
formulation are outlined. Thirdly, the proposed optimization workflow is briefly discussed. Fourthly, a 
number of design examples are used to demonstrate the efficacy of the proposed methods. Finally, 
conclusions are drawn. 

 

2. Layout and geometry optimization 
Layout and geometry optimization involves a series of steps, as shown in figure 1 (see also [4]). 
Considering first layout optimization, the basic single load case formulation can be written as follows: 

min
𝒂𝒂,𝒒𝒒

𝑉𝑉 = 𝒍𝒍T𝒂𝒂, (1a) 

subject to: 

𝑩𝑩𝑩𝑩 = 𝒇𝒇, (1b) 

−𝜎𝜎0𝒂𝒂 ≤ 𝒒𝒒 ≤ 𝜎𝜎0𝒂𝒂, (1c) 

𝒂𝒂 ≥ 0, (1d) 

where, 𝑉𝑉 is the volume of the structure, 𝒍𝒍 = [𝑙𝑙1, 𝑙𝑙2, … 𝑙𝑙𝑚𝑚]T and 𝒂𝒂 = [𝑎𝑎1,𝑎𝑎2, …𝑎𝑎𝑚𝑚]T are vectors 
containing member lengths and areas, respectively, with 𝑚𝑚 denoting the number of members. 𝑩𝑩 is a 
3𝑛𝑛 × 𝑚𝑚 equilibrium matrix and  𝒇𝒇 = [𝑓𝑓1𝑥𝑥,𝑓𝑓1𝑦𝑦,𝑓𝑓1𝑧𝑧, …𝑓𝑓𝑛𝑛𝑛𝑛,𝑓𝑓𝑛𝑛𝑛𝑛,𝑓𝑓𝑛𝑛𝑛𝑛]T is a nodal force vector, with 𝑛𝑛 
denoting the number of nodes. Problem (1) is a LP problem, which means that solutions can be obtained 
efficiently. When large numbers of nodes are employed the layouts obtained using (1) will typically be 
quite complex in form, partly due to the use of a fixed nodal grid in the ‘ground structure’. To rationalize 
these layouts, nodal positions can be subsequently optimized, leading to a geometry optimization 
problem, figure 1(d), solvable via NLP. Whilst geometry optimization is capable of generating clear, 
textbook-like, solutions, it does not directly address the issue of structural complexity. 

 
                             (a)                               (b)                                (c)                                 (d) 

Figure 1: Steps in truss layout and geometry optimization: (a) design domain, load and support conditions 
specified; (b) nodes interconnected by potential members, forming a ‘ground structure’; (c) optimal layout 

identified by solving underlying layout optimization problem; (d) geometry optimization post-processing step. 
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3. Addressing structural complexity 
Two means of controlling structural complexity are considered here, with a view to increasing the 
practicality and buildability of the design solutions generated in the optimization process: (i) imposing 
limits on the total number of members, and (ii) controlling joint complexity (e.g. by limiting the number 
of members intersecting a joint). With a gradient-based optimization method, this necessitates 
introduction of additional mathematical terms, as new constraints and/or objective functions. Depending 
on the mathematical properties of these terms, the resulting formulation can be solved via LP or NLP.   

3.1. Joint cost within LP optimization formulation 
Joint costs can be introduced in the formulation by making a minor modification to problem (1). Using 
joint costs, the length vector in objective function (1a) is modified as follows (after [6]): 

min
𝒂𝒂,𝒒𝒒

𝑉𝑉 = (𝒍𝒍 + 2𝒔𝒔)T𝒂𝒂, (2) 

where 𝒔𝒔 is a predefined coefficient vector containing the cost value of members connected at joints. 

3.2. Post-processing via NLP optimization 
Alternatively, an NLP problem can be formulated to control structural complexity. Note that gradient-
based optimization methods, such as the interior point method [7], require smooth design variables in 
general. However, structural complexity measurements are normally expressed using non-smooth 
integer variables (e.g. the number of members). To address this, a smooth Heaviside projection 𝐻𝐻(𝑥𝑥) 
can be used to project a smooth design variable 𝑥𝑥 to discrete integers 0 or 1 [8]: 

𝐻𝐻(𝑥𝑥) = coth (𝜇𝜇)tanh (𝜇𝜇𝜇𝜇), (3) 

where, 𝜇𝜇 is a predefined projection factor. As shown in figure 2, variable 𝑥𝑥 is projected to 0 or 1, with  
𝜇𝜇 determining the width of the smooth transition zone. In this paper, 𝜇𝜇 increases gradually from 2 to 
20 to adaptively approximate integers 0 and 1. 

