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Abstract: Free-form grid structures have been widely used in various public buildings, and many are
bounded by complex curves including internal voids. Modern computational design software enables the
rapid creation and exploration of such complex surface geometries for architectural design, but the resulting
shapes lack an obvious way for engineers to create a discrete structural grid to support the surface that
manifest the architect’s intent. This paper presents an efficient design approach for the synthesis of free-form
grid structures based on “guide line” and “surface flattening” methods, which consider complex features and
internal boundaries. The method employs a fast and straightforward approach, which achieves fluent lines
with bars of balanced length. The parametric domain of a complete NURBS (Non-Uniform Rational B-
Spline) surface is firstly divided into a number of patches, and a discrete free-form surface formed by
mapping dividing points onto the surface. The free-form surface was then flattened based on the principle of
equal area. Accordingly, the flattened rectangular lattices are then fit to the 2D surface, with grids formed by
applying a guide-line method. Subsequently, the intersections of the guide-lines and the complex boundary
are obtained, and the guide-lines divided equally between boundaries to produce grids connected at the
dividing points. Finally, the 2D grids are mapped back onto the 3D surface and a spring-mass relaxation
method is employed to further improve the smoothness of the resulting grids. The paper concludes by
presenting realistic examples to demonstrate the practical effectiveness of the proposed method.
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Introduction

Gridshells as long spanning roof structures are often the most striking part of such a building. They provide
a sense of simplicity and elegance in terms of appearance. Their important features are their uninterrupted
span, the smoothness of their continuous surface, the sparseness of their structural grid, curve fluidity and
most importantly their high structural efficiency that can resist external actions through membrane stiffness
(Malek and Williams 2017). Gridshells with multi-planar, cylindrical, spherical and parabolic shapes are not
uncommon in practice (Kang et al., 2003; Shilin, 2010; Cui and Jiang, 2014), where engineers use analytical

equations to generate nodal positions and member connectivity, as shown in Fig.1.
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Fig.1 Free-form grid structures: the British Museum Great Court

In general, however, free-form surfaces cannot be expressed accurately by means of (piecewise) analytic
functions, and the curvature of such surfaces is generally complex. In recent years, parametric modeling
techniques in computer aided design (CAD) have brought a new level of sophistication to the generation of
3D free-form surfaces, allowing architects more freedom to create inspiring designs and to restructure their
approach to design. The aesthetically pleasing nature of such designs also attracts the attention of high-
profile clients and the number of new and complex free-form grid structures is increasing. Despite these
advancements in CAD technology, given the varying curvature and complex boundaries associated with such
designs, it remains a challenge for architects and engineers to generate structural or cladding grids on such
surfaces, and the digital tools available for such tasks lag behind those available for the initial surface
generation.

The grid patterns on free-form shells are traditionally created by hand using computer-aided design tools, or
automated using tailored computer programming scripts, written bespoke for each individual project. As

such structures are becoming more popular, and more complex, practical tools that can efficiently generate



a structural grid on a given free-form surface are urgently needed to facilitate the design process, particularly
in the early stage. Such tools need to deliver in four key areas. Grids generated should be an approximation
of the given surface. Grid members should all be of similar lengths to ease manufacture, connections, and
equalize their buckling strengths and each continuous member should pass over the surface in a fluid manner
and avoid singularities of curvature (kinks), as shown in Fig.2. Finally, tools should be relatively automated
and quick to run on a broad range of complex surfaces to allow the user the ability to interactively explore

appealing options.

Curve fluidity

Regular grid cell

Fig.2 Gridshell with curve fluidity and regular grid cells.

One area of research where such qualities have been investigated is in the field of Finite Element Analysis
(FEA). Methods such as the Advancing Front Technique (Aubry etal., 2011), the Mapping Method (Hannaby,
1988) and Delaunay Triangulation (Muylle et al., 2002; Liu et al., 2011) have been developed to generate
triangular or quadrilateral meshes on complex surfaces, and the qualities needed for FEA share many
characteristics with those needed for gridshells. However the resulting FEA mesh does not necessarily meet
the requirement of equal rod length and certainly the architectural grid fluidity is not considered.

