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Abstract—Direct formation of large-area carbon thin films on
gallium nitride by chemical vapor deposition without metallic
catalysts is demonstrated. A high flow of ammonia is used
to stabilize the surface of the GaN (0001)/sapphire substrate
during the deposition at 950°C. Various characterization methods
verify that the synthesized thin films are largely sp2 bonded,
macroscopically uniform, and electrically conducting. The carbon
thin films possess optical transparencies comparable to that of
exfoliated graphene. This paper offers a viable route toward the
use of carbon-based materials for future transparent electrodes
in III-nitride optoelectronics, such as GaN-based light emitting
diodes and laser diodes.
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I. Introduction

GALLIUM nitride is a direct and wide bandgap (3.4 eV)
semiconductor used in optoelectronic devices that emit

in the green, blue, and ultraviolet ranges. Typical applications
include high-brightness light-emitting diodes (LEDs) [1] and
laser diodes [2]. Reproducible large-scale production of trans-
parent conducting thin films on GaN is crucial to improve the
current injection and light extraction efficiency in such devices.
Extremely thin metal films can be somewhat transparent, but
it is difficult to reduce the thickness to atomic level while
maintaining continuity. Indium tin oxide (ITO), a doped n-
type semiconductor, is the current industrial standard due to
its high transparency and conductivity [3], [4]. Nevertheless,
ITO is relatively expensive and is unstable in acidic and basic
environments [4].

Graphene, one or few layers of C atoms in graphite,
have been widely explored as viable ITO substitutes [5], [6].
Graphene is cost effective and highly stable while also pos-
sessing outstanding optical, electrical, and mechanical proper-
ties. Samsung has demonstrated production of 30-in stacked
graphene layers by chemical vapor deposition (CVD) with
properties superior to ITO [5]. Nevertheless, there have been
few attempts to employ graphene as transparent electrodes
in GaN-based optoelectronics, and those that have been con-
sidered are either wet-transferred CVD graphene [7]–[9] or
chemically converted graphene suspensions [10]. The transfer
process bound to metal-catalyzed graphene [5], [7]–[9], [11] is
complicated and often results in a nonideal interface between
the graphene and GaN due to residues, oxides, and wrinkles.
The chemically converted graphene also involves solution-
based processes [10]. Evidently, there is a substantial need to
develop a reproducible and semiconductor-industry compatible
technique for the synthesis of graphene directly on GaN.

Recently, we have pioneered the so-called noncatalytic
CVD of graphene. For the first time, large-area continuous
graphene thin films with controlled thickness are grown by
CVD without any metal catalyst on Si3N4 and HfO2 [12],
[13]. We have predicted that the mechanism and technique can
be generalized for graphene production over any nonmetallic
substrates that can withstand ∼1000 °C (e.g., SiO2) [13]–[15].
In this paper, we demonstrate CVD-grown large-area carbon
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Fig. 1. (a) Carbon thin films on GaN/sapphire (left two) and the bare
substrate (right). (b) High-resolution cross-section TEM micrograph of a
carbon/GaN sample, where the carbon thin film is intentionally grown thicker
for easy detection of the graphitic layers. The Au/Ti is deposited as part of
the TEM specimen preparation procedure.

thin films directly on GaN. The transfer-free carbon thin films
are macroscopically uniform, transparent, and conducting, as
confirmed by optical and transmission electron microscopies
(TEM), Raman, transmission, and Fourier transform infrared
(FTIR) spectroscopies, as well as electron transport measure-
ments. For this first attempt to deposit continuous carbon thin
films on GaN, however, the material quality is still inferior to
that of standard graphene, mainly due to difficulties in keeping
the GaN intact at high temperatures, as well as the noncatalytic
nature of the CVD. Nevertheless, the results indicate that there
is much room for continued improvement following our proof-
of-principle experiments, hinting at a promising future of the
as-developed technology in GaN-based optoelectronics.

