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FINITE-RANK ADI ITERATION FOR OPERATOR LYAPUNOV
EQUATIONS∗

MARK R. OPMEER† , TIMO REIS‡ , AND WINNIFRIED WOLLNER‡

Abstract. We give an algorithmic approach to the approximative solution of operator Lyapunov
equations for controllability. Motivated by the successfully applied alternating direction implicit
(ADI) iteration for matrix Lyapunov equations, we consider this method for the determination of
Gramian operators of infinite-dimensional control systems. In the case where the input space is finite-
dimensional, this method provides approximative solutions of finite rank. Under the assumption of
infinite-time admissibility and boundedness of the semigroup, we analyze convergence in several
operator norms. We show that under a mild assumption on the shift parameters, convergence to
the Gramian is obtained. Particular emphasis is placed on systems governed by a heat equation
with boundary control. We present that ADI iteration for the heat equation consists of solving
a sequence of Helmholtz equations. Two numerical examples are presented; the first showing the
benefit of adaptive finite elements and the second illustrating convergence to something other than
the Gramian in a case where our condition on the shift parameters is not satisfied.
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1. Introduction. A fundamental concept in linear finite-dimensional systems
theory is the Gramian matrix, i.e., the solution P ∈ Rn×n of the Lyapunov equation

(1.1) AP + PAT +BBT = 0

associated to a linear control system ẋ(t) = Ax(t) + Bu(t) with A ∈ R
n×n, B ∈

Rn×m. These equations, for instance, arise in stability and controllability analysis [51,
sect. 3.8], model reduction by balanced truncation [5, Chap. 7], and the Newton–
Kleinman method for solving Riccati equations which arise, e.g., in optimal control
[13, 32].

Due to their importance, a variety of numerical methods have been developed for
Lyapunov equations, such as alternating direction implicit (ADI) iteration [29, 30, 35],
Bartels–Stewart method [10], Smith’s method [49], Krylov subspace method [27,
46], sign function method [41], Hammarling’s method [24], and proper orthogonal
decomposition (POD) based methods [43, 56]. (See [5, Chap. 6] for an overview.)
Especially the ADI iteration, Smith method, matrix sign function method, and POD
based methods have in common that, in case of m � n, they typically provide so-
called low-rank approximative solutions. That is, instead of the full Gramian matrix,
a factor S ∈ Rn×k with k � n and P ≈ SST is computed iteratively. This feature
makes these methods suitable for problems of large state space dimension n ∈ N,
especially since memory effort is saved. An important class of large-scale systems
are those emerging from fine spatial discretization of controlled systems which are
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governed by linear partial differential equations [11]. The latter, however, actually
has (before discretization) infinite state space dimension; in the Lyapunov equation,
the variables A, B, and the to-be solved P are actually operators acting on infinite-
dimensional spaces. It is hence natural to wonder about the following questions:

(a) Can iterative algorithms be formulated for operator Lyapunov equations, and
(when) do they converge?

(b) What are the (computational) consequences for systems governed by PDEs?
These questions have been considered for POD based methods in [47, 48]. In this
work we consider the ADI iteration for operator Lyapunov equations. This iteration
provides an operator S, acting on some space that will be finite-dimensional if the
input space is finite-dimensional, such that P ≈ SS∗. In this article, convergence of
SS∗ to P will be shown under the assumption (apart from the necessary assumption
that the Gramian operator exists) of boundedness of the semigroup generated by A.
In contrast to the POD based methods considered in [47, 48], we allow the input
operator to be “unbounded,” which is motivated by partial differential equations
with boundary control. To prove convergence we also need to impose a rather mild
restriction on the shift parameters used in the ADI algorithm. In addition, we give
a numerical example which indicates that if the shift parameters do not satisfy this
restriction, then SS∗ may converge to something else than the Gramian.

Particular emphasis is placed on systems governed by a boundary controlled heat
equation, where it will turn out that the ADI method consists of the solution of a se-
quence of Helmholtz equations. Since the latter can be (approximatively) solved by
using adaptive finite element methods, we will also discuss the impact of approxima-
tive solution in each step of the ADI iteration.

This possibility of using adaptive finite element methods is a distinct advantage
of our approach. At each iteration step of ADI, an appropriate discretization is chosen
(rather than this being fixed a priori). This leads to significant computational savings.

The paper is organized as follows. The subsequent section 2 reviews the basic
notational and functional analytic framework. Section 3 contains basic facts about
semigroups and operator Lyapunov equations. In section 4 we introduce the ADI
iteration for the solution of operator Lyapunov equations and present results about
convergence. In section 5 we expand our analysis to an inexact ADI iteration that one
would have to do in practical computations due to the necessity of discretization in
the infinite-dimensional context. In section 6 the developed theory is applied to a heat
equation with Robin boundary control on an L-shaped domain. We give two numerical
examples. The first illustrates the benefit of using adaptive finite elements. In the
second numerical example we give a shift parameter choice for which convergence of
SS∗ to something other than the Gramian occurs.

2. Basic notation and functional analytic prerequisites. Throughout the
paper, R>0, R≥0, C+, C−, and Cn×m, respectively, denote the sets of positive real
numbers, nonnegative real numbers, complex numbers with positive real part, complex
numbers with negative real part, and the space of n×m complex matrices. N stands
for the set of positive integers, and by z we mean the complex conjugate of z ∈ C.

