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Multiparameter Models of Innovation Diffusion on Complex Networks∗

N. J. McCullen†, A. M. Rucklidge‡, C. S. E. Bale§, T. J. Foxon¶, and W. F. Gale§

Abstract. A model, applicable to a range of innovation diffusion applications with a strong peer-to-peer com-
ponent, is developed and studied, along with methods for its investigation and analysis. A particular
application is to individual households deciding whether to install an energy efficiency measure in
their home. The model represents these individuals as nodes on a network, each with a variable
representing their current state of adoption of the innovation. The motivation to adopt is composed
of three terms, representing personal preference, an average of each individual’s network neighbors’
states, and a system average, which is a measure of the current social trend. The adoption state of
a node changes if a weighted linear combination of these factors exceeds some threshold. Numer-
ical simulations have been carried out, computing the average uptake after a sufficient number of
time-steps over many randomizations at all model parameter values, on various network topologies,
including random (Erdős–Rényi), small world (Watts–Strogatz), and (Newman) highly clustered,
community-based networks. An analytical and probabilistic approach has been developed to account
for the observed behavior, which explains the results of the numerical calculations.
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1. Introduction. Social phenomena, such as the spread of a technological or behavioral
innovation through communities, can be modeled as dynamical processes on networks [1, 6,
7, 8, 9, 17]. Our model, introduced in section 2, builds on previous threshold diffusion models
(see, e.g., [8, 20, 27]) by incorporating sociologically realistic factors yet remains simple enough
for mathematical insights to be developed.

An example of a particular application of this model is the adoption of innovations related
to energy behaviors and technologies by individual households. These innovations are often
not directly visible to an adopter’s peers, but communication of the benefits of adoption may
occur through interaction between individuals. The decision to adopt is therefore based on
multiple factors, taking into account not only individual preferences but also whether or not
an individual’s social circle has adopted the innovation. As such, the spread of the innovation
will be influenced by the network of social contacts between individuals, including both social
peers and wider social trends. Models have been developed along these lines [5], splitting the
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influence on individual decision-making between various social factors, and show interesting
dynamics in looking at the balance of these influences. The real topologies of interpersonal
networks are not known exactly and are constantly changing, further adding to the uncer-
tainty in models of social phenomena. Given these challenges, useful models and methods
are required that can assess the likely outcomes of particular scenarios, such as the effect of
an intervention to persuade a population to adopt an innovation, without being excessively
sensitive to particular choices of parameter values of the model or the precise structure of
the network. Here, we present numerical investigations of the model, studying its behavior
statistically as well as presenting mathematical analysis that gives a deeper understanding of
the observed uptake of the innovation over the network using probabilistic arguments.

The numerical methods used in section 3 take the ensemble averages of simulation out-
comes over many realizations, each with different conditions, such as the initial seed of adopters
or the precise details of the network structure. This is carried out over a range of parameter
values and on different types of network topologies in order to study both the stability of the
model with respect to minor variations and the sensitivity to structural details of the models
used. These methods can therefore be applied to various dynamical models on a variety of
networks to assess likely differences in outcomes for alternative scenarios in a statistical sense,
rather than relying on individual predictions.

We take the applied dynamical systems approach of looking for lines in parameter space
where the behavior of the dynamical process changes. Mathematical analysis is presented
in section 4 explaining observations for the simulation results in certain simplified cases.
Specifically, assuming that all individuals are homogeneous in their model parameters, we can
use probabilistic arguments for the conditions of the neighborhoods of the individuals required
to trigger uptake, and we calculate the likelihood of success given a choice of parameters on
certain types of networks.

We have found that the likelihood of success, defined as adoption by the majority of
individuals, depends strongly on both the choice of model parameters and the topology of the
network. Two particularly important factors are found to be the node degree, i.e., the number
of connections of the nodes with their neighbors, and the network’s transitivity, which is
the degree of clustering related to the correlation between the neighborhoods of connected
individuals. This makes it possible to assess what changes to the model would result in an
increased probability of success and how this can be interpreted in terms of policy decisions
intent on maximizing adoption in the real world.

2. Modeling social behavior as dynamical systems on networks. A system of N indi-
viduals (or groups such as households) can be represented by N nodes on a network. Possible
interactions linking individuals are represented by the edges on the network. The network
topology can be represented in the adjacency matrix A, an N2 matrix with entries:

(2.1) Aij =

{
1 if node j influences i,
0 otherwise.

Information or influence is passed along these edges, which could also be given weights
to show the relative probability or strength of the interaction. In this work all influences are
taken to be of equal weight and symmetric in both directions. States are assigned to the nodes,
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describing the properties of the individuals, and deterministic or probabilistic equations or
rules can be used to describe the evolution of these states over time.