Grid generation methodologies specifically for free-form surfaces are therefore beginning to attract the
attention of researchers. One of the earliest methods for grid generation on a 3D surface, known as the
Chebyshev net, was proposed in 1878 (Popov 2002). Two arbitrary intersecting curves are first defined on a
given surface, and each curve is then divided into segments of the same rod length. A grid of points is then
produced by intersecting two adjacent circles on the surface, where each circle has a radius equal to the rod

length. Due to the nature of these intersecting circles, this method is better known as the “Compass Method”,



as shown in Fig.3. Lefevre et al. (2015) used the Compass Method to generate gridshells for instability

analysis, while a method with a denser net was proposed to improve the quality of the resulting grid.
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Fig.3 Compass method

Shepherd and Richens (2012) proposed the use of the Subdivision Surface method to generate grids, where
an initial triangular or quadrilateral mesh is first imposed onto a free-form surface and then subdivided over
a number of iterations, snapping back to the original surface at each step. Su et al. (2014) developed a grid
generation procedure using the principle-stress trajectories of a surface under specific dominant load. A
modified ‘advancing front” mesh technique was used for the grid generation, however this involved FE
analysis, which required significant computational time and the fluidity and equal rod length of grid cells
was not guaranteed. Others (Zheleznyakova and Surzhikov 2013, Zheleznyakova 2015) proposed a new
approach for triangular grid generation based on molecular dynamics, with nodes considered as interacting
particles with mass. The particles then moved within the design domain according to residual forces and
damping, and once they were finally well positioned after the molecular dynamics simulation process, well-
formed triangles were created using Delaunay triangulation. More recently, Douthe et al. (2017) proposed a
method to generate gridshells with quadrilateral cells using two intersection curves as guide lines. A circular
mesh was generated, and the duality between a circular mesh with a unique radius and a Chebyshev net was
used to obtain a quadrilateral grid that considered the planarity of each cell.

The most recent method for the synthesis of free-form grid structures was proposed by Gao et al. (2017a).
Their “guide line method” is straightforward and is able to generate grids with rods of balanced length and
fluent lines. The process also begins with a number of guide-curves on the surface, which determine the
directions of the ‘rods’ of the grid. It was shown that the generated grids had similar rod lengths and good
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fluidity. Gao et. al. (2017b) improved on the method to include a surface flattening technique, which reduced
the grid shape irregularity by up to 47%.

In practice, the free-form architectural surfaces are complex, particularly with regards their non-convex
boundaries and the presence of internal holes. For example, the roof surfaces in Fig.4 have internal

boundaries that are trimmed by several closed space curves.
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Fig.4 Free-form grid structures with complex boundaries: Guangzhou Sports stadium (above) and
Shenzhen Bay Sports Center (below)
The main limitation of the methods reviewed above is that they struggle to cope with free-form surfaces that
contain such complex boundary definitions. The key advance described in this paper is, therefore, a method
that combines the surface flattening technique with an improved guide-line method that can also work with
complex boundaries, both internal and external. Fluidity is also guaranteed, and the resulting grids express
the designer’s intent for the direction of the grid and the method provides sufficient control of the final results.
This paper also optimizes the smoothness of the resulted grids using a particle-spring method. A grid pattern
that satisfies the requirement of equal rod length and fluidity will be obtained, and more importantly, the
resulting grid pattern will be strictly compatible to the given, irregular, boundary conditions, which has not

been addressed in previous research.



Descriptions of curves and surfaces

NURBS (Non-uniform rational Basis-Splines) expressions (Piegl and Tiller, 2012) are used in this paper to
represent the free-form surface. NURBS are a standard method for architectural shape representation, design
and data exchange when geometric information is processed by computer. They represent the arbitrary shape
of a surface by adjusting their control points and knots weights to establish a relationship between a 3D
surface and a 2D parametric domain, which is convenient for surface flattening and grid generation.

