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Abstract: Free-form grid structures have been widely used in various public buildings, and many are 

bounded by complex curves including internal voids. Modern computational design software enables the 

rapid creation and exploration of such complex surface geometries for architectural design, but the resulting 

shapes lack an obvious way for engineers to create a discrete structural grid to support the surface that 

manifest the architect’s intent. This paper presents an efficient design approach for the synthesis of free-form 

grid structures based on “guide line” and “surface flattening” methods, which consider complex features and 

internal boundaries. The method employs a fast and straightforward approach, which achieves fluent lines 

with bars of balanced length. The parametric domain of a complete NURBS (Non-Uniform Rational B-

Spline) surface is firstly divided into a number of patches, and a discrete free-form surface formed by 

mapping dividing points onto the surface. The free-form surface was then flattened based on the principle of 

equal area. Accordingly, the flattened rectangular lattices are then fit to the 2D surface, with grids formed by 

applying a guide-line method. Subsequently, the intersections of the guide-lines and the complex boundary 

are obtained, and the guide-lines divided equally between boundaries to produce grids connected at the 

dividing points. Finally, the 2D grids are mapped back onto the 3D surface and a spring-mass relaxation 

method is employed to further improve the smoothness of the resulting grids. The paper concludes by 

presenting realistic examples to demonstrate the practical effectiveness of the proposed method. 

Keywords: free-form gridshell; complex boundary; surface flattening; guide-line method; grid generation; 

grid relaxation 
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Introduction 

Gridshells as long spanning roof structures are often the most striking part of such a building. They provide 

a sense of simplicity and elegance in terms of appearance. Their important features are their uninterrupted 

span, the smoothness of their continuous surface, the sparseness of their structural grid, curve fluidity and 

most importantly their high structural efficiency that can resist external actions through membrane stiffness 

(Malek and Williams 2017). Gridshells with multi-planar, cylindrical, spherical and parabolic shapes are not 

uncommon in practice (Kang et al., 2003; Shilin, 2010; Cui and Jiang, 2014), where engineers use analytical 

equations to generate nodal positions and member connectivity, as shown in Fig.1.  

 

Fig.1 Free-form grid structures: the British Museum Great Court  

In general, however, free-form surfaces cannot be expressed accurately by means of (piecewise) analytic 

functions, and the curvature of such surfaces is generally complex. In recent years, parametric modeling 

techniques in computer aided design (CAD) have brought a new level of sophistication to the generation of 

3D free-form surfaces, allowing architects more freedom to create inspiring designs and to restructure their 

approach to design. The aesthetically pleasing nature of such designs also attracts the attention of high-

profile clients and the number of new and complex free-form grid structures is increasing. Despite these 

advancements in CAD technology, given the varying curvature and complex boundaries associated with such 

designs, it remains a challenge for architects and engineers to generate structural or cladding grids on such 

surfaces, and the digital tools available for such tasks lag behind those available for the initial surface 

generation. 

The grid patterns on free-form shells are traditionally created by hand using computer-aided design tools, or 

automated using tailored computer programming scripts, written bespoke for each individual project. As 

such structures are becoming more popular, and more complex, practical tools that can efficiently generate 
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a structural grid on a given free-form surface are urgently needed to facilitate the design process, particularly 

in the early stage. Such tools need to deliver in four key areas. Grids generated should be an approximation 

of the given surface.  Grid members should all be of similar lengths to ease manufacture, connections, and 

equalize their buckling strengths and each continuous member should pass over the surface in a fluid manner 

and avoid singularities of curvature (kinks), as shown in Fig.2. Finally, tools should be relatively automated 

and quick to run on a broad range of complex surfaces to allow the user the ability to interactively explore 

appealing options. 

 

Fig.2 Gridshell with curve fluidity and regular grid cells. 

 

One area of research where such qualities have been investigated is in the field of Finite Element Analysis 

(FEA). Methods such as the Advancing Front Technique (Aubry et al., 2011), the Mapping Method (Hannaby, 

1988) and Delaunay Triangulation (Muylle et al., 2002; Liu et al., 2011) have been developed to generate 

triangular or quadrilateral meshes on complex surfaces, and the qualities needed for FEA share many 

characteristics with those needed for gridshells. However the resulting FEA mesh does not necessarily meet 

the requirement of equal rod length and certainly the architectural grid fluidity is not considered.  

Grid generation methodologies specifically for free-form surfaces are therefore beginning to attract the 

attention of researchers. One of the earliest methods for grid generation on a 3D surface, known as the 

Chebyshev net, was proposed in 1878 (Popov 2002). Two arbitrary intersecting curves are first defined on a 

given surface, and each curve is then divided into segments of the same rod length. A grid of points is then 

produced by intersecting two adjacent circles on the surface, where each circle has a radius equal to the rod 

length. Due to the nature of these intersecting circles, this method is better known as the “Compass Method”, 

Curve fluidity 

Regular grid cell 
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as shown in Fig.3. Lefevre et al. (2015) used the Compass Method to generate gridshells for instability 

analysis, while a method with a denser net was proposed to improve the quality of the resulting grid.  

