Journal of Materials Chemistry

Cite this: J. Mater. Chem., 2011, 21, 9811

www.rsc.org/materials

HIGHLIGHT

Silicate cathodes for lithium batteries: alternatives to phosphates?

M. Saiful Islam,**a Robert Dominko,* Christian Masquelier,* Chutchamon Sirisopanaporn,**bc A. Robert Armstrong** and Peter G. Bruce**

DOI: 10.1039/c1jm10312a

Polyoxyanion compounds, particularly the olivine-phosphate LiFePO $_4$, are receiving considerable attention as alternative cathodes for rechargeable lithium batteries. More recently, an entirely new class of polyoxyanion cathodes based on the orthosilicates, Li $_2$ MSiO $_4$ (where M = Mn, Fe, and Co), has been attracting growing interest. In the case of Li $_2$ FeSiO $_4$, iron and silicon are among the most abundant and lowest cost elements, and hence offer the tantalising prospect of preparing cheap and safe cathodes from rust and sand! This Highlight presents an overview of recent developments and future challenges of silicate cathode materials focusing on their structural polymorphs, electrochemical behaviour and nanomaterials chemistry.

Introduction

For the next generation of rechargeable lithium batteries, there is intensive research activity targeted on developing new electrode materials, particularly for large-scale use in hybrid electric or pure electric vehicles and in stationary energy storage of solar/wind power. 1-3 Polyoxyanion compounds are receiving considerable interest as alternative cath-

odes to the conventional intercalation oxides, layered LiCoO₂ or spinel LiMn₂O₄. The strong binding of the oxygen within polyoxyanions enhances the stability and thus safety, compared with transition metal oxides. The electronic inductive effect shifts the d-states of the transition metal ions and hence the redox potentials, providing a means of tuning the latter. Phosphate materials, particularly LiFePO₄, have been

M. Saiful Islam

Saiful Islam grew up in London and obtained his BSc and PhD from University College London, followed by a postdoctoral fellowship at the Eastman Kodak Labs, New York, and a lectureship at the University of Surrey. Since 2006 he has been Professor of Materials Chemistry at the University of Bath. His research interests encompass new materials for lithium batteries and solid oxide fuel cells. He has presented over 45 invited

conference talks and was awarded the RSC Francis Bacon Medal, 2008.

Robert Dominko

Robert Dominko obtained his PhD in materials science at University of Ljubljana in 2002. He stayed in the National Institute of Chemistry in Ljubljana where he has a position of research associate. His main research activities are the synthesis and characterisation of new materials, and the tailoring of materials composites for lithium batteries. He is a coordinator of the group for positive electrode materials within

virtual European laboratory for lithium batteries ALISTORE-ERI.

^aDepartment of Chemistry, University of Bath, Bath, BA2 7AY, UK. E-mail: m.s.islam@bath.

^bLaboratory for Materials Electrochemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia

^cLaboratoire de Reactivite et Chimie des Solides, Universite de Picardie Jules Verne, 80039, Amiens, France

^dSchool of Chemistry, University of St Andrews, St Andrews Fife KY16 9ST, UK

extensively studied and continue to be important.^{2,3}

More recently, a new class of polyoxyanion cathodes based on the orthosilicates, Li_2MSiO_4 (where $M=\text{Mn}^{2+}$, Fe^{2+} , and Co^{2+}), has been attracting significant attention.⁴⁻³⁴ The relatively strong Si–O bonds promote similar lattice stabilization effects to the phosphate bonds found in LiFePO₄. Of these silicates, the most studied is $\text{Li}_2\text{FeSiO}_4$, with iron and silicon being among the most abundant and lowest cost elements. Indeed, developing cheap, sustainable and safe cathode materials is a prime target for large scale lithium batteries.

A key feature of the $\mathrm{Li_2MSiO_4}$ system is that, in principle, extraction of two lithium ions is possible for a two electron redox process (*i.e.*, operating on both $\mathrm{M^{2+}/M^{3+}}$ and $\mathrm{M^{3+}/M^{4+}}$ redox couples) especially for the Mn system; this should produce a higher capacity (*e.g.* above 300 mA h g⁻¹ for $\mathrm{Li_2MnSiO_4}$) than the

olivine phosphates in which one lithium at most can be extracted.

Although numerous examples are cited, it is beyond the scope of this short review to give an exhaustive summary of all the studies in this highly active field. Rather, this article highlights recent developments of silicate-based cathodes with emphasis on their crystal structures, electrochemical behaviour and nanomaterials chemistry.