A pth-degree NURBS curve is shown in Fig.5 and is defined by (Piegl and Tiller 2012):
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where {CP;} are the control points, {w;} are the weights, and N;,(u) are the pth-degree B-spline basis
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Fig.5 Relationship between a curve and its control points
ANURBS surface (shown in Fig.6) of degree p in the u direction and degree q in the v direction is a bivariate

vector-valued piecewise rational function with the following form (Piegl and Tiller 2012):

Tl Zto NipW)Njq(0)-w; ;-CPy
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S(u,v) = a<u<bc<v<d (4)



where {CP;;} forms a bidirectional control net, {w;;} are the weights, and N;,(w), N; ,(v) are the non-

rational B-spline basis functions defined on the knot vectors:
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NURBS Surface

Fig.6 The relationship between a curved surface and its control points

NURBS Surface
(x.y,2) =S(u,v) = s(C(W)

(u,v) =C(w)
34 Parameter Domain

Fig.7 Mapping from parametric domain to the NURBS surface
In order to generate architectural grids on a surface, we require curves that always lie on the surface, as
shown in Fig.7. This is achieved by defining a two-dimensional NURBS curve C(w) that lies within the
parameter field of the surface. For a given value of the single parameter w, a position in u-v-space is defined
using the curve C(w) and Eq.(1). These values of u and v are then in turn mapped to a position on the
NURBS surface using S(u, v) and Eq. (4). By definition, therefore, parameter w is mapped to a point in 3D

space which must also lie exactly on the surface and within its bounds.



Surface flattening

Surface flattening is a technique that transforms a 3D surface into a planar surface, where further operations
can be more easily carried out on a planar surface compared to direct operations on the 3D curved surface.
This has been widely used in engineering practice, for example, to calculate and design blank-shapes in the
manufacturing industry (McCartney et al., 2005). Surfaces are classified as developable or undevelopable,
depending on their Gaussian curvature, with Gaussian curvature equal to zero everywhere being the
necessary and sufficient condition for a developable surface (Banchoff and Lovett, 2015). Surface flattening
techniques have been used in the design of membrane structures for decades, with Topping and Ivanyi (2008)
more recently introducing a method to transform 3D strips of membrane surfaces into planes for membrane
cutting pattern generation based on the dynamic relaxation algorithm. In their method, the surface flattening
process does not require the strip to be developable. There are three main methods of surface flattening,
geometric-, mechanical- and combined geometric and mechanical flattening (Li et al., 2005; McCartney et.
al., 2005; Wang and Tang, 2007). The authors here also use a geometric flattening method to unfold the
surface, this time based on the rule of identical area due to its high efficiency and adaptability compared to
the other methods (Li et al., 2005; Wang and Tang, 2007). The technique is explained using the example of
a crescent-shaped surface that has been trimmed with internal holes and a complex boundary, as shown in

Fig.8.

Fig.8 Trimmed crescent shape surface with complex boundary

Surface discretization

The entire parametric domain of the free-form surface, for now ignoring the holes and trimmed boundary, is

divided into an NxM grid of segments in u-v space on the basis of a relationship between surface adjacent



boundary lengths. A discrete free-form quad mesh is therefore generated in 3D by mapping the dividing

points of the parametric domain onto the surface, as shown in Fig.9.
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Fig.9 Surface discretization

Flattening of the central point and surrounding points

The central point of the surface mesh is then used to define the flattening center and is obtained by searching
the center in the parameter domain of NxM grid of segments. The coordinates of unfolded plane points
corresponding to the flattening center and its surrounding eight points on the surface should be firstly

determined, as shown in Fig.10.

Original Surface As

A

a4

Flattened Surface

Fig.10 Flattening center and its surrounding points before and after flattening



The corresponding point of the flattening center A, is point «, on the plane and is taken as the origin of
the flattening plane. Suppose vy is the difference in the sum of internal angles around the flattening center
before and after flattening. Since after flattening the points lie in a plane and their angles therefore sum to
2m, y can be calculated as:
y=2n—(a; +a, + as + a,) (6)
The value y will be allocated to the 4 regions around point ag in the same proportion as the corresponding
angles on the surface. The corresponding angles on the plane after flattening can therefore be obtained from
Eq.7:
Bi=aityXa/Xa; )
Now that the angles have been determined, a scale factor is needed to determine the actual coordinates of
the points on the plane. Suppose the u and v directions have the same rate of expansion (t) before and

after flattening, with t as defined by Eq.8:

