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Abstract—Here, we present the complete design pro-
cess of a highly overmoded slow wave circuit (SWC)
stably operating in the quasi-TMg; mode for terahertz
(THz) extended interaction oscillator (EIO). The developed
interaction circuit emits THz frequency electromagnetic
radiation through structural size of the engineered
millimeter-wave (MMW) circuits, which provides a new tech-
nological horizon for overcoming the engineering chal-
lenges caused by the limitation of circuit size. Through
careful engineering of the electron optical system, a cylin-
drical beam with a diameter of 0.38 mm and a current of
0.25 A is obtained at a bias of 14.8 kV. Through the particle-
in-cell (PIC) simulation, these new design approaches have
been shown to achieve an output power of 250 W at 0.3 THz
in a cylindrical cavity with an inner diameter of 4.16 mm.

Index Terms— Extended interaction oscillator (EIO),
overmoded, slow wave circuit (SWC), terahertz (THz), vac-
uum electronics.

[. INTRODUCTION

HE development of new microfabrication and nanofabri-
T cation technologies, aided by advances in computer-aided
design and materials science, has ignited a renewed interest
in the search for new types of mobile, high-power sources of
electromagnetic radiation with emission peaks from millimeter
wave (MMW) to the terahertz (THz) [1], [2]. Slow wave
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Fig. 1. Comparison of typical SWSs. (a) Schematic of the folded

waveguide, the double corrugated waveguide, the disk-loaded waveg-
uide, and the proposed highly overmoded SWS at the same frequency.
(b) Normalized | E;|-field distribution of the highly overmoded SWS, the
folded waveguide, and the double corrugated waveguide on the beam
tunnel section at the same frequency band.

devices, such as traveling-wave tubes (TWTs), backward-wave
oscillators (BWOs), and extended interaction devices (EIDs),
have much development potential in military and commercial
applications that require high frequency (HF) and high power
due to their compact structure, high performance, and limited
need for strong magnetic fields [3], [4], [5], [6], [7], [8]. How-
ever, due to coherent effects between frequency and feature
size, challenges linked to the necessarily small circuit sizes as
the frequency progresses to THz band cannot be ignored [9],
[10], [11]. Recently, the reported slow wave structure (SWS)
of folded-waveguide TWT operating above 0.3 THz has been
reduced in transverse size to 0.51 mm, and the diameter of
the beam tunnel is only 0.18 mm [12]. With the dramatic
shrinking of transverse dimensions, device output power and
stability are limited by factors such as the more laborious
design of precisely aligned high-density electron beam, and
more difficult engineering of machining and assembly.

In the typical several full-metal SWSs, as shown in
Fig. 1(a), when the structural size of the circuit is severely
restricted, it is not anticipated that the HF system operating in
the conventional fundamental mode will be sufficient due to
the equivalence of operating wavelength (A,). Compared with
the commonly used fundamental mode, the most significant
feature of the higher order mode is that it can support a
physically larger interaction system for a given frequency,
so as to enlarge the power capacity [13]. At present, extensive
studies of sheet beam and multibeam have also largely pro-
vided valuable contributions to overcome the power limitations
of devices, even demonstrating exciting performance in studies
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Fig. 2. Schematic depiction of a 0.3-THz EIO based on the

highly overmoded structure. (a) 3-D model. (b) E,-field distribution.
(c) |Ez|-field contour plots of the quasi-TMp4 mode at z = 0 plane.