 

Fig.3 Compass method 

 

Shepherd and Richens (2012) proposed the use of the Subdivision Surface method to generate grids, where 

an initial triangular or quadrilateral mesh is first imposed onto a free-form surface and then subdivided over 

a number of iterations, snapping back to the original surface at each step. Su et al. (2014) developed a grid 

generation procedure using the principle-stress trajectories of a surface under specific dominant load. A 

modified ‘advancing front’ mesh technique was used for the grid generation, however this involved FE 

analysis, which required significant computational time and the fluidity and equal rod length of grid cells 

was not guaranteed. Others (Zheleznyakova and Surzhikov 2013, Zheleznyakova 2015) proposed a new 

approach for triangular grid generation based on molecular dynamics, with nodes considered as interacting 

particles with mass. The particles then moved within the design domain according to residual forces and 

damping, and once they were finally well positioned after the molecular dynamics simulation process, well-

formed triangles were created using Delaunay triangulation. More recently, Douthe et al. (2017) proposed a 

method to generate gridshells with quadrilateral cells using two intersection curves as guide lines. A circular 

mesh was generated, and the duality between a circular mesh with a unique radius and a Chebyshev net was 

used to obtain a quadrilateral grid that considered the planarity of each cell.  

The most recent method for the synthesis of free-form grid structures was proposed by Gao et al. (2017a). 

Their “guide line method” is straightforward and is able to generate grids with rods of balanced length and 

fluent lines. The process also begins with a number of guide-curves on the surface, which determine the 

directions of the ‘rods’ of the grid. It was shown that the generated grids had similar rod lengths and good 
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fluidity. Gao et. al. (2017b) improved on the method to include a surface flattening technique, which reduced 

the grid shape irregularity by up to 47%.  

In practice, the free-form architectural surfaces are complex, particularly with regards their non-convex 

boundaries and the presence of internal holes. For example, the roof surfaces in Fig.4 have internal 

boundaries that are trimmed by several closed space curves. 

 

 

Fig.4 Free-form grid structures with complex boundaries: Guangzhou Sports stadium (above) and 

Shenzhen Bay Sports Center (below) 

The main limitation of the methods reviewed above is that they struggle to cope with free-form surfaces that 

contain such complex boundary definitions. The key advance described in this paper is, therefore, a method 

that combines the surface flattening technique with an improved guide-line method that can also work with 

complex boundaries, both internal and external. Fluidity is also guaranteed, and the resulting grids express 

the designer’s intent for the direction of the grid and the method provides sufficient control of the final results. 

This paper also optimizes the smoothness of the resulted grids using a particle-spring method. A grid pattern 

that satisfies the requirement of equal rod length and fluidity will be obtained, and more importantly, the 

resulting grid pattern will be strictly compatible to the given, irregular, boundary conditions, which has not 

been addressed in previous research.  

 



6 

Descriptions of curves and surfaces 

NURBS (Non-uniform rational Basis-Splines) expressions (Piegl and Tiller, 2012) are used in this paper to 

represent the free-form surface. NURBS are a standard method for architectural shape representation, design 

and data exchange when geometric information is processed by computer. They represent the arbitrary shape 

of a surface by adjusting their control points and knots weights to establish a relationship between a 3D 

surface and a 2D parametric domain, which is convenient for surface flattening and grid generation.   

A pth-degree NURBS curve is shown in Fig.5 and is defined by (Piegl and Tiller 2012): 

C(𝑢) =
∑ 𝑁𝑖,𝑝(𝑢)⋅𝜔𝑖⋅𝐶𝑃𝑖
𝑛
𝑖=0

∑ 𝑁𝑖,𝑝(𝑢)⋅𝜔𝑖
𝑛
𝑖=0

                             (1) 

where {𝐶𝑃𝑖} are the control points, {𝜔𝑖} are the weights, and 𝑁𝑖,𝑝(𝑢) are the pth-degree B-spline basis 

functions which are: 

        𝑁𝑖,0(𝑢) = {
1    𝑖𝑓  𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1                              
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

 

 𝑁𝑖,𝑝(𝑢) =
𝑢−𝑢𝑖

𝑢𝑖+𝑝−𝑢𝑖
𝑁𝑖,𝑝−1(𝑢) +

𝑢𝑖+𝑝+1−𝑢

𝑢𝑖+𝑝+1−𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢)            (2) 

defined on the non-periodic and non-uniform knot vector: 

𝑈 = {𝑎,… , 𝑎⏟  
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑛, 𝑏, … , 𝑏⏟  
𝑝+1

}                     (3) 

 

 

