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Abstract

The use of the virtual work theorem enables one to derive the equations of static
equilibrium of fabric, shell and gridshell structures from the compatibility equations
linking the rate of deformation of a surface to variations in its velocity. If the
structure is treated as a continuum there is no need to consider its micro-structure
provided that the grid is fine compared to the overall geometry. Thus we can include
fabrics, ribbed shells, corrugated shells and gridshells with a fine grid, such as the
Mannheim Multihalle. The equilibrium equations are almost identical to those
obtained by assuming that a shell is thin and of uniform thickness, but are more
general in their application. Our formulation introduces the concept of geodesic
bending moments which are relevant to gridshell structures with continuous laths.

The virtual work theorem is more general than the energy theorems, which it in-
cludes as a special case. Hence it can be applied to surfaces which admit some
form of potential, including minimal surfaces and hanging fabrics. We can then use
the calculus of variations for the minimization of a surface integral to define the
form of a structure.

Many existing formfinding techniques can be rewritten in this way, but we concen-
trate on surfaces which minimize the surface integral of the mean curvature subject
to a constraint on the enclosed volume, producing a surface of constant Gaussian
curvature. This naturally leads to the more general study of conjugate stress and
curvature directions, and hence to quadrilateral mesh gridshells with flat cladding
panels and no bending moments in the structural members under own weight.

Key words: Virtual work, fabric structure, shell theory, gridshell, calculus of variations, conjugate
directions
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1 Introduction

The principal of virtual work was formalized by Johann Bernoulli and Joseph-Louis
Lagrange in the 18th century (Capecchi, 2012) and today is taught to all civil and
mechanical engineering students. It is the basis of the application of the finite
element method to structural mechanics, although the formulation it produces is
often identical to that obtained using the Galerkin method. Virtual work is closely
related to the calculus of variations and the concept of strain energy, but it is more
general in that it can be applied to non-elastic materials and to loads which do not
admit a potential, such as wind loads.

Virtual work considers a virtual or imaginary infinitesimal increment of displacement
and deformation of a structure which may be undergoing a very large deformation.
It then calculates the increment of work done by the loads on the structure and uses
the divergence theorem to relate this to internal stresses and strains. It is perhaps
better to instead imagine a virtual velocity, in which case the increment of work is
replaced by the rate of work, or power, and in French they use the term puissances
virtuelles, literally virtual power.

Virtual work requires the geometric compatibility equations relating increment of
displacement to increment of deformation or strain and uses the virtual nature of
the increment of deformation to derive the equations of static equilibrium. Thus
the method is purely geometric, with no concept of resolution of forces or moments,
which should hopefully appeal to those with a background in geometry. The
advantage of using velocity instead of increment of displacement is that the velocity
is the derivative of position with respect to time, and we can therefore use all the
properties of differentiation, rather than the more unwieldy process of letting the
magnitude of the displacement tend to zero.

It it should be emphasized that we have essentially 3 types of equation,

• the compatibility equations relating variations in velocity to rate of deformation,
both stretching and bending,

• the virtual work equation and

• the equilibrium equations relating loads to internal forces and moments.

Any 2 of these imply the 3rd and we will use the compatibility equations and virtual
work to obtain the equilibrium equations. One could use the compatibility equations
and the equilibrium equations to prove the virtual work equation, and engineers
often use the equilibrium equations and virtual work to solve a geometric problem
involving the deformation of truss structures.

We shall assume that the structure is either a continuous shell or fabric structure, or
has a fine grid so that it can be treated as a continuum, both from the geometrical
and structural points of view.

In general we will follow the notation in Green and Zerna (1968) for both geometric
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quantities and quantities such as force and stress. There are many books and papers
on shell theory, for example Timoshenko and Woinowsk-Krieger (1959), Flügge
(1973), Calladine (1982) and Axelrad and Emmerling (1988), but in our view the
notation in Green and Zerna is to be preferred because it has the added advantage
that it is essentially as that used by Einstein for the general theory of relativity
(Dirac, 1975), where, of course, the stress-energy tensor causes the curvature of
space-time so that stress is essentially a geometric concept with principal values
equal to the density and the 3 principal stresses.

The references cited in the previous paragraph could be loosely described as ‘engi-
neering’ texts. But there are numerous other relevant references in mathematics,
architectural geometry and computer graphics including Kupferman et al. (2017),
Vouga et al. (2012), Yang et al. (2011), Jiang et al. (2015) and Diamanti et al.
(2014).

2 The application of virtual work to pin jointed space structures

Before considering shell structures let us examine a simpler case, that of pin jointed
space structures. This enables us to understand the fundamental idea behind the
application of virtual work. One could imagine a shell, or even a 3 dimensional
continuum, as being made up of a very fine structure of pin ended members, and
indeed this is done in the numerical methods, peridynamics (Silling and Lehoucq,
2010) and smoothed particle hydrodynamics (Monaghan, 2012). At the molecular
level the assumptions of continuum mechanics break down, so that a pin jointed
framework is theoretically just as realistic as a continuum.

The length Li of the member with ends at nodes numbered ai and bi is given by
Pythagoras’ theorem,

L2
i = (xai−xbi) · (xai−xbi) (1)

where x j is the position vector of node j.

Differentiating with respect to time we obtain

2LiL̇i = 2(xai−xbi) · (ẋai− ẋbi)

so that

L̇i =
(xai−xbi) · (ẋai− ẋbi)

Li
. (2)

The virtual work equation is

n

∑
j=0

(p j · ẋ j) =
m

∑
i=0

(
TiL̇i
)

(3)

where the members are numbered from 0 to m and the nodes are numbered from 0
to n. p j is the load applied to node j and Ti is the tension in member i.
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Therefore using (2),

n

∑
j=0

(p j · ẋ j) =
m

∑
i=0

(
Ti

Li
(xai−xbi) · (ẋai− ẋbi)

)
.

But this applies for any virtual set of nodal velocities. So if we imagine that all the
nodes are stationary except for node j

p j · ẋ j =
m

∑
i=0

(
Ti

Li
(xai−xbi) ·

(
δ jai ẋ j−δ jbi ẋ j

))
in which

δ jai = 0 if j 6= ai

= 1 if j = ai .
(4)

Therefore since the direction of ẋ j is arbitrary,

p j =
m

∑
i=0

(
Ti

Li

(
δ jai−δ jbi

)
(xai−xbi)

)
(5)

which are the equilibrium equations that we could have obtained by resolving forces at
the nodes. We do not actually need the δ jai and δ jbi in a numerical implementation
since we sum over all the members adding forces to the nodes as appropriate.

Thus any 2 of equations (2), (3) or (5) imply the third.

Equation (3) looks like a statement of conservation of energy, rate of work being
done by loads equal rate of work being absorbed by members, but there is no
suggestion the the deformation or the forces are ‘real’, provided that ẋ j and L̇i are
geometrically compatible and p j and Ti are in equilibrium with each other.

Note there is absolutely no assumption that the displacements are small, although
we do have to consider velocities or increments of displacement. Li is the current
length of a member, which might be stretched to many times its original length.
Similarly x j are the current positions and the initial member lengths and positions
do not appear at all. Indeed there may be no meaningful concept of initial lengths
and positions since we may have to move nodes and stretch or compress members
to fit the structure together, possibly deforming the members permanently.

There is also no assumption about material properties, the members do not have to
be elastic and we have made no assumption about the relationship between Ti and
Li.

2.1 The stiffness matrix

We are not concerned with stiffness in this paper. However, since there is a great
deal of confusion attached to the subject, let us differentiate (5) with respect to



The use of virtual work for the formfinding of fabric, shell and gridshell structures

time,

ṗ j =
m

∑
i=0

(
d
dt

(
Ti

Li

)(
δ jai−δ jbi

)
(xai−xbi)

)
+

m

∑
i=0

(
Ti

Li

(
δ jai−δ jbi

)
(ẋai− ẋbi)

)
.

(6)

If the members are elastic, or if they are plastic and we have sufficient knowledge of
past deformation, we can write

d
dt

(
Ti

Li

)
= si

L̇i

Li
= si

d
dt

(logLi) (7)

where the member stiffness si may itself be a function of the current Li.

