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ANALYSIS OF AN ITERATION METHOD FOR THE ALGEBRAIC
RICCATI EQUATION∗
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Abstract. We consider a recently published method for solving algebraic Riccati equations.
We present a new perspective on this method in terms of the underlying linear-quadratic optimal
control problem: we prove that the matrix obtained by this method expresses the optimal cost for a
projected optimal control problem. The projection is determined by the so-called shift parameters
of the method. Our representation in terms of the optimal control problem gives rise to a simple and
very general convergence analysis.

Key words. algebraic Riccati equation, ADI iteration, numerical method in control theory,
linear-quadratic optimal control

AMS subject classifications. 15A24, 49N10, 47J20, 65F30, 49M30, 93B52, 65K10

DOI. 10.1137/140985792

1. Introduction. We consider an algorithm developed in [6] for obtaining an
approximation of the unique positive semidefinite solution of the algebraic Riccati
equation

(1.1) A∗X +XA+ C∗C −XBB∗X = 0,

where A ∈ Cn×n is stable (i.e., all of its eigenvalues are in the open left half-plane),
B ∈ Cn×m, C ∈ Cp×n, and the superscript ∗ denotes the complex conjugate transpose.

The algorithm is iterative in nature and at step k produces an approximate so-
lution of the form Xk = SkT

−1
k S∗k for Sk ∈ Cn×kp and positive definite Tk ∈ Ckp×kp.

The main computational cost in the algorithm consists of, at each iteration step,
solving a linear system of the form (αiI − A)x = v, where v ∈ Cn×p and the “shift
parameter” αi ∈ C satisfies Re(αi) > 0. These features make this algorithm attractive
for the case where n is large, p is small, and A is sparse. This situation arises, for
example, when considering discretizations of partial differential equations. In what
follows we present an algorithm mathematically equivalent to [6, Algorithm 2] which,
when compared with [6, Algorithm 2], has a redistribution of terms which is important
for our interpretation of the algorithm.

In the case where the algebraic Riccati equation (1.1) reduces to a Lyapunov
equation (i.e., when B = 0), the considered algorithm reduces to the alternating
direction implicit (ADI) method in its factored algorithmic form [5].

We note that our analysis of Algorithm 1 is completely based on the underlying
optimal control problem and not on the algebraic Riccati equation (1.1) itself. Namely,
we use the well-known fact (see, e.g., [15, section III.1.4] or [4, Chapter 16]) that the
unique positive semidefinite solution X of the algebraic Riccati equation (1.1) fulfills
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for all x0 ∈ Cn,

(1.2) x∗0Xx0 = min
u∈L2(0,∞;Cm)

∫ ∞
0

‖u(t)‖2 + ‖y(t)‖2 dt,

where

(1.3) ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t).

Algorithm 1. An iteration method for the algebraic Riccati equation.

Input: A ∈ Cn×n a stable matrix, B ∈ Cn×m, C ∈ Cp×n, and shift parameters
α1, . . . , αk ∈ C with Re(αi) > 0.
Output: Sk ∈ Ckp×n, Fk ∈ Ckp×km such that S∗k(Ikp +FkF

∗
k )−1Sk ≈ X, where X is

the unique positive semidefinite solution of the algebraic Riccati equation (1.1)
1: V1 = (α1I −A∗)−1C∗

2: S1 =
√

2Re(α1) · V ∗1
3: Q1 =

√
2Re(α1) · V ∗1 B

4: L1 = 1√
2Re(α1)

5: F1 = Q1L1

6: for i = 2, 3, . . . , k do
7: Vi = Vi−1 − (αi + αi−1) · (αiI −A∗)−1Vi−1

8: Si = [S∗i−1 ,
√

2Re(αi) · Vi ]
∗

9: Qi = [Qi−1 ,
√

2Re(αi) · V ∗i B ]

9: γi :=
√

Re(αj)
Re(αj−1)

10: Mi,1 :=


1√

2Re(α1)

. . .
1√

2Re(αi)

, Mi,2 =

 α1+αi
α1−αi α2+αi

. . .
αi−1−αi αi+αi

,

Mi,3 =

[
1 ... 1

. . .
...
1

]
, Mi,4 =

[
0 I
1 0

]
, Mi,5 =

−
√

2Re(α1)

. . .
−
√

2Re(αi−1)

1


11: Mi = M−1

i,1 M
−1
i,2 M

−1
i,3 M

−1
i,4 M

−1
i,5

12: Li =

[
γiLi−1 0

0 0

]
−Mi

[
Li−1 0

0 1

] [
γi(αi + αi−1)I 0

[0, γi] −1

]
13: Fi =

[
[Fi−1, 0]

Qi
(
Li ⊗ Im

)]
14: end for

To relate the matrix calculated by Algorithm 1 to a certain optimal control prob-
lem, we need to introduce a subspace of L2(0,∞) and give some of its properties.
Namely, for a shift parameter sequence (αj)

∞
j=1 with αj ∈ C and Re(αj) > 0, we

define for k ∈ N,

(1.4) Vk := span{t 7→ e−α1t, . . . , t 7→ e−αkt}.

In this introduction, we assume for notational simplicity that the shift parameters
αj are distinct (in the sections following this introduction, we drop this assumption;
the definition of Vk has to be modified in the case of nondistinct parameters). Let
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Pk,p : L2(0,∞;Cp)→ L2(0,∞;Cp) denote the orthogonal projection onto Vk ⊗ Cp ⊂
L2(0,∞;Cp). The matrix Xk computed by Algorithm 1 gives the optimal cost for an
optimal control problem (see Theorems 5.1 and 5.3): for all x0 ∈ Cn there holds

(1.5) x∗0Xkx0 = min
u∈L2(0,∞;Cm)

∫ ∞
0

‖u(t)‖2 + ‖(Pk,py)(t)‖2 dt

subject to (1.3). In Corollary 5.2 we show that the minimizer in (1.5) fulfills uopt
k ∈

Vk⊗Cm. This implies that in (1.5) we can equivalently minimize over Vk⊗Cm rather
than over all of L2(0,∞;Cm).

It follows immediately from Vk ⊂ Vk+1 and (1.5) that (Theorem 5.4)

Xk ≤ Xk+1, Xk ≤ X,

i.e., (Xk)∞k=1 is a nondecreasing sequence bounded from above by X. Hence, (Xk)∞k=1

converges, but the limit may not necessarily equal X.
We obtain (Theorem 6.1) that the approximation computed by Algorithm 1 con-

verges to X, i.e.,

(1.6) lim
k→∞

Xk = X,

provided that

(1.7)
⋃
k∈N

Vk = L2(0,∞).

The property (1.7) is proven in [8] to be equivalent to the non-Blaschke condition

(1.8)

∞∑
j=1

Re(αj)

1 + |αj |2
=∞.

We note that this non-Blaschke condition is, for example, satisfied if all of the pa-
rameters belong to a fixed compact set contained in the open right half-plane. This
convergence result was previously obtained for the special case of the Lyapunov equa-
tion in [8].

As noted above, the approximate solution Xk obtained using Algorithm 1 is iden-
tical to that obtained in [6]. That the sequence Xk is nondecreasing is also obtained
in [6, Theorem 4.2] by using very different arguments. Convergence of Xk to X is
not obtained in [6]. An upper bound for the distance between Xk and X in the gap
metric was considered in [6]. However, it was left open there whether or not this
upper bound converges to zero.

The following example shows that, even for the case where the Riccati equation
reduces to a Lyapunov equation, Xk may converge to something different from X if
the non-Blaschke condition (1.8) is not satisfied.

Example 1.1. Let n = p = m = 1, A = −1, B = 0, C =
√

2. Then the unique
solution of the algebraic Riccati equation is X = 1. From [11, Lemma 4.5] we obtain
X −Xn = X|Tn|2, where

Tn :=

n∏
k=1

A+ αk
A− αk

.

Choosing αk := 1
8k2−1 results in Tn =

∏n
k=1

(
1− 1

4k2

)
. By Wallis’ formula (or from

Euler’s product formula for the sine) we then have Tn → 2
π as n→∞. It follows that
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Xn → 1 − 4
π2 . In particular, Xn does not converge to X. We note that the above

sequence of shift parameters does not satisfy the non-Blaschke condition (1.8).