Fig.5 Relationship between a curve and its control points 

A NURBS surface (shown in Fig.6) of degree p in the u direction and degree q in the v direction is a bivariate 

vector-valued piecewise rational function with the following form (Piegl and Tiller 2012): 

S(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)⋅𝑁𝑗,𝑞(𝑣)⋅𝜔𝑖,𝑗⋅𝐶𝑃𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)⋅𝑁𝑗,𝑞(𝑣)⋅𝜔𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0

   𝑎 ≤ 𝑢 ≤ 𝑏, 𝑐 ≤ 𝑣 ≤ 𝑑              (4) 
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where {𝐶𝑃𝑖,𝑗} forms a bidirectional control net, {𝜔𝑖,𝑗} are the weights, and 𝑁𝑖,𝑝(𝑢), 𝑁𝑗,𝑞(𝑣) are the non-

rational B-spline basis functions defined on the knot vectors: 

{
 
 

 
 𝑈 = {𝑎, … , 𝑎⏟  

𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑛, 𝑏, … , 𝑏⏟  
𝑝+1

}

𝑉 = {𝑐,… , 𝑐⏟  
𝑞+1

, 𝑣𝑞+1, … , 𝑣𝑚, 𝑑, … , 𝑑⏟  
𝑞+1

}

                      (5) 

 

Fig.6 The relationship between a curved surface and its control points 

 

Fig.7 Mapping from parametric domain to the NURBS surface 

In order to generate architectural grids on a surface, we require curves that always lie on the surface, as 

shown in Fig.7. This is achieved by defining a two-dimensional NURBS curve C(𝑤) that lies within the 

parameter field of the surface. For a given value of the single parameter w, a position in u-v-space is defined 

using the curve C(𝑤) and Eq.(1). These values of u and v are then in turn mapped to a position on the 

NURBS surface using S(𝑢, 𝑣) and Eq. (4). By definition, therefore, parameter w is mapped to a point in 3D 

space which must also lie exactly on the surface and within its bounds. 
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Surface flattening 

Surface flattening is a technique that transforms a 3D surface into a planar surface, where further operations 

can be more easily carried out on a planar surface compared to direct operations on the 3D curved surface. 

This has been widely used in engineering practice, for example, to calculate and design blank-shapes in the 

manufacturing industry (McCartney et al., 2005). Surfaces are classified as developable or undevelopable, 

depending on their Gaussian curvature, with Gaussian curvature equal to zero everywhere being the 

necessary and sufficient condition for a developable surface (Banchoff and Lovett, 2015). Surface flattening 

techniques have been used in the design of membrane structures for decades, with Topping and Iványi (2008) 

more recently introducing a method to transform 3D strips of membrane surfaces into planes for membrane 

cutting pattern generation based on the dynamic relaxation algorithm. In their method, the surface flattening 

process does not require the strip to be developable. There are three main methods of surface flattening, 

geometric-, mechanical- and combined geometric and mechanical flattening (Li et al., 2005; McCartney et. 

al., 2005; Wang and Tang, 2007). The authors here also use a geometric flattening method to unfold the 

surface, this time based on the rule of identical area due to its high efficiency and adaptability compared to 

the other methods (Li et al., 2005; Wang and Tang, 2007). The technique is explained using the example of 

a crescent-shaped surface that has been trimmed with internal holes and a complex boundary, as shown in 

Fig.8. 

 

Fig.8 Trimmed crescent shape surface with complex boundary 

Surface discretization 

The entire parametric domain of the free-form surface, for now ignoring the holes and trimmed boundary, is 

divided into an N×M grid of segments in u-v space on the basis of a relationship between surface adjacent 
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boundary lengths. A discrete free-form quad mesh is therefore generated in 3D by mapping the dividing 

points of the parametric domain onto the surface, as shown in Fig.9. 

 

 

Fig.9 Surface discretization 

Flattening of the central point and surrounding points 

The central point of the surface mesh is then used to define the flattening center and is obtained by searching 

the center in the parameter domain of N×M grid of segments. The coordinates of unfolded plane points 

corresponding to the flattening center and its surrounding eight points on the surface should be firstly 

determined, as shown in Fig.10. 