2.1. A multiparameter model for innovation uptake. The following model describes
the purchase or adoption of a single innovation (not considering competition between similar
items) but could apply equally well to the spread of any property over a network, such as
a rumor or behavior. The model used in this work assigns each node i a binary variable
representing their current state, xi = 1, 0, indicating whether or not the individual has adopted
the innovation. The nodes in state x = 1 are referred to as activated nodes. The initial
state is a fixed proportion of activated nodes, randomly distributed across the network. The
decision to invest in the innovation is determined by the perceived usefulness, or utility, to
the individual (which can include subjective judgements). When this utility outweighs the
barriers to adoption (including financial costs), the individual i adopts the innovation, so xi
changes from 0 to 1. As this is a one-way process, unlike voter models [7], the state at the
next time-step is determined by

(2.2) xi(t+ 1) =

⎧⎨
⎩

1 if xi(t) = 1,
1 if xi(t) = 0 and ui(t) > θi,
0 otherwise,

where θi is the threshold and t is time. All nodes are updated synchronously at each time-
step in the current work. The total utility ui is a combination of both personal and social
benefits [9]. The personal benefit pi is a measure of the perceived intrinsic benefit to the
individual of acquiring the innovation. The social benefit can be split into both the direct
influence from an individual’s peer group and the (possibly indirect) influence from society in
general [25], which could be affected by the desire to fit in with the social norm on different
levels. Thus our utility model has three factors that can be given relative weightings αi, βi,
and γi, with αi + βi + γi = 1. The total utility is, therefore, given by

(2.3) ui(t) = αipi + βisi(t) + γim(t),

where si is the average of x within a node’s network neighborhood,

si(t) =
1

ki

N∑
j

Aijxj(t),(2.4)

and the degree of node i is ki =
∑N

j=1Aij. The mainstream social norm m is the average of
x over the entire population:

m(t) =
1

N

N∑
i

xi(t).(2.5)

This can be made equivalent to previous threshold diffusion models such as [27] by setting
(α, β, γ) = (0, 1, 0). We define m0 = m(t = 0) to be the initial fraction of adopters. For
the rest of the discussion we make the simplifying assumption that all nodes take the same
values of α, β, γ, p, and θ, so that only the value of si(t) differs between the nodes, which
corresponds to the network effects.
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2.2. Modeling social networks. For these investigations we connected the nodes using
several network models. Random Erdős–Rényi (ER) graphs [12], where edges are connected
with a probability pe between pairs of nodes, were investigated for their analytical simplicity,
due to the lack of correlation between neighborhoods of nodes, allowing probabilistic argu-
ments to be used [16]. TheWatts–Strogatz scheme [28], where n-nearest-neighbor lattices have
edges removed and reassigned according to a probability pr, allowing interpolation between
regular (possibly highly clustered) topologies and random networks, was also investigated, as
it is frequently studied and provides a simple way to vary the clustering (transitivity) of the
system.

Empirical studies have shown that real-world networks are often organized into commu-
nities of subnetworks [23], which are more densely connected internally than to the rest of
the network, and models exist showing mechanisms that can result in the formation of such
communities [21]. Community-based models, such as Newman’s highly clustered networks [22],
can better represent real-world social interactions in a number of ways. Here, links between
nodes are assigned via their association with G groups each, which are randomly chosen from
a set of W groups in total. Association with two or more groups per node is necessary for
the network to be fully connected and total transmission to be possible. Nodes are linked to
L other nodes within each group, so the total number of groups W and resulting number of
members of each group M = GN/W provide a means of varying the clustering while keeping
other network parameters fixed. These networks also have locally higher clustering between
members of a group than out to the rest of the network. For these models it would also
be possible to give some geographical information to the nodes and groups in the network
(cf. Hamill and Gilbert’s social circles model [19]), as discussed further in section 5.

Networks with scale-free degree distributions are also widely used in the literature, such
as the Barabási–Albert (preferential attachment) model. Such degree distributions exist when
considering the complete peer-networks of individuals, including both strong and weak links.
However, in the application motivating this research, where individuals recommend a certain
innovation to their peers, it is reasonable to assume that people discuss financial matters and
share recommendations with only a core group of associates, allowing us to ignore the more
numerous weaker links. It has previously been shown that adoption decisions are influenced
via the strongest links in the network rather than all weak ties [29]. This is backed up by
a survey we conducted on residents of the city of Leeds, where individuals reported limited
communications with their peers on issues of energy and saving money [4]. We show how
including such links would affect our results due to the skewed nature of the fat-tail of the
degree distributions.