The proof of convergence of the algorithm under the very nonrestrictive non-
Blaschke condition (1.8) is the main contribution of this paper and shows the useful-
ness of the new optimal control interpretation of the algorithm.

In Theorem 7.1, for completeness we briefly consider the extension of the ob-
tained results to the case where Cn, Cp, and Cm are replaced by (possibly infinite-
dimensional) Hilbert spaces. The analysis in fact goes through almost unchanged; the
only real difference is that in the infinite-dimensional case we have to specify in what
topology the convergence (1.6) takes place.

The remainder of this paper is organized as follows. Section 2 provides the connec-
tion between the algebraic Riccati equation and the optimal control problem following
the setting of [14]. In section 3 we take a closer look at the space Vk from (1.4). In
particular, we consider an orthonormal basis for this space (the Takenaka–Malmquist
system). This is used in section 4 to determine matrix representations of the (pro-
jected) input-output and output maps of (1.3). We show that these are exactly the
matrices Fk and Sk in Algorithm 1. These results are used in section 5 to derive
(1.5). Using this connection, convergence of Algorithm 1 is shown in section 6. Sec-
tion 7 briefly considers the extension to the infinite-dimensional case. Finally, section
8 illustrates the obtained results using numerical examples arising from a convection-
diffusion equation.

2. The linear-quadratic optimal control problem. In this section, we pre-
sent the connection between the algebraic Riccati equation (1.1) and the optimal
control problem (1.2), (1.3). Specifically, in Proposition 2.2 we give an explicit formula
for the solution X based on the operator framework from [14]. This formula is crucial
in the derivation and convergence analysis of Algorithm 1. The formula is in terms
of certain maps associated to the dynamical system (1.3) which we introduce in the
following definition.

Definition 2.1 (output map, input-output map, complementary Popov opera-
tor). Assume that A ∈ Cn×n is stable, B ∈ Cn×m, and C ∈ Cp×n. Consider the
following maps associated to the system (1.3):

• the output map Ψ : Cn → L2(0,∞;Cp), which maps the initial state x0 to
the output y (for control u = 0),

(2.1) Ψx0 = t 7→ CeAtx0,

with adjoint Ψ∗ : L2(0,∞;Cp)→ Cn given by

Ψ∗y =

∫ ∞
0

eA
∗τC∗y(τ) dτ ;

• the input-output map F : L2(0,∞;Cm) → L2(0,∞;Cp), which maps the
input u to the output y (for initial condition x0 = 0),

(2.2) Fu = t 7→
∫ t

0

CeA(t−τ)Bu(τ) dτ,

with adjoint F∗ : L2(0,∞;Cp)→ L2(0,∞;Cm) given by

F∗y = t 7→
∫ ∞
t

B∗eA
∗(τ−t)C∗y(τ) dτ ;



628 ARASH MASSOUDI, MARK R. OPMEER, AND TIMO REIS

• the complementary Popov operator Rc : L2(0,∞;Cp)→ L2(0,∞;Cp) defined
by

(2.3) Rc := I + FF∗ = [I F]

[
I
F∗
]
.

With the above-introduced mappings, the minimized expression in (1.2) becomes
‖Ψx0 +Fu‖2L2 + ‖u‖2L2 . In addition, we note that the complementary Popov operator
is bounded, self-adjoint, and positive definite, and has a bounded inverse.

The following proposition characterizes the unique positive semidefinite solution of
the algebraic Riccati equation (1.1) in terms of the output map and the complementary
Popov operator corresponding to the dynamical system (1.3).

Proposition 2.2. Let A ∈ Cn×n be stable, B ∈ Cn×m, and C ∈ Cp×n. Define
Ψ, F, and Rc by (2.1), (2.2), (2.3). The unique minimizer of the optimal control
problem (1.2), (1.3) is

uopt = −F∗R−1
c Ψx0.

The optimal cost is given by x∗0Xx0 with

(2.4) X = Ψ∗R−1
c Ψ.

Proof. It is proven in [14, Proposition 7.2] that the optimal control is unique and
is given by

uopt = −(I + F∗F)−1F∗Ψx0,

and the optimal cost is induced by

X = Ψ∗Ψ−Ψ∗F(I + F∗F)−1F∗Ψ.

Using that (I + F∗F)−1F∗ = F∗R−1
c , the given formulas follow.

3. Convolution and Takenaka–Malmquist systems. In this section we con-
sider special subspaces of L2(0,∞) which are relevant for our considerations on the
optimal control interpretation (1.5) of the iteratively determined matrices Xk in Al-
gorithm 1.

Definition 3.1. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j ∈ N. We define

the corresponding convolution system (ϕj)
∞
j=1, ϕj ∈ L2(0,∞), by

ϕ1 := t 7→ e−α1t,

ϕj := e−αj · ∗ ϕj−1,

where ∗ denotes the convolution product, i.e., (g ∗ h)(t) =
∫ t

0
g(t − τ)h(τ) dτ . We

further set

(3.1) Kk(α) := span{ϕ1, . . . , ϕk}.

Remark 3.2. Let (αj)
k
j=1 be a tuple of numbers in the open right complex half-

plane, and let (ϕj)
k
j=1 be the corresponding convolution system. Let ϕ̂i be the Laplace

transform of ϕi.
(a) Since the Laplace transform turns convolution into multiplication, we obtain

ϕ̂1(s) =
1

s+ α1
, ϕ̂j(s) =

1

s+ αj
· ϕ̂j−1(s),
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and therefore,

(3.2) ϕ̂j(s) =

j∏
`=1

1

s+ α`
.

(b) Assume that the numbers q1, . . . , qJ are pairwise different with {q1, . . . , qJ} =
{α1, . . . , αk}. Further, let `j be the number of times in which qj appears in
(αj)

k
j=1 (thus k = `1 + · · ·+ `J). Then

span{ϕ1, . . . , ϕk} =

J⊕
j=1

span
{
t 7→ tle−qjt

∣∣ l = 0, . . . , `j − 1
}
.

The easiest way to see this is by considering (ϕ̂j)
k
j=1 and using partial frac-

tions.
In particular, if the numbers α1, . . . , αk are distinct, then

span{ϕ1, . . . , ϕk} = span{e−α1·, . . . , e−αk·}.

(c) It follows from (b) that if (α̃j)
k
j=1 is a permutation of (αj)

k
j=1 and (ϕ̃j)

k
j=1

and (ϕj)
k
j=1 are the corresponding convolution systems, then

span{ϕ̃1, . . . , ϕ̃k} = span{ϕ1, . . . , ϕk}.

Next we consider a special basis of Kk(α).

Definition 3.3. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j ∈ N. We define

the corresponding Takenaka–Malmquist system (ψj)
∞
j=1, ψj ∈ L2(0,∞), by

(3.3)
φ1 = t 7→ e−α1t, ψ1 =

√
2Re(α1) · φ1,

φj =φj−1 − (αj + αj−1) · (e−αj · ∗ φj−1), ψj =
√

2Re(αj) · φj .

Remark 3.4.
(a) The Takenaka–Malmquist system is orthonormal (see, e.g., [8, Appendix B]

for a proof).
(b) Laplace transformation of (3.3) yields that for all s ∈ C with Re(s) > 0 there

holds

φ̂1(s) =
1

s+ α1
, ψ̂1(s) =

√
2Re(α1) · φ̂1(s),

φ̂j(s) = φ̂j−1(s)− (αj + αj−1) · 1

s+ αj
· φ̂j−1(s), ψ̂j(s) =

√
2Re(αj) · φ̂j(s).

(3.4)

Therefore, we obtain by induction that

(3.5) ψ̂j(s) =

√
2Re(αj)

(s+ αj)
·
j−1∏
`=1

s− α`
s+ α`

.

(c) By using partial fraction expansions of their Laplace transforms (see (3.2)
and (3.5)), we obtain

Kk(α) = span{ψ1, . . . , ψk}.