_ laga,| _ laga,| _ lagas| _ lagasl (8)
[AgA1]l  [AgAz]l  [AgAsl  [AgA4l

By applying the rule that the areas of triangles A agaia,, A agasas, A agasa,, A agaza, after flattening
should be equal to the sum of the areas of the corresponding triangles before flattening, value of t is
obtained:
|AgA1||AoAz] sinay + |AgA,||AgAs| sina; + |AgAs||AgAsl sinas + |AgAsl|ApAy] sinay

= t?(|AoA11AgAz | sin By + |AgA,||AgAs] sin B, + |AgA3l|AgAsl sin B3 + |AgA4llAgAslsinBy)  (9)
By rearranging Eq.(9) and solving for t, this value can then be substituted into Eq.(8) to give values
for lagaq|, lagasl, lagas| and |aga,|, and therefore the coordinates of points a4, a,, az, a, can be
calculated.
Finally, the principle of identical area is also used to calculate the coordinates of points as, ae, a;, ag.
Taking as as an example, suppose E,, E,, E; represent the area of triangle A A;A,As, A AygA,As,
A ApA,As individually. Likewise, Sy, S5, S5 represent the area of corresponding triangle after flattening
and AS represents the sum of the squares of the changes in areas before and after flattening:

AS =33 ,(S; — E)? (10)

In order to minimize AS, the following formula is applied:

aAS

285
a&_o (11)

By_
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The coordinates of point ag can then be obtained by solving Eq.(11) and the coordinates of a4, a;, ag can

be determined in the same way.

Flattening of the whole regions

Once the surface flattening center is determined by searching the center in the parameter domain of NxM
grid of segments, the entire surface is divided into four regions and each is then flattened in sequence.
Following the flattening of A, and its surrounding 8 points, point A,, for example can then be used as a
center to flatten its surrounding points according to the same principle of identical area used to flatten point
A,. Each region is flattened by repeating the above steps in the specific order shown in Fig.11, firstly
traversing the surface in the direction A0 - Al and then A0 > A2 on each consecutive row and column

working out from AQ to the diagonally opposite corner of the region.
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(a) Grid nodes of the first region flattening in a row

(b) Grid nodes of the first region flattening
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(c) Grid nodes of all four regions flattened
Fig.11 The steps of grid-flattening

When the surface shown in Fig.9 is flattened using the above method, the result is as shown in Fig.12.
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Fig.12 Rectangular lattices of the doubly-curved surface flattened onto the plane

Grid generation based on an improved guide-line method

After the flattening of the free-form surface, the improved guide-line method is used to generate grids in the
2D flattened domain. The guide-line method begins by considering a curve which is sketched onto the
original 3D surface by the architect and can represent the designer’s aesthetic intent. The process then covers
the entire flattened surface with multiple guide-lines by advancing the predefined guide line. The fluency
and regularity of the grid cells are largely determined by the advancing guide-lines.

The guide-line method presented here is an improvement on that developed by Gao et al. (2017b), since it
can deal with complex boundary conditions. Since the 2D flattened surface shares the same u-v parametric
field with the original 3D free-form surface, the original trimming boundary curves (both internal and

external) can be mapped onto the 2D flattened surface as shown in Fig.13.
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Fig.13 The trimming boundary on the flattened 2D surface

Guide-line advancement
First the initial guide-line should be sketched on the original surface by the designer, as shown in Fig.14.
This guide-line can then be directly mapped onto the flattened 2D surface, since they share the same

parametric field, as shown in Fig.15.

(@ Top view (b) Perspective view

Fig.14 The initial guide-lines on the original surface

Fig.15 The initial guide line on the flattened complete surface

New guide-lines are then generated on the flattened surface by advancing all the control points (defined in

13



Eq.(1)) of the preceding guide-line by a fixed distance I, which is the desired member length of the final
gridshell. A special case is that the initial guide-line is not long enough to intersect with the boundary curves,
an extended guide-line with tangent line at both ends of the original curves can be used. Taking the NURBS
surface in Fig.8 as an example and starting from the initially defined guide-line (Fig.15), the resulting plane

covered with guide-lines is shown in Fig.16.