3. Numerical methods. In order to investigate the diffusion dynamics of the system,
we performed simulations on various networks, using a synchronous updating rule for the
states of the nodes. Given a particular network, initial set of adopters, and parameter values
(α, β, γ, p, θ), we ask whether or not the innovation succeeds. That is, do most individuals
adopt the innovation? Aside from the challenges inherent in modeling the complex factors
affecting behavior, as well as in quantifying models from social data, dynamical processes on
complex networks themselves often exhibit dependence on the starting conditions, such as
which nodes are chosen as the initial seed. To illustrate the sensitivity to the precise starting
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conditions, the simulation results for a particular network and a single choice of parameters
are given in Figure 1(a), showing the uptake over 36 time steps for 100 random realizations
of the initial seed. In each case, 5% of the nodes are chosen as seed nodes at random and are
set to 1, with the rest initialized at 0. It can clearly be seen that while many runs quickly
lead to successful adoption, defined as most or all nodes becoming active, there is a clear
subset of about 44% of initial conditions that stagnates and does not take over an appreciable
proportion of the network. In cases of stagnation the dynamics of the current model become
frozen in a small number of time-steps, and no more adoption takes place, due to the static
nature of the network and deterministic rules used.
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Figure 1. Simulations of the adoption model on a community based network, with N = 500 nodes linked
to others via their shared association with groups. Each node is randomly assigned to G = 2 groups, from a
total of W = 100, and is linked with L = 5 other nodes per group. (a) Runs starting from 100 realizations of
a 5% level of initial adoption (m0 = 0.05), with model parameters α = 0.1, β = 0.8, γ = 0.1, p = 0.5, θ = 0.25.
The mean uptake over the 100 realizations at time-step 36 is 56%. (b) The mean uptake at values in the β, γ
parameter space, with α = 1− β − γ. All nodes take the same parameter values as each other.

Given that this sensitivity can result in a wide range of uptake levels, we focus on esti-
mating the likelihood of success for a model run, rather than the expected level of success
for a particular run. To obtain this, the ensemble average uptake over 100 realizations of
the choice of seed nodes is computed for each chosen set of parameter values. The detailed
structure of the network is randomized at each set of parameter values. In order to look at the
influence of the parameters on the expected uptake, this calculation is repeated over a range
of parameter values and is plotted in the β, γ parameter space, with 0 � β � 1, 0 � γ � 1,
and α = 1− β − γ. An example plot is shown in Figure 1(b). Two lines can be seen dividing
regions of the parameter space where adoption is total (black), where uptake is about 65%
(blue), and where it stagnates at levels up to only slightly above the initial seeding level of
5% (yellow).

4. Results and analysis. The procedure described in the previous section was carried out
for different network topologies in order to investigate the general behavior of the model.
The results all show distinct regions of either near-total success or stagnation, with a few
exceptions where there is a region of intermediate probability of success. In this section we
present the results of these simulations along with an analysis into the origin of the dividing
lines between these regions in parameter space. This is presented first in terms of random ER
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networks and later for other network models.

4.1. Number of neighbors needed to induce uptake. In order to understand which
parameter values are likely to lead to a higher level of adoption, it is important to consider
the properties of the nodes’ local network environment. Each node experiences the same p
and m in (2.3), so the only difference between the nodes is si, the fraction of its neighbors
which are active. For any set of parameter values and current adoption level m(t), there is a
critical fraction s∗(t), defined by

(4.1) s∗(t) =
θ − αp − γm(t)

β
,

such that if si � s∗, the node will adopt the innovation in the next time-step. The required
number of active contacts Y ∗

i (an integer) is given by

(4.2) Y ∗
i (t) = �kis∗i (t)� ,

where �•� denotes the smallest integer � •. If the actual number of active contacts

(4.3) Yi =
∑
j

Aijxj

is at least Y ∗
i , then node i will take up the innovation in the next time-step. To simplify

matters, we consider first networks where the nodes all have the same (or similar) degree k̄,
defined by

(4.4) k̄ =
1

N

∑
ij

Aij .

In this case we can define the critical number of active contacts to be

(4.5) Y ∗ =
⌈
k̄s∗(t)

⌉
=

⌈
k̄

(
θ − αp − γm(t)

β

)⌉
,

and the success or otherwise of the innovation uptake across the network can be understood
in terms of Y ∗. If Y ∗ = 0, then all nodes immediately adopt the innovation. If Y ∗ = 1, then
any node connected to one of the initial seed nodes adopts the innovation, and the innovation
uptake will be successful in a fully connected network. If Y ∗ = 2, then a node must be
connected to two active nodes in order to adopt. We show below that for reasonable values
of m0, and for a wide class of networks, this leads to success. The case Y ∗ = 3 will also be
discussed below.

Using α = 1− β − γ, (4.5) can be inverted to give

(4.6) β = k̄

(
γ(m(t)− p) + p− θ

k̄p− Y ∗

)
.

This gives, for different m(t), and for different integers Y ∗, a sequence of lines in the (β, γ)
parameter plane. These lines (with m(t) = m0) are overlaid on numerical results in Figure 2
for random ER networks of different sizes (N = 500, N = 2000) and different average degrees
(k̄ = 6, k̄ = 15). In Figure 2(a) (N = 500, k̄ = 6), uptake is successful for most values of (β, γ)
to the left of the Y ∗ = 2 line. This boundary becomes sharper for N = 2000 and agrees more
closely with the theoretical Y ∗ = 2 line in Figure 2(b). For k̄ = 15, N = 500 (Figure 2(c)), it
is the Y ∗ = 3 line that separates success from failure.
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Figure 2. Comparison of simulations of the adoption model on random ER networks. As in all cases
θ = 0.25 and p = 0.5. The mean node degree k̄ and network size N values are (a) k̄ = 6, N = 500; (b) k̄ = 6,
N = 2000; (c) k̄ = 15, N = 500. The results of the analysis in section 4 are also plotted for Y ∗ = 0, 1, 2, 3, 4.
The lines of Y ∗ in the (β, γ) plane show the upper limits of (β, γ) for each value of the critical number of
neighbors Y ∗. For example, two active neighbors are required to trigger adoption to the left of the Y ∗ = 2 line,
but this changes to three on the right side of the line.

4.2. Probability of induced uptake in random networks. We begin by calculating the
probability that the condition Yi � Y ∗ is satisfied. In the current context, where we consider
the initial stages of propagation, the initial adopters are few in number and unlikely to be
connected in the first instance. On finite size networks this is an important consideration, as it
would determine whether the process stagnates in the early stages or has a chance of continuing
through other mechanisms, such as via the clustering mechanism outlined in later sections.
The assumption of nonoverlapping active neighborhoods is too strong to generalize to later
stages in the process, particularly on highly clustered networks. However, on large random
(i.e., unclustered) networks, it will remain valid for several time-steps, as the neighborhoods
are uncorrelated and probabilities of active neighbors independent of one another. So for
random networks with independent random assignment of initial conditions, where all nodes
have a statistically homogeneous local network environment and the same node degree k, the
probability of Y neighbors being active is given by a binomial distribution:

(4.7) P (Y ≥ Y ∗) =
k∑

n=Y ∗

(
k

n

)
mn(1−m)(k−n).
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This is just the probability of at least Y ∗ nodes being adopters, from k nodes in the neigh-
borhood, given that each node has a probability m of being an adopter. Clearly P (Y ≥ Y ∗)
is zero if Y ∗ > k.

For the specific examples in Figure 2 the outcomes in the different sectors of the parameter
space can be understood using these ideas. If we define Z to be the number of nodes in the
whole network whose neighborhood influences them to adopt, then the probability that at least
one further node will be influenced somewhere in the network is P (Z ≥ 1) = 1 − P (Z = 0),
where the probability that no neighborhoods are influential is P (Z = 0) = (P (Y < Y ∗))N ,
and P (Y < Y ∗) = 1− P (Y � Y ∗), which, using (4.7) gives the expression

(4.8) P (Z ≥ 1) = 1−
(
1−

k∑
n=Y ∗

(
k

n

)
mn(1−m)(k−n)

)N

.

This can be seen to be a specific case of Gleeson’s [13] and Gleeson and Cahalane’s [15] equation
(1), where average uptake levels are solved for the Watts 2002 model [27] (i.e., taking β = 1)
on random networks with arbitrary degree distributions. Here we have restricted the analysis
to a single node degree, rather than a distribution, for simplicity and to maintain consistency
with the results in section 4.1.1 Equation (4.8) works for the examples used here, which are
limited to cases where there is a tightly bound node degree, but the more general formulation
of Gleeson would most likely give more accurate results for the rates found within the different
regions given by the analysis in section 4.1.

For small m (4.8) approximates to

(4.9) P (Z ≥ 1) ≈ 1−
(
1−

(
k

Y ∗

)
mY ∗

)N

.

For k = 6, N = 500, and m0 = 0.05 this gives P (Z ≥ 1) ≈ 1 for both Y ∗ = 1, 2, but
for Y ∗ = 3, P (Z ≥ 1) ≈ 0.7. For the Y ∗ = 2 case, the probability of a site having an
influential neighborhood is P (Y ≥ Y ∗) ≈ 0.0375, and the expected number of nodes satisfying
this condition is this probability multiplied by the number of remaining (inactive) nodes
N(1 − m)P (Y ≥ Y ∗) ≈ 18, doubling adoption at each time-step. However, in the Y ∗ = 3
sector, the probability of any chosen node having the required number of neighbors is P (Y ≥
Y ∗) ≈ 0.0025, resulting in only one expected new active node with a network size N = 500,
easily leading to stagnation. The Y ∗ = 2 line becomes a sharper dividing line for larger
networks (Figure 2(b)), as finite size fluctuation effects become less important. The value of
Y ∗ which is the dividing line changes for k̄ = 15 (Figure 2(c)), where N(1 −m)P (Y ≥ Y ∗ =
3) ≈ 27, again of the order of the initial seeding level, and so adoption is successful for Y ∗ = 3
but fails when Y ∗ = 4.