2. Polymorphism and defects

Li₂MSiO₄ compounds (M = Fe, Mn, and Co) belong to a large family of materials known as the tetrahedral structures.^{35,36} These structures are composed of tetragonally packed oxide ions (a distorted form of hexagonal close packing) within which half the tetrahedral sites are occupied by cations, such that the face sharing between the pairs of tetrahedral sites is avoided. The cations can order within the

tetrahedral sites in different ways and various structural distortions are possible, leading to a rich and complex polymorphism, as summarised below.

The tetrahedral structures may be divided into two families, designated β and γ (related to the β and γ polymorphs of Li₃PO₄). In the β structure all the tetrahedra point in the same direction, perpendicular to the close-packed planes, and share only corners with each other, shown in Fig. 1(a) and (b). In the case of the γ polymorphs, the tetrahedra are arranged in groups of three with the central tetrahedron pointing in the opposite direction to the outer two, with which it shares edges (Fig. 1(c-e)). Where both β and γ polymorphs exist for a given compound the latter is stable at higher temperatures, with the β to γ transformation involving inversion of half the tetrahedral sites.36 Several variants of both β and γ exist, involving either ordering or distortions of the parent

Christian Masquelier

Christian Masquelier is currently a Professor in Chemistry at the Université Picardie Jules Verne, Amiens, and Junior Member of the Institut Universitaire de France. He has been working for over 15 years on the crystal chemistry of materials for Li-ion batteries, mostly phosphate-based positive electrodes. He is the co-author of 85 publications in this field and co-inventor of 13 International Patents.

A. Robert Armstrong

Robert Armstrong grew up in Lincolnshire and studied Natural Sciences at the University of Cambridge completing his PhD in Chemistry with Prof. Peter Edwards FRS, followed by postdoctoral research at the ISIS facility, Rutherford Appleton Laboratory, UK. He then moved to the University of St Andrews, where he is a research fellow. His research interests lie in the field of intercalation chemistry and electrode materials for lithium-ion batteries.

Chutchamon Sirisopanaporn

Chutchamon Sirisopanaporn is a joint PhD student at the University of Picardie, Amiens, France, and the National Institute of Chemistry, Ljubljana, Slovenia. She received her BSc Chemistry degree from Silpakorn University, Thailand in 2006, and her "MESC" ERASMUS MUNDUS Masters degree in 2008. She was awarded the Ludo Frevel Crystallography Scholarship of the ICDD for her current research.

Peter G. Bruce

Peter G. Bruce FRS is Wardlaw Professor of Chemistry at the University of St Andrews, Scotland. His research interests embrace the synthesis and characterisation of new materials for new generations of energy conversion and storage devices, especially lithium batteries. He has received a number of national and international awards for his research and is a fellow of the Royal Society.

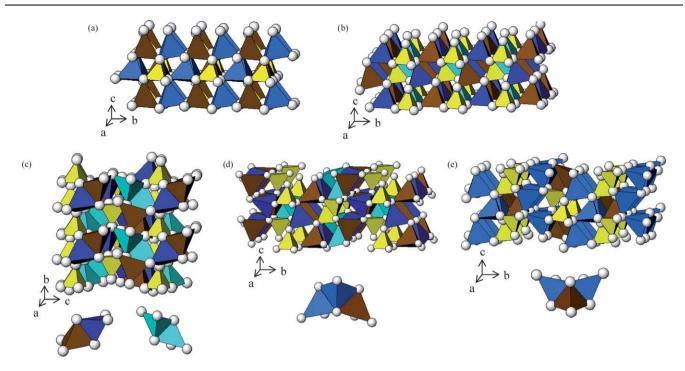
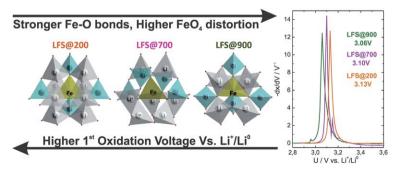