 

Fig.10 Flattening center and its surrounding points before and after flattening 
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The corresponding point of the flattening center 𝐴0 is point 𝛼0 on the plane and is taken as the origin of 

the flattening plane. Suppose γ is the difference in the sum of internal angles around the flattening center 

before and after flattening. Since after flattening the points lie in a plane and their angles therefore sum to 

2π, γ can be calculated as: 

γ = 2π − (𝛼1 + 𝛼2 + 𝛼3 + 𝛼4)                        (6) 

The value γ will be allocated to the 4 regions around point a0 in the same proportion as the corresponding 

angles on the surface. The corresponding angles on the plane after flattening can therefore be obtained from 

Eq.7: 

𝛽𝑖 = 𝛼𝑖 + γ × 𝛼𝑖 ∑𝛼𝑖⁄                           (7) 

Now that the angles have been determined, a scale factor is needed to determine the actual coordinates of 

the points on the plane. Suppose the 𝑢 and 𝑣 directions have the same rate of expansion (𝑡) before and 

after flattening, with 𝑡 as defined by Eq.8: 

𝑡 =
|𝑎0𝑎1|

|𝐴0𝐴1|
=
|𝑎0𝑎2|

|𝐴0𝐴2|
=
|𝑎0𝑎3|

|𝐴0𝐴3|
=
|𝑎0𝑎4|

|𝐴0𝐴4|
      (8) 

By applying the rule that the areas of triangles △ 𝑎0𝑎1𝑎2, △ 𝑎0𝑎2𝑎3, △ 𝑎0𝑎3𝑎4, △ 𝑎0𝑎4𝑎1 after flattening 

should be equal to the sum of the areas of the corresponding triangles before flattening, value of 𝑡 is 

obtained: 

  |𝐴0𝐴1||𝐴0𝐴2| sin 𝛼1 + |𝐴0𝐴2||𝐴0𝐴3| sin 𝛼2 + |𝐴0𝐴3||𝐴0𝐴4| sin 𝛼3 + |𝐴0𝐴4||𝐴0𝐴1| sin 𝛼4                  

= 𝑡2(|𝐴0𝐴1||𝐴0𝐴2| sin 𝛽1 + |𝐴0𝐴2||𝐴0𝐴3| sin 𝛽2 + |𝐴0𝐴3||𝐴0𝐴4| sin 𝛽3 + |𝐴0𝐴4||𝐴0𝐴1| sin 𝛽4)  (9) 

By rearranging Eq.(9) and solving for t, this value can then be substituted into Eq.(8) to give values 

for  |𝑎0𝑎1|,  |𝑎0𝑎2|,  |𝑎0𝑎3| and |𝑎0𝑎4|, and therefore the coordinates of points 𝑎1 ,  𝑎2 ,  𝑎3 ,  𝑎4  can be 

calculated. 

Finally, the principle of identical area is also used to calculate the coordinates of points 𝑎5, 𝑎6, 𝑎7, 𝑎8. 

Taking 𝑎5  as an example, suppose 𝐸1 ,  𝐸2 ,  𝐸3  represent the area of triangle △ 𝐴1𝐴2𝐴5 ,  △ 𝐴0𝐴1𝐴5 , 

△ 𝐴0𝐴2𝐴5 individually. Likewise, 𝑆1, 𝑆2, 𝑆3 represent the area of corresponding triangle after flattening 

and ΔS represents the sum of the squares of the changes in areas before and after flattening: 

ΔS = ∑ (S𝑖 − E𝑖)
23

𝑖=1                          (10) 

In order to minimize ΔS, the following formula is applied: 

   {

𝜕ΔS

𝜕𝑥
= 0

𝜕ΔS

𝜕𝑦
= 0

                              (11) 
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The coordinates of point 𝑎5 can then be obtained by solving Eq.(11) and the coordinates of 𝑎6, 𝑎7, 𝑎8 can 

be determined in the same way. 

Flattening of the whole regions  

Once the surface flattening center is determined by searching the center in the parameter domain of N×M 

grid of segments, the entire surface is divided into four regions and each is then flattened in sequence. 

Following the flattening of 𝐴0 and its surrounding 8 points, point 𝐴1, for example can then be used as a 

center to flatten its surrounding points according to the same principle of identical area used to flatten point 

𝐴0. Each region is flattened by repeating the above steps in the specific order shown in Fig.11, firstly 

traversing the surface in the direction A0  A1 and then A0  A2 on each consecutive row and column 

working out from A0 to the diagonally opposite corner of the region. 

 

(a) Grid nodes of the first region flattening in a row 

 

(b) Grid nodes of the first region flattening 

 

14 

A0 A1 

A2 
A5 

1 2 3 4 5 

6 

7 

8 

9 

10 11 12 13 

15 

16 25 
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(c) Grid nodes of all four regions flattened 

Fig.11 The steps of grid-flattening 

When the surface shown in Fig.9 is flattened using the above method, the result is as shown in Fig.12. 

 

Fig.12 Rectangular lattices of the doubly-curved surface flattened onto the plane 

Grid generation based on an improved guide-line method 

After the flattening of the free-form surface, the improved guide-line method is used to generate grids in the 

2D flattened domain. The guide-line method begins by considering a curve which is sketched onto the 

original 3D surface by the architect and can represent the designer’s aesthetic intent. The process then covers 

the entire flattened surface with multiple guide-lines by advancing the predefined guide line.  The fluency 

and regularity of the grid cells are largely determined by the advancing guide-lines. 