4.3. Propagation on random networks. In (4.5), Y ∗ is a decreasing function of time,
since m(t) can only increase. As argued above, if Y ∗ = 0 or 1, uptake will be successful. In

1It would be possible to reformulate the results in section 4.1 in a similar spirit to Gleeson, but this would
involve performing a weighted sum over a range of terms of the form of (4.5) for every degree in the distribution
ki rather than taking the mean value k̄, greatly reducing the simplicity of the result demonstrated here.
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this section, we estimate the likelihood that Y ∗ will decrease from a larger initial value to 1
and how long this will take.

The expected number of nodes that will become adopters in this time-step is the number
of nodes that have not adopted the technology, N(1−m), multiplied by this probability. The
overall fraction of active nodes will therefore increase by

(4.10) Δm = (1−m)P (Y ≥ Y ∗),

giving the updated value of m(t+ 1) as a function of the current value f(m(t)):

(4.11) m(t+ 1) = m(t) + (1−m(t))P (Y ≥ Y ∗) ≡ f(m(t)).

Y ∗ is also a function of m but, being an integer, can take only discrete values, so f(m) is
discontinuous when Y ∗ changes.

This gives a macroscopic, system-level, version of the microscopic (individual) dynamics
given by (2.2). The functions in (4.11) and (4.10) are shown in Figure 3 for some example
parameter values. In Figures 3(a) and (c) we have Y ∗ > k = 6 for m < 0.1, so Δm = 0 in this
range, and starting at an initial seed level of m0 = 0.05 will lead to stagnation. If m0 � 0.2,
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Figure 3. Plots of (4.11) for k = 6: (a) β = 0.1, γ = 0.9 and (b) β = 0.5, γ = 0.2. Plots of (4.10) at the
same values in (c) and (d) (on a log scale). In (a) and (c) Y ∗ > k for small m, so there is no further uptake,
and in (b) and (d) Y ∗ = 2 for small m, so uptake is disproportionately slow for small levels of seeding. The
diagonal is drawn for comparison in (a) and (b), while in (d) the fit to the initial slope is given.



524 MCCULLEN, RUCKLIDGE, BALE, FOXON, AND GALE

Δm is quite large, and success will come quickly. In contrast, in Figures 3(b) and (d), Y ∗ = 2
for small m, and uptake can happen only if the network size N is large enough to allow further
nodes to be influenced.

For small values of the initial adoption m � 1 the following approximation can be made:

(4.12) P (Y ≥ Y ∗) ≈ Δm ≈
(

k

Y ∗

)
mY ∗

,

with Y ∗ ≈ ⌈k̄ (θ−αp
β

)⌉
for small enough m. If Y ∗ > 1, then the superlinear power of m results

in very small returns for small initial seeding, and it takes a time on the order of m1−Y ∗
0 for

a successful outcome for small m0.

4.4. Structured networks. The approach above works for random networks, where inde-
pendence of neighborhoods can be assumed, and for randomly distributed initial seeds. For
networks with high clustering, where the clustering coefficient or transitivity [26, page 243],
defined as

(4.13) c =

(
3×#(triangles)

#(length 2 paths)

)
,

is close to 1, this is not the case. This difference is demonstrated in the numerical simulations
shown in Figure 4. For these results the Watts–Strogatz scheme was used to rewire a highly
clustered one dimensional lattice, where nodes are initially laid out in a ring and linked to
their six nearest neighbors. Due to the large number of triangles, this network has a high
transitivity c = 0.6, indicating a 60% probability that any two neighbors of a node are also
neighbors of each other. For comparison, a completely random ER network of this size and
edge density would have c = 0.01.

The probability of rewiring is pr, and for small values of pr where there is still significant
clustering, the results show successful uptake in around 50% of cases in the Y ∗ = 3 sector,
with either successful or stagnated adoption for Y ∗ values below or above this, respectively.
This behavior for Y ∗ = 3 would not be expected in random networks at these values, where
the random probability of any particular neighborhood triggering an adoption P (Y ≥ Y ∗) ≈
0.002, resulting in only a single expected further uptake per realization. This would result in
very slow uptake or stagnation on finite networks, which is indeed what happens for large pr,
where c is small and the network is again more random in structure (Figure 4(d)).