Fig. 1 Structures of Li₂MSiO₄ polymorphs; (a) β_{II} structure in which all the tetrahedra point in the same direction, perpendicular to the close-packed planes, and share only corners with each other; chains of LiO₄ along the *a*-axis and parallel to chains of alternating MO₄ and SiO₄, (b) β_{I} structure, all tetrahedra point in the same direction with chains of alternating LiO₄ and MO₄ tetrahedra along *a*, parallel to chains of alternating LiO₄ and SiO₄ tetrahedra, (c) γ_{s} structure, half tetrahedra pointing in opposite directions and contain pairs of LiO₄/MO₄ and LiO₄/LiO₄ edge-sharing tetrahedra (inset), (d) γ_{0} structure in which the tetrahedra are arranged in groups of three with the central tetrahedron pointing in the opposite direction to the outer two, with which it shares edges; the group of 3 edge-sharing tetrahedra consist of the sequence Li–Li–M (inset), (e) γ_{II} structure in which the group of 3 edge-sharing tetrahedra consist of the sequence Li–Li–M (blue); light and dark blue tetrahedra represent crystallographically distinct Li sites.

structures; they are designated β_I , β_{II} , γ_0 , γ_{II} , and γ_s (Fig. 1). In many instances these phases may be quenched to room temperature, where they exhibit long-term stability.

Li₂FeSiO₄


Several structures have been proposed to describe Li₂FeSiO₄. The first was reported by Nyten et al.5 who suggested an orthorhombic structure (based on β- Li_3PO_4), with space group $Pmn2_1$ (Fig. 1(a)). In this structure chains of LiO₄ tetrahedra run along the a direction parallel to chains of alternating FeO₄ and SiO₄ tetrahedra. Later, Nishimura et al.⁷ reported the structure of Li₂FeSiO₄ prepared at 800 °C using a monoclinic space group $P2_1$. The structure has been designated by these authors as γ_s , Fig. 1(c). It differs from the other γ structures in that there are no edge sharing trimers of tetrahedra; instead one set of LiO₄ tetrahedra are arranged in edge sharing pairs with FeO₄ tetrahedra,

whilst the other set of LiO_4 tetrahedra forms edge sharing pairs with itself, Fig. 1(c). More recently this description has been simplified using the higher symmetry space group $P2_1/n$. ^{7b,17}

Sirisopanaporn *et al.*¹⁶ have described the crystal structure of a new γ_{II} -polymorph of Li₂FeSiO₄, Fig. 1(e), obtained by quenching from 900 °C; the structure was established by electron microscopy,

XRD, and neutron diffraction; it is isostructural with $\text{Li}_2\text{CdSiO}_4$ (space group Pmnb), and differs from the γ_s structure obtained by quenching from 800 °C.⁷ A simple β_{II} polymorph (Fig. 1(a)), space group $Pmn2_1$, may be prepared by hydrothermal synthesis at low temperature.⁸

It has been demonstrated that variations in the FeO₄ geometry (orientation,

Fig. 2 Local environments around FeO₄ tetrahedra (in green) in the three polymorphs of Li₂Fe-SiO₄: $β_{II}$ (LFS@200); $γ_s$ (LFS@700); $γ_{II}$ (LFS@900). (LiO₄ in grey, SiO₄ in blue) and derivative plots obtained from PITT in the first oxidation of these three polymorphs. ¹⁸

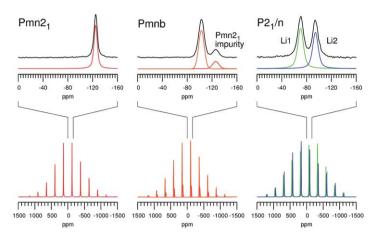


Fig. 3 ⁶Li MAS NMR spectra of three Li₂MnSiO₄ polymorphs (after ref. 15). The upper part shows isotropic bands and lower part presents the entire manifolds of spinning sidebands.

size, and distortion) influence the equilibrium potential measured during the first oxidation of Fe²⁺ to Fe³⁺ in all polymorphs. Shorter and hence stronger (more covalent) Fe-O bonds result in greater splitting in the energy between anti-bonding bonding and states. lowering the Fe²⁺/Fe³⁺ redox potential vs. Li+/Li0 (Fig. 2).18 Magnetic susceptibility measurements6 indicate that Li₂FeSiO₄ powders prepared at 800 °C possess an antiferromagnetic ordering below $T_N =$ 25 K due to long range Fe-O-Li-O-Fe interactions.

Li₂MnSiO₄

From powder X-ray diffraction (XRD), Dominko et al.8 proposed an orthorhombic β_{II} structure for Li₂MnSiO₄ (based on β -Li₃PO₄, space group $Pmn2_1$); they also pointed out the possibility of another γ_{II} -polymorph (Pmnb) detected by electron diffraction. XRD studies by Politaev et al. 19 reported a γ₀ structure with monoclinic symmetry (space group $P2_1/n$) based on γ -Li₃PO₄, similar to that reported for monoclinic Li₂CoSiO₄³² (Fig. 1(d)); they also observed a small amount of Li/Mn cation exchange in Li₂MnSiO₄. Atomistic defect modelling studies on Li₂MnSiO₄²⁰ indicate that the most energetically favourable intrinsic disorder is the Li-Mn anti-site or cation exchange defect, suggesting a small population of Li on Mn sites and Mn on Li sites, dependent on synthesis routes and thermal history.