RN
AV

00

Fig.16 The flattened complete surface covered with guide-lines

The intersections between guide-lines and boundaries

After the flattened 2D surface is covered with guide-lines, the intersections between each guide-line and the
boundaries are calculated, which includes internal as well as external boundaries, to allow the guide-lines to
be trimmed. A special case is that the guide-line is tangent to the boundary curve, in which case the
intersection point at that boundary should be ignored. If the first intersection is on part of the boundary that
is to be kept after trimming, such as point A in Fig.17, then the curves between subsequent pairs of
intersections should be deleted, shown as a dashed-line on part of guide-line A in Fig.17. Otherwise, if the
first intersection is on part of the boundary which needs to be deleted, then the part of the guide-line between
it and the next intersection is removed, along with any part of the curve between subsequent intersections as

was the case with guide-line A. The dashed part of guideline B in Fig.17 demonstrates this case.

Fig.17 The trimmed guide-lines on the flattened 2D surface
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Mapping the guide-lines to original surface
Since the original surface shares the same u-v (coordinates in the parametric field as defined in Figure 7)
parametric field with the flattened 2D surface, the guide-lines generated in the flattened surface can be

directly mapped back to the original surface, as shown in Fig.18.

(@ Top view (b) Perspective view

Fig.18 Guide lines mapped back to the original 3D surface
If two guide-lines are initially sketched on the 3D surface in different directions, then each can be mapped

to sets of guide-lines in the same way, resulting in quadrilateral grids, as shown in Fig.18.

Grid relaxations

The grids generated in this way are generally fluent and with regular grid sizes. However, a relaxation method
may be needed to further smooth the generated grids, as implemented by Williams (2001) in the design of
the British Museum Great Court roof (Fig.1). The Particle-spring method was successfully used by Kilian
and Ochsendorf (2005) to form-find structural forms in pure compression or tension. In their method, axial
springs connecting lumped-masses were used to represent the physical behavior of a gridshell of truss
members. External gravity forces were then applied and the dynamic system solved iteratively until a final
equilibrium was achieved. The method has been improved and adapted for the optimization of generated
grids by introducing a “pulling force” to keep the particles on a desired surface (Williams 2001), introducing
a “pulling force”, as shown in Fig.19, which prevents the particles from moving off the pre-defined surface.
The particle-spring system serves as an excellent method of smoothing the grids generated, and the

equilibrium position of each mass on the surface is achieved through an iterative process.
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Springs

Forces alone spring

Force pulling to surface

Surface

Force pulling to curve

Fig.19 The equilibrium of the particle-spring system

To apply the particle-spring method to the grid-lines resulting from the surface flattening and guide-line
method, each node of the grid can be regarded as a particle and the members considered as springs. When
the springs are given an initial length I, the forces in the particle-spring system will not generally be
equilibrium. There are three types of force applied to the particles, as shown in Fig.19. First, a force is
applied between two particles when they are connected by a spring. The second force stems from a particle
which is fixed, such as particles defined on the boundries (internal and external) of the surface. Finally,
forces are applied to prevent the particles from moving off the surface.

Each particle is assumed to have a constant lumped mass m and each rod is taken as a linear elastic spring
with a constant slack-length |, and constant axial stiffness kg, 4. Since these values have no physical
relevance and are simply used to solve for equilibrium, without loss of generality, the lumped mass m can
be set to 1 and the stiffness ki, Used to control the convergence speed. This stiffness is set to a larger
value during the first few iterations to accelerate convergence and is then gradually reduced to achieve stable
equilibrium. Each spring applies a force to the particles at its ends as:

f=Ua—=D" kspring (12)

where the [; is the deformed length of the spring. Each particle i will therefore be subjected to unbalanced

internal forces from its connecting springs {S} as:

Fspring,i= Z fi,j (13)
(.)els}

For the particles on the boundaries, a force F,,,.; Will be used to pull the particles back to the boundary

curve:
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Feurvei = Keurve * Qespe (14)

in which k., 1S a coefficient, larger values of k.. indicate a stronger constraint on the particles.
dcurvei 1S the distance between the particle and the boundary curve which can be calculated using (Piegl
and Tiller 2012). e; is an exponent penalty parameter of the distance, with a larger factor of e; meaning that
particles further from the boundary will be subjected to more constraint while particles closer to the boundary
have less restoring force applied (when d,,.; is larger than a unit). This accelerates convergence whilst
avoiding unnecessary oscillations.