combined higher order modes [14], [15], [16], [17]. However,
due to the more difficult beam compression and transmission
and the complex engineering of the focusing system, most of
the reports are only simulation studies. It has also been noted
that higher mode field distributions may result in a relatively
weak beam—wave coupling, which poses unique challenges for
improving efficiency and suppressing mode competition [18].
In this brief, we develop a novel technique that relies
on engineering capabilities common in low-frequency bands
to generate higher frequencies of electromagnetic radiation
at larger circuit sizes. Insights gained using highly over-
moded structures in the development of fast-wave devices
are extended to slow wave circuits (SWCs) [19]. A specific
extended interaction oscillator (EIO) design scheme is demon-
strated, as shown in Fig. 2. The operation of a quasi-TMy, that
is considered to have almost the same functional characteristics
as the TMys mode (the 40th in the circular waveguide) is
established. Due to the realization of the method of concen-
trating the axial field energy along the source’s central axis
within a large cavity, an oversized beam tunnel that can support
efficient energy conversion between the electron beam and the
HF field is designed. As shown in Fig. 1(b), it was found
that the beam tunnel diameter of the SWC operating in the
quasi-TMps mode can easily be increased to two times or
more than that of the conventional SWCs, while the overall
transverse dimension increases even more [12], [20]. Even
with the same absolute error, the relative error of the designed
highly overmoded structure is only half that of the traditional
structure, which eases the engineering difficulty of processing
and assembly. Furthermore, as the size of the beam tunnel
increases, higher current electron beams can be employed,
which directly increases the output power of the device.

II. CIRCcUIT AND COMPONENTS

Here, a design concept of the highly overmoded tech-
nique applied to SWCs is investigated. First, this design
concept allows for a larger circuit size, which effectively
mitigates engineering difficulties caused by fabrication and
assembly. Second, from the Bessel function field, the higher

TABLE |
DESIGN PARAMETERS OF 0.3-THz CIRCUIT

Symbol Description Value and Unit
p Period length 0.23 mm
w Gap width 0.09 mm
ow Disk outer diameter 0.70 mm
din Disk inner diameter 0.40 mm
/ Cavity inner diameter 4.16 mm
t Coupling cavity angular width 70°
dn Output coupling hole diameter 0.78 mm
dy Output waveguide diameter 1.44 mm

the order of the TMg, mode, the more concentrated the
E -field strength in the beam tunnel, and the greater the
interaction impedance [21]. In this way, even if the diameter
of the beam tunnel is increased, the beam—wave coupling can
also be maintained at a relatively high level. After preliminary
empirical analysis, the quasi-TMys mode is selected. A four-
cavity loaded central ring structure that operates stably in the
quasi-TMg4 mode is developed, as shown in Fig. 2. The four
fan-shaped coupling cavities have distributed axial symmetry,
which not only increases the energy storage of the entire circuit
but also indirectly adjusts the HF field distribution. The four
pillars supporting the central metal ring divide the coupling
cavity, thereby reducing the interference of most unwanted
or additional modes on the operating mode. Moreover, the
interaction area between electron and wave is compressed and
concentrated near the metal ring to further enhance the axial
field energy and improve the interaction impedance.

The design parameters of the highly overmoded SWC are
given in Table I. The entire cavity inner diameter of this
highly overmoded EIO is 4.16 mm, which is equivalent
to the standard of conventional SWCs in the V-band or
even the Ka-band [22], [23]. Here, a disk with a thickness
of 0.23 mm is first processed into a single-period four-hole
structure, and then, multiple disks are loaded into the sleeve
to form an HF system, as shown in Fig. 2(a). We have verified
the feasibility of related schemes in the reported development
of BWO [24] and mode converter [25] and obtained high-
performance indicators in the corresponding tests. Further-
more, we have fabricated a scale model at the Ka-band based
on this four-cavity-loaded central ring structure, as shown in
Fig. 3(a). The S-parameters of the structure were verified using
a mode converter, as shown in Fig. 3(b) and (c). The quasi-
TMy4-2mr operating mode of the Ka-band scale model has
been validated at 32.5 GHz. Also, its S;; parameter presents
a more obvious negative peak in Fig. 3(b). By comparing the
experimental results and simulation results, we find that the
highly overmoded SWC produced by lower cost, medium-
scale processing technology, and appropriate assembly con-
ditions is capable of achieving the functional requirements of
MMW circuits. Therefore, it is indirectly demonstrated that the
larger circuit size designed by highly overmoded technology
has great potential to alleviate the engineering challenges
caused by higher frequencies.

