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Abstract— We survey several algorithm for H2 optimal
model reduction with a particular emphasis on the case of ap-
proximating irrational functions. Irrational transfer functions
arise for systems modeled by partial differential equations or
delay differential equations. We then compare the performance
of these algorithms on two examples of irrational transfer
functions: one arising from a heat equation and one arising
from a beam equation.

I. INTRODUCTION

Model reduction has been a topic of considerable interest
in control theory for several decades now and is a topic
in several control theory textbooks (e.g. [5], [16], [17]).
Especially desirable is optimal approximation of the transfer
function in the H∞ norm. However, this is generally con-
sidered to be computationally unfeasible. Optimal approx-
imation in other norms is computationally more feasible.
Optimal Hankel norm approximation [4] and optimal H2

norm approximation are two such cases. In this paper we
consider optimal H2 approximation of the transfer function
(or equivalently: optimal L2 approximation of the impulse
response). It is usually assumed that the to-be-approximated
transfer function is rational. It is interesting that several
algorithms proposed in the literature for H2 optimal ap-
proximation carry through unchanged for the case of irra-
tional transfer functions. Irrational transfer functions arise for
systems modeled by partial differential equations or delay
differential equations. In this paper we first survey several
algorithms for H2 optimal approximation which have been
considered in the literature. We then apply these algorithms
to two examples of irrational transfer functions: one that
arises from a heat equation and one that arises from a beam
equation.

II. PROBLEM STATEMENT

The problem considered in this paper is the following.
Given g ∈ L2(0,∞), find gr ∈ L2(0,∞) such that ĝr is a
rational function of degree at most r and such that

‖g − gr‖2L2(0,∞) = min ‖g − h‖2L2(0,∞),

where the minimization is over h ∈ L2(0,∞) with ĥ a
rational function of degree at most r.

III. A SURVEY OF L2 OPTIMAL APPROXIMATION
ALGORITHMS

In this section we briefly survey some algorithms which
have been proposed in the literature for the solution of the
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L2 optimal approximation problem mentioned in Section II.
The purpose is on the one hand to highlight similarities and
differences and on the other hand to point out that these
algorithms apply equally well to irrational functions (though
they were generally introduced for rational functions only).

A. Nonlinear optimization algorithms

For simplicity we assume that the optimal approximation
gr is such that ĝr has simple poles. Then we can search over
the set of h ∈ L2(0,∞) with ĥ a rational function of degree
at most r and with simple poles. This set can be parametrized
as follows (the pole-residue parameterization):

h(t) =

r∑
j=1

dje
−αjt,

or equivalently in terms of the Laplace transform:

ĥ(s) =

r∑
j=1

dj
s+ αj

,

where dj ∈ C and αj ∈ C with Re(αj) > 0.
Substituting this parametrization in the error and expand-

ing gives (this calculation is also performed in e.g. [8]):

‖g − h‖2L2(0,∞)

= ‖g‖2L2(0,∞) − 2Re〈g, h〉L2(0,∞) + ‖h‖2L2(0,∞)

= ‖g‖2L2(0,∞) − 2Re

r∑
j=1

dj ĝ(αj) +

r∑
j,`=1

djd`
αj + α`

.

Minimizing the error with respect to h is therefore equivalent
to

min−2Re

r∑
j=1

dj ĝ(αj) +

r∑
j,`=1

djd`
αj + α`

,

over dj ∈ C and αj ∈ C with Re(αj) > 0. This is a
nonlinear optimization problem in 2r complex variables (or
equivalently: in 4r real variables). Specific algorithms can be
devised which utilize the special strucure, or general purpose
nonlinear optimization algorithms (such as those available
through the matlab function fmincon) can be used.

B. Two-step iterative algorithms

Another class of algorithms for solving the L2 optimal
approximation problem mentioned in Section II can be
described as follows.
a) Make an initial guess for the denominator of ĝr.
b) Solve the optimization problem from Section II over all

h ∈ L2(0,∞) with ĥ a rational function of degree at
most r and with as denominator the initial guess. Since



the set over which is minimized is now a linear space, the
minimizer is easily found: it is the orthogonal projection
of the given function g onto the subspace determined by
the initial guess.

c) Solve the optimization problem from Section II over all
h ∈ L2(0,∞) with ĥ a rational function of degree at
most r and with as numerator the numerator obtained
in the previous step. This is a nonlinear optimization
problem and is typically solved by a gradient based
iterative method.

d) Repeat step b) but with the initial guess for the denomi-
nator replaced by the denominator obtain in step c).