Consequently, {ψ1, . . . , ψk} is a basis of Kk(α).
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Now we determine how the operators Ψ∗ and F∗ act on the considered bases of
Kk(α). We first define the following two operators (for t ≥ 0):

Φt : L2(0,∞;Cp)→ Cn, Φtz :=

∫ ∞
t

eA
∗(τ−t)C∗z(τ) dτ,(3.6)

Λ : L2(0,∞;Cp)→ L2(0,∞;Cn), Λz := t 7→
∫ ∞
t

eA
∗(τ−t)C∗z(τ) dτ.(3.7)

The significance of these operators is that Ψ∗ = Φ0, F∗ = B∗Λ, and Λz = t 7→ Φtz.
The following lemma is the crucial technical result used to show how the operators

Ψ∗ and F∗ act on the convolution and Takenaka–Malmquist systems.

Lemma 3.5. Let A ∈ Cn×n be stable, let C ∈ Cp×n, and define for t ≥ 0 the
operator Φt by (3.6). Then for µ ∈ C with Re(µ) > 0, v ∈ Cp, and z ∈ L2(0,∞;Cp),
there holds

(3.8) Φt(e
−µ·v) = (µI −A∗)−1C∗ve−µt

and

(3.9) Φt(e
−µ· ∗ z) = (µI −A∗)−1C∗(e−µ· ∗ z)(t) + (µI −A∗)−1Φt(z).

Proof. We first consider (3.8). We have, by the change of variables θ := τ − t,

Φt(e
−µ·v) =

∫ ∞
t

eA
∗(τ−t)C∗ve−µτ dτ =

∫ ∞
0

eA
∗θC∗ve−µθe−µt dθ

= e−µt
∫ ∞

0

e(A∗−µI)θC∗v dθ,

and elementary integration then gives the result.
We now consider (3.9). We have

Φt(e
−µ· ∗ z) =

∫ ∞
t

eA
∗(τ−t)C∗

∫ τ

0

e−µ(τ−σ)z(σ) dσdτ

=

∫ ∞
t

∫ τ

0

e(µI−A∗)(t−τ)C∗e−µ(t−σ)z(σ) dσdτ.

Interchanging the order of integration gives that the above equals∫ t

0

∫ ∞
t

e(µI−A∗)(t−τ)C∗e−µ(t−σ)z(σ) dτdσ

+

∫ ∞
t

∫ ∞
σ

e(µI−A∗)(t−τ)C∗e−µ(t−σ)z(σ) dτdσ

=

∫ t

0

[
−(µI −A∗)−1e(µI−A∗)(t−τ)C∗e−µ(t−σ)z(σ)

]∞
τ=t

dσ

+

∫ ∞
t

[
−(µI −A∗)−1e(µI−A∗)(t−τ)C∗e−µ(t−σ)z(σ)

]∞
τ=σ

dσ

=

∫ t

0

(µI −A∗)−1C∗e−µ(t−σ)z(σ) dσ

+

∫ ∞
t

(µI −A∗)−1e(µI−A∗)(t−σ)C∗e−µ(t−σ)z(σ) dσ

= (µI −A∗)−1C∗
∫ t

0

e−µ(t−σ)z(σ) dσ + (µI −A∗)−1

∫ ∞
t

eA
∗(σ−t)C∗z(σ) dσ

= (µI −A∗)−1C∗ (e−µ· ∗ z)(t) + (µI −A∗)−1Φt(z),

as claimed.
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A consequence of the above lemma is a result regarding the action of Φt, Ψ∗, and
Λ on the convolution system.

Proposition 3.6. Let A ∈ Cn×n be stable, C ∈ Cp×n, (αj)
∞
j=1 such that Re(αj) >

0 for all j ∈ N, (ϕj)
∞
j=1 as in Definition 3.1, and v ∈ Cp.

(a) Let t ≥ 0. With Φt as in (3.6) there holds

Φt(ϕ1v) = (α1I −A∗)−1C∗vϕ1(t),

Φt(ϕjv) = (αjI −A∗)−1C∗vϕj(t) + (αjI −A∗)−1Φt(ϕj−1v).

(b) With Ψ as in (2.1) there holds

Ψ∗(ϕ1v) = (α1I −A∗)−1C∗v,

Ψ∗(ϕjv) = (αjI −A∗)−1Ψ∗(ϕj−1v).

(c) With Λ as in (3.7) there holds

Λ(ϕ1v) = (α1I −A∗)−1C∗vϕ1,

Λ(ϕjv) = (αjI −A∗)−1C∗vϕj + (αjI −A∗)−1Λ(ϕj−1v).

Proof. We first prove part (a). The first formula follows directly from (3.8)
with µ := α1. The second formula follows from multiplying the iterative defini-
tion of (ϕj)

∞
j=1 from Definition 3.1 by v, applying Φt to the result, and using that by

Lemma 3.5,

Φt(e
−αj · ∗ ϕj−1v) = (αjI −A∗)−1C∗vϕj(t) + (αjI −A∗)−1Φt(ϕj−1v).

Part (b) follows from part (a) by using that Ψ∗ = Φ0, ϕ1(0) = 1, and ϕj(0) = 0
for j > 1. Part (c) follows from part (a) using that Λz = t 7→ Φtz.

We can immediately conclude from the previous result and F∗ = B∗Λ that Kk(α)
is, in a certain sense, an invariant subspace of the adjoint input-output map.

Corollary 3.7. Let A ∈ Cn×n be stable, C ∈ Cp×n, and (αj)
∞
j=1 such that

Re(αj) > 0 for all j ∈ N. Then for Kk(α) as in Definition 3.1 there holds

(3.10) F∗(Kk(α)⊗ Cp) ⊂ (Kk(α)⊗ Cp).

Now we describe the action of Φt, Ψ∗, and Λ on the Takenaka–Malmquist system.

Proposition 3.8. Let A ∈ Cn×n be stable, C ∈ Cp×n, (αj)
∞
j=1 such that Re(αj) >

0 for all j ∈ N, (φj)
∞
j=1 and (ψj)

∞
j=1 as in Definition 3.3 and v ∈ Cp.

(a) With Ψ as in (2.1) there holds

Ψ∗(φ1v) = (α1I −A∗)−1C∗v,

Ψ∗(φjv) = Ψ∗(φj−1v)− (αj + αj−1)(αjI −A∗)−1Ψ∗(φj−1v).

(b) For j > 1 and with Λ as in (3.7) and γj :=
Re(αj)

Re(αj−1) there holds

Λ(ψjv) = γjΛ(ψj−1v)− γj(αj + αj−1)

·
[
(αjI −A∗)−1C∗ve−αj · ∗ ψj−1 + (αjI −A∗)−1Λ(ψj−1v)

]
.
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Proof. We first prove part (a). The first equation follows from (3.8) with µ := α1

using that Ψ∗ = Φ0. The second equation is obtained by multiplying (3.3) by v,
applying Ψ∗ to the result, and using that by Lemma 3.5 (using that Ψ∗ = Φ0),

(3.11) Ψ∗(e−αj · ∗ φj−1v) = (αjI −A∗)−1Ψ∗(φj−1v).

We now prove part (b). From (3.3) we obtain

Λ(ψjv) = γjΛ(ψj−1v)− γj(αj + αj−1)Λ(e−αj · ∗ ψj−1v).

From Lemma 3.5 we obtain that

Λ(e−αj · ∗ ψj−1v) = (αjI −A∗)−1C∗ve−αj · ∗ ψj−1 + (αjI −A∗)−1Λ(ψj−1v),

and the desired result follows.

4. Matrix representations. In this section we use the results from section 3
to show that Algorithm 1 computes matrix representations of (projection times) F
and Ψ with respect to the Takenaka–Malmquist system.

We first introduce the canonical embeddings associated to the Takenaka–Malmquist
system.

Definition 4.1. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j ∈ N. Let (ψj)

∞
j=1,

ψj ∈ L2(0,∞), be the corresponding Takenaka–Malmquist system (3.3). For k ∈ N,
the mapping ιk is defined by

(4.1)

ιk : Ck →L2(0,∞),

x 7→
k∑
j=1

xj · ψj .