For p ≥ 1, �p stands for the p-summable complex sequences. We use the notation
from [1] for Lebesgue and Sobolev spaces Lp(Ω) and Hk(Ω), and the one from [17]
for the Hardy spaces H2(U) and H2.

Throughout this work, integrals of functions with values in Hilbert space are
understood in the sense of Bochner. For a brief overview on abstract integration
theory we refer to [17, p. 621] and the bibliography therein. For p ∈ [1,∞], some
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interval I and some separable Hilbert space X , Lp(I,X) denotes the Lebesgue space
of measurable functions f(·) : I → X with the property that ‖f‖X ∈ Lp(I).

Let Z and X be Hilbert spaces, such that Z ⊂ X and the canonical injection
Z → X , x 
→ x is continuous and dense. By calling a Hilbert space X pivot space, we
mean that X is identified with its own topological dual X ′ (which is possible by the
Riesz representation theorem [38, p. 48]), and the dual of Z is defined in a way such
that the dual pairing 〈·, ·〉Z′,Z continuously (w.r.t. the norm in Z) extends the inner
product in X . It follows that X ⊂ Z ′ and the canonical injection X → Z ′, x 
→ x is
continuous and dense.

B(X,Y ) and K(X,Y ) are the spaces of bounded, respectively, compact, linear
operators T : X → Y , and we abbreviate B(X) := B(X,X), K(X) := K(X,X).
For a densely defined operator T : D(T ) ⊂ X → X , the symbols ρ(T ) and σ(T )
indicate its resolvent set and spectrum, respectively. The identity mapping on X
is denoted by IX and the zero operator from X to Y by 0X,Y . Given an operator
T : D(T ) ⊂ X → Y , the graph norm is defined via ‖x‖2D(T ) = ‖x‖2X + ‖Tx‖2Y . If

D(T ) associated with the graph norm ‖ · ‖D(T ) is complete, then T is called closed.
A vector v ∈ X is in a canonical way identified as an operator v ∈ B(C, X) via

λ 
→ λv. For a Hilbert space X and m ∈ N, the product space Xm is equipped with
the canonical inner product. For another Hilbert space Y and operators T1, . . . , Tm ∈
B(X,Y ), the operator column matrix

T =
[
T1 · · · Tm

]
defines an operator T ∈ B(Xm, Y ) in a straightforward manner.

The adjoint of T ∈ B(X,Y ) is denoted by T ∗ ∈ B(Y,X) and the dual by T ′ ∈
B(Y ′, X ′). The adjoint of a densely defined operator T : D(T ) ⊂ X → Y is defined
on T ∗ : D(T ∗) ⊂ Y → X , where D(T ∗) consists of all y ∈ Y with the property that
there exists some z ∈ X with 〈Tx, y〉X = 〈x, z〉X for all x ∈ D(T ). (In this case, we
define T ∗y = z.) The dual of a densely defined operator T : D(T ) ⊂ X → Y is defined
on T ′ : D(T ′) ⊂ Y ′ → X ′, where D(T ′) consists of all y ∈ Y with the property that
the mapping D(T ) → C, z 
→ 〈Tz, x〉X has an extension to an element in X ′. For
y ∈ D(T ′), the element T ′y is defined via 〈T ′y, x〉X′,X = 〈y, Tx〉Y ′,Y for all x ∈ D(T ).
Note that T ∗ and T ′ coincide if both X and Y are considered to be pivot spaces. For
further details concerning duals and adjoints, we refer to [6, p. 49].

A densely defined operator P : D(P ) ⊂ X → X is called self-adjoint if P = P ∗.
(This also includes that D(P ) = D(P ∗).) A self-adjoint operator P is nonnegative if
〈x, Px〉X ≥ 0 for all x ∈ D(P ). The notions of negativity, positivity, and nonpositivity
of an operator can be defined in straightforward manner. This induces a partial order
on the set of self-adjoint operators: For two self-adjoint operators P1 : D(P1) ⊂ X →
X , P2 : D(P2) ⊂ X → X we say that P1 ≥ P2 if P1 − P2 ≥ 0. The square root of a
nonnegative operator P : D(P ) ⊂ X → X is denoted by P 1/2; its domain D(P 1/2) is
the completion of D(P ) with the norm ‖x‖2

D(P 1/2)
= ‖x‖2X + 〈x, Px〉X [17, p. 606].

Compact operators are known to admit a singular value decomposition

(2.1) Tx =

∞∑
i=1

σi〈x, ui〉X · vi,

where the sequence of singular values (σi)i is monotonically decreasing and tends
to zero, and (ui)i, (vi)i are orthonormal systems in X and Y , respectively [38,
Thm. VI.17].
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Subsequently, we introduce special classes and norms of operators which were
originally introduced in [45].

Definition 2.1. Let X,Y be separable Hilbert spaces and let p ∈ [1,∞[. Then
T ∈ K(X) is called a pth Schatten class operator if the sequence consisting of its
singular values fulfill (σi)i ∈ �p. In this case we write T ∈ Sp(X,Y ). Provided
with the norm ‖T ‖Sp(X,Y ) = ‖(σi)i‖�p, the space Sp(X,Y ) becomes a Banach space.

Operators of first Schatten class are called nuclear and those of second Schatten class
are called Hilbert–Schmidt.

We abbreviate Sp(X) := Sