
Derivation of Gaussian Distribution from Binomial

The number of paths that take k steps to the right amongst n total steps is:
n!

k!(n− k)!
,

and since each path has probability 1/2n, the total probability of paths with k right
steps are:
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Now, consider the probability for m/2 more steps to the right than to the left,
resulting in a position x = m∆x. Thus setting k = n
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Using Stirling’s formula
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we have,
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Taking the logarithm, and keeping the leading behavior of each term
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Now, the third term is smaller than the last two, so we can drop it and then
exponentiate to get

p ∼ 1√
2π
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Now, substituting n = t/∆t, m = x/∆x, and using the definition D = 1
2

∆x2

∆t , and
considering that the probability above is for values of x between x and x+2∆x (since
fixing n and changing k by one changes x by 2∆x). Thus p(x, t)2∆x = p(m,n).
Combining these facts we get that
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