Further, for ` ∈ N and denoting the identity matrix I` ∈ C`×`, we set

ιk,` := ιk ⊗ I` : Ck` → L2(0,∞;C`).

It follows immediately from the orthonormality of the Takenaka–Malmquist sys-
tem that ιk,` defines an isometric embedding. In particular, the operator

Pk,` := ιk,`ι
∗
k,` : L2(0,∞;C`)→ L2(0,∞;C`)

is the orthogonal projector onto Vk ⊗ C`. With operators Ψ and F as in (2.1) and
(2.2), we define the operators

Ψk : Cn → L2(0,∞;Cp), Ψk =Pk,pΨ,(4.2)

Fk : L2(0,∞;Cm)→ L2(0,∞;Cp), Fk =Pk,pF.(4.3)

We further introduce the matrices

Sk = ι∗k,pΨ ∈ Ckp×n,(4.4)

Fk = ι∗k,pFιk,m ∈ Ckp×km.(4.5)

It follows from (4.2) that

Ψk = Pk,pΨ = ιk,pι
∗
k,pΨ = ιk,pSk.
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We conclude that the matrix Sk as in (4.4) is the matrix representation of Ψk : Cn →
Kk(α)⊗Cp with respect to the basis given by the tensor product of {ψ1, . . . , ψk} and
the canonical basis of Cp. Further, with the matrix Fk as in (4.5) and Fk as in (4.3)
we have

ιk,pFk = Pk,pFιk,m = Fkιk,m,

which shows that Fk is the matrix representation of Fk|Kk(α)⊗Cm : Kk(α) ⊗ Cm →
Kk(α)⊗Cp with respect to the basis given by the tensor product of {ψ1, . . . , ψk} and
the canonical basis of Cm (respectively, Cp).

We now proceed to develop a recursive determination of Sk and Fk. These results
will imply that Sk and Fk in (4.4) and (4.5) are indeed the matrices computed in
Algorithm 1.

Theorem 4.2. Let A ∈ Cn×n be stable, C ∈ Cp×n, and (αj)
∞
j=1 such that

Re(αj) > 0 for all j ∈ N. Then for all k ∈ N, the matrix Sk determined by Al-
gorithm 1 fulfills (4.4).

Proof. By Algorithm 1, we have

Sk =
[√

2Re(α1) · V1 . . .
√

2Re(αk) · Vk
]∗
,

where the sequence (Vk) is recursively defined by

(4.6) V1 = (α1I −A∗)−1C∗, Vk = Vk−1 − (αk + αk−1) · (αkI −A∗)−1Vk−1.

The result then follows from Proposition 3.8(a) together with the definition of the
Takenaka–Malmquist system in (3.3).

We note that Theorem 4.2 was already established in [8], where the case B = 0
(for which the Riccati equation becomes a Lyapunov equation) was considered.

In the following we prove that the matrix Fk in (4.5) is as determined in Algo-
rithm 1.

Theorem 4.3. Let A ∈ Cn×n be stable, B ∈ Cn×m, C ∈ Cp×n, and (αj)
∞
j=1 such

that Re(αj) > 0 for all j ∈ N. Then for all k ∈ N, the matrix Fk determined by
Algorithm 1 fulfills (4.5).

Proof. The proof is given in the appendix.

5. The projected optimal control problem. In this section we consider the
optimal control problem (1.5), (1.3). By using that, by the results of the previous
section, the matrices Fk and Sk in Algorithm 1 are matrix representations of the
(projected) input-output and output mappings of the system (1.3), we show that
Algorithm 1 indeed provides the solution of (1.5), (1.3). These results will be essential
for our convergence analysis in section 6.

We first present a projected version of Proposition 2.2.

Theorem 5.1. Let A ∈ Cn×n be stable, B ∈ Cn×m, C ∈ Cp×n, and (αj)
∞
j=1

such that Re(αj) > 0 for all j ∈ N. Define Ψk and Fk by (4.2) and (4.3), where
Pk,p : L2(0,∞;Cp)→ L2(0,∞;Cp) is the orthogonal projection onto Kk(α)⊗Cp with
Kk(α) as in Definition 3.1. In addition, define the projected complementary Popov
operator by

(5.1) Rc,k : L2(0,∞;Cp)→ L2(0,∞;Cp), Rc,k = I + FkF∗k = [I Fk]

[
I
F∗k

]
.
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The unique minimizer of the optimal control problem (1.5), (1.3) is given by

uopt
k = −F∗kR−1

c,kΨkx0.

The optimal cost is given by x∗0Xkx0 with

(5.2) Xk = Ψ∗kR−1
c,kΨk.

Proof. Noting that Pk,py = Ψkx0 + Fku, we use a “completing the square” argu-
ment similar to [14, Proposition 7.2]. That is, we make use of

F∗kR−1
c,k = F∗k(I + FkF∗k)−1 = (I + F∗kFk)−1F∗k

to see that

‖u‖2L2 + ‖Pk,py‖2L2 = ‖u‖2L2 + 〈Ψkx0 + Fku,Ψkx0 + Fku〉L2

= x∗0Ψ∗kR−1
c,kΨkx0 + 〈(I + F∗kFk)(u+ F∗kR−1

c,kΨkx0), (u+ F∗kR−1
c,kΨkx0)〉L2 .

In particular, we have for Xk = Ψ∗kR
−1
c,kΨk that ‖u‖2L2 + ‖Pk,py‖2L2 ≥ x∗0Xkx0. In the

case where the input reads u = −F∗kR
−1
c,kΨkx0, the second summand vanishes. Thus,

we have equality between ‖u‖2L2 + ‖Pk,py‖2L2 and the quadratic form x∗0Xkx0 in this
case.

Corollary 5.2. Under the assumptions and with the notation of Theorem 5.1,
we have

uopt
k ∈ Kk(α)⊗ Cm.

Proof. By Theorem 5.1 we have uopt
k = F∗z for z := −Pk,pR−1

c,kΨkx0 ∈ Kk(α) ⊗
Cp. From Corollary 3.7 we see that F∗ maps Kk(α)⊗Cp into Kk(α)⊗Cm. Therefore
uopt
k ∈ Kk(α)⊗ Cm, as desired.

Next we show that the matrix Xk in Theorem 5.1 is indeed the one determined
in Algorithm 1.

Theorem 5.3. Let A ∈ Cn×n be stable, B ∈ Cn×m, C ∈ Cp×n, and (αj)
∞
j=1 such

that Re(αj) > 0 for all j ∈ N. Then for all k ∈ N, the matrix Xk determined by
Algorithm 1 fulfills (5.2).

Proof. By Corollary 3.7 we have

Pk,mF∗ιk,p = F∗ιk,p.

It follows that

(5.3)

Ikp + (F∗ιk,p)∗ · (F∗ιk,p) = Ikp + (F∗ιk,p)∗Pk,m(F∗ιk,p)
= Ikp + (F∗ιk,p)∗ιk,m(ι∗k,mF∗ιk,p)
= Ikp + (ι∗k,mF∗ιk,p)∗ · (ι∗k,mF∗ιk,p)
= Ikp + FkF

∗
k ,

and thus

Pk,pR−1
c,kPk,p = Pk,p(I + FkF∗k)−1Pk,p = ιk,p(I + FkF

∗
k )−1ι∗k,p.
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Using the above relation, together with the definition of Sk and Fk as in (4.4) and
(4.5), we obtain

Ψ∗kR−1
c,kΨk = Skιk,pPkR−1

c,kPkι
∗
k,pS

∗
k

= Skιk,pιk,p(I + FkF
∗
k )−1ι∗k,pι

∗
k,pS

∗
k

= Sk(I + FkF
∗
k )−1S∗k .

The desired statement can now be concluded using Theorems 4.2 and 4.3.

Theorems 5.3 and 5.1 imply that the matrix Xk computed by Algorithm 1 indeed
expresses the optimal cost (1.5) of the projected optimal control problem
(1.5), (1.3). Since the ranges of the projectors Pk,p are nested, we can easily de-
duce that the sequence (Xk) is monotone and bounded from above by X with respect
to semidefiniteness.