⁶Li MAS NMR spectroscopy has proved to be a very useful tool to distinguish between different Li₂MnSiO₄ poly-

morphs.¹⁵ Lithium nuclei occupying crystallographically inequivalent lithium sites within a single polymorph exhibited NMR signals at different and well resolved positions (Fig. 3).

Density functional theory (DFT) calculations⁹ on orthorhombic Li₂Mn-SiO₄ predict that this phase is unstable on

extraction of large amounts of lithium. Arroyo-de Dompablo et al.12 also reported DFT calculations on the thermodynamic stability of Li₂MnSiO₄ polymorphs predicting that the lowest energy is found for the β-Li₃PO₄ based derivatives. Atomistic defect modelling studies²⁰ predict favourable Al³⁺ dopant incorporation on the Si site with Li interstitial compensation; this suggests a possible synthesis-doping strategy of introducing additional lithium into Li₂MnSiO₄ for higher capacities. Recent DFT-based studies have investigated the electronic structure, structural stability and ion substitution in the Li₂MSiO₄ materials.31

Li₂CoSiO₄

The third member of the orthosilicate family of cathode materials, $\text{Li}_2\text{CoSiO}_4$, has received comparatively less attention. Three polymorphic forms (β_{II} , and γ_0) have been prepared and investigated with powder diffraction and

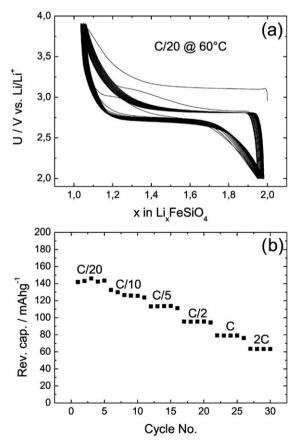
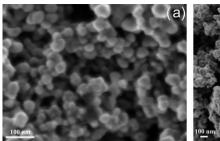



Fig. 4 Electrochemical properties of Li₂FeSiO₄; (a) discharge–charge curves for samples at C/20 rate. (b) Cycling performance at different current densities (marked as C-rates). ^{10,14}

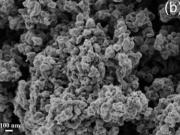


Fig. 5 SEM micrographs of Li₂FeSiO₄ obtained by (a) modified Pechini synthesis method¹⁰ and (b) hydrothermal synthesis method.¹⁴

⁷Li MAS NMR.^{32,33} The β_{II} (*Pmn*2₁) polymorph was obtained by hydrothermal synthesis (150 °C), and subsequent heat treatments yielded the BI $(Pbn2_1)$ form (700 °C) and the γ_0 (P2/n)form (1100 °C then quenching from 850 °C). Rietveld refinement of X-ray and neutron powder diffraction patterns reveal antisite disorder for β_{II} with Li on the Co site and Co sharing the Li site (essentially an inverse β_{II} structure analogous to inverse spinels), very moderate Li/Co mixing for β_I , and no mixing for γ_0 . ⁷Li MAS NMR spectra have been recorded for the three forms, and the nature and number of signals were analyzed in relation to the site occupancies for each compound.33

3. Electrochemistry and nanomaterials

Li₂FeSiO₄

Li₂FeSiO₄ was shown to undergo an initial charge at voltages above 3 V vs. Li while subsequent charges were at 2.84 V vs. Li.5 Such a shift in potential suggested a change of structure, which was confirmed by X-ray diffraction and Mossbauer spectroscopy during the initial cycles. Studies on the cycled material by neutron diffraction identified conversion from the γ_s structure to a structure corresponding to the inverse β_{II} (originally observed for Li₂CoSiO₄, described above).5a,18 Further studies to investigate such structural changes are warranted, and efforts will doubtless be directed towards the synthesis of polymorphs that are stable from the outset to ensure the electrochemistry does not change on cycling.