The enhanced success of uptake in these cases is due to the clustered structure favoring
continuing propagation from any influential neighborhood. In clustered networks, any neigh-
bor j of a newly activated node i is likely to also be a neighbor of the nodes that influenced
i to adopt, and so j has an enhanced chance of becoming an adopter itself. If a suitable
neighborhood is present under these circumstances, one uptake will then trigger another in an
adjacent position due to this overlap of neighborhoods (see Figure 5). If clustering is sufficient
that there is overlap between neighborhoods for a sizeable portion of the whole network, then
it can take only a single critical neighborhood to induce a successful uptake for the system.
The 50% chance of success seen in Figure 4(a) in the Y ∗ = 3 sector then represents the chance
of randomly seeding a group of nodes in such a way as to trigger this process. The probability,
given by (4.8), of at least one node in a random system having a critical neighborhood yields
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Figure 4. Results on Watts–Strogatz networks with nodes initially connected to their six nearest neighbors
on a one dimensional lattice and different rewiring probabilities pr, resulting in different transitivity c: (a)
pr = 0, c = 0.6; (b) pr = 0.01, c = 0.57; (c) pr = 0.02, c = 0.53; (d) pr = 0.05, c = 0.45. Model parameters
are p = 0.5 and θ = 0.25, with N = 500. Edges were swapped in pairs to preserve the node degree k = 6.

P (Z ≥ 1) ≈ 0.67 for k = 6, Y ∗ = 3, and N = 500. Equation (4.8) is strictly valid only for
independent neighborhoods and hence gives too high a value in this case, where neighbor-
hoods overlap, but a quantitatively accurate expression would require a far more intensive
calculation of the different combinations of the initial seed for the whole system. However,
the current method is accurate enough to give qualitatively correct predictions.

The propagation via overlapping neighborhoods is a percolation phenomenon, similar to
that seen in other studies [22], but one that percolates on hyperedges connecting hypernodes
rather than via single links. Here, a hypernode is a complete subgraph of Y ∗ + 1 nodes, or
a (Y ∗ + 1)-clique. Two hypernodes are connected if the two (Y ∗ + 1)-cliques have Y ∗ nodes
in common. The implication is that if a hypernode becomes active, then every hypernode
to which it is connected will also become active in the next time-step. This is shown in
Figure 5 for propagation via 4-cliques where Y ∗ = 3, with a single uptake triggering others
via their overlapping neighborhoods. Threshold models on clustered networks are discussed at
length in Chapter 19 of Easley and Kleinberg’s Networks, Crowds, and Markets [11] (including
some useful references to the economics literature), motivated by coordination game models
of microeconomic cooperation between individuals.

To demonstrate the transition between cluster-enabled propagation and stagnation, the
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(a) (b)

(c) (d)

Figure 5. An example of uptake propagation via clustering in a network where nodes require three active
neighbors to become active themselves. The sequence of uptakes is shown in (a)–(d), starting from a single node
influenced by three of its neighbors, which then induces further uptake via 3-member overlap of 4-cliques.

ensemble uptake within the Y ∗ = 3 sector of Figure 4 (after 36 time-steps) is shown in Figure
6, plotted as a function of both pr and c. The regular (unrewired) network has a clustering
coefficient c = 0.6, which decreases smoothly with increasing rewiring probability. If the node
degree is held constant by rewiring edges in pairs (Figure 6(a)), then the average uptake
after 36 time-steps fits well with the function m(36) = σ exp(εc), with fitting parameters
σ = 2.9 × 10−4 and ε = 12.39. This is not the case if edges are rewired one at a time
(Figure 6(b)), where the node degree becomes distributed. In this case the uptake peaks at
around 5% rewiring (c ≈ 0.5), similar to other models showing a peak in the level of adoption
at certain node degrees [1].

A further example is shown in Figure 7 for a community-based, random-clustered net-
work [22], where the clustering can be varied by associating N individual nodes each via G
groups of varying sizes M . The total number of communities W and number of connections
L per individual in each community (here L = 5) determine the size and density of the com-
munities and hence the amount of clustering. In Figure 7(d) the dependence of c on W is
shown alongside the mean uptake after 36 time-steps, averaged over 1000 realizations for each
W . Results similar to the previous case can be seen, with increased clustering resulting in an
increased likelihood of successful uptake, despite the low number of influential neighborhoods.
However, these expected values are valid only when averaging over different network realiza-
tions as well as initial adopters. For many networks it was found that uptake was almost never



MODELS OF INNOVATION DIFFUSION ON NETWORKS 527

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15

c

pr

 0  0.1  0.2  0.3  0.4  0.5_
m(36)