II. Material Growth

The substrates used herein are unintentionally doped GaN
(0001) Lumilog templates (3.5-μm-thick) grown on sapphire
by metalorganic chemical vapor deposition. After standard or-
ganic rinsing, the GaN/sapphire template is loaded into a Black
Magic CVD System (AIXTRON, Ltd., Swavesey, Cambridge,
U.K.). Typically, the carbon thin films are grown at 950 °C
at 750 mbar for 5 min in a flow of 160 sccm C2H2 and
1000 sccm NH3. It is known that GaN can dissociate at high
temperatures. Thus, both the deposition temperature and time
have been reduced compared to our earlier work [13]–[15]. We
also opt to use C2H2 as a precursor due to its propensity to
thermally decompose at lower temperatures compared to CH4.
Finally and most importantly, an overpressure of NH3 is used
in order to protect the GaN surface from dissociating at the
high deposition temperature [16], [17]. It can compensate the
loss of N from GaN during growth, and also release H2 that
is generally needed for carbon CVD. We stress that N2 atmo-
sphere cannot be used for this purpose. Its ultrastrong N ≡ N
triple bond (946 kJ/mol) renders that N2 is rather inert. Fig.
1(a), from left to right, shows the GaN/sapphire template with

Fig. 2. (a) Optical image of a device fabricated on the middle sample of
Fig. 1(a) together with the four-probe measurement circuit. The active area is
4 μm×4 μm large. (b), (c) 8 μm×8 μm AFM height and phase images of the
central region of (a). (d) Raman spectra (514 nm, 0.5 mW) of the as-grown
carbon thin film on GaN.

Fig. 3. UV-VIS-NIR transmittance of the carbon thin film and the bare
GaN/sapphire. The carbon thin film absorbs ∼2% of the incident light. Insert:
FTIR spectra of the same samples, which have been shifted along the ordinate
for clarity.

deposited carbon thin films using 158 and 160 sccm C2H2, and
the bare substrate, respectively. The carbon thin films on the
undersides of the samples have been removed by O2 plasma
treatment (with the top surface protected by the photoresist).
The thin films are macroscopically smooth and uniform as evi-
denced by optical microscope observation [examples of optical
microscopy and atomic force microscopy (AFM) images of the
middle sample in Fig. 1(a) can be found in Fig. 2(a) and (b),
where the carbon thin film is already patterned], indicating
that the growth strategy effectively preserves the GaN surface
morphology. In contrast, GaN layers heated to 950 °C with no
NH3 protection exhibit a severely damaged morphology (not
shown). Notwithstanding, AFM measurement reveals tolerable
nm-scale surface roughening [Fig. 2(b)].

III. Results and Discussion

To date, graphitization over nonmetallic surfaces is poorly
understood. We propose a noncatalytic mechanism based
on hydrocarbon pyrolysis and subsequent self-assembly of
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graphene flakes [13]–[15]. At ∼1000 °C, the carbon precursor
decomposes and the carbon atoms form nanoscale graphene
flakes, similar to the widely used industrial process to pro-
duce large quantities of carbon black [18]–[20]. However,
if a very hot and flat substrate is present, the graphene
flakes can self-organize into textured thin films rather than
porous lumps [13]–[15]. As the substrate plays no or very
weak catalytic role, even if it is covered by carbon, the
deposition still continues. Therefore, the thickness of carbon
layers can be easily controlled by tuning the growth time
and/or precursor concentration. The coatings maintain their
metallic luster resembling oriented graphite even for tens of
nm [13]–[15]. Indeed, in Fig. 1(a), the carbon thin films on
the left and middle samples are about 2–3 nm and 4 nm,
respectively (determined by AFM and TEM), rendering the
middle sample more opaque than the left one. Here, we note
that very high C2H2 flow is used during growth to enhance
the deposition speed and hence reduce the time for GaN at
high temperatures. The partial pressure PC2H2 is ∼100 mbar,
orders of magnitude higher than conventional recipes [13],
[15], [21]. Therefore, merely 2 sccm change in C2H2 already
means ∼1.3 mbar change in PC2H2 . That is why the carbon
film thickness is very sensitive to the change in C2H2 flow
under our experimental conditions. At this stage, however,
despite the general controllability over film thickness, the
extremely thin carbon layer on GaN (even if the substrate
is stabilized by NH3) is not uniform, in contrast with those
on inert substrates, e.g., Si3N4 [13] and SiO2 [14], [15]. This
is similar to the case of Ni-catalyzed graphene [22], where
the substrate has a high affinity to C and the graphene is
nonuniform. In fact, in Fig. 1(a), the transport properties
are consistent for all devices on the middle sample, which
is not the case for the left sample. Epitaxial GaN grown
along its c-axis has two faces (Ga-face and N-face). In this
paper, our samples have the Ga-face polarity. As the carbon
deposition is largely noncatalytic [13]–[15], we believe this
polarity plays a minor role in the growth. However, we do
not absolutely rule out any chemical interactions between
the substrate and the carbon layer. Since N-face GaN is
also important in optoelectronics, we will investigate the
subtle influence of this polarity on the carbon CVD in the
future.