Since step c) is part of an iterative process, often in the
gradient based iterative method for the nonlinear optimiza-
tion algorithm, only one step is performed. The details in
which the algorithms proposed in the literature differ is
in the parametrization used for h. Spanos et al. [14] use
the numerator-denominator parametrization of h. Hwang and
Hwang [7] use numerator coefficients, but use Routh param-
eters of the denominator instead of denominator coefficients.

A reason for doing the above two-step optimization pro-
cess rather than solving the original nonlinear optimization
problem directly (as in Section III-A) is that in the original
problem there are 2r complex variables whereas in the
subproblem in step c) there are only r complex variables.

Note that we may alternatively use the pole-residue
parametrization from Section III-A and in step c) replace
“and with as numerator the numerator obtained in the previ-
ous step” by “and with as residues the residues obtained in
the previous step”. In more detail:
a) Make an initial guess for the poles (i.e for αj from

Section III-A).
b) Solve the optimization problem from Section III-A for dj

with these fixed αj . Since the set over which is minimized
is now a linear space, the minimizer is easily found: it
is the orthogonal projection of the given function g onto
the subspace determined by the initial guess. We comment
further on this in Section III-D.

c) Solve the optimization problem from Section III-A for αj
for these fixed dj .

d) Repeat step b) but with the initial guess for the poles
replaced by the poles obtain in step c).

C. Algorithms based on optimality conditions

First order optimality conditions for the L2 optimal ap-
proximation problem mentioned in Section II can be ob-
tained by “differentiating the cost function with respect to
h”. More precisely, the set of h ∈ L2(0,∞) with ĥ a
rational function of degree at most r is parametrized by 2r
complex parameters and the derivative of the cost function
with respect to the corresponding 4r real variables is set
to zero. As in Section III-B, different parametrizations are
possible. The most commonly used one is the pole-residue
parameterization. The obtained conditions are:

ĝ(−pj) = ĝr(−pj),
ĝ′(−pj) = ĝ′r(−pj), (1)

where pj (j = 1, . . . , r) are the poles of ĝr. The above idea
goes back at least to Meier and Luenberger [12]. A review
of alternative formulations of these optimality conditions can
be found in [6].

The nonlinear equations (1) are typically not algebraically
solvable. Already in [12] use of Newton’s method was
suggested to solve these equations numerically. An iterative
method somewhat similar in spirit to the method discussed
in Section III-B for solving (1) is as follows.

i) Make an initial guess for the poles pj of ĝr.
ii) Solve the equations (1) for the numerator and denomi-

nator coefficients of ĝr.
iii) Calculate the poles of the obtained ĝr and repeat step

ii) with these values for the pj .
This iterative method based on first order optimality condi-
tions goes back at least to Lepschy et al. [10] and Lucas
[11]. Local convergence is considered in Krajewski et al.
[8] and Flagg et al. [3]. An efficient algorithm (for the case
where g is rational) based on state space formulas and Krylov
subspaces is given in Gugercin et al. [6]. An implementa-
tion using only evaluations of the transfer function and its
derivatives is described in [1] (as in this paper, non-rational
functions are considered in [1]).

D. The method from Mi et al.

In this section we give an exposition of the results from Mi
et al. [13]. Those results are strongly related to the two-step
iterative algorithms reviewed in Section III-B. In fact, what
is done in [13] is that the optimal numerator is calculated
for an arbitrary denominator (in terms of the zeros of the
denominator). The nonlinear optimization problem then only
has to be solved once (but for a more complicated cost
function).

1) Optimal model reduction with a fixed denominator: In
this section we consider the case where the minimization is
over all h ∈ L2(0,∞) with ĥ a rational function of degree
at most r with a fixed denominator. The importance of this
assumption of a fixed denominator is that the set over which
is minimized is now a linear space. The minimizer is then
easily found: it is the orthogonal projection of the given
function g onto the given subspace. To compute this or-
thogonal projection it is convenient to utilize an orthonormal
basis for the given subspace. We now recall the construction
of this basis (which essentially goes back to Takenaka and
Malmquist; see Walsh [15]).