Theorem 5.4. Let A ∈ Cn×n be stable, B ∈ Cn×m, C ∈ Cp×n, and (αj)
∞
j=1 such

that Re(αj) > 0 for all j ∈ N. Let X ∈ Cn×n be the unique positive semidefinite
solution of the algebraic Riccati equation (1.1). Let the sequence (Xk) be determined
by Algorithm 1. Then for all k ∈ N there holds

Xk ≤ Xk+1, Xk ≤ X.

Proof. For x0 ∈ Cn and u ∈ L2(0,∞;Cm) with corresponding output y defined
through (1.3) we have

‖Pk,py‖2L2(0,∞;Cp) ≤ ‖Pk+1,py‖2L2(0,∞;Cp),

since Kk(α) ⊂ Kk+1(α). It follows from Theorems 5.1 and 5.3 that

x∗0Xkx0 = min
u∈L2(0,∞;Cm)

‖u‖2 + ‖Pk,py‖2

≤ inf
u∈L2(0,∞;Cm)

‖u‖2 + ‖Pk+1,py‖2 = x∗0Xk+1x0.

Similarly, using that
‖Pk,py‖2L2(0,∞;Cp) ≤ ‖y‖

2
L2(0,∞;Cp),

we obtain from (1.2) (cf. Proposition 2.2) that

x∗0Xkx0 ≤ x∗0Xx0.

6. Convergence of the algorithm. The following theorem gives convergence
of Algorithm 1.

Theorem 6.1. Let A ∈ Cn×n be stable, B ∈ Cn×m, and C ∈ Cp×n. Let (αj)
∞
j=1

be such that Re(αj) > 0 for all j ∈ N. For k ∈ N, let (Xk) be the sequence obtained by
Algorithm 1. Then (Xk) converges as k → ∞. If (αj)

∞
j=1 satisfies the non-Blaschke

condition (1.8), then (Xk) converges to X, the unique positive semidefinite solution
of the algebraic Riccati equation (1.1).

Proof. Since, by Theorem 5.4, (Xk) is a nondecreasing sequence which is bounded
from above by X, we obtain convergence to some matrix Q = Q∗ ∈ Cn×n with Q ≤ X.

Since Kk(α) ⊂ Kk+1(α) we have Pk,p ≤ Pk+1,p. Since Pk,p is an orthogonal
projection, we have Pk,p ≤ I. It follows from [12, p. 263] that Pk,p converges strongly
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to some orthogonal projection P with P ≤ I. It was shown in [8, Lemma 4.4] that
P = I if and only if the non-Blaschke condition is satisfied (this result is shown there
actually only for the case L2(0,∞), but using the tensor product of {ψ1, . . . , ψk} and
the canonical basis of Cp, as in Definition 4.1, one can prove the general case on
L2(0,∞;Cp)).

From now on we assume the non-Blaschke condition, so that P = I. Then
(Rc,k) = (I + FPk,pF∗) converges strongly to I + FF∗ = Rc. As a result, we have
strong convergence of (R−1

c,k) to R−1
c (e.g., by [2, Theorem 7.6.1]). By sequential

continuity, we then have strong convergence of (Ψ∗Pk,pR−1
c,kPk,pΨ) to Ψ∗R−1

c Ψ. We

have Xk = Ψ∗Pk,pR−1
c,kPk,pΨ by Theorem 5.1 and X = Ψ∗R−1

c Ψ by Proposition 2.2.

Hence, the sequence (Xk) converges strongly to X. The finite-dimensionality of Cn×n
then implies that the sequence (Xk) converges to X.

Remark 6.2. The choice of shift parameters is essential for the speed of conver-
gence. In [6, section 3.2] it is stated that a choice based on the stable eigenvalues of
the Hamiltonian

H =

[
A −BB∗

−C∗C −A∗
]

is effective. Our approach gives an alternative interpretation of this fact as follows.
Since the stable eigenvalues of the HamiltonianH are the eigenvalues of A−BB∗X [16,
Chap. 13], we have, in the case where the first n shifts are (counted by multiplicity)
the stable eigenvalues of H, that the output corresponding to the optimal control for
the optimal control problem (1.2), (1.3) fulfills

yopt ∈ Kn(α)⊗ Cp.

As a consequence, for this particular choice of shift parameters the projected optimal
control problem (1.5) coincides with the original optimal control problem, so that
X = Xn.

In [6, section 5] the following reasonable approach to shift parameter selection is
proposed. Choose N ∈ N. Then perform N iterations with N shift parameters chosen
by using the method of Lu and Wachspress [7] on the basis of the eigenvalues of A.
Thereafter, determine N Wachspress parameters on the basis of the eigenvalues of A−
BB∗XN , and perform the next N iterations with these shift parameters. After that,
compute N Wachspress parameters on the basis of the eigenvalues of A− BB∗X2N ,
and perform the next N iterations with these shift parameters; repeat this approach
for any N steps. By convergence of (Xk) to X (established in Theorem 6.1), these
parameters converge to the eigenvalues of A−BB∗X (which coincide with the stable
eigenvalues of the Hamiltonian).

The efficient numerical computation of dominant stable eigenvalues of a Hamilto-
nian matrix seems not to have been explored so far. The considered iteration method
for Riccati equations would be an application for this research area.

7. Extension to infinite-dimensional spaces. In this section, we formulate
the extension of Theorem 6.1 to the infinite-dimensional spaces. We refer the reader
to [13] for the terminology used in the statement of the following theorem. Note
that Theorem 6.1 is a special case of Theorem 7.1 where by finite-dimensionality the
topology in which convergence occurs is irrelevant.

Theorem 7.1. Consider a well-posed linear system on Hilbert spaces U , Y , and
X that is output stable and input-output stable and whose semigroup is uniformly
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bounded. Denote its output map by Ψ and its input-output map by F. Let (αj)
∞
j=1 be

such that Re(αj) > 0 for all j ∈ N, and for k ∈ N let Pk : L2(0,∞; Y )→ L2(0,∞; Y )
be the orthogonal projection onto Kk(α) ⊗ Y with Kk(α) as in (3.1). Define Xk by
(5.2). Then Xk converges in the strong operator topology as k →∞. Let X be given
by (2.4) and assume that (αj)

∞
j=1 satisfies the non-Blaschke condition (1.8). Then

Xk converges to X in the strong operator topology as k → ∞. If, moreover, X is
compact, then Xk converges to X in the uniform operator topology, and if X is in
the Schatten class Sp(X ) for p ∈ [1,∞], then Xk converges to X in the topology of
Sp(X ).

Proof. We first note that the results proven in the earlier parts of this paper hold
in the setting of this theorem (with essentially the same proofs) if we interpret the
superscript ∗ as the adjoint with respect to the given inner-products and if expressions
such as x∗0Y x0 are interpreted as 〈Y x0, x0〉, where the latter denotes the given inner-
product. Also, all of the claims in Theorem 7.1, except those in the last sentence,
follow as in the proof of Theorem 6.1. Therefore, it only remains to show the claims
in the last sentence.

If X is compact, then (since Rc is self-adjoint and invertible) Ψ is compact. As in
the proof of Theorem 6.1 we have that Pk,pR−1

c,kPk,p converges in the strong operator

topology to R−1
c . From [8, Theorem A.2, part a] (which is a slight modification

of [3, Theorem III.6.3]) we then obtain that Pk,pR−1
c,kPk,pΨk converges to R−1

c Ψ in the
uniform operator topology. It follows that Xk → X in the uniform operator topology.
The argument for Schatten class convergence is similar (see, e.g., [8, Appendix A] for
the needed relation between Schatten class membership of X and of Ψ).

8. Numerical results. We present a numerical example to show the appli-
cability of the algorithm and to demonstrate the expected behavior of Algorithm
1 in terms of monotonicity and convergence. All the calculations were done using
MATLAB 8.5 (R2015a) on a 64-bit server with 24 CPU cores (using hyperthreading)
of type Intel Xeon X5650 at 2.67GHz and 48 GB main memory available.

