Derivation of Gaussian Distribution from Binomial

The number of paths that take k steps to the right amongst n total steps is:

$$
\frac{n!}{k!(n-k)!},
$$

and since each path has probability $1 / 2^{n}$, the total probability of paths with k right steps are:

$$
p=\frac{n!}{k!(n-k)!} 2^{-n}
$$

Now, consider the probability for $m / 2$ more steps to the right than to the left, resulting in a position $x=m \Delta x$. Thus setting $k=\frac{n}{2}+\frac{m}{2}$.

$$
p(m, n)=\frac{n!}{\left(\frac{n}{2}+\frac{m}{2}\right)!\left(\frac{n}{2}-\frac{m}{2}\right)!} 2^{-n}
$$

Using Stirling's formula

$$
z!\sim \sqrt{2 \pi} z^{z} e^{-z} \sqrt{z}, \quad z \rightarrow \infty
$$

we have,

$$
\begin{aligned}
p & \sim \frac{1}{\sqrt{2 \pi}} \frac{n^{n} \sqrt{n}}{\left(\frac{n}{2}+\frac{m}{2}\right)^{n / 2}\left(\frac{n}{2}-\frac{m}{2}\right)^{n / 2}} \frac{2^{-n}}{\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)^{1 / 2}}\left(\frac{\frac{n}{2}-\frac{m}{2}}{\frac{n}{2}+\frac{m}{2}}\right)^{m / 2} \\
& \sim \frac{2}{\sqrt{2 \pi}} \frac{1}{\sqrt{n}}\left(1-\frac{m^{2}}{n^{2}}\right)^{-1 / 2}\left(1-\frac{m^{2}}{n^{2}}\right)^{-n / 2}\left(1+2 \frac{m}{n}\right)^{-m / 2}
\end{aligned}
$$

Taking the logarithm, and keeping the leading behavior of each term

$$
\begin{aligned}
\ln p & \sim \ln \frac{2}{\sqrt{2 \pi}}-\frac{1}{2} \ln n-\frac{1}{2} \ln \left(1-\frac{m^{2}}{n^{2}}\right)-\frac{n}{2} \ln \left(1-\frac{m^{2}}{n^{2}}\right)-\frac{m}{2} \ln \left(1+2 \frac{m}{n}\right) \\
& \sim \ln \frac{2}{\sqrt{2 \pi}}-\frac{1}{2} \ln n+\frac{m^{2}}{2 n^{2}}+\frac{m^{2}}{2 n}-\frac{m^{2}}{n} .
\end{aligned}
$$

Now, the third term is smaller than the last two, so we can drop it and then exponentiate to get

$$
p \sim \frac{1}{\sqrt{2 \pi}} \frac{2}{\sqrt{n}} e^{-\frac{m^{2}}{2 n}}
$$

Now, substituting $n=t / \Delta t, m=x / \Delta x$, and using the definition $D=\frac{1}{2} \frac{\Delta x^{2}}{\Delta t}$, and considering that the probability above is for values of x between x and $x+2 \Delta x$ (since fixing n and changing k by one changes x by $2 \Delta x)$. Thus $p(x, t) 2 \Delta x=p(m, n)$. Combining these facts we get that

$$
p(x, t) \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 D t}} \exp \left(-\frac{x^{2}}{4 D t}\right)
$$