Let the fixed denominator be given by
r∏

k=1

s+ αk,

with Re(αk) > 0. Define the functions φj and ψj by

φ1 = t 7→ e−α1t,

ψ1 =
√

2Re(α1) · φ1,
φj =φj−1 − (αj + αj−1) · (e−αj · ∗ φj−1),

ψj =
√

2Re(αj) · φj ,



where ∗ denotes the convolution product, i.e. (g ∗ h)(t) =∫ t
0
g(t − τ)h(τ) dτ . Then (ψk)rk=1 is an orthonormal set in

L2(0,∞). Taking Laplace transforms we obtain that (ψ̂k)rk=1

is an orthonormal set in the Hardy space H2(C+
0 ) and that

φ̂1(s) = 1
s+α1

,

ψ̂1(s) =
√

2Re(α1) · φ̂1(s),

φ̂j(s) = φ̂j−1(s)− (αj + αj−1) · 1
s+αj

· φ̂j−1(s),

ψ̂j(s) =
√

2Re(αj) · φ̂j(s).

We obtain by induction that

ψ̂j(s) =

√
2Re(αj)

s+ αj
·
j−1∏
`=1

s− α`
s+ α`

.

Note that (ψk)rk=1 is an orthonormal basis for our given
subspace. Hence the optimal approximation with fixed de-
nominator is

gr =

r∑
k=1

〈g, ψk〉ψk.

The involved inner-products can be explicitly calculated. For
simplicity of exposition we will assume that αi 6= αj for
i 6= j. We have

〈g, ψk〉 =
1

i2π

∫
iR
ĝ(s)ψ̂k(s) ds.

Defining

Ψ̂k(s) :=

√
2Re(αk)

−s+ αk
·
k−1∏
`=1

−s− α`
−s+ α`

,

we have

〈g, ψk〉 =
1

i2π

∫
iR
ĝ(s)Ψ̂k(s) ds.

By the Residue Theorem we then have

〈g, ψk〉 = −
k∑
j=1

ĝ(αj) Res[Ψ̂k, αj ].

The residue of Ψ̂k at αj can be calculated as follows (at this
point it is used that αj is a simple pole of Ψ̂k): for j < k
we have

Res[Ψ̂k, αj ] = lim
s→αj

(s− αj)Ψ̂k(s)

=

√
2Re(αk)

αk − αj
· (αj + αj) ·

k−1∏
`=1, 6̀=j

αj + α`
αj − α`

,

and for j = k we have

Res[Ψ̂k, αk] = lim
s→αk

(s− αk)Ψ̂k(s)

= −
√

2Re(αk) ·
k−1∏
`=1

αk + α`
αk − α`

.

Combining the above, we obtain a slightly cumbersome but
very explicit formula for the optimal approximation in the
case of a fixed denominator:

gr =

r∑
k=1

ckψk,

where

ck := −
k−1∑
j=1

ĝ(αj)

√
2Re(αk)

αk − αj
· (αj + αj) ·

k−1∏
`=1, 6̀=j

αj + α`
αj − α`

,

+ ĝ(αk)
√

2Re(αk) ·
k−1∏
`=1

αk + α`
αk − α`

. (2)

It is possible to obtain an alternative expression for gk as a
sum of exponentials. We have

ψk(t) =

k∑
j=1

Res[ψ̂k,−αj ]e−αjt,

which gives

gr(t) =

r∑
k=1

ck

k∑
j=1

Res[ψ̂k,−αj ]e−αjt,

so that (changing the order of summation)

gr(t) =

r∑
j=1

r∑
k=j

ckRes[ψ̂k,−αj ]e−αjt,

i.e.

gr(t) =

r∑
j=1

dje
−αjt,

with

dj :=

r∑
k=j

ckRes[ψ̂k,−αj ].

The expression Res[ψ̂k,−αj ] can be calculated similarly as
Res[Ψ̂k, αj ] was calculated above: for j < k

Res[ψ̂k,−αj ] =

√
2Re(αk)

αj − αk
· (αj + αj) ·

k−1∏
`=1, 6̀=j

αj + α`
αj − α`

.

and for j = k

Res[ψ̂k,−αk] =
√

2Re(αk) ·
k−1∏
`=1

αk + α`
αk − α`

.