Then

ṗ j =
m

∑
i=0

(
si

L̇i

Li

(
δ jai−δ jbi

)
(xai−xbi)

)
+

m

∑
i=0

(
Ti

Li

(
δ jai−δ jbi

)
(ẋai− ẋbi)

)
=

m

∑
i=0

((
δ jai−δ jbi

)(
si
(xai−xbi)(xai−xbi)

L2
i

+
Ti

Li
I
)
· (ẋai− ẋbi)

) (8)

in which I is the unit tensor in 3 dimensional space.

The term containing si is the elastic stiffness and the term containing
Ti

Li
is the

geometric stiffness. The geometric stiffness is so called because it only depends
upon the geometry and the state of stress, not the elastic properties, except in so
much as they may influence the state of stress.

3 The equations of static equilibrium of shell structures

The concept of virtual work is much more difficult to grasp for shell structures
than for the pin jointed structures described in section 2 because the associated
mathematics involving the differential geometry of a deforming surface is complicated.
Therefore, rather than leave the main results until after they have been proved, we
will quote them now as an incentive to follow their derivation.

The equation of equilibrium of forces is

∇ ·σ+p = 0 . (9)

This is a vector equation corresponding to equilibrium in 3 directions, that is the 2
directions tangential to the surface and the normal direction. The vector p is the
load per unit area on the structure and σ is a second order tensor containing the
membrane stresses and the normal shear forces associated with bending. The ∇·
is the divergence described in Section 4.3. In the case of a structure which is not
static we can include inertia forces using D’Alembert’s principle.
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The form of eq. (9) is essentially the same as eq. (5) and indeed much of the theory
of peridynamics and smoothed particle hydrodynamics is to establish link tensions
which will have the same effect as stresses in a solid or a fluid.

Equation (9) is identical to that for a 3 dimensional continuum and in relativity
theory ∇ ·σ= 0 is the equation for the conservation of momentum and mass-energy.

Figure 1: Mannheim Multihalle, Germany 1974. Frei Otto, Carlfried Mutschler and Winfried
Langner, Ove Arup and Partners

The equation of equilibrium of moments is

(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (10)

where the superscript T means the transpose. Thus we are saying that the second
order tensor (σ+∇ ·m+ c) is symmetric, which is equivalent to the resultant
moment about 3 directions being zero, again 2 directions tangent to the surface
and the surface normal. m is the third order tensor containing the moments in the
surface, both ‘ordinary’ bending and twisting moments about axes in the plane of
the surface and ‘geodesic’ bending moments about the normal which are relevant
to gridshell structures with continuous laths, like the Mannheim Multihalle gridshell
(fig. 1) or a kitchen sieve made from a woven wire mesh. Both the Mannheim
Multihalle and a sieve have a fine grid, making it appropriate to treat them as
continua. The second order tensor c is the loading couple per unit area, which
is zero in almost all practical applications, and again we can include the effect of
acceleration using D’Alembert’s principle.

To our knowledge this is the first time that this concept of geodesic moments has
been introduced.
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4 Differential geometry of a stationary surface

4.1 The base vectors and the first fundamental form

We first need to define the geometric quantities of a stationary surface before we
can examine how they vary as the surface deforms. The contents of this section
will be familiar to some readers, but we need to define all our terms so that we can
differentiate them with respect to time in Section 5 where we consider a deforming
surface.

Imagine a surface defined by the curvilinear coordinates, θ 1 and θ 2. The position
vector of a typical point on the surface and its Cartesian coordinates are given by

r
(
θ

1,θ 2)= x
(
θ

1,θ 2) i+ y
(
θ

1,θ 2) j+ z
(
θ

1,θ 2)k (11)

in which i, j and k are unit base vectors in the direction of the Cartesian axes, x, y
and z. We use the surface coordinates or parameters θ 1 and θ 2 with superscripts
to replace the more usual u and v so that we can use the tensor notation, which
is indispensable if one is to consider both geometry and structural concepts such
as stress. Following the notation in Green and Zerna (1968), the covariant base
vectors, aα , in which α is equal to 1 or 2, are given by

aα =
∂r

∂θ α
= r,α . (12)

A comma will be used to denote partial differentiation. a1 is tangential to a curve
θ 2 = constant on the surface and a2 is tangential to a curve θ 1 = constant. In
general neither a1 nor a2 will be unit vectors, and they will not be perpendicular to
each other.