The guide-line method presented here is an improvement on that developed by Gao et al. (2017b), since it 

can deal with complex boundary conditions. Since the 2D flattened surface shares the same u-v parametric 

field with the original 3D free-form surface, the original trimming boundary curves (both internal and 

external) can be mapped onto the 2D flattened surface as shown in Fig.13. 
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Fig.13 The trimming boundary on the flattened 2D surface 

Guide-line advancement 

First the initial guide-line should be sketched on the original surface by the designer, as shown in Fig.14. 

This guide-line can then be directly mapped onto the flattened 2D surface, since they share the same 

parametric field, as shown in Fig.15. 

 

(a) Top view 

 

(b) Perspective view 

Fig.14 The initial guide-lines on the original surface 

 

 

Fig.15 The initial guide line on the flattened complete surface 

New guide-lines are then generated on the flattened surface by advancing all the control points (defined in 
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Eq.(1)) of the preceding guide-line by a fixed distance l, which is the desired member length of the final 

gridshell. A special case is that the initial guide-line is not long enough to intersect with the boundary curves, 

an extended guide-line with tangent line at both ends of the original curves can be used. Taking the NURBS 

surface in Fig.8 as an example and starting from the initially defined guide-line (Fig.15), the resulting plane 

covered with guide-lines is shown in Fig.16. 

 

Fig.16 The flattened complete surface covered with guide-lines 

The intersections between guide-lines and boundaries 

After the flattened 2D surface is covered with guide-lines, the intersections between each guide-line and the 

boundaries are calculated, which includes internal as well as external boundaries, to allow the guide-lines to 

be trimmed. A special case is that the guide-line is tangent to the boundary curve, in which case the 

intersection point at that boundary should be ignored. If the first intersection is on part of the boundary that 

is to be kept after trimming, such as point A in Fig.17, then the curves between subsequent pairs of 

intersections should be deleted, shown as a dashed-line on part of guide-line A in Fig.17. Otherwise, if the 

first intersection is on part of the boundary which needs to be deleted, then the part of the guide-line between 

it and the next intersection is removed, along with any part of the curve between subsequent intersections as 

was the case with guide-line A. The dashed part of guideline B in Fig.17 demonstrates this case. 

 

Fig.17 The trimmed guide-lines on the flattened 2D surface 

A
B
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Mapping the guide-lines to original surface 

Since the original surface shares the same u-v (coordinates in the parametric field as defined in Figure 7) 

parametric field with the flattened 2D surface, the guide-lines generated in the flattened surface can be 

directly mapped back to the original surface, as shown in Fig.18. 

 

 

(a) Top view 

 

 

(b) Perspective view 

Fig.18 Guide lines mapped back to the original 3D surface 

If two guide-lines are initially sketched on the 3D surface in different directions, then each can be mapped 

to sets of guide-lines in the same way, resulting in quadrilateral grids, as shown in Fig.18. 

Grid relaxations 

The grids generated in this way are generally fluent and with regular grid sizes. However, a relaxation method 

may be needed to further smooth the generated grids, as implemented by Williams (2001) in the design of 

the British Museum Great Court roof (Fig.1). The Particle-spring method was successfully used by Kilian 

and Ochsendorf (2005) to form-find structural forms in pure compression or tension. In their method, axial 

springs connecting lumped-masses were used to represent the physical behavior of a gridshell of truss 

members.  External gravity forces were then applied and the dynamic system solved iteratively until a final 

equilibrium was achieved. The method has been improved and adapted for the optimization of generated 

grids by introducing a “pulling force” to keep the particles on a desired surface (Williams 2001), introducing 

a “pulling force”, as shown in Fig.19, which prevents the particles from moving off the pre-defined surface. 

The particle-spring system serves as an excellent method of smoothing the grids generated, and the 

equilibrium position of each mass on the surface is achieved through an iterative process. 
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Fig.19 The equilibrium of the particle-spring system 

 

To apply the particle-spring method to the grid-lines resulting from the surface flattening and guide-line 

method, each node of the grid can be regarded as a particle and the members considered as springs. When 

the springs are given an initial length l, the forces in the particle-spring system will not generally be 

equilibrium.  There are three types of force applied to the particles, as shown in Fig.19. First, a force is 

applied between two particles when they are connected by a spring. The second force stems from a particle 

which is fixed, such as particles defined on the boundries (internal and external) of the surface. Finally, 

forces are applied to prevent the particles from moving off the surface. 