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

_ m
(3

6)

c

Figure 6. Uptake on Watts–Strogatz rewired 6-neighbor rings, after 36 time-steps, against both rewiring
probability pr and clustering c. (a) Runs starting from 1000 random initial conditions with m0 = 0.05, α =
0.1, β = 0.45, γ = 0.45, p = 0.5, θ = 0.25, randomizing the network on each realization. Edges are rewired in
pairs to preserve the node degree k = 6. Dashed blue lines show the data in Figure 4, with pr = 0, 0.01, 0.02, 0.05
and c = 0.6, 0.57, 0.53, 0.45, respectively. The fitted red curve is the function σ exp(εc), with σ = 2.9 × 10−4,
ε = 12.39. (b) For comparison, the same system is used but with edges rewired individually between 0 < pr < 0.5,
showing the effect of allowing distribution of the node degree with pr. A peak in the uptake appears at c ≈ 0.5.

achieved for most choices of initial adopters, which we believe to be related to the connect-
edness of cliques of size Y ∗ + 1. However, an interesting observation is the strong functional
dependence of the expected success on the transitivity, which fits to about 1% accuracy to the
function

(4.14) m(36) = 1− σ exp(−εc),

with fitting parameters σ = 0.86, ε = 11.2. This relationship was also found for different
values of (α, β, γ) within the Y ∗ = 3 sector, with different coefficients in (4.14). This suggests
that it is possible to obtain an analytical expression for these systems and should motivate
further research.

The phenomenon of connectedness via more highly connected clusters than single edges
is known as k-clique percolation, and results exist deriving this result for random ER net-
works [10, 24]. However, to understand the results in Figure 7 analytically would require
results for the expected connected (Y ∗ + 1)-clique percolation component size distribution as
a function of the clustering coefficient. Some progress has been made in this direction, with
numerical results existing for cascades of various models, such as Watts’ threshold model [27]
on clustered random networks like the Newman model [18]. Additionally analytical results
have also been derived for expected connected component sizes for single bond percolation
on clustered networks [14]. However, obtaining the required results for k-clique percolation
components remains an open and difficult problem.

These results imply that, in cases where several network neighbors are required to influence
adoption, greater levels of system-wide adoption can be achieved in more highly clustered
networks, in agreement with earlier results on similar systems [8]. Therefore, innovations in
systems with more communication between overlapping groups of individuals will be more



528 MCCULLEN, RUCKLIDGE, BALE, FOXON, AND GALE

(a)

       α = 0

    β = 0

   
γ =

 0

(1,0,0)

(0,1,0)

(0,0,1)

Y*= 0

Y*= 1

Y*= 2

Y*= 3

Y*= 4

        (α, β, γ)

Ensemble average proportional uptake

 0  0.2  0.4  0.6  0.8  1

(b)

       α = 0

    β = 0

   
γ =

 0

(1,0,0)

(0,1,0)

(0,0,1)

Y*= 0

Y*= 1

Y*= 2

Y*= 3

Y*= 4

        (α, β, γ)

Ensemble average proportional uptake

 0  0.2  0.4  0.6  0.8  1

(c)
       α = 0

    β = 0

   
γ =

 0

(1,0,0)

(0,1,0)

(0,0,1)

Y*= 0

Y*= 1

Y*= 2

Y*= 3

Y*= 4

        (α, β, γ)

Ensemble average proportional uptake

 0  0.2  0.4  0.6  0.8  1

(d)

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 20 40  100  160

c

W

 0.4  0.6  0.8  1_
m(36)

Figure 7. Same as Figures 4 and 6 but for a community-based, Newman, random-clustered, network model.
The network size N = 500, so for each number of groups W there are M members, on average, resulting in a
measured transitivity c: (a) W = 20, M = 25, c = 0.044, (b) W = 40, M = 12.5, c = 0.078, (c) W = 100,
M = 5, c = 0.2. (d) Clustering as a function of W versus uptake for α = 0.1, β = 0.8, γ = 0.1 within the
Y ∗ = 3 sector. The fitted red line is the empirical function m(36) = 1− σ exp(−εc), with σ = 0.86, ε = 11.2.

likely to succeed than if such overlap were not present.

4.5. Scale-free networks. In the current model and analysis we have so far considered
only networks with node degrees that are distributed close to the mean value. This is mainly
due to the nature of the recommendation network being restricted to a close group of asso-
ciates. However, it is possible to apply the multiparameter model used here to networks with
broader degree distributions in order to compare the results and their generalizability. In such
cases the fat-tails of the degree distribution strongly violate the requirement of our analysis
(in section 4.1) that k̄ be meaningful and represent most of the nodes in the network. The
result of this is demonstrated in Figure 8 using Barabási–Albert networks, showing how the
division between the regions of the parameter space becomes less clear than in the case of
near-constant degree. In such cases the analysis presented here would not be applicable and
would require a more sophisticated approach.