The square of the distance between two adjacent points on the surface is equal to

2

∑
α=1

2

∑
β=1

aαβ dθ
αdθ

β = aαβ dθ
αdθ

β

aαβ = aβα = aα ·aβ

(13)

in which we have used the Einstein summation convention for the implied summation
for repeated subscripts and superscripts. aαβ are the covariant components of the
metric tensor, also known as the coefficients of the first fundamental form. Eisenhart
(1947) uses gαβ and Struik (1961) uses E, F and G.

The unit normal is

n =
a1×a2

|a1×a2|
(14)

and here our notation differs from Green and Zerna who use a3. We will also have



Emil Adiels, Mats Ander, Erica Hörteborn, Jens Olsson, Karl-Gunnar Olsson, Alexander Sehlström,
Paul Shepherd, Chris Williams

occasion to use the contravariant base vectors, aα , defined by

aα ·aβ = δ
α

β
= 0 if α 6= β

= 1 if α = β

aα ·n = 0 .

(15)

a1 lies in the tangent plane to the surface perpendicular to a curve θ 1 = constant
and its magnitude is such that a1 ·a1 = 1, and similarly for a2.

Using aαβ and
aαβ = aβα = aα ·aβ (16)

we can raise and lower indices using equations such as

aα = aαβ aβ

aα = aαβ aβ

qαβ = aαλ qλ
· β

in which the dot in qλ
· β

is used maintain the order of indices. If the second order
tensor q is symmetric then qαβ = qβα and we can dispense with the dot and write
qλ

β
.

The components of the permutation tensor,

ελ µ =−εµλ

ε11 = 0, ε12 =−ε21 =
√

a, ε22 = 0
(17)

in which
a = |a1×a2|2 = a11a22− (a12)

2 (18)

are used to perform the vector products,

aα ×aβ = εαβ n

n×aα = ε
αβ aβ .

(19)

a is not a scalar since it is a property of the coordinate system.

4.2 The second fundamental form and the Christoffel symbols

The components of the normal curvature tensor, or coefficients of the second
fundamental form, are

bαβ = bβα = aα,β ·n =
∂ 2r

∂θ α∂θ β
·n =−aα ·n,β . (20)

Eisenhart (1947) uses dαβ and Struik (1961) uses e, f and g. bαβ , together with
aαβ , contain all the information about the normal curvature and twist of the surface,
including the principal curvatures and their directions. The Gaussian curvature,

K =
b11b22− (b12)

2

a11a22− (a12)
2 (21)
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is equal to the product of the principal curvatures and the mean curvature,

H =
1
2

aαβ bαβ =
1
2

bα
α (22)

is the average of the principal curvatures.

bαβ give the component of aα,β normal to the surface and the Christoffel symbols,

Γ
χ

αβ
= aα,β ·aχ =

1
2

aχη
(
aηα,β +aβη ,α −aαβ ,η

)
(23)

give the components of aα,β tangent to the surface. Note that the Christoffel
symbols are not the components of a tensor because they represent properties of
the coordinate system rather than the surface itself.

The fundamental theorem of surface theory states that the tensor components aαβ

and bαβ define the shape of a surface, but not its position and orientation in space.
aαβ and bαβ are not independent since they come from differentiating 3 Cartesian
coordinates with respect to the surface coordinates. Writing

aα,β χ =
(

bαβ n+Γ
λ

αβ
aλ

)
,χ
= aα,χβ =

(
bαχn+Γ

λ
αχaλ

)
,β

(24)

gives the 3 conditions that the surface ‘fits together’. These are known as Gauss’s
theorema egregium and the Codazzi-Mainardi equations,

∇λ bαβ = ∇αbλβ (25)

in which the covariant derivative,

∇λ bαβ = bαβ ,λ −bηβ Γ
η

αλ
−bαηΓ

η

βλ
. (26)

4.3 Component free notation and the gradient of a tensor

It is rather unsatisfactory to only be able to talk about the components of a tensor,
rather than the tensor itself, and we can write the second order normal curvature
tensor, b, as

b = bαβ aαaβ = bβ

αaαaβ = bαβ aαaβ (27)

in which the product aαaβ , without a dot or a cross is the tensor product, or outer
product, sometimes written with a ⊗, defined by

(de) ·g = d(e ·g)
g · (de) = (g ·d)e

(28)

where d, e and g are any vectors. We shall also use the double dot notation,

(de) · ·(gh) = (d ·g)(e ·h)
(cde) · · · (ghpq) = (c ·g)(d ·h)(e ·p)q

(29)
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which can be extended to any number of dots.