Most of the reported electrochemical studies were conducted at elevated temperatures (e.g. 60 °C) to improve the

rate performance and increase the capacity. Typical capacities are 120-140 mA h g⁻¹ in the voltage range below $4 \text{ V } vs. \text{ Li (Fig. 4).}^{24,28} \text{ The cycling stability}$ of the Li₂FeSiO₄ cathode after conversion to the β phase is good. ¹⁴ However, due to low intrinsic conductivity, the rate performance needs to be improved to a similar degree to LiFePO₄ in order to

become competitive for commercial applications. By analogy with LiFePO₄, the strategy has been to reduce the particle size and to use carbon coatings (Fig. 5).^{4,8,14,22} In practice, this strategy usually involves the addition of a carbon precursor (citrate anion, ethylene glycol, *etc.*) that also acts as a complexing agent promoting the formation of a homogeneous gel. The presence of carbon during heat treatment suppresses active particle growth and particle agglomeration.^{8,10}

Yang and co-workers have made a number of advances in synthetic methods; for example Gong *et al.*²² reported a carbon-coated Li₂FeSiO₄ material with uniform nanoparticles (~40 to 80 nm) from a hydrothermal-assisted solgel process; this showed a discharge capacity of 160 mA h g⁻¹ at C/16 rate, and almost no capacity loss up to 50 cycles. Zhang *et al.*²⁴ reported a sol-gel method

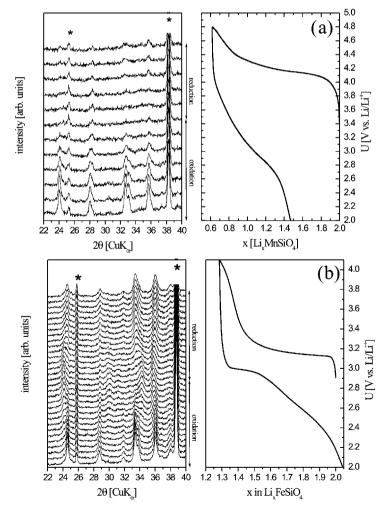


Fig. 6 In situ X-ray diffraction patterns and voltage profiles for Li₂MSiO₄/C at C/50 rate¹⁰ (a) Li₂MnSiO₄ and (b) Li₂FeSiO₄. Bragg reflections marked with asterisk denotes in situ cell reflections.

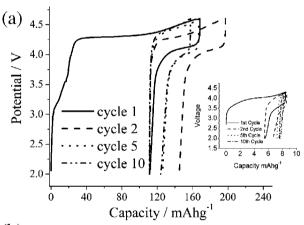
based on citric acid to prepare $\rm Li_2FeSiO_4$ in which the citric acid acts as both a chelating agent and a carbon source in the synthetic process; they observed a maximum discharge capacity of 153.6 mA h g⁻¹ in the third cycle, with 98.3% of this capacity retained after 80 charge–discharge cycles.

Manthiram and co-workers28 have synthesized nanostructured Li₂FeSiO₄ and Li2MnSiO4 by a facile microwavesolvothermal process; they report that the Li₂FeSiO₄/C nanocomposite exhibits good rate capability and stable cycle life, with discharge capacities of 148 mA h g⁻¹ at room temperature and 204 mA h g-1 at 55 °C, whereas Li₂MnSiO₄/C suffers from poor rate capability and drastic capacity fade. Capacities greater than 200 mA h g⁻¹ have been observed by several groups. Such capacities exceed the theoretical value for Fe^{2+/3+} redox couple (166 mA h g⁻¹); the results have been interpreted as implying either Fe4+ formation28 and/or electrolyte degradation¹³.

Photoelectron spectroscopy (PES) has been used by Thomas and co-workers^{5e} to examine the Li₂FeSiO₄ cathode surface extracted from lithium-ion batteries; a thin surface film is formed on electrochemical cycling of Li₂FeSiO₄ electrodes at 60 °C using a LiN(SO₂CF₃)₂ salt based electrolyte, with high salt stability and only small amounts of solvent reaction products. It is suggested that the excellent capacity retention observed (>97% over 120 cycles) during the first cycle is probably a result of this thin surface film.^{5c}

Li₂MnSiO₄

Li₂MnSiO₄ could be viewed as an attractive cathode material, in terms of energy density and possibility of >1-electron redox process since the higher manganese oxidation state Mn4+ is more accessible than Fe4+. Li2MnSiO4 is found to have a redox potential near 4.1 V vs. Li, but initial studies show substantial irreversible capacity loss.8-11 In situ XRD studies indicate that for Li₂FeSiO₄ cycling proceeds through a plateau relating to a two-phase mechanism, whereas lithium exchange from Li₂MnSiO₄ involves the formation of an amorphous phase along the oxidation plateau at approximately 4.1 V (Fig. 6).10,23


Li et al.²³ have reported the synthesis of a high capacity Li₂MnSiO₄/C nanocomposite material with good rate performance and a reversible capacity of 209 mA h g⁻¹ in the first cycle; their XRD and IR results also indicate that the poor cycling behavior might be due to an amorphization of the silicate material. Aravindan *et al.*³⁰ have recently employed an adipic acid assisted sol–gel route to prepare Li₂MnSiO₄ nanoparticles, with their Li/Li₂MnSiO₄ cell delivering a stable discharge capacity profile (125 mA h g⁻¹) for up to 50 cycles.