8.1. Two-dimensional convection-diffusion equation. Let Ω := [0, 1]×[0, 1]
be the unit square with boundary ∂Ω := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where Γ1 := {0} × [0, 1],
Γ2 := [0, 1]× {0}, Γ3 := [0, 1]× {1}, and Γ4 := {1} × [0, 1].

We consider the two-dimensional convection-diffusion equation

(8.1)
∂x

∂t
(ξ, t) = ∆x(ξ, t) + b>∇x(ξ, t), (ξ, t) ∈ Ω× R≥0,

with Robin boundary conditions

u(t) = ν(ξ)>∇x(ξ, t) + ax(ξ, t), (ξ, t) ∈ (Γ1 ∪ Γ2)× R≥0,

0 = ν(ξ)>∇x(ξ, t) + ax(ξ, t), (ξ, t) ∈ (Γ3 ∪ Γ4)× R≥0

and two-dimensional output

y(t) =

[∫
Γ1
x(ξ, t)dσξ∫

Γ3
x(ξ, t)dσξ

]
,

where σξ denotes the surface measure and ν(ξ) denotes the outward normal.
We consider b = [ 10

10 ] and set a = 1. To discretize the PDE (8.1), we apply a finite
element discretization with uniform triangular elements of fixed size h = 1

N−1 , where
N ∈ N is the number of points in each coordinate direction. An example of the grid
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Fig. 1. An example of the chosen triangular element for N = 6.

(for N = 6) that we used in our computations is shown in Figure 1. In addition, we
define the subspace Vh ⊂ H1(Ω) using piecewise-linear basis functions. As a result,
we obtain a finite-dimensional dynamical system

(8.2) Eẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t),

with state-space dimension n = N2. The matrix E ∈ Rn×n is a symmetric positive
definite mass matrix, A ∈ Rn×n is a nonsymmetric matrix, B ∈ Rn×1 is the input
matrix, and C ∈ R2×n the output matrix.

Remark 8.1. For invertible E ∈ Cn×n, the unique positive semidefinite solution
of the algebraic Riccati equation

(8.3) A∗XE + E∗XA+ C∗C − E∗XBB∗XE = 0

satisfies

x∗0E
∗XEx0 = min

u∈L2(0,∞;Cm)

∫ ∞
0

‖u(t)‖2 + ‖y(t)‖2 dt

subject to (8.2). If in Algorithm 1 we make the replacements
1: V1 = (α1E

∗ −A∗)−1C∗,
7: Vi = Vi−1 − (αi + αi−1) · (αiE∗ −A∗)−1E∗Vi−1,

then for Xk as computed by this adapted version of Algorithm 1 we have

x∗0E
∗XkEx0 = min

u∈L2(0,∞;Cm)

∫ ∞
0

‖u(t)‖2 + ‖(Pk,py)(t)‖2 dt

subject to (8.2). Therefore the convergence results in this paper remain valid for this
modification if we replace (1.1) by (8.3).

We note that if E is the positive definite mass matrix of a finite element discre-
tization, then the expression x∗0E

∗XEx0 equals 〈XEx0, x0〉, where the inner-product
in this latter expression is the one induced by the underlying function space.

We consider N = 60 (so that n = 3600) and solve the algebraic Riccati equation
corresponding to the system (8.2) once using the “care” routine of MATLAB and
once using Algorithm 1 with the modifications in Remark 8.1. We note that although
“care” does work for the example considered, the computation takes two hours. For
comparison, Algorithm 1 requires just 20 seconds. We denote by X the solution
obtained from the “care” routine and use it as a reference for the comparisons with
the solution obtained by Algorithm 1 (denoted by Xk).

The choice of the shift parameters has a major effect on the convergence speed
of Algorithm 1. We first illustrate that if the shift parameters do not satisfy the non-
Blaschke condition (1.8), then the matrix Xk obtained by Algorithm 1 may converge
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to a positive semidefinite matrix, which is not a solution of the algebraic Riccati
equation corresponding to the system (8.2) (cf. Theorem 6.1). Toward this end, we
choose the following two different sets of shift parameters to use in our example:

1. The first set of shift parameters is chosen using Penzl’s heuristic procedure
[9, 10] on the matrix pencil λE − A. The underlying Arnoldi process is
initialized with a random vector in Rn. We compute 32 Ritz values by the
Arnoldi process to approximate the eigenvalues of the matrix pencil λE −
A. Out of these 32 Ritz values, 11 values are calculated using the inverse
Arnoldi method (to increase the accuracy of approximation). By this choice
we generate a set of 10 shift parameters, which we reuse every 10 iterations.
We sort these 10 shift parameters in an increasing order with respect to
the values of their real parts in order to obtain a smooth convergence in
Algorithm 1. This cyclic choice of shift parameters satisfies the non-Blaschke
condition (1.8).

2. As a second set of shift parameters, we choose the infinite sequence αi = i3,
i = 1, 2, . . . , for which the non-Blaschke condition is not satisfied.

We perform the simulation using the two sets of shift parameters which we intro-
duced above, and at each iteration k we observe the absolute residual norm using the
approach proposed in [6, sect. 3.3]. That is, we exploit the low-rank form of the ap-
proximate solution Xk = Sk(I + FkF

∗
k )−1S∗k to calculate the residual norm. Figure 2

shows the absolute residual norm with respect to the iteration for problem dimension
n = 3600.
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Shift parameters satisfying the non-Blaschke condition

Shift parameters not satisfying the non-Blaschke condition

Fig. 2. Comparison of two sets of shift parameters for Algorithm 1: convection-diffusion
equation with the state-space dimension n = 3600.

Considering Figure 2, we observe that by choosing the second set of shift pa-
rameters, αi = i3, our sequence converges to a matrix which is not a solution of
the corresponding algebraic Riccati equation. In addition, with a tolerance of 10−14

on the absolute residual norm, the first choice of shift parameters provides conver-
gence to the desired solution in fewer than 50 iterations for state-space dimension
n = 3600. We use the first set of shift parameters to continue with further analyses
in our example.

In order to illustrate the monotonicity of Algorithm 1, which we have proven
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in Theorem 5.4, we compute the traces of X and Xk. The trace of Xk can be
computed efficiently using the low-rank factors. Specifically, we compute the Cholesky
factorization of I + FkF

∗
k = U∗kUk, and therefore we obtain

trace (Xk) = trace
(
Sk(U∗kUk)−1S∗k

)
= trace

(
SkU

−1
k U−∗k S∗k

)
= ‖SkU−1

k ‖
2

F
,

where ‖ · ‖F denotes the Frobenius norm. From Figure 3, we observe that trace (Xk)
is a nondecreasing function of the iteration k. In addition, we have that trace (Xk) ≤
trace (X) for all k ∈ N.
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Trace of X obtained from the "care" routine of MATLAB
Trace of X

k
 (Algorithm 1 + Penzl shifts based on λ E-A)

Fig. 3. Monotonicity of Algorithm 1: convection-diffusion equation with the state space dimen-
sion n = 3600.

We finish our analyses by observing the relative 2-norm difference
‖Xk−X‖2
‖X‖2

at

every iteration to show the convergence behavior of Algorithm 1. Figure 4 shows the
relative 2-norm difference of the solutions obtained by Algorithm 1 with respect to the
solution obtained by the “care” routine in MATLAB. Note that since the matrices
Xk and X are self-adjoint, their 2-norm difference equals the absolute value of the
largest eigenvalue of (Xk−X). This eigenvalue can be approximated efficiently using
a power iteration without forming the product Xk = Sk(I+FkF

∗
k )−1S∗k (see, e.g., [1]).

9. Conclusions. The purpose of this paper was to show the convergence of
Algorithm 1 which is missing in [6]. Toward this end, we established the connection
between this algorithm and the underlying linear-quadratic optimal control problem.
We considered the main operator A to be stable, so that the output map Ψ and the
input-output map F are bounded. This allows for the use of an explicit formula for
the solution of the algebraic Riccati equation in terms of Ψ and F. The link to the
optimal control problem was established by considering a sequence of subspaces of
L2(0,∞). We chose the Takenaka–Malmquist basis for these subspaces which allowed
us to construct matrix representations for the (projected) solution maps associated
to the dynamical system (1.3). The sequence of subspaces is determined by the
choice of the shift parameters. We showed that if these shift parameters satisfy the
non-Blaschke condition, then the matrix calculated by Algorithm 1 converges to the
unique positive semidefinite solution of the algebraic Riccati equation. Furthermore,
the sequence of approximate solutions is monotonically nondecreasing with respect to
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Iteration
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Fig. 4. The relative 2-norm difference of the solution obtained by Algorithm 1 with respect
to the solution obtained by the “care” routine in MATLAB: convection-diffusion equation with the
state-space dimension n = 3600.

definiteness. Finally, we noted that our analyses can be extended to the case where
the input, state, and output spaces are infinite-dimensional Hilbert spaces.