Due to difficulties in wet etching of the GaN layer, the
carbon thin films are not transferred to Cu grids for plan-
view TEM investigations. Nevertheless, Fig. 1(b) depicts a
high-resolution cross-sectional TEM image of a GaN/sapphire
sample with a thicker [compared to the middle sample in
Fig. 1(a)] carbon film to ease the identification of graphitic
layers. The GaN epi-layer is seen to be somewhat roughened
due to the high-temperature process. Rather homogeneous
conformal carbon layers with some degrees of texture are
observed, which accounts for the metallic luster of very thick
films [13]–[15]. In Fig. 1(b), the thickness of the carbon layer
is equivalent to ∼20 layers of graphene, assuming an ideal
graphitic interplane distance of 3.35 Å. Further detailed TEM
analysis can be found in Appendix A.

Fig. 2(d) shows the Raman spectra measured on the middle
sample in Fig. 1(a). The G band centered at ∼1600 cm−1

and the D band at ∼1376 cm−1 are clearly seen, which
are attributed to zone center phonons of E2g symmetry and
K-point phonons of A1g symmetry, respectively [23]. They
are typically observed in disordered graphitic structures [24].
There is no distinguishable 2-D band, typically found at
2500–2800 cm−1, which is perhaps flooded by substrate
luminescence, but more likely implies a defective carbon
lattice, which may, at least in part, be related to the nonintact
underlying GaN. The Raman analysis indicates that the as-
grown thin films are likely to be at the transition stage from
amorphous carbon to nanocrystalline graphitic carbon [24].
Fig. 3 shows the ultraviolet-visible-near-infrared (UV-VIS-
NIR) transmission spectra, where the baseline (100% trans-
mittance) is set to atmosphere (no sample in the beam). The
interference fringes are due to the GaN films [25]. Similarly,
the strong absorption edge is due to the GaN rather than the
carbon thin films. The incident face of the carbon thin films
is specular whilst the underside of the sapphire substrate is
unpolished. Thus, more than 90% of the incident light is lost
by scattering alone. However, useful data can be extracted
by comparing the spectra of the bare GaN/sapphire and the
carbon coated substrate [Fig. 1(a), middle]. At the absorption
edge, ∼2% reduction in transmittance is extracted for the
carbon thin films, which is comparable to the case of standard
graphene [26]. Indeed, the porosity and grain boundaries
of other nanocrystalline thin films have been empirically
evidenced to give rise to much higher than expected optical
transmission [27]. The insert presents the FTIR spectra of the
same samples. There are no apparent changes in the spectra
after the carbon deposition. This suggests that not only the
carbon film is thin (C-related peaks are below the detection
limit of the spectrometer), but also there is no bound water
(that possibly exists in solution-processed graphene) at the in-
terfaces (−OH group should show features at 3000–3700 cm−1