The developed highly overmoded structure has provided a
novel solution to circuit size limitations, but it may allow
for multimode competition. Fig. 4(a) shows the dispersion
characteristics of the circuit. The axial mode is planned as
the 2w mode that provides a maximum electric field in the
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properties of a scale model at Ka-band based on this highly overmoded
structure. (a) Photograph of the manufactured components. Comparison
of experimental and simulation results for (b) S;1 and (c) So1 of the
highly overmoded structure.

same direction on each gap. The quasi-TMp3, quasi-TMy,,
and quasi-TMy; modes in the area near the intersection with
the beam voltage line are considered to pose a competitive
risk to the operating mode. Fig. 4(b) shows the physical
parameters for these four modes, where R/Q is the char-
acteristic impedance for evaluating the beam-wave coupling
performance and Q. and Qg are the external quality factor
caused by diffraction loss and the intrinsic quality factor
caused by ohmic loss, respectively [26]. As an important the-
oretical basis for judging the stable operation of a device, the
start-oscillation criterion has been widely studied [27], [28].
When the dc energy of the electron beam is converted
into HF field energy and the HF field energy is steadily
increased, this defines the start of oscillatory behavior. The
energy exchange between the electron beam and the operating
mode field is usually expressed by the beam-load conductance
G, [18], [29], [30], [31], which is expressed as

Gc = g5 Gl M2 (5= 3] = M2+ )] )
where B, and B, represent the propagation constants of the
dc electron beam and the reduced plasma, respectively [32],
[33]. G represents the dc conductance of the electron beam.
M_(B. — B;) and M (B, + B,) represent the coupling coef-
ficients of fast and slow space charge waves, respectively,
as follows [31]:

— ffooo E(Z)ef(ﬁeiﬂq)zdz

My (B £ 8,) = T EQ)dz 2

where FE(z) is the axial electric field distribution at the
interaction gaps. Negative G, suggests that the dc energy of
the electron beam is being converted into HF field energy,
which will be the prerequisite for oscillation commencement.
Generally, g, is used to represent the ability to transfer energy
from the electron beam to the circuit, where g, = G./Gy [18].
Fig. 4(c) shows the change of the normalized g, with the dc
voltage of the electron beam. The quasi-TMy4 mode has been
shown to operate stably without interference from lower order

spurious modes when the operating voltage is set between the
relatively large working range of 14.5-15.2 kV.

Here, to match the proposed highly overmoded circuit,
an electron optical system with a typical structure is designed.
Fig. 5(a) shows a cross section depiction of the entire electron
gun. The scheme of the permanent magnet focusing system is
shown in Fig. 5(b) and (c). The magnetic material is samarium
cobalt. During operation of the electron gun, electrons are
thermally emitted through a heated filament. These electrons
enter the beam tunnel under the acceleration of the anode after
being compressed by the electrostatic field and the focusing
magnetic field. The electron beam cross section is compressed
from the cathode emission area of 0.4037 mm? into a beam
spot of approximately 0.0367 mm?. A small ripple electron
beam with a maximum envelope diameter of 0.38 mm and a
current of 0.25 A is obtained at a bias of 14.8 kV.

Although the designed quasi-TMy4 mode SWC can directly
generate the circular TMy; mode radiation output through
aperture diffraction, considering the investigation of the oscil-
lation characteristics of the highly overmoded structure, it is
necessary to design a mode conversion circuit that can be
practically tested. Based on our previously developed mode
converter prototype [25], a circular TMy; to rectangular TE;q
mode converter is designed. The rectangular waveguides are
standard commercial WR-3 waveguides. Fig. 6(a) shows the
simulated S;; parameter obtained at the standard rectangular
waveguide port by accessing the mode converter. The desired
quasi-TM-27 operating mode is confirmed on the S;; curve
as a peak of —20 dB at 299.52 GHz. Fig. 6(b) shows the
conversion efficiency of the mode converter. The bandwidth
of §51 > —1 dB is 21.25 GHz from 284.95 to 306.22 GHz.