Appendix A. Proof of Theorem 4.3. Using that, by Corollary 3.7, the
invariance F∗ (Kk−1(α)⊗ Cp) ⊂ Kk−1(α)⊗ Cm holds true, we see that

ιk,mF∗ιk−1,p =

[
F ∗k−1

0

]
.

Thus, we obtain that Fk has the form

(A.1) Fk =

[
[Fk−1, 0]
Nk

]
for some Nk ∈ Cp×km. Note that Nk is determined by F∗(ψkv) for v ∈ Cp and
that this in turn is determined by Λ(ψkv). Therefore, we first express Λ(ψkv) in an
appropriate form.

We need the following additional bases for Kk(α).

Definition A.1. Let k ∈ N with k > 1. Let (αj)
k
j=1 be such that Re(αj) > 0

for all j ∈ {1, . . . , k}. Let (ψj)
k−1
j=1 be as in Definition 3.3. Define the functions

zj ∈ L2(0,∞) and xj ∈ L2(0,∞) for j ∈ {1, . . . , k} by

zj =

{
ψj , j ∈ {1, . . . , k − 1},
e−αk· ∗ ψk−1, j = k,

xj =

{
e−αk· ∗ ψj , j ∈ {1, . . . , k − 1},
e−αk·, j = k.

The following lemma shows how (zj)
k
j=1 and (xj)

k
j=1 can be obtained as linear

combinations of (ψj)
k
j=1.
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Lemma A.2. Let k ∈ N with k > 1. Let (αj)
k
j=1 be such that Re(αj) > 0 for all

j ∈ {1, . . . , k}. Let (ψj)
k
j=1 as in Definition 3.3, and let (zj)

k
j=1 and (xj)

k
j=1 as in

Definition A.1. Define γk :=
√

Re(αk)
Re(αk−1) and

Tk =

[
Ik−1 0[

0 1
αk+αk−1

]
−1

γk(αk+αk−1)

]
,(A.2)

Mk = (Mk,5Mk,4Mk,3Mk,2Mk,1)−1,

with

Mk,1 :=


1√

2Re(α1)

...
1√

2Re(αk)

 , Mk,2 :=

 α1+αk
α1−αk α2+αk

...
αk−1−αk αk+αk

 ,

Mk,3 :=

[
1 ... 1

...
...
1

]
, Mk,4 := [ 0 I

1 0 ] , Mk,5 :=

−
√

2Re(α1)

...
−
√

2Re(αk−1)

1

 .
Then for all j ∈ {1, . . . , k},

(A.3) zj =

k∑
`=1

(Tk)j`ψ`, xj =

k∑
`=1

(Mk)Tj`ψ`.

Proof. The equality involving zj follows by first noting that only the equality
involving zk is nontrivial and then using the recursive definition of the Takenaka–
Malmquist basis:

zk = e−αk· ∗ ψk−1 =
√

2Re(αk−1)e−αk· ∗ φk−1 =
√

2Re(αk−1)
φk−1 − φk
αk + αk−1

=
1

αk + αk−1

(
ψk−1 −

√
2Re(αk−1)√
2Re(αk)

ψk

)
=

1

αk + αk−1
ψk−1 +

1

γk(αk + αk−1)
ψk.

Applying the Laplace transform, we see that the second equality in (A.3) is equivalent
to

x̂j =

k∑
`=1

(Mk)Tj`ψ̂`.

From Definition A.1 we obtain, using the Laplace transform,

x̂j(s) =

{
1

s+αk
ψ̂j(s), j ∈ {1, . . . , k − 1},

1
s+αk

, j = k.

Therefore, the second equality in (A.3) (for all j ∈ {1, . . . , k}) is equivalent to (for all
s with Re(s) > 0)

(A.4)


1

s+αk
ψ̂1(s)
...

1
s+αk

ψ̂k−1(s)
1

s+αk

 = MT
k


ψ̂1(s)

...

ψ̂k−1(s)

ψ̂k(s)

 .
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We have, by (3.5),

Ek(s) :=
[
ψ̂1(s)
s+αk

. . . ψ̂k−1(s)
s+αk

1
s+αk

]
=

[ √
Re(α1)

(s+αk)(s+α1) , . . . ,

√
2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
`=1

s−α`
s+α`

, 1
s+αk

]
.

Consecutive application of the matrices (Mk,j)
5
j=1 to Ek(s) results in

Ek(s)Mk,5 =

[
−2Re(α1)

(s+αk)(s+α1) , . . . ,
−2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
`=1

s−α`
s+α`

, 1
s+αk

]
,

Ek(s)Mk,5Mk,4 =

[
1

s+αk
, −2Re(α1)

(s+αk)(s+α1) , . . . ,
−2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
`=1

s−α`
s+α`

]
,

Ek(s)Mk,5Mk,4Mk,3 =

[
1

s+αk
, s−α1

(s+αk)(s+α1) , . . . ,
1

(s+αk)

k−1∏
`=1

s−α`
s+α`

]
,

Ek(s)Mk,5Mk,4Mk,3Mk,2 =

[
2Re(α1)
s+α1

, 2Re(α2)(s−α1)
(s+α2)(s+α1) , . . . ,

2Re(αk)
(s+αk)

k−1∏
`=1

s−α`
s+α`

]
,

Ek(s)Mk,5Mk,4Mk,3Mk,2Mk,1 =

[√
2Re(α1)

s+α1
,

√
2Re(α2)(s−α1)

(s+α2)(s+α1) , . . . ,

√
2Re(αk)

(s+αk)

k−1∏
`=1

s−α`
s+α`

]
,

=
[
ψ̂1(s) . . . ψ̂k−1(s) ψ̂k(s)

]
.

Taking transposes, this establishes (A.4). We note that this argumentation is similar
to the proof of [6, Proposition 3.2].

Lemma A.3. Let A ∈ Cn×n be stable, C ∈ Cp×n, and k ∈ N with k > 1, and let
(αj)

k
j=1 be such that Re(αj) > 0 for all j ∈ {1, . . . , k}. Let (ψj)

k
j=1 as in Definition

3.3, and let (zj)
k
j=1 and (xj)

k
j=1 as in Definition A.1. Let Ψ as in (2.1) and Λ as in

(3.7). Assume that there exists an Lk−1 ∈ C(k−1)×(k−1) such that for all v ∈ Cp,

(A.5) Λ(ψk−1v) =

k−1∑
j=1

Ψ∗(ψjv)

k−1∑
`=1

(Lk−1)j`ψ`.

Then for all v ∈ Cp,

(A.6) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

k∑
j=1

Ψ∗(xjv)

k∑
`=1

(L̃k−1)j`z`,

where

L̃k−1 :=

[
Lk−1 0

0 1

]
, γk :=

√
Re(αk)

Re(αk−1)
.

Proof. We obtain from Proposition 3.8(b) that

(A.7) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

·
[
(αkI −A∗)−1C∗v · (e−αk· ∗ ψk−1) + (αkI −A∗)−1Λ(ψk−1v)

]
.
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Substituting (A.5) in (A.7) gives

(A.8) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

·

(αkI −A∗)−1C∗v · (e−αk· ∗ ψk−1) +

k−1∑
j=1

(αkI −A∗)−1Ψ∗(ψjv)

k−1∑
`=1

(Lk−1)j`ψ`

 .
From (3.8) with µ := αk and t = 0 (noting that Ψ∗ = Φ0) and (3.11), we have

(A.9)
(αkI −A∗)−1C∗v = Ψ∗(e−αk·v),

(αkI −A∗)−1Ψ∗(ψjv) = Ψ∗(e−αk· ∗ ψjv), j = 1, . . . , k − 1.