Let us now imagine that we have a vector field on a surface, that is a first order
tensor field,

v = vαaα + vn (30)

with components tangential to the surface, vα , and normal to the surface, v. We
will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ

((
∇β vα − vbα

β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vη

Γ
α

ηβ
. (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ

Γ
α

λα
=

(vα
√

a),α√
a

. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,∫

A

∇ ·vdA =
∫
A

∇αvα
√

adθ
1dθ

2 =
∫
A

(
vα
√

a
)
,α

dθ
1dθ

2

=
∫

∂A

vα
εαβ dθ

β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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5 Deformation of a surface

5.1 Velocity

Now let us imagine a moving and deforming surface defined by the curvilinear
coordinates, θ 1 and θ 2, and time t. The position vector of a typical point on the
surface is now given by

r
(
θ

1,θ 2, t
)
= x
(
θ

1,θ 2, t
)

i+ y
(
θ

1,θ 2, t
)

j+ z
(
θ

1,θ 2, t
)

k . (37)

The velocity vector is

u = uµaµ +un =
∂r
∂ t

. (38)

We imagine that the coordinates move with the surface, like the laths of a gridshell.

5.2 Strain rate and angular velocity

The gradient of the velocity is

∇u = aλ u,λ =
(
∇λ uµ −bλ µu

)
aλ aµ +

(
uµbµ

λ
+∇λ u

)
aλ n

=
(
γλ µ +ωελ µ

)
aλ aµ + ελ µω

µaλ n
(39)

in which the symmetric strain rate tensor,

γ= γT =
1
2

(
(∇u−∇u ·nn)+(∇u−∇u ·nn)T

)
= γλ µaλ aµ

(40)

and the anti-symmetric angular velocity tensor, or vorticity tensor,

ω=−ωT =
1
2

(
(∇u−n∇u ·n)− (∇u−n∇u ·n)T

)
= ωελ µaλ aµ + ελ µω

µ

(
aλ n−naλ

)
.

(41)

ω is defined by only 3 quantities, ω , ω1 and ω2, which could be considered to be
the components of a vector.

We can write

∇u = γ+ω−nn ·ω (42)
u,λ = aλ · (γ+ω) (43)
∂n
∂ t

= n · (γ+ω) = n ·ω (44)

and we have the results
∂aαβ

∂ t
= u,α ·aβ +aα ·u,β = aα ·

(
∇u+(∇u)T

)
·aβ = 2γαβ (45)

∂aαβ

∂ t
=−2γ

αβ (46)

1√
a

∂
√

a
∂ t

= aαβ
γαβ . (47)
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂

∂ t

(
bαβ n+Γ

λ

αβ
aλ

)
=

∂bαβ

∂ t
n+

∂Γλ

αβ

∂ t
aλ +bαβ

∂n
∂ t

+Γ
λ

αβ
u,λ

= u,αβ = aα ·
(

aλ u,λ

)
,β
−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γ

λ

αβ
u,λ

=
(
aβ aα

)
· ·∇∇u+Γ

λ

αβ
u,λ

(48)

and (
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω−nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ

αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ

αβ

∂ t
=
(

aβ aαaλ

)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ

αβ
are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ

αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη

(
∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γ
ληaµηΓ

µ

αβ
+aλη

 ∇β γηα + γχαΓ
χ

ηβ
+ γηχΓ

χ

αβ

+∇αγβη + γχηΓ
χ

αβ
+ γβ χΓ

χ

ηα

−∇ηγαβ − γχβ Γ
χ

αη − γαχΓ
χ

βη


= aλη

(
∇β γηα +∇αγβη −∇ηγαβ

)
(53)
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ

αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ

(
βαβ n+β

·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ

αβ

∂ t
aλ

)
= aαaβ

(
aαaβ

)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫
A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components