For non-boundary particles, a force Fg,,rqce; IS Used to constrain the particles to the surface, allowing them

to slide within the surface but not move off;:

e

Fsurface,i = ksurface ’ dslztrface.i (15)

Where Kgyrpace 1S @ coefficient similar t0 kcyrype, dsurpace 1S the distance between the particle and the
surface and e is an exponent parameter similar to e;.

The resultant force of each particle can be calculated by:

F=F,

springi

n { Fourvei for particles on boundary curves (16)

Fourface,i for other particles

The equations of motion are then applied to all particles using the kinematic motion equations of particles

in a viscous damping environment:

FoiecC v
;= T 7 € Vi 17)
m
Vg1, = Vpi T Qg "A L (18)
1
dip1; = dp; + > (vt+1,i + 171:,1‘) At (19)

where F.;, a.;, vy; and d,; are the force, acceleration, velocity and position respectively for particle i at
time t. c is the viscous damping coefficient and A t is the length of the discrete time step.

An iterative process has traditionally been applied to solve these equations of motion for the form-finding
of cable-net and membrane structures (Williams 2001; Topping and Ivanyi, 2008; Adriaenssens et al., 2012;
Richardson et al., 2013) with discussions on the effects of the given parameters on convergence also available
(Barnes, 1977; Topping and Khan, 1994) and so further elaboration is not needed here. However, a simple
example is presented below, implementing the method on the free-form surface show in Fig.20. An initial
grid on the surface with distorted and coarse grid cells is presented on the left of Fig.21. In this example, the
stiffness Kcyrve aNd kgyrpqce Were takenas 1000 and kgpping Was 0.01. The viscous damping coefficient

¢ was set to 30, iteration time step A t was 0.01 and the exponents e; and e, were both taken as 2. The

17



variance of member length is selected as the index to evaluate the quality of the generated grid, with lower
index indicating a grid with better quality, and is calculated in the same way as Gao et. al (2017), where the
variance of member length is defined as:

Z?’:l(li_l)z
N

= (20)

where N is the total number of edges and I is the slack length of the edges. A smaller value of § indicates a
more uniform grid. The variance of member length gradually reduces to a stable value as the iterations
progress, as shown in Fig.22. The variance in member length of the initial grid is 39.62. After the relaxation,
the variance of member length has reduced to 6.01, with a more smooth and regular grid shown on the right

of Fig.21. It is important to note that the values of stiffness and damping do not take the real physical values

of the gridshell structure, but are chosen to accelerate convergence of the particle-spring system.

Fig.20 A free-form surface for the grid generation

Fig.21 The initial grid on the surface (left) and the smoothed grid (right)
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Fig.22 The variance of member length with the iterations

Case studies

For the case studies in the paper, kcype = Ksurface = 15000, Kgpring Was taken as 64, e1=e;=2 while
c=16. The iteration time step A t was 0.01. It is worth noting that the value of parameters should be defined
in a trial and error procedure.

British Museum Great Court roof

The steel and glass roof of the British Museum Great Court covers a rectangular area 70m wide and 100m
long. The Reading Room, which has a cylindrical shape of diameter of 44m, is located near the center of the
roof. The shape of the roof was defined by a mathematical function and more information is provided by

Williams (2001), with the original trimmed surface shown graphically in Fig. 23.

Fig. 23 Original trimmed surface of British Museum Great Court Roof
The original surface was obtained analytically (Williams 2001) and a surface reconstruction procedure was

therefore employed to create a NURBS version for this study. The reconstructed NURBS surface was
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discretized and flattened by employing the procedures presented above and the flattened surface is shown in

Fig. 24.