 
Figure 2. Heaviside projection 

Using Heaviside projection (3), the ‘existence’ of a member 𝑖𝑖 can now be expressed by its cross-section 
area 𝑎𝑎𝑖𝑖. Let 𝑎𝑎ref denote a reference member area, the following is satisfied: 

𝐻𝐻(𝑎𝑎𝑖𝑖/𝑎𝑎ref) ≈ �0, if 𝑎𝑎𝑖𝑖 ≪ 𝑎𝑎ref
1, otherwise . (4) 

This means that the total number of members can be minimized by replacing (1a) with: 

min
𝒂𝒂,𝒒𝒒

ΦM = ∑ 𝐻𝐻(𝑎𝑎𝑖𝑖/𝑎𝑎ref)𝑚𝑚
𝑖𝑖=1 , (5) 

where, ΦM is the structural complexity index regarding to the number of members. Similarly, the 
complexity function Φ𝑗𝑗 for the 𝑗𝑗th joint can be written as: 

Φ𝑗𝑗 = ∑ 𝐻𝐻(𝑎𝑎𝑗𝑗𝑗𝑗/𝑎𝑎ref)
𝑚𝑚𝑗𝑗
𝑖𝑖=1 , (6) 
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where, 𝑚𝑚𝑗𝑗 is the number of members connected, and 𝑎𝑎𝑗𝑗𝑗𝑗 is the area of the 𝑖𝑖th member at joint 𝑗𝑗. It is 
worth noting that, if Φ𝑗𝑗 is simultaneously reduced for all joints, the objective function becomes 2ΦM, 
since every member is connected by two joints. However, if only complex joints are considered, e.g. 
joints with more than 𝑛𝑛max connected members, the objective function can be written as: 

min
𝒂𝒂,𝒒𝒒

ΦJ = ∑ Φ𝑗𝑗𝑛𝑛�
𝑗𝑗=1 , (5) 

where, ΦJ is the joint complexity index, and 𝑛𝑛� is the number of joints that are considered ‘complex’, 
determined by 𝑛𝑛max (𝑛𝑛max = 4 in this paper). Note that when the original objective function is replaced 
with a function involving ΦM and/or ΦJ then it is necessary to define the acceptable tradeoff on structural 
efficiency by imposing a volume constraint:   

𝒍𝒍T𝒂𝒂 ≤  (1 + 𝜖𝜖)𝑉𝑉0, (6) 

where 𝜖𝜖 is the specified permitted volume increase ratio and 𝑉𝑉0 is the initial volume before taking 
structural complexity into account.  

4. Optimization workflow in an interactive Rhino-Grasshopper environment 
The proposed workflow involves several phases. In the first phase the LP problem (1) is solved, allowing 
identification of a near-optimal layout based on the initial ‘ground structure’. Joint costs can be included 
in the LP phase; due to the vast number of potential layouts that exist in the ‘ground structure’, inclusion 
of joint costs can lead to fundamentally different structural forms being generated.  

In the second phase, geometry optimization is used to rationalize the layouts generated via LP, whilst in 
structural complexity can be addressed in the third phase, where the aforementioned NLP simplification 
methods involving the use of ΦM and/or ΦJ are employed. 

The use of the Rhino-Grasshopper parametric modelling environment allows designers to adjust the 
design domain, load and support configurations and then inspect the generated solutions at the 
conceptual design stage. Since layout optimization is computationally efficient, near-optimum layouts 
for problems involving up to a few thousand joints can be generated in seconds. This also allows a range 
of joint costs to be considered in order to produce a range of candidate layouts. Generated solutions can 
then be sorted by volume and/or structural complexity. 

5. Design examples 
In an interactive design process, the proposed simplification methods are normally utilized together to 
deliver practical designs. Nevertheless, in the first example they are used independently to show their 
various effects. Other examples are then used to demonstrate the efficacy of the proposed simplification 
techniques. 

5.1 Simple MBB beam 
The Messerschmidt-Blkow-Blohm (MBB) beam is a classical example used in the structural topology 
optimization literature [9]. Here the design domain is discretized using a nodal grid comprising 21×11 
evenly distributed nodes. Layout and geometry optimization can be used to obtain the rationalized 
solution shown in figure 3(b). A key feature of the form identified is the fan-type structure radiating out 
from the loaded joint, which, despite being structurally efficient, is likely to be difficult to manufacture. 
To address this, the proposed simplification methods are used. With a range of controlling parameters, 
e.g. 𝑠𝑠 in (2) and 𝜖𝜖 in (6), various solutions are generated, as shown in figures 3(c) - (n) (with parameters 
in increasing order, from left to right).  
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(k) diff = 0.1% 

 
(l) diff = 0.4% 

 
(m) diff = 0.7% 

 
(n) diff = 0.9% 

Figure 3. MBB beam example: (a) problem specification; (b) reference solution obtained using layout and geometry 
optimization against which other solutions are compared; (c) - (f): using joint cost; (g) - (j): reducing number of 

members, ΦM; (k) - (n) by reducing the number of members per joint, ΦJ 

It can be observed that generated structures are successfully simplified. Using the joint cost and ΦM, 
simple layouts are reported when the control parameters are increased. On the other hand, with ΦJ the 
fan-type structure is simplified without significantly affecting the rest of the structural parts, even if a 
relatively large volume increase ratio 𝜖𝜖 is used. 