σ= aα

(
σ

αβ aβ +σ
αn
)

(60)

m = aαaβ

(
mαβ n+mα

·
β
· χ

aχ

)
. (61)

σαβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫
A

∇ · (σ ·u+m · ·(γ+ω))dA+
∫
A

(p ·u+ c · ·(γ+ω))dA (62)

in which

∇ · (σ ·u+m · ·(γ+ω)) = aα · (σ ·u+m · ·(γ+ω)),α

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(aαaα ·∇u)+m · · · (aαaα ·∇(γ+ω))

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(γ+ω)+m · · ·β

(63)

so that

W =
∫
A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫
A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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relative to the surface, adding or removing parts of the surface to just include some
arbitrary part of the structure. This leads to the equation of equilibrium of forces,

∇ ·σ+p = 0 (66)

and of moments
(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (67)

because ω is anti-symmetric.

6.3 The rate of work being absorbed

Finally we have the rate of work being absorbed by the structure,

W =
∫
A

((σ+∇ ·m+ c) · ·γ+m · · ·β)dA

=
∫
A

((σ+ c) · ·γ+m · · ·∇ω)dA+
∫

∂A

(dr×n) ·m · ·γ .
(68)

The term c · ·γ is there because the laths of a gridshell like that of the Mannheim
Multihalle can undergo different angular velocities about an axis normal to the
surface, like a pair of scissors, and the loading couples c can therefore do work.

It is important to realize that
∂bαβ

∂ t
may be non zero even when ∇ω is zero. For

example when a spherical shell undergoes a uniform expansion there are no rotations
but bαβ change because of the change in the magnitude of aα .

6.4 The equilibrium equations and rate of work being absorbed in terms
of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. (67), in
terms of components when they lose their essential simplicity,

∇ασ
αβ −σ

αbβ

α + pβ = 0 (69)

σ
αβ bαβ +∇ασ

α + p = 0 (70)

εαβ

(
σ

αβ −mηαbβ

η +∇ηmηαβ + cαβ

)
= 0 (71)

σ
β +∇αmαβ +

(
mλ µβ +mλβ µ

)
bλ µ + cβ = 0 . (72)

These equations are identical to equations (10.4.4) to (10.4.7) of Green and Zerna
(1968), if one makes the following changes to the notation, nαβ = σαβ , qα = σα ,
p̃β =−cβ , the sign of mαβ are reversed, |

α
is used instead of ∇α for the covariant

derivative and the components mηαβ = 0 and cαβ = 0. Green and Zerna derive their
equations from the 3 dimensional equations of equilibrium and integrating through
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.

The rate of work being absorbed, eq. (68), becomes

W =
∫
A

((
σ

αβ −mηαbβ

η +∇ηmηαβ + cαβ

)
γαβ +mαβ

βαβ +mα
·

β
· χ

β
·
α
·
β

χ
)

dA .

(73)

7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ
. Such structures include soap films, fabric structures,

shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2−K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write

ρ
∂Q
∂ t

= (σ+∇ ·m+ c) · ·γ+m · · ·β

=
(

σ
αβ −mηαbβ

η +∇ηmηαβ + cαβ

) 1
2

∂aαβ

∂ t

+mαβ
∂bαβ

∂ t
+mα

·
β
· χ

∂Γ
χ

αβ

∂ t

(74)

in which

∂

∂ t

(
ρ
√

a
)
= 0 (75)

1
ρ

∂ρ

∂ t
=− 1√

a
∂
√

a
∂ t

=−aαβ
γαβ . (76)

7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)
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Thus Q does not depend upon bαβ or Γλ

αβ
and so the moments are zero giving

σ= σ
αβ aαaβ = σ

βαaαaβ (78)

and eq. (74) becomes

∂

∂ t

(
T
ρ

)
=− T

ρ2
∂ρ

∂ t
=

T
ρ

aαβ
γαβ =

1
ρ

σ
αβ

γαβ . (79)

Thus the membrane stress

σ
αβ = T aαβ

σ= T J
(80)

corresponding to the uniform surface tension.

J = aαβ aαaβ (81)

is the unit tensor on the surface.