Due to problems with the pure Mn-based material, there have been recent studies on mixed-cation Li₂(Fe,Mn)SiO₄ solid solutions.^{13,21} Preliminary studies on mixed-metal materials suggest the use of the Li₂Fe_{0.5}Mn_{0.5}SiO₄ composition. The basic concept was to stabilize the local environment of Mn³⁺ in tetrahedral coordination by introducing Fe as a "stabilizer", in line with DFT-based

calculations.⁹ Gong *et al.*²¹ reported an optimal composition of Li₂Fe_{0.5-}Mn_{0.5}SiO₄ that delivers high capacity (214 mA h g⁻¹) within a wide voltage window, but with serious capacity fade during cycling.

Studies on Li₂Fe_{0.8}Mn_{0.2}SiO₄ show good reversibility with a large voltage polarisation in the formation cycles.¹³ Using *in situ* Mössbauer spectroscopy and XANES it was shown that most of the iron was reversibly oxidised to Fe^{III}, while only a part of the manganese was reversibly oxidised to Mn^{III}. Importantly, neither iron nor manganese in the tetravalent state was detected.¹³

Future studies are likely to explore whether the performance of other mixed-metal solid solutions proves superior to the pure compounds as found in the case of the layered LiMO₂ cathodes (*e.g.* Li(Co_{1/3}Mn_{1/3}Ni_{1/3})O₂).²

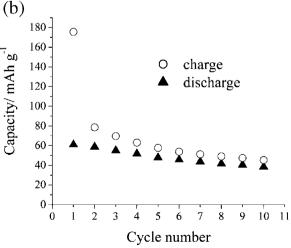


Fig. 7 Electrochemical properties of Li₂CoSiO₄; (a) variation of voltage with the state of charge (Li content) on cycling the $β_I$ polymorph carbon coated by the xerogel process at a rate of 10 mA g⁻¹. The inset shows the performance of uncoated material. (b) Variation of discharge capacity with cycle number for the carbon-coated $β_I$ polymorph cycled between 2.0 and 4.6 V at 10 mA g⁻¹. ³²

Li₂CoSiO₄

Lyness et al. 32 show that the three polymorphs of Li₂CoSiO₄ exhibit electrochemical activity when ball-milled, although with severe capacity fading after a few cycles, which is also the case for the corresponding cobalt-based phosphate, LiCoPO₄. For the β_I polymorph, coating the as-prepared material with carbon switches on electrochemistry without the need for ball-milling and gives superior charge capacity (170 mA h $g^{-1} \equiv 1.1 \text{ Li}$ per formula unit) and cyclability, compared with the same phase when ballmilled with carbon (Fig. 7). Only one Li could be extracted up to 4.6 V in agreement with theoretical predictions.

Gong *et al.*³⁴ have prepared Li₂CoSiO₄ by a solution-hydrothermal route, and find reversible lithium extraction/insertion at 4.1 V *vs.* Li, but limited to 0.46 lithium per formula unit for the Li₂CoSiO₄/C composite materials, with a reported charge capacity of 234 mA h g⁻¹.

4. Conclusions and future outlook

This review has highlighted an important class of polyoxyanion compounds based on the orthosilicates, Li₂MSiO₄ (where M = Mn, Fe, and Co), which are attracting growing interest as possible low-cost and safe cathodes for new generations of rechargeable lithium batteries. It serves to illustrate the value of fundamental studies of new materials, including the synthesis and characterisation of silicate polymorphs. However, there are a number of important challenges facing the silicates before they could be considered as viable cathodes and especially as alternatives to LiFePO₄. The challenges have been discussed above and are summarised here.