Fig. 24 The reconstructed and the flattened surface with trimming boundary
The diagonals were first chosen as the initial guide-lines, as shown in Fig.25. Crossing guide-lines were used
to generate the quadrilateral mesh on the flattened surface, and the generated grids were then mapped to the
3D surface. It can be seen from Fig. 26 that the generated grids follow the initial guide-line definition and
the grids were generally fluent even without the particle-spring relaxation process being applied. Some very
short rods were present close to the boundary, and so vertices very close together at the boundaries were

merged.

(@)

(b)

Fig. 25 Case 1: initially defined guide lines on (a) reconstructed complete surface and (b) flattened surface
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(@) Top view (b) Perspective view
Fig. 26 Quadrilateral grids of case 1
To show the flexibility of the grid generation process, Case 1 above was then relaxed using the particle-
spring method and the results are shown in Fig. 27. Compared to the unrelaxed results in Fig. 26, fewer short
rods are observed along their boundary curves. Fig. 28 shows the decreasing variability in member length as

more iterations of the grid relaxation method are carried out.

(@ Top view (b) Perspective view
Fig. 27 Relaxed quadrilateral grids of case 1
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Fig. 28 Change of member length to the iterations for the quadrilateral grid
By generating the diagonals of each quadrilateral grid cell, as shown in Fig. 29, a triangular grid was obtained.
Since the new diagonal rods were not very smooth, with kinks especially where they cross the diagonals of
the roof, the grid relaxation procedure was further employed on the triangular grid and the results are shown
in Fig. 30, leading to more fluent grids and fewer kinks. Fig.31 shows the decreasing variation of member
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length with regard to the iterations of grid relaxation.
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Case study #2 uses two slightly different initial guide-lines, as shown in Fig. 32, with the diagonals curved
to cross closer to one of the shorter boundaries of surface. The resulting grid (shown in Fig. 33) is then taken
through the same stages of processing as described above, with the relaxed quadrilateral grid shown in

Fig. 34, the triangular grids shown in Fig. 35 and the relaxed triangular grids are shown in Fig 36.

Fig. 32 Case 2: initially sketched guide lines on (a) reconstructed complete surface and (b) flattened

surface
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Fig. 33 Quadrilateral grids of Case 2

(@) Top view (b) Perspective view
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Fig. 34 Relaxed quadrilateral grids of Case 2

A
:{;
i

W

;%N

N
W
J
i

o
|

o

o R BT T
xvdﬁﬂ:_ﬁ'gz‘%’_f' ST,

#Y
I,
Ny

=
s

WA
T
AR

)
"
i
i

Y

e et

/)

CToR ok
STt

ST

iy G §
e i =i
= i -
e iy L W s e
g i i By Hl3] e e rroaes e
I e bt s e
g i B A N Rt 20 e ey WAV
=R i IS e
. = =
e N i & e SN,
e e T o P e
i R o g R 1K 1hi / f A A T o ek SV .
= i e e
Tk il s P e o T
o e ey i I ST
=T i :
=lr=] 1403
ltisy ik
ey i
[ o] b
=15 {
(|

N AAARN T

DNAFAARSIAA,
AN AT

\A
s
AN,
Aﬂﬁvmﬁ%{"
VAR
e?

e
i
Cawr A,
S ST
AT ok v AL
s Fa A
S P I

i,
Wy,

Y
s
s
iz
ey

l
:
;

I

(@ Top view (b) Perspective view

Fig. 35 Triangular grids of Case 2
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Fig. 36 Relaxed Triangular grids of Case 2
Case study #3 uses similarly curved diagonals, this time crossing closer to a long boundary of the surface
(Fig.37). The results are shown in Figs. 38-41. The guide lines to generate the quadrilateral grids without
any post-processing are shown in Fig. 38, the relaxed quadrilateral grids are shown in Fig. 39, the triangular
grids by connecting the diagonals of each quadrilateral are shown in Fig. 40, whilst the relaxed triangular

grid pattern is shown in Fig. 41.
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Fig. 37 Case 3: initially sketched guide lines on (a) reconstructed complete surface and (b) flattened

surface
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Fig. 38 Quadrilateral grids of Case 3
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Fig. 39 Relaxed quadrilateral grids of Case 3
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Fig. 41 Relaxed triangular grids of Case 3
It can be seen from these three case studies that by defining different guide-lines on the surface, various

reasonable and smooth options for a gridshell roof can be obtained quickly that respond to the intent of the

designer.