Note that
Res[ψ̂k,−αj ] = −Res[Ψ̂k, αj ].

The error ‖g− gr‖2 can be calculated as follows. We first
recall a general Hilbert space result. Let H be a Hilbert
space, let g ∈H and let (ψk)rk=1 be an orthonormal set in
H . Then∥∥∥∥∥g −

r∑
k=1

〈g, ψk〉ψk

∥∥∥∥∥
2

= ‖g‖2 −

∥∥∥∥∥
r∑

k=1

〈g, ψk〉ψk

∥∥∥∥∥
2

= ‖g‖2 −
r∑

k=1

|〈g, ψk〉|2 .



Applied to the problem at hand this gives

‖g − gr‖2 = ‖g‖2 −
r∑

k=1

|ck|2 ,

where ck is given by (2).
2) Optimal approximation with a variable denominator:

The solution of the general optimal approximation problem
formulated in Section II can be obtained by minimizing
the solution obtained in Section III-D.1 over all possible
denominators. Therefore, the general optimal approximation
problem is reduced to

min ‖g‖2 −
r∑

k=1

|ck|2 ,

where ck is given by (2) and the minimum is taken over all
α1, . . . , αr ∈ C with positive real parts. This is equivalent
to

min−
r∑

k=1

|ck|2 ,

over all α1, . . . , αr ∈ C with positive real parts. This is
a nonlinear programming problem which can be solved by
various standard techniques from that area.

In the numerical examples presented in Section IV, we
use the function fmincon from matlab (as is done in [13]).
This function fmincon optimizes over real variables and
therefore the αi need to be split into their real and imaginary
parts and the optimization takes place over 2r real variables.
In principle fmincon only needs to be able to evaluate the
objective function; by (2) this means that evaluation of ĝ
needs to be possible. Optionally, the gradient and Hessian
can be provided to fmincon. Using (2) it is possible to
explicitly calculate these; they will involve evaluations of ĝ′

and ĝ′′. In the numerical experiments reported in Section IV,
we have not used these gradient and Hessian options.

We note that it is more natural to use optimization algo-
rithms based directly on the complex variables α1, . . . , αr ∈
C. It is indeed possible to use gradient based iterative meth-
ods directly for complex variables (see e.g. the exposition in
[9]). However, we have not implemented these and instead
simply rely on the matlab function fmincon.

IV. NUMERICAL EXAMPLES

We consider several numerical examples. The transfer
functions are non-rational and arise from PDEs. We have
taken these examples from Curtain and Morris [2].

We have implemented the method described in Section
III-A, the method described in Section III-D and the method
described in Section III-C. In the first two cases we use
the matlab function fmincon (with the three optional al-
gorithms interior-point, sqp, active-set). In the
third case we use the implementation TF-IRKA as described
in [1]. As stopping criterion in TF-IRKA we use that the
relative change in the cost function from one iteration to the
next is smaller than some prescribed tolerance.

A. A heat equation

We consider the following heat equation (taken from
Curtain and Morris [2, Section 1.3]):

∂w

∂t
=
∂2w

∂ξ2
, t > 0, ξ ∈ (0, 1),

w(0, t) = 0,
∂w

∂ξ
(1, t) = u(t),

y(t) = w(ξ0, t).

The transfer function (computed in [2, Section 1.3]) is:

ĝ(s) =
sinh(

√
sξ0)√

s cosh(
√
s)
.

In the computations below we take ξ0 = 1/3.

Utilizing any of the mentioned methods, it quickly be-
comes clear that r = 2 is the “correct” order of the approx-
imant. The approximation error for r = 1 is significantly
larger than for r = 2, but for r ≥ 3 the approximation error
isn’t significantly smaller than for r = 2.

When using fmincon in this example, we force the
parameters to be real. Allowing them to be complex results
in the output of fmincon having very small imaginary part.

As initial guess for the poles of the approximant we use
the poles of ĝ which are closest to zero. The poles of ĝ
are given by λk = (kπ + π/2)2 for k = 0, 1, . . . (see [2,
Section 1.3]), so that the initial guess for the poles for r = 2
is (π/2)2 ≈ 2.47 and (3π/2)2 ≈ 22.2. The method from
Section III-A also needs an initial guess for the residues.
For this we use the optimal residues for the initial guess of
poles (as calculated in Section III-D). We see from the results
presented in Table I that all considered methods perform
equally well (but using the fmincon option active-set
is slightly worse than the other options).