[28], [29]).
Finally, arrays of Hall-bar devices are fabricated by standard

photolithography (see Appendix B). An optical micrograph
of a typical device on the middle sample in Fig. 1(a) is
shown in Fig. 2(a). According to our four-probe resistance
measurements, the nominal sheet resistance Rs is 2.3 k�/�.
However, this is not the intrinsic Rs of the carbon thin
films, because the GaN itself is unintentionally doped and
thus conducting (see Appendix B). Our future goal is then
to grow these thin films on high resistivity GaN substrates
so that the sheet resistance of the carbon layer could be
measured accurately. Currently, the electrical characterization
data show that the thin films are conducting current but also
more resistive than expected, implying that they might be
carbon atoms connected primarily by sp2 bonds with a fraction
of sp3 bonds, as discussed in Appendix B. Fig. 2(b) and (c)
depicts the AFM height and phase images of the central part of
the device, respectively. The nanopits in the carbon thin film in
(b) are absent in (c). Here, the contrast in the phase image is
primarily due to the difference in the chemical composition
of the sample surface, which suggests that the roughness
is mainly due to the high-temperature effect on GaN, and
the carbon thin film grows conformally with no observable
holes.
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Fig. 4. Cross-sectional TEM micrographs of the same carbon thin film
sample as shown in Fig. 1(b). (a) Raw data. (b) Amplified according to the
description. In each image, the left section is the GaN.

IV. Conclusion

We elaborated on our abilities to deposit carbon thin films,
for the first time, directly on GaN (0001)/sapphire substrates
by CVD without the use of metallic catalysts. The as-grown
thin films are scalable, continuous, uniform, and have a con-
trollable thickness. The carbon coatings are electrically con-
ducting and show optical transmission comparable to standard
graphene. The transfer-free process favors the large-scale com-
mercial application of such carbon thin films for future trans-
parent electrodes to address the current crowding problem in
optoelectronic devices. Further, detailed investigations of the
carbon thin films on p-type GaN substrates and on functional
device structures are underway, including the CVD growth and
the electrical characterization, which will be published else-
where. It is hoped that this paper will provide a basis for a gen-
eralized carbon CVD growth model on other semiconductors.

APPENDIX A

TEM OBSERVATION

Fig. 4 shows the high-resolution TEM images obtained on
the same sample as shown in Fig. 1(b). In order to improve
the visibility of the graphitic layers of our carbon thin films,
the spatial frequencies from 2.44 nm−1 to 3.44 nm−1 in
the micrograph [Fig. 4(a)] are amplified with the following
method. First, the entire micrograph is transformed by fast
Fourier transform (FFT). Then, a ring mask with 5 pixel
feathering and inner and outer radii of 2.44 nm−1 and 3.44
nm−1 is applied using the Digital Micrograph Software. The
thus-masked FFT is then transformed back by the inverse
transformation function. This yields a micrograph with areas
that exhibit the corresponding characteristic spatial frequen-
cies. Finally, the amplification in the original micrograph
is established by adding the filtered image to the original
micrograph. This improves the visibility of the carbon c-axis
lattice fringes [see Fig. 4(b)], while also allowing for spatial
information as to where these spatial frequencies are present
with respect to the whole Au/Ti/C/GaN structure.

APPENDIX B

ELECTRON TRANSPORT MEASUREMENTS

Hall-bar devices are fabricated by photolithography. The
first exposure and the subsequent lift-off define the metallic
contacts to the carbon coatings (45 nm Au/5 nm Cr, no

Fig. 5. (a) Stereo microscope image of the device arrays fabricated in the
middle sample of Fig. 1(a). The letters indicate the contact points during
the measurement. (b) Schematic of the cross-section of the carbon thin film
devices on the GaN/sapphire substrate. a, e, and h highlight the three contact
points measured with metallic probes.

annealing). The second exposure together with an O2 plasma
etch (50 W, 1 min, 250 mTorr) patterns the carbon. Fig. 5(a)
shows a stereo microscope image of the middle sample in Fig.
1(a), where a–g indicate the contact points during the electrical
measurements on a Karl Suss PM5 probe station connected to
a Keithley 4200-SCS parameter analyzer.