(i) For all Li₂MSiO₄ compounds there are significant differences between the first charge and subsequent cycling, which is indicative of structural changes, possibly involving Li/M cation exchange. Further fundamental studies to investigate these structural changes are warranted. In addition to crystallographic studies of the average structure, increasing use of local structure techniques and computer modelling to probe local defects, nano-scale structures, and Li-ion conduction pathways, will be important. Efforts will doubtless be

- directed to the preparation of polymorphs that are stable from the outset to ensure the electrochemistry does not change on cycling.
- (ii) Although the components, Fe, Mn, and Si, are low cost, so also must the synthesis methods and their precursors, if truly low cost electrodes are to be obtained. Furthermore the synthesis methods must be scalable.
- (iii) The rate capability needs to be improved. This will necessitate a better understanding of the origins of the low rate; especially studies of ionic and electronic transport and the kinetics of phase transitions. Optimising the rate performance will doubtless involve the synthesis of nanostructured materials, the control of particle size and morphology, and the use of chemical doping and surface coatings.
- (iv) Higher capacities than are associated with one Li per formula unit (170 mA h g^{-1}) are desirable, preferably with higher voltages such as those associated with Li₂MnSiO₄. Modifying the stoichiometric materials to enhance the Li composition range will be important.
- (v) Most studies have concentrated on pure Li_2MSiO_4 compositions, which are a necessary prelude to studying solid solutions of Li_2MSiO_4 , with mixed M of Fe, Mn and Co. It will be interesting to see whether the performance of such mixed-metal solid solutions proves superior to the pure phases as observed in the case of the layered LiMO₂ cathodes (e.g. Li(Co_{1/3}Mn_{1/3}Ni_{1/3})O₂), and therefore of technological significance.

Acknowledgements

The authors are members of the ALISTORE-ERI. MSI and PGB thank the EPSRC Supergen Energy Storage Consortium for funding. RD acknowledges funding from the Slovenian Research Agency. The Ministère de l'Enseignement Supérieur et de la Recherche, France, is acknowledged for the PhD studentship for CS. G. Mali is acknowledged for useful discussions.

References

(a) M. Armand and J. M. Tarascon, *Nature*,
 2008, **451**, 652; (b) P. G. Bruce, B. Scrosati
 and J. M. Tarascon, *Angew. Chem., Int.* Ed., 2008, **47**, 2930; (c)
 M. S. Whittingham, *Dalton Trans.*, 2008,

- 5424; (d) M. R. Palacin, Chem. Soc. Rev., 2009, 38, 2565.
- (a) B. L. Ellis, K. T. Lee and L. F. Nazar, *Chem. Mater.*, 2010, 22, 691; (b)
 J. B. Goodenough and Y. Kim, *Chem. Mater.*, 2010, 22, 587.
- 3 A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 1997, 144, 1188.
- 4 A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson and J. O. Thomas, Electrochem. Commun., 2005, 7, 156.
- 5 (a) A. Nyten, S. Kamali, L. Haggstrom, T. Gustafsson and J. O. Thomas, J. Mater. Chem., 2006, 16, 2266; (b) D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson and J. O. Thomas, J. Mater. Chem., 2009, 19, 82; (c) A. Nyten, M. Stjerndahl, H. Rensmo, H. Siegbahn, M. Armand, T. Gustafsson, K. Edstrom and J. O. Thomas, J. Mater. Chem., 2006, 16, 3483.
- 6 K. Zaghib, A. A. Salah, N. Ravet, A. Mauger, F. Gendron and C. M. Julien, J. Power Sources, 2006, 160, 1381.
- 7 (a) S. I. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama and A. Yamada, J. Am. Chem. Soc., 2008, 130, 13212; (b) A. Yamada, Oral presentation and personal communication, LiBD meeting, Arcachon, France, 2009.
- 8 R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar and J. Jamnik, *Electrochem. Commun.*, 2006, 8, 217; R. Dominko, D. E. Conte, D. Hanzel, M. Gaberscek and J. Jamnik, *J. Power Sources*, 2007, 178, 842.
- 9 A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek and J. Jamnik, Chem. Mater., 2007, 19, 3633.
- 10 R. Dominko, J. Power Sources, 2008, 184, 462.
- 11 R. Dominko, I. Arcon, A. Kodre, D. Hanzel and M. Gaberscek, J. Power Sources, 2009, 189, 51.
- (a) M. E. Arroyo-de Dompablo,
 M. Armand, J. M. Tarascon and
 U. Amador, *Electrochem. Commun.*, 2006,
 1292; (b) M. E. Arroyo-de Dompablo,
 R. Dominko, J. M. Gallardo-Amores,
 L. Dupont, G. Mali, H. Ehrenberg,
 J. Jamnik and E. Moran, *Chem. Mater.*,
 2008, 20, 5574.
- R. Dominko, C. Sirisopanaporn,
 C. Masquelier, D. Hanzel, I. Arcon and
 M. Gaberscek, J. Electrochem. Soc., 2010,
 157, A1309.
- 14 M. Nadherna, R. Dominko, D. Hanzel, J. Reiter and M. Gaberscek, J. Electrochem. Soc., 2009, 156, A619.
- G. Mali, A. Meden and R. Dominko, *Chem. Commun.*, 2010, 46, 3306.
- 16 C. Sirisopanaporn, A. Boulineau, D. Hanzel, R. Dominko, B. Budic, A. R. Armstrong, P. G. Bruce and C. Masquelier, *Inorg. Chem.*, 2010, 49, 7446.
- A. Boulineau, C. Sirisopanaporn,
 R. Dominko, A. R. Armstrong,
 P. G. Bruce and C. Masquelier, *Dalton Trans.*, 2010, 39, 6310.
- 18 C. Sirisopanaporn, C. Masquelier, P. G. Bruce, A. R. Armstrong and R. Dominko, J. Am. Chem. Soc., 2011, 133, 1263.