A stadium roof

To demonstrate the usefulness of the method on a more complex boundary, the roof surface of a stadium
from practice has been used as a case of study. The original surface sketched by the architects is shown in
Fig. 42, while the complete surface without trimmed boundaries is shown in Fig. 43. The entire surface and
the boundary curves were flattened using the procedure in Section 3 and the results are presented in Fig. 44.
The guide-lines were then advanced on the flattened surface and mapped back to the original surface as
shown in Fig. 45 using the method described in Section 4. Vertices close to each other near the boundary
curves were then merged to avoid any possible short rods, while the grid relaxation process was used to

improve the smoothness. The grid near the internal voids is shown in detail in Fig. 46 and it can be seen that
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the resulting grids are fluent and the rod lengths near the boundary are changed locally near the boundary

curves.

(a) Top view (b) Perspective view

Fig. 42 Trimmed surface

(a) Top view (b) Perspective view

Fig. 43 The complete surface

Fig. 44 Flattened Trimmed Surface
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Trimmed surface with round hole

Another roof surface from practice has been used as case of study to underpin the framework proposed. The
original surface sketched by the architects is shown in Fig. 47. The entire surface and the boundary curves
were flattened using the procedure in Section 3 and the results are presented in Fig. 48. The guide-lines were
then advanced on the flattened surface and mapped back to the original surface as shown in Fig. 49 and Fig.

50 using the method described in Section 4 to generate triangular and quadrilateral grids.

Fig. 47 Original surface

Fig. 48 Flattened Surface and initial guide lines
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(a) Top view (b) Perspective view

Fig. 49 The resulted quadrilateral grids

(a) Top view (b) Perspective view

Fig. 50 The resulted triangular grids

It is worth noting that the initial guide lines defined over the surface set the tone of the grid and reveal
the intent of the designer. What kind of initially defined guide lines are the more favourable pattern in
terms of appearance most likely depends on the individual preference of the architect.

The grid generation and the mass-spring relaxation method was programmed into software ‘ZD-Mesher’
(Gao, Li et al., 2017), and was specifically developed by the authors for the purpose of free-form grid
generation. The software was developed for a Microsoft Windows operating system in C++, with the GUI
framework based on MFC (Microsoft Foundation Classes). As well as implementing the algorithms for grid
generation, the software provides essential visualization and data exchange functions. It also provides

commands assisting with sketching a curve on the surface, dividing a curve into segments by number or by
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length and merging several curve segments into a single curve for further operations. The software is also
able to exchange data with other commercial software packages as part of an integrated design process using

data formats such as IGES, STEP, BREP, and STL.

Conclusions

A grid generation and relaxation technique for free-form surfaces with complex boundaries is proposed for
the design of structural gridshells, based on a surface flattening technique and an improved guide-line
method. The parametric domain of the complete NURBS surface is firstly divided into a number of parts
and a discrete free-form surface is formed by mapping dividing points onto surface. The free-form surface
is then flattened based on the principle of identical area. Accordingly, a flattened rectangular lattice is
generated on the 2D surface by employing the guide-line method and complex boundaries are dealt with by
removing segments of the curves outside the design domain. The 2D grids are then mapped back onto the
3D surface, and a mass-spring method employed to further improve the smoothness of the resulting grid.
The results not only meet the requirements of regular shapes and fluent lines, but they also embody the
design intent of the grids and have a high quality around the inner boundary.

The proposed framework can efficiently generate grids for design of free-form gridshell with both internal
and external boundaries and the framework has been shown to be useful in facilitating the conceptual design

process of free-form gridshells in engineering practice.
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