Fig. 6(a) shows the I–V curves of a typical device [see Fig.
2(a)] fabricated in the sample shown in Fig. 5(a). Two-terminal
measurement [a↔b in Fig. 5(a)] shows nearly linear behavior.
Four-terminal measurement [a–d in Fig. 5(a)] eliminates the
contact resistances, giving the sheet resistance Rs of 2.3 k�/�.
However, while measuring across the whole sample [a↔e in
Fig. 5(a)], we get a current over ±4 V span, as plotted in Fig.
6(b). This indicates that all the devices are electrically con-
nected to each other. We exclude this conductance as coming
from the deposited carbon. As discussed previously, the carbon
layer grown on this sample is ∼4 nm thick, equivalent to
almost ten graphene layers, and should be completely burned
out by O2 plasma etching under our conditions. We note that if
carbon is yet present, the conductance can be detected simply
by directly probing the surface [such as f↔g in Fig. 5(a),
where the carbon at the sample edge has been protected by
the resist. Notice the slightly darker color induced by the
presence of carbon at the sample edge compared with the
etched central region of the chip]. Indeed, there is a finite
conductance between f and g. However, when probing between
h and i [Fig. 5(a)], there is no measurable conductance,
proving the thoroughness of the O2 plasma etch. Therefore,
the conductance observed in Fig. 6(b) can only come from
the unintentionally doped GaN.
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Fig. 6. (a) Resistance measurements of the upper left device shown in Fig.
5(a). The lower two figures show I–V curves measured (b) between a and e
and (c) between a and h in Fig. 5(a), respectively.

We now show that the carbon has electrical contacts to
the underlying GaN. Fig. 5(b) illustrates our proposed model.
In the device process, carbon is patterned after metallization.
Therefore, beneath the Au/Cr pads, carbon is present. Note
that thermal annealing is typically used to form ohmic contacts
between metals and n-GaN [30] or p-GaN [31]. In our case, the
Au/Cr layer is neither in direct contact to the GaN nor high-
temperature annealed. Thus, the current between a and e [Fig.
6(b)] means that the carbon must possess electrical contacts to
GaN (and to Au/Cr). In fact, as mentioned previously, probing
between h and i shows no current. Moreover, Hall bars are
also fabricated on a separate GaN/sapphire substrate that has
not undergone any carbon deposition, where no conductance is
observed between Au/Cr electrodes. This is due to the presence
of two Schottky barriers at the interfaces between the metal
probes and the GaN (equivalent to two face-to-face Schottky
diodes). Nevertheless, measurement between a and h has only
one Schottky barrier in the current path and should therefore
show a rectification behavior. Indeed, in Fig. 6(c), we obtain a

clear current rectification resembling those of Schottky diodes
[32] [a↔h in Fig. 5(a)].

Interestingly, a photoconductivity effect is observed in this
rectification. In Fig. 6(c), the black curve is the measured
I–V property under ordinary room illumination; the read
curve is under additional white light illumination; and the
green curve is the case when the sample is returned to
standard illumination again. At the present stage, the exact
origin of this photocurrent is unclear (UV light is normally
required to induce photoconductivity in GaN). Photocurrents
have been reported in graphene [33], but it is unlikely that
the observed nonnegligible photoconductivity is solely due to
that. Doping in GaN, in some cases, can produce a significant
photoluminescence in the visible light range [34]. Therefore,
the GaN might have a broadened spectral response through
the activation of these unintentionally doped sites.

These data confirm that the directly grown carbon thin
films indeed conduct current, and their presence enhances the
current injection between Au/Cr and GaN (better contacts),
indicating a promising future. However, the conductance is
smaller than values extracted from high-quality graphene
layers with equivalent thickness. The contacts with the GaN
are also not ideally ohmic. Some sp3 bonds (as in diamond)
are probably responsible for the unexpected high resistivity
and high transparency. Further investigations are necessary to
reveal the mechanism.
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