- V. V. Politaev, A. A. Petrenko,
 V. B. Nalbandyan, B. S. Medvedev and
 E. S. Shvetsova, J. Solid State Chem.,
 2007, 180, 1045.
- 20 (a) N. Kuganathan and M. S. Islam, *Chem. Mater.*, 2009, **21**, 5196; (b) M. S. Islam, *Philos. Trans. R. Soc. London, Ser. A*, 2010, **386**, 3255.
- 21 Z. L. Gong, Y. X. Li and Y. Yang, Electrochem. Solid-State Lett., 2006, 9, A542.
- 22 Z. L. Gong, Y. X. Li, G. N. He, J. Li and Y. Yang, Electrochem. Solid-State Lett., 2008, 11, A60.
- 23 Y. X. Li, Z. L. Gong and Y. Yang, *J. Power Sources*, 2007, **174**, 528.
- 24 S. Zhang, C. Deng and S. Y. Yang, Electrochem. Solid-State Lett., 2009, 12,

- 25 I. Belharouak, A. Abouimrane and K. Amine, *J. Phys. Chem. C*, 2009, **113**, 20733.
- 26 P. Ghosh, S. Mahanty and R. N. Basu, *J. Electrochem. Soc.*, 2009, **156**, A677.
- 27 X. B. Huang, X. Li, H. Y. Wang, Z. L. Pan, M. Z. Qu and Z. L. Yu, *Solid State Ionics*, 2010, **181**, 1451.
- 28 T. Muraliganth, K. R. Stroukoff and A. Manthiram, Chem. Mater., 2010, 22, 5754.
- 29 C. Deng, S. Zhang, S. Y. Yang, B. L. Fu and L. Ma, *J. Power Sources*, 2011, **196**, 386.
- 30 V. Aravindan, K. Karthikeyan, S. Ravi, S. Amaresh, W. S. Kim and Y. S. Lee, *J. Mater. Chem.*, 2010, 20, 7340.
- 31 (a) G. H. Zhong, Y. L. Li, P. Yan, Z. Liu,
 M. H. Xie and H. Q. Lin, J. Phys. Chem.
 C, 2010, 114, 3693; (b) P. Larsson,
 R. Ahuja, A. Liivat and J. O. Thomas,

- Comput. Mater. Sci., 2010, 47, 678; (c) S. Q. Wu, Z. Z. Zhu, Y. Yang and Z. F. Hou, Comput. Mater. Sci., 2009, 44, 1243.
- 32 C. Lyness, B. Delobel, A. R. Armstrong and P. G. Bruce, *Chem. Commun.*, 2007, 4890
- 33 A. R. Armstrong, C. Lyness, M. Ménétrier and P. G. Bruce, *Chem. Mater.*, 2010, 22, 1892.
- 34 Z. L. Gong, Y. X. Li and Y. Yang, *J. Power Sources*, 2007, **174**, 524.
- 35 P. Tarte and R. Cahay, C. R. Acad. Sci. Paris C, 1970, **271**, 777.
- 36 (a) A. R. West and F. P. Glasser, J. Solid State Chem., 1972, 4, 20; (b) A. R. West and F. P. Glasser, J. Mater. Sci., 1970, 5, 557; (c) P. G. Bruce and A. R. West, Mater. Res. Bull., 1980, 15, 379.