5.2 Problems involving UDL and Euler buckling 
To further demonstrate the effects of the methods described, consider another simple 2D problem, where 
a uniformly distributed load (UDL) is applied downwards at the base of the design domain, with pin and 
roller supports located at the two end points. In addition, Euler buckling is included in the geometry 
optimization phase to control the lengths of compression members [10]. Using the proposed 
simplification techniques various solutions are generated (figure 4). Although tensile bracing members 
between the arch and bottom chord are arranged differently, the structural forms generated are all quite 
similar. This is because, when the problem is relatively simple, gradient-based optimization methods are 
prone to move from different starting points towards the same local (or global) optimum.  

 
(a) diff = N/A (reference) 

 
(b) diff = 0.0% 

 
(c) diff = 0.7% 

 
(d) diff = 0.8% 

 
(e) diff = 0.9% 

 
(f) diff = 1.7% 

Figure 4. Various solutions generated in the 2D case under UDL (incl. Euler buckling) : (a) reference solution; 
(b) - (f), simplified solutions, with  parameters (i.e. 𝑠𝑠 and 𝜖𝜖) progressively increased 
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For more complex design cases, the generated layouts can vary significantly when input parameters are 
varied (e.g. specified joint cost). For example, consider the 3D roof design example shown in figure 5. 
The structure is loaded in two regions, as shown in Figure 5 (a). The solution without simplification, 
shown on figure 5 (b), comprises a curved cantilever structure connecting the loaded points via 
underslung trusses. Whilst the layout in figure 5 (c) resembles the same form, the solution in figure 5 
(e) does not have the supporting trusses, leading to a 31.5% increase of volume. 

 
(a) design domain 

 
(b) diff = N/A (reference) 

 
(c) diff = 5.6% 

 
(d) diff = 16.2% 

 
(e) diff = 31.5% 

Figure 5. Various solutions generated in the roof design example (incl. Euler buckling): (a) design domain; (b) 
reference solution obtained using layout & geometry optimization; (c) - (e): simplified solutions, with  

parameters (i.e. 𝑠𝑠 and 𝜖𝜖) progressively increased   

5.3 Complex design domain 
When the design domains are complex, relatively dense nodal grids are employed in layout optimization 
to ensure nodes are distributed everywhere. As a result, outcome structures are prone to be very complex. 
In this case, the proposed simplification techniques can be utilized to improve the practicality of the 
designs. As shown in figure 6 (a), a relatively complex design domain is used, discretized with 1431 
nodes (1/8 domain modelled due to symmetry). In the first phase, layout optimization is used to generate 
the initial solution, shown in figure 6 (b); this comprises a large number of members. Since Euler 
buckling is not incorporated in the standard layout optimization formulation, the generated structure can 
be resized to address this, leading to a 18.7% increase of volume. In the second phase, geometry 
optimization can be utilized to rationalize the layout, effectively reducing the volume difference to only 
1.46% by reducing the lengths of members in compression, figure 6 (c). In phase 3, the structural 
complexity is significantly reduced, figure 6 (d), with negligible increase of volume (1.50%).   
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(a) design domain 

 
(b) phase 1, diff = 0.0% (+18.7% after Euler buckling check) 

 
(c) phase 2, diff = 1.46% (incl. Euler buckling) 

 
(d) phase 3, diff = 1.50% (incl. Euler buckling) 

Figure 6. Optimization phases in a relatively complex design problem: (a) design domain; (b) phase 1, layout 
optimization; (c) phase 2, geometry optimization,  (d) phase 3, simplification using  ΦM and  ΦJ 
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6. Conclusions 
Layout optimization employing the ‘ground structure’ approach provides a powerful and highly efficient 
means of generating theoretically optimal lightweight structures. However, the solutions are often 
complex in form, and simplification methods are needed to generate more practical designs. 

Adding joint costs requires only very minor modification of the standard layout optimization 
formulation. In this case simpler but less efficient layouts can be identified from the ‘ground structure’. 
Simplification can also be performed in a post-processing step; by formulating complexity indices using 
smooth Heaviside functions, the number of members in the structure, and the number of members 
meeting at joints, can be minimized via a non-linear optimization step.  

The techniques described have been implemented in a Rhino-Grasshopper environment to permit user-
interaction during the design process. By supplying a range of controlling parameters, various candidate 
design solutions can be generated for use at the conceptual design stage. The efficacy of the proposed 
approach is demonstrated via examples, showing that layout optimization with simplification techniques 
potentially provides a powerful means of designing spatial structures. 
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