Each particle is assumed to have a constant lumped mass m and each rod is taken as a linear elastic spring 

with a constant slack-length l, and constant axial stiffness 𝑘𝑠𝑝𝑟𝑖𝑛𝑔. Since these values have no physical 

relevance and are simply used to solve for equilibrium, without loss of generality, the lumped mass m can 

be set to 1 and the stiffness 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 used to control the convergence speed. This stiffness is set to a larger 

value during the first few iterations to accelerate convergence and is then gradually reduced to achieve stable 

equilibrium. Each spring applies a force to the particles at its ends as: 

 𝑓 = (𝑙𝑑 − 𝑙) ⋅ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 (12) 

where the 𝑙𝑑 is the deformed length of the spring. Each particle i will therefore be subjected to unbalanced 

internal forces from its connecting springs {S} as: 

 𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 = ∑ 𝑓𝑖,𝑗
(𝑖,𝑗)∈{𝑆}

 (13) 

For the particles on the boundaries, a force 𝐹𝑐𝑢𝑟𝑣𝑒,𝑖 will be used to pull the particles back to the boundary 

curve: 
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 𝐹𝑐𝑢𝑟𝑣𝑒,𝑖 = 𝑘𝑐𝑢𝑟𝑣𝑒 ⋅ 𝑑𝑐𝑢𝑟𝑣𝑒,𝑖
𝑒1  (14) 

in which 𝑘𝑐𝑢𝑟𝑣𝑒 is a coefficient, larger values of 𝑘𝑐𝑢𝑟𝑣𝑒 indicate a stronger constraint on the particles.  

𝑑𝑐𝑢𝑟𝑣𝑒,𝑖 is the distance between the particle and the boundary curve which can be calculated using (Piegl 

and Tiller 2012). e1 is an exponent penalty parameter of the distance, with a larger factor of e1 meaning that 

particles further from the boundary will be subjected to more constraint while particles closer to the boundary 

have less restoring force applied (when 𝑑𝑐𝑢𝑟𝑣𝑒,𝑖 is larger than a unit). This accelerates convergence whilst 

avoiding unnecessary oscillations.  

For non-boundary particles, a force 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖 is used to constrain the particles to the surface, allowing them 

to slide within the surface but not move off: 

 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖 = 𝑘𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ⋅ 𝑑𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖
𝑒2  (15) 

where 𝑘𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is a coefficient similar to 𝑘𝑐𝑢𝑟𝑣𝑒, 𝑑𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖 is the distance between the particle and the 

surface and e2 is an exponent parameter similar to e1. 

The resultant force of each particle can be calculated by: 

     Fi=Fspring,i+{
Fcurve,i
Fsurface,i

                            for particles on boundary curves
for other particles

       
       (16) 

The equations of motion are then applied to all particles using the kinematic motion equations of particles 

in a viscous damping environment: 

 
𝑎𝑡,𝑖 =

𝐹𝑡,𝑖 − 𝑐 ⋅ 𝑣𝑡,𝑖
𝑚

 (17) 

 𝑣𝑡+1,𝑖 = 𝑣𝑡,𝑖 + 𝑎𝑡,𝑖 ⋅△ 𝑡 (18) 

 
𝑑𝑡+1,𝑖 = 𝑑𝑡,𝑖 +

1

2
(𝑣𝑡+1,𝑖 + 𝑣𝑡,𝑖) △ 𝑡 (19) 

where 𝐹𝑡,𝑖, 𝑎𝑡,𝑖, 𝑣𝑡,𝑖 and 𝑑𝑡,𝑖 are the force, acceleration, velocity and position respectively for particle i at 

time t. c is the viscous damping coefficient and △ 𝑡 is the length of the discrete time step. 

An iterative process has traditionally been applied to solve these equations of motion for the form-finding 

of cable-net and membrane structures (Williams 2001; Topping and Iványi, 2008; Adriaenssens et al., 2012; 

Richardson et al., 2013) with discussions on the effects of the given parameters on convergence also available 

(Barnes, 1977; Topping and Khan, 1994) and so further elaboration is not needed here. However, a simple 

example is presented below, implementing the method on the free-form surface show in Fig.20. An initial 

grid on the surface with distorted and coarse grid cells is presented on the left of Fig.21. In this example, the 

stiffness 𝑘𝑐𝑢𝑟𝑣𝑒 and 𝑘𝑠𝑢𝑟𝑓𝑎𝑐𝑒 were taken as 1000 and 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 was 0.01. The viscous damping coefficient 

c was set to 30, iteration time step △ 𝑡 was 0.01 and the exponents e1 and e2 were both taken as 2. The 
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variance of member length is selected as the index to evaluate the quality of the generated grid, with lower 

index indicating a grid with better quality, and is calculated in the same way as Gao et. al (2017), where the 

variance of member length is defined as: 

𝛿 = √
∑ (𝑙𝑖−𝑙)

2𝑁
𝑖=1

𝑁
                                 (20) 

where N is the total number of edges and l is the slack length of the edges. A smaller value of 𝛿 indicates a 

more uniform grid. The variance of member length gradually reduces to a stable value as the iterations 

progress, as shown in Fig.22. The variance in member length of the initial grid is 39.62. After the relaxation, 

the variance of member length has reduced to 6.01, with a more smooth and regular grid shown on the right 

of Fig.21. It is important to note that the values of stiffness and damping do not take the real physical values 

of the gridshell structure, but are chosen to accelerate convergence of the particle-spring system.  