Figure 2: Surface with constant mean curvature on a plane elliptical boundary

The surface in fig. 2 was found using dynamic relaxation (Day, 1965). The boundary
is a plane ellipse and the surface has the minimum surface area for a given enclosed
volume, like an inflated soap film. Dynamic relaxation was also used to find the
pressure necessary to enclose a fixed volume. The pressure cannot be kept constant
for a surface such as this because the pressure decreases with increasing volume,
once it is inflated beyond a certain point. It was found necessary to damp the
pressure change with both the rates of change of pressure and volume.
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7.2 Surfaces which minimize the integral of the mean curvature subject
to a constant volume

If we assume that the strain energy per unit mass is equal to the mean curvature
divided by the density, then

Q =
H
ρ

=
aαβ bαβ

2ρ
(82)

and

ρ
∂Q
∂ t

=
1
2

∂aαβ

∂ t
bαβ +

1
2

aαβ
∂bαβ

∂ t
− H

ρ

∂ρ

∂ t

= γ
αβ
(
Haαβ −bαβ

)
+

1
2

aαβ
∂bαβ

∂ t

=
(

Haαβ −bαβ

) 1
2

∂aαβ

∂ t
+

1
2

aαβ
∂bαβ

∂ t
.

(83)

Then comparison with eq. (74) shows that

mαβ =
1
2

aαβ . (84)

Assuming that the loading couples, c are zero, the equations of equilibrium of
moments show that

σ
αβ = σ

βα (85)
σ

α = 0 (86)

so that
σ

αβ −mηαbβ

η = Haαβ −bαβ (87)

and therefore

σ
αβ = Haαβ −bαβ +

1
2

aηαbβ

η

=
1
2

(
bη

ηaαβ −bαβ

)
.

(88)

or
σ= HJ− b

2
=
ε ·b ·ε

2
. (89)

We therefore have

∇ασ
αβ =

1
2

(
∇αbη

ηaαβ −∇αbαβ

)
=

1
2
(
∇αbη

η −∇ηbη
α

)
aαβ = 0 (90)

from the Codazzi-Mainardi equations, eq. (25), and

σ
αβ bαβ =

1
2

(
bη

ηaαβ −bαβ

)
bαβ

=
1
2

(
bα

αbβ

β
−bα

β
bβ

α

)
= K .

(91)
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Figure 3: Surface with constant positive Gaussian curvature on a plane elliptical boundary

Thus the tangential components of load

pα = 0 (92)

are zero and the normal component of load,

p =−K (93)

where K is the Gaussian curvature.

Thus if we minimize, or possibly maximize, the surface integral of the mean curvature
subject to the enclosed volume being constant we find that we need an internal, or
possibly external pressure, which must be a constant and therefore the Gaussian
curvature is also constant. One would imagine that this simple fact must have been
known before.

The moments in the surface do not affect equilibrium, and can therefore be dispensed
with and are purely a phantom, we only need the membrane stresses for equilibrium.

The mean membrane stress,

1
2

aαβ σ
αβ =

1
2

bη

η = H (94)

and therefore for a sphere with an outwards pointing normal the mean stress is
compressive, and we need an external pressure. On the other hand if we choose
to have the normal pointing inwards we have a tensile mean stress and an internal
pressure.

Figure 3 show a surface of constant positive Gaussian curvature on the same plane
elliptic boundary as that in fig. 2. The numerical procedure uses flat triangular
facets and the stress in the surface is represented by forces in each fold proportional
to the angle of the fold from flat. Those familiar with the Airy stress function
(Timoshenko, 1934) will realize that this is equivalent to the shell being its own
stress function, but with no projection onto the plane. The equilibrium shape was
again found using dynamic relaxation. Note that this procedure only controls the
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shape of the surface, not the position of the nodes upon it and therefore some other
constraint is required. In this case the folds were given an additional constant force
density, but the normal component of the extra resultant force was removed before
moving the nodes. This technique is commonly used to find geodesics on a surface
for fabric structures (Williams, 1980).