Inserting this in (A.8) gives

(A.10) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

·

Ψ∗(e−αk·v) · (e−αk· ∗ ψk−1) +

k−1∑
j=1

Ψ∗(e−αk· ∗ ψjv)

k−1∑
`=1

(Lk−1)j`ψ`

 .
By definition of (xj)

k
j=1, (zj)

k
j=1, and L̃k−1, this equals (A.6).

Denote by (e`) the standard basis in Cp and in Cn (which space is intended will
be clear from the context). Define the tensors Rk,Wk ∈ Cn×k×p by

Λ(ψkeq) =

n∑
i=1

k∑
j=1

(Rk)ijqψjei, q = 1, . . . , p,(A.11)

Ψ∗(ψjeq) =

n∑
i=1

(Wk)ijqei, j = 1, . . . , k, q = 1, . . . , p.(A.12)

Proposition A.4. Let A ∈ Cn×n be stable, C ∈ Cp×n, (αj)
∞
j=1 such that Re(αj) >

0 for all j ∈ N, (ψj)
∞
j=1 as in Definition 3.3, Ψ as in (2.1), and Λ as in (3.7). Then,

for each k ∈ N, there exists an Lk ∈ Ck×k such that for all v ∈ Cp,

(A.13) Λ(ψkv) =

k∑
j=1

Ψ∗(ψjv)

k∑
`=1

(Lk)j`ψ`.

Moreover, the matrix Lk can be calculated as in Algorithm 1.

We note that in terms of the tensors defined through (A.11) and (A.12), the
equality (A.13) can be written as

(A.14) (Rk)ijq =

k∑
`=1

(Wk)i`q(Lk)`j .

Proof of Proposition A.4. We prove this by induction. For k = 1 we have by
Proposition 3.6(c) that Λ(ψ1v) = ψ1(α1I−A∗)−1C∗v, and by Proposition 3.6(b) that
Ψ∗(ψ1v) =

√
2Re(α1)(α1I − A∗)−1C∗v. Hence for k = 1, (A.13) is satisfied with

L1 = 1√
2Re(α1)

.
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By the induction hypothesis, (A.13) holds with k replaced by k − 1, i.e., (A.5)
holds. From Lemma A.3 we then obtain that (A.6) holds. We now write all the terms
in (A.6) (with v := eq) with respect to the tensors defined through (A.11) and (A.12).

We consider the term Λ(ψk−1eq) in (A.6). We have by (A.11)

Λ(ψk−1eq) =

m∑
i=1

k−1∑
j=1

(Rk−1)ijqψjei, q = 1, . . . , p,

which by the induction hypothesis in tensor form (i.e., (A.14) with k replaced by
k − 1) can be written as

Λ(ψk−1eq) =

m∑
i=1

k−1∑
j=1

k−1∑
`=1

(Wk−1)i`q(Lk−1)`jψjei, q = 1, . . . , p.

Defining

L̂k−1 =

[
Lk−1 0

0 0

]
∈ Ck×k

and using that (Wk−1)i`q = (Wk)i`q for i = 1, . . . , n, q = 1, . . . , p, and ` = 1, . . . , k−1,
we then have

(A.15) Λ(ψk−1eq) =

m∑
i=1

k∑
j=1

k∑
`=1

(Wk)i`q(L̂k−1)`jψjei, q = 1, . . . , p.

We now consider the term Ψ∗(xjeq) in (A.6). By Lemma A.2 we have

xjeq =

k∑
`=1

(MT
k )j`ψ`eq.

Using (A.12), this gives

Ψ∗(xjeq) =

k∑
`=1

(MT
k )j`Ψ

∗(ψ`eq) =

n∑
i=1

k∑
`=1

(MT
k )j`(Wk)i`qei

=

n∑
i=1

k∑
`=1

(Wk)i`q(Mk)`jei.(A.16)

By Lemma A.2 we have

z` =

k∑
β=1

(Tk)`βψβ .

It follows that

(A.17)

k∑
`=1

(L̃k−1)j`z` =

k∑
`=1

k∑
β=1

(L̃k−1)j`(Tk)`βψβ =

k∑
β=1

(L̃k−1Tk)jβψβ .
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From (A.16) and (A.17) we obtain that

k∑
j=1

Ψ∗(xjeq)

k∑
`=1

(L̃k−1)j`z` =

k∑
j=1

n∑
i=1

k∑
`=1

(Wk)i`q(Mk)`jei

k∑
β=1

(L̃k−1Tk)jβψβ

=

k∑
j=1

n∑
i=1

k∑
`=1

k∑
β=1

(Wk)i`q(Mk)`j(L̃k−1Tk)jβψβei

=

n∑
i=1

k∑
`=1

k∑
β=1

(Wk)i`q(MkL̃k−1Tk)`βψβei.(A.18)

Substituting (A.11), (A.15), and (A.18) in (A.6) gives

(A.19)

n∑
i=1

k∑
j=1

(Rk)ijqψjei = γk

m∑
i=1

k∑
j=1

k∑
`=1

(Wk)i`q(L̂k−1)`jψjei

− γk(αk + αk−1)

n∑
i=1

k∑
`=1

k∑
j=1

(Wk)i`q(MkL̃k−1Tk)`jψjei.

We define Lk by (note that this is equivalent to how it is defined in Algorithm 1)

(A.20) Lk := γk(L̂k−1)− γk(αk + αk−1)MkL̃k−1Tk.

The right-hand side of (A.19) can then be written as

n∑
i=1

k∑
j=1

k∑
`=1

(Wk)i`q(Lk)`jψjei.

Hence,
n∑
i=1

k∑
j=1

(Rk)ijqψjei =

n∑
i=1

k∑
j=1

k∑
`=1

(Wk)i`q(Lk)`jψjei.

Since (ψjei) with j = 1, . . . , k and i = 1, . . . , n are linearly independent, it follows that

(Rk)ijq =
∑k
`=1(Wk)i`q(Lk)`j , i.e., that (A.14) holds (or, equivalently, that (A.13)

holds).

Proof of Theorem 4.3. We prove this by induction. The relation ι∗1,mFι1,p = F1 =
B∗(α1I − A∗)−1C∗ follows from Proposition 3.6(c) together with F∗ = B∗Λ and
ψ1 =

√
2Re(α1) · ϕ1.

We first reformulate the tensors Rk and Wk defined through (A.11) and (A.12)
and their relation (A.14) in matrix terms. Define the matrices

R̃k :=


R·1·
R·2·

...
R·k·

 ∈ Ckn×p, W̃k :=


W·1·
W·2·

...
W·k·

 ∈ Ckn×p,

where (R·j·)iq = Rijq, (W·j·)iq = Wijq for i = 1, . . . , n, and q = 1, . . . , p. Then (A.14)
is equivalent to

(A.21) (LTk ⊗ In)W̃k = R̃k.
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Since F∗ = B∗Λ we have by (A.11) that Nk from (A.1) satisfies

N∗k =


B∗R·1·
B∗R·2·

...
B∗R·k·

 .
Algorithm 1 does not store W̃k but instead the matrix Qk ∈ Cp×km defined through

Q∗k =


B∗W·1·
B∗W·2·

...
B∗W·k·

 .
The relation (A.21) gives rise to (LTk ⊗ Im)Q∗k = N∗k or, equivalently (as it appears in
Algorithm 1),

Nk = Qk(Lk ⊗ Im),

where Lk is the complex conjugate matrix of Lk.
From Proposition 3.8(a) we have

Ψ∗(ψjeq) =
√

2Re(αj)

n∑
i=1

(Vj)iqei,

where Vj (j = 1, . . . , k) is as in (4.6). When compared with (A.12) this shows that

(Wk)ijq =
√

2Re(αj)(Vj)iq,

i.e., W·j· =
√

2Re(αj)Vj . This shows that Nk from (A.1) is indeed as computed in
Algorithm 1. It follows that Fk determined by Algorithm 1 fulfills (4.5).
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