[1l. CIRCUIT PERFORMANCE EVALUATION

To verify the holistic performance of the developed highly
overmoded THz EIO, particle-in-cell (PIC) simulations are
carried out for the interaction circuit. A cylindrical electron
beam with a current of 0.25 A is injected into the highly
overmoded resonant slow wave structure (RSWS) at a bias
voltage of 14.8 kV. Oxygen-free copper is used as the metal
background material for the device with a conductivity of
2.4 x 107 S/m. An output power over 250 W is obtained,
as shown in Fig. 7(a). The beam—wave interaction efficiency
is about 6.7%. Fig. 7(b) shows the electron bunching in the
cavity when the electron beam interacts with the quasi-TMo4
mode field. The inset of Fig.7(b) shows the spectrum of
the output signal. Fig. 7(c) shows the effect of the electron
beam voltage on the output power, interaction efficiency, and
operating frequency. The designed circuit is stably operated
in the quasi-TMys mode with a tuning frequency range of
about 299.4-299.7 GHz. As shown in Fig. 8, the electron
beam of 0.25-A current with 95% filling rate still has a beam
transparency higher than 98% when the device operates stably
and maintains an output power of 250 W.

We further considered the beam alignment error, electron
angle spread, and electron energy spread that almost certainly
exist due to real-world processing, to ensure a substantial
evaluation of the performance and stability of the device.
As shown in Fig. 9(a)—(c), the designed interaction circuit
demonstrates moderate tolerance in terms of beam alignment
error, electron emission angle spread, and electron energy
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spread. Commonly, the reduced effective conductivity value to
replace the extra ohmic loss due to surface roughness is used
to integrate such effects into design activities. The correlation
effect between effective conductivity and rough surface finish
has been presented by Datta et al. [34] and Kirley et al. [35]
in their study of conductivity loss analysis of structures.
The following equation elaborates a proximate relationship
between effective conductivity and surface roughness:

Oide

(1 + exp(—(ﬁ)m))2

where o represents the effective conductivity and o4, i
the conductivity of the metals having ideal surface. The ideal
conductivity oiq of oxygen-free copper is 5.8 x 107 S/m.
h is the surface roughness measured as a root-mean-square
deviation of the surface from its mean planar position. s is the
skin depth for the ideal metals, which is calculated from
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where f is the operating frequency, p is the magnetic per-
meability, and the value is a constant of 47w X 107 H/m.
The effective conductivity of copper decreases rapidly with
increasing surface roughness when the surface roughness is on
the order of the skin depth. This rapid decrease is followed by
asymptotic behavior for very rough surfaces beyond the skin
depth. With the continuous decrease in conductivity, increasing
amounts of energy is lost in the cavity wall via ohmic
heating. As shown in Fig. 9(d), this results in a continuous
reduction in output power. Therefore, loss of conductivity
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in the structure caused by rough surface finish is one of
the limiting factors for device efficiency and average power
handling capability. A number of approaches are worth trying
here, such as providing a good surface finish to the structure
and providing a coating of high conductivity on the surface of
the material [36], [37].

IV. CONCLUSION

In this brief, we report on the holistic development of a
new highly overmoded SWC that overcomes a variety of
severe engineering challenges bought about by the growing
demand for higher frequencies. A quasi-TMys mode SWC
for EIO that can generate 0.3-THz electromagnetic radiation
with an output power of 250 W within a V-band standard
cavity using a W-band size electron beam without requiring
a superconducting magnetic system has been verified. Such
new holistic design approaches achieve higher THz frequency
electromagnetic radiation in the MMW circuit engineering.
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