5. Conclusions. We have introduced a three parameter model for the diffusion of innova-
tions by individuals connected by a network of peer-to-peer influences, and methods for the
investigation and analysis of such models. This model has particular application to technolo-
gies with varying degrees of visibility, such as energy efficiency installations in households.
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Figure 8. Results on a scale-free Barabási–Albert network. The division between regions of the parameter
space is less clearly defined and no longer linear, due to the broad degree distribution of the nodes.

Numerical simulations have been carried out, computing the average uptake of an inno-
vation over many realizations, to account for the sensitivity of network diffusion processes.
This was carried out at a range of model parameter values on various network topologies and
initial conditions. It has been found that the expected level of adoption depends strongly on
the topology of the network and the Y ∗ sector that the (β, γ) parameters are in. The node
degree and the network’s transitivity, related to the correlation between the neighborhoods of
connected individuals, were found to be of particular importance.

An analytical and probabilistic approach has been developed to account for the observed
behavior. In the current work we have introduced the model, along with methods for inves-
tigating it and similar models, in its most tractable form. The analysis explains the results
of the numerical calculations well in the case of randomly connected networks and provides
useful insight in the case of networks with clustering. The study and the model here are
limited to homogeneous nodes with the same parameters and equal weights. The analysis
of the model also made use of the assumption of a near-constant node degree and so does
not carry over simply to scale-free networks. In this work we argued that communication on
innovation adoption is restricted to a select few contacts and therefore excludes wide degree
distributions. An alternative would be to assume that individuals are influenced by a number
rather than fraction of their network neighbors, which is independent of k̄.

The dynamical adoption model can be made to account for the various archetypes dis-
cussed in the social science literature by assigning individuals to different groups. Individuals
in different categories can be assigned different αi, βi, and γi values, depending on their per-
sonality, for example, with technology enthusiasts having high α values, social followers having
high β, and cautious individuals having a high γ. In subsequent work we have extended the
model to cases involving inhomogeneous nodes with distributions of parameters, weights, and
degrees in order to study the sensitivity of the results to such factors [3].

The model provides a basis to simulate the behavior seen in the real world. For example,
it can form the basis for computational investigations comparing different interventions by
a government agency to try to improve the level of uptake of innovations relating to energy
efficiency. These could be represented in the model by varying the initial seeding for different
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roll-out strategies or varying the network structure for different word-of-mouth marketing
campaigns. By identifying intervention strategies that have a high probability of achieving
successful uptake of the technology, the model could allow government to make informed
decisions on whether to go ahead with interventions and, if so, how. Such interventions are
the subject of subsequent research by the authors [2] based on enhancing uptake, either by
altering the parameters of the model or the network structure, in ways that have real-world
interpretations.

In a similar way the effect of marketing could also be considered in a more general context.
Such advertising would be an active attempt to promote, or enhance the perception of, the
utility through one or more of the parameters or variables. This could be included as either
a nonlinear function of m(t) (currently a linear global (all–all) feedback from the system
norm to the individuals) or another term that effectively increases u. Related models have
used an external driver taking this role in addition to the feedback from other nodes [5],
and this feature could easily be incorporated into our model. Additionally, the current model
currently considers only a single innovation, but it would also be interesting to include features
of competition between competing products in future developments.

Future studies could also modify the community-based network models to provide more
flexibility and realistic features in a number of ways. Some positional information can be
ascribed to the nodes and some or all of the groups, preferentially attaching individuals to
communities that are geographically closer, in a similar way to Hamill and Gilbert’s social
circles model [19]. In cases where none (or only one) of the groups has geographic information,
they again reduce to the Newman scheme. These groups could be classified into different
categories; for example, some could have a fixed membership number to allow variation of
the clustering between groups and represent different types of group interaction (e.g., social
or workplace groups). For other types there could be no geographical element, introducing
long-range connections into the network, as may be the case for workplaces. The model
could also be given a stochastic element, either on the transfer of information along links
(e.g., as in [5]), or by allowing a distribution of time-step values, as well as nonsynchronous
updating, and introducing a probabilistic, rather than deterministic, uptake once the utility
exceeds its threshold. A further feature of interest is that of nonstatic network topologies.
Although the networks in the short time-scales investigated here have been assumed static, it
is interesting to consider what effect dynamic networks would have on the adoption process.
In our subsequent modeling work we have investigated cases where links are added to existing
networks as the diffusion process is ongoing [2]. Depending on the nature of the dynamics of
the network restructuring, there is potential for the added mixing to enhance uptake in these
cases.

As well as the application of the diffusion of (energy) innovations that were used as a
basis for this model, the methods discussed in this paper can also be applied to multiparam-
eter models of different systems with similar features and can provide a framework for the
investigation of many real-world systems.
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