 

Fig.20 A free-form surface for the grid generation 

 
 

Fig.21 The initial grid on the surface (left) and the smoothed grid (right) 
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Fig.22 The variance of member length with the iterations 

Case studies 

For the case studies in the paper, 𝑘𝑐𝑢𝑟𝑣𝑒 = 𝑘𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 15000, 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 was taken as 64, e1=e2=2 while 

c=16. The iteration time step △ 𝑡 was 0.01. It is worth noting that the value of parameters should be defined 

in a trial and error procedure. 

British Museum Great Court roof 

The steel and glass roof of the British Museum Great Court covers a rectangular area 70m wide and 100m 

long. The Reading Room, which has a cylindrical shape of diameter of 44m, is located near the center of the 

roof. The shape of the roof was defined by a mathematical function and more information is provided by 

Williams (2001), with the original trimmed surface shown graphically in Fig. 23. 

 

Fig. 23 Original trimmed surface of British Museum Great Court Roof 

The original surface was obtained analytically (Williams 2001) and a surface reconstruction procedure was 

therefore employed to create a NURBS version for this study.  The reconstructed NURBS surface was 
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discretized and flattened by employing the procedures presented above and the flattened surface is shown in 

Fig. 24. 

 

Fig. 24 The reconstructed and the flattened surface with trimming boundary 

The diagonals were first chosen as the initial guide-lines, as shown in Fig.25. Crossing guide-lines were used 

to generate the quadrilateral mesh on the flattened surface, and the generated grids were then mapped to the 

3D surface. It can be seen from Fig. 26 that the generated grids follow the initial guide-line definition and 

the grids were generally fluent even without the particle-spring relaxation process being applied. Some very 

short rods were present close to the boundary, and so vertices very close together at the boundaries were 

merged. 

 

(a)  

(b) 

Fig. 25 Case 1: initially defined guide lines on (a) reconstructed complete surface and (b) flattened surface 
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(a) Top view (b) Perspective view 

Fig. 26 Quadrilateral grids of case 1 

To show the flexibility of the grid generation process, Case 1 above was then relaxed using the particle-

spring method and the results are shown in Fig. 27. Compared to the unrelaxed results in Fig. 26, fewer short 

rods are observed along their boundary curves. Fig. 28 shows the decreasing variability in member length as 

more iterations of the grid relaxation method are carried out.   

 

 

(a) Top view 

 

(b) Perspective view 

Fig. 27 Relaxed quadrilateral grids of case 1 

 

Fig. 28 Change of member length to the iterations for the quadrilateral grid 

By generating the diagonals of each quadrilateral grid cell, as shown in Fig. 29, a triangular grid was obtained. 

Since the new diagonal rods were not very smooth, with kinks especially where they cross the diagonals of 

the roof, the grid relaxation procedure was further employed on the triangular grid and the results are shown 

in Fig. 30, leading to more fluent grids and fewer kinks. Fig.31 shows the decreasing variation of member 
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length with regard to the iterations of grid relaxation. 

 

 

(a) Top view 

 

(b) Perspective view 

Fig. 29 Triangular grids of case 1 

 

(a) Top view 

 

(b) Perspective view 

Fig. 30 Relaxed Triangular grids of case 1 

 

Fig. 31 Variance of member length to the iterations for the triangular grid 
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Case study #2 uses two slightly different initial guide-lines, as shown in Fig. 32, with the diagonals curved 

to cross closer to one of the shorter boundaries of surface. The resulting grid (shown in Fig. 33) is then taken 

through the same stages of processing as described above, with the relaxed quadrilateral grid shown in 

Fig. 34, the triangular grids shown in Fig. 35 and the relaxed triangular grids are shown in Fig 36. 

  

Fig. 32 Case 2: initially sketched guide lines on (a) reconstructed complete surface and (b) flattened 

surface 

 

 

(a) Top view 

 

(b) Perspective view 

Fig. 33 Quadrilateral grids of Case 2 

 

 

(a) Top view 

 

(b) Perspective view 
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Fig. 34 Relaxed quadrilateral grids of Case 2 

 

(a) Top view 

 

(b) Perspective view 

Fig. 35 Triangular grids of Case 2 

 

 

(a) Top view 

 

(b) Perspective view 

Fig. 36 Relaxed Triangular grids of Case 2 

Case study #3 uses similarly curved diagonals, this time crossing closer to a long boundary of the surface 

(Fig.37). The results are shown in Figs. 38–41. The guide lines to generate the quadrilateral grids without 

any post-processing are shown in Fig. 38, the relaxed quadrilateral grids are shown in Fig. 39, the triangular 

grids by connecting the diagonals of each quadrilateral are shown in Fig. 40, whilst the relaxed triangular 

grid pattern is shown in Fig. 41. 
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Fig. 37 Case 3: initially sketched guide lines on (a) reconstructed complete surface and (b) flattened 

surface 

 