Method ‖g‖2 − ‖g − gr‖2

III-A interior-point 0.1217

III-A sqp 0.1217

III-A active-set 0.1207

III-D interior-point 0.1217

III-D sqp 0.1217

III-D active-set 0.1207

III-C TF-IRKA 0.1217

TABLE I
APPROXIMATIONS FOR THE HEAT EQUATION



B. A beam equation

We consider the following beam equation (taken from
Curtain and Morris [2, Section 4.2]):

∂2w

∂t2
+ β

∂5w

∂ξ4∂t
+ α

∂4w

∂ξ4
= 0, t > 0, ξ ∈ (0, L),

w(0, t) = 0,
∂w

∂ξ
(0, t) = 0,

β
∂3w

∂ξ2∂t
(L, t) + α

∂2w

∂ξ2
(L, t) = 0,

− β ∂4w

∂ξ2∂t
(L, t)− α∂

3w

∂ξ2
(L, t) = u(t),

y(t) =
∂w

∂t
(L, t).

The transfer function (computed in [2, Section 4.2]) is:

ĝ(s) =
sN(s)

m3(s)(α+ βs)D(s)
,

where

m(s) =

(
−s2

α+ βs

)1/4

,

N(s) =

cosh(Lm(s)) sin(Lm(s))− sinh(Lm(s)) cos(Lm(s)),

D(s) = 1 + cosh(Lm(s)) cos(Lm(s)).

In the computations we take L = 2, α = 1.129, β = 3.89×
10−4. A Bode plot is given in Figure 1. This transfer function
is considerably harder to approximate than the one from the
heat equation given in Section IV-A.
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Fig. 1. Bode plot for the beam equation

The poles of the transfer function are given in terms of
the solution of a transcendental equation. As shown in [2,
Section 4.2], the solutions of this transcendental equation are
asymptotically given by αk ≈ 2k−1

2L π (k = 1, 2, . . .). We use
the matlab function fsolve with 2k−1

2L π as initial guess
to solve this transcendental equation and obtain the poles.
As shown in [2, Section 4.2], the residues can be calculated
in terms of the poles. Using this information, we can form
a modal truncation. This modal truncation is then used as
initial guess for the algorithms described in Sections III-A,

III-D (with the default method interior point used in
fmincon) and III-C. The results are summarized in Table
II; the same values are obtained for modal truncation and
for the methods described in Sections III-A, III-C and III-
D. We also consider the case where we use 2k−1

2L π instead
of αk in the formulas for the modal truncation. Using this
“approximate modal truncation” as initial guess gives the
results summarized in Table III. It can be seen that the
method from Section III-A finds the minimum for r = 2, but
fails to find it for r = 4 and r = 8. The method from Section
III-C find the minimum in all three cases. The method from
Section III-D finds the minimum for r = 2, fails to find
it for r = 4 and comes close to the minimum for r = 8.
We also consider the case r = 2 with initial guess for the
poles corresponding to the approximation 3

2L of α2 rather
than to the approximation of α1. As expected, the methods
from Sections III-C and III-D converge to a local minimum
corresponding to the “second peak” in the Bode plot; see
Table IV and Figure 2. The method from Section III-A does
even worse. These results clearly indicate that for a transfer
function where the Bode plot has “peaks”, the initial guess
has to reasonably accurately capture the location of these
peaks; otherwise the considered algorithms will converge to
a local minimum.

r ‖g‖2 − ‖g − gr‖2

2 6654

4 6824

8 6851

TABLE II
APPROXIMATIONS FOR THE BEAM EQUATION: MODAL TRUNCATION AS

INITIAL GUESS

r method ‖g‖2 − ‖g − gr‖2

2 III-A 6654

III-C 6654

III-D 6654

4 III-A 6672

III-C 6824

III-D 6657

8 III-A 310

III-C 6851

III-D 6847

TABLE III
APPROXIMATIONS FOR THE BEAM EQUATION: APPROXIMATE MODAL

TRUNCATION AS INITIAL GUESS
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