8 Simultaneous conjugate directions for membrane stress and cur-
vature

8.1 Non-orthogonal directions

In the stress state in eq. (89) the principal stress directions and principal curvature
directions coincide. That means we could construct a gridshell structure with an
orthogonal quadrilateral mesh with no bending moments and flat panels, subject to
a pressure loading. In this section we shall relax the pressure loading requirement,
because we are only really interested in the state of stress and the curvature. We
can also relax the condition on the mesh being orthogonal.

We can write any state of membrane stress as

σ= Axx+Byy
x ·x = 1

y ·y = 1

σ
αβ = Axαxβ +Byαyβ

(95)

corresponding to two monoaxial stresses of magnitude A and B in the directions
of the unit vectors x and y tangent to the surface. There are 3 values of the
components σ11, σ12 = σ21 and σ22, but 4 quantities A, B and the directions x
and y, see fig. 4. We therefore need 1 further condition, often taken as x ·y = 0,
which leads to the principal stresses and their directions, but we will not make that
assumption at this juncture.

Now let us postulate that we can write the normal curvature tensor b as

b =C (ε ·x)(ε ·x)+D(ε ·y)(ε ·y)

bαβ = εαλ εβ µ

(
Cxλ xµ +Dyλ yµ

) (96)

with the same unit vectors x and y. The reason for the ε in eq. (96) is that we want
the stresses to coincide with the directions of ‘folding’, rather than the directions of
curvature.

Then if σ and b are known we have 6 equations in the unknowns A, B, C, D and the
directions of x and y. These equations can be solved by introducing the orthogonal
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σ11

σ22

σ22

σ11

σ12

σ12

σ21

σ21

A x

B
y

Figure 4: Monoaxial stress state of magnitude A and B acting in the directions of unit
vectors x and y tangent to the surface on a small element of shell

unit vectors X and Y such the

x = Xcos
θ

2
+Ysin

θ

2

y = Xsin
θ

2
+Ycos

θ

2
X ·X = 1

X ·Y = 0

Y ·Y = 1

(97)

and substituting into eqs. (95) and (96) to give

σ=
(A+B)

2
(XX+YY+(XY+YX)sinθ)

+
(A−B)

2
(XX−YY)cosθ (98)

−ε ·b ·ε= (C+D)

2
(XX+YY+(XY+YX)sinθ)

+
(C−D)

2
(XX−YY)cosθ . (99)

Hence

Hσ+Sε ·b ·ε=
(

H
(A−B)

2
−S

(C−D)

2

)
cosθ (XX−YY) (100)

where S is the mean stress. We can find X and Y by observing that (X+Y) and
(X−Y) are the eigenvectors of (Hσ+Sε ·b ·ε). Having found X and Y we can
find all the other unknowns and further study shows that |cosθ | ≤ 1 and |sinθ | ≤ 1.
Thus it would appear that there is always a solution, except for the case when H
and S are both zero.
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8.2 Orthogonal directions

A special case of the previous section is when the curvature and membrane stress are
such that they share the same principal directions, so that x and y are orthogonal.

Figure 5: Plan and cross-section of shell with coincident principal membrane stress and
principal curvature directions

Then we can generalize the state of stress in eq. (89) to

σ= φJ+ψε ·b ·ε
σ

αβ = φaαβ −ψε
αλ

ε
β µbλ µ

(101)

where φ and ψ are scalar fields.

Using the Codazzi-Mainardi equations, eq. (25), the equilibrium equations become

(∇ ·σ+p) ·J = ∇φ +∇ψ ·ε ·b ·ε+p ·J = 0 (102)
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in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ

dz
(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ

w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).
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9 Conclusion

We have derived the shell equilibrium equations using virtual work, which enables
many formfinding methods to be reformulated as a minimization using the calculus
of variations. This method of deriving the equilibrium equations naturally introduces
the concept of geodesic bending moments for the analysis of gridshells and kitchen
sieves via the Christoffel symbols, which become the components of a tensor upon
differentiation with respect to time.

We have also demonstrated that minimizing the surface integral of the mean
curvature subject to a constraint on enclosed volume gives a surface of constant
Gaussian curvature, although one would imagine that this simple fact must have
been known before.

These studies lead us to examine the conditions under which principal stress and
principal curvature coincide and how this can be incorporated into a formfinding
process.

Some of the ideas introduced in this paper could lead to further numerical studies
and practical application.
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