 

(a) Top view 

 

(b) Perspective view 

Fig. 38 Quadrilateral grids of Case 3 

 

 

(a) Top view 

 

(b) Perspective view 

Fig. 39 Relaxed quadrilateral grids of Case 3 
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(a) Top view 

 

(b) Perspective view 

Fig. 40 Triangular grids of Case 3 

 

(a) Top view 

 

(b) Perspective view 

Fig. 41 Relaxed triangular grids of Case 3 

It can be seen from these three case studies that by defining different guide-lines on the surface, various 

reasonable and smooth options for a gridshell roof can be obtained quickly that respond to the intent of the 

designer.  

A stadium roof 

To demonstrate the usefulness of the method on a more complex boundary, the roof surface of a stadium 

from practice has been used as a case of study. The original surface sketched by the architects is shown in 

Fig. 42, while the complete surface without trimmed boundaries is shown in Fig. 43. The entire surface and 

the boundary curves were flattened using the procedure in Section 3 and the results are presented in Fig. 44. 

The guide-lines were then advanced on the flattened surface and mapped back to the original surface as 

shown in Fig. 45 using the method described in Section 4. Vertices close to each other near the boundary 

curves were then merged to avoid any possible short rods, while the grid relaxation process was used to 

improve the smoothness. The grid near the internal voids is shown in detail in Fig. 46 and it can be seen that 
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the resulting grids are fluent and the rod lengths near the boundary are changed locally near the boundary 

curves. 

 

(a) Top view 

 

(b) Perspective view 

Fig. 42 Trimmed surface 

 

(a) Top view 

 

(b) Perspective view 

Fig. 43 The complete surface 

 

Fig. 44 Flattened Trimmed Surface 
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(a) Top view 

 

(b) Perspective view 

Fig. 45 The resulted quadrilateral grids 

 

 

Fig. 46 The Grids near the internal boundaries 
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Trimmed surface with round hole 

Another roof surface from practice has been used as case of study to underpin the framework proposed. The 

original surface sketched by the architects is shown in Fig. 47. The entire surface and the boundary curves 

were flattened using the procedure in Section 3 and the results are presented in Fig. 48. The guide-lines were 

then advanced on the flattened surface and mapped back to the original surface as shown in Fig. 49 and Fig. 

50 using the method described in Section 4 to generate triangular and quadrilateral grids. 

 

 

Fig. 47 Original surface 

 

 

Fig. 48 Flattened Surface and initial guide lines 
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        (a) Top view                                    (b) Perspective view 

Fig. 49 The resulted quadrilateral grids 

 

       (a) Top view                                    (b) Perspective view 

Fig. 50 The resulted triangular grids 

It is worth noting that the initial guide lines defined over the surface set the tone of the grid and reveal 

the intent of the designer. What kind of initially defined guide lines are the more favourable pattern in 

terms of appearance most likely depends on the individual preference of the architect. 

The grid generation and the mass-spring relaxation method was programmed into software ‘ZD-Mesher’ 

(Gao, Li et al., 2017), and was specifically developed by the authors for the purpose of free-form grid 

generation.  The software was developed for a Microsoft Windows operating system in C++, with the GUI 

framework based on MFC (Microsoft Foundation Classes). As well as implementing the algorithms for grid 

generation, the software provides essential visualization and data exchange functions. It also provides 

commands assisting with sketching a curve on the surface, dividing a curve into segments by number or by 
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length and merging several curve segments into a single curve for further operations. The software is also 

able to exchange data with other commercial software packages as part of an integrated design process using 

data formats such as IGES, STEP, BREP, and STL.  

Conclusions 

A grid generation and relaxation technique for free-form surfaces with complex boundaries is proposed for 

the design of structural gridshells, based on a surface flattening technique and an improved guide-line 

method. The parametric domain of the complete NURBS surface is firstly divided into a number of parts 

and a discrete free-form surface is formed by mapping dividing points onto surface. The free-form surface 

is then flattened based on the principle of identical area. Accordingly, a flattened rectangular lattice is 

generated on the 2D surface by employing the guide-line method and complex boundaries are dealt with by 

removing segments of the curves outside the design domain. The 2D grids are then mapped back onto the 

3D surface, and a mass-spring method employed to further improve the smoothness of the resulting grid.  

The results not only meet the requirements of regular shapes and fluent lines, but they also embody the 

design intent of the grids and have a high quality around the inner boundary.  

The proposed framework can efficiently generate grids for design of free-form gridshell with both internal 

and external boundaries and the framework has been shown to be useful in facilitating the conceptual design 

process of free-form gridshells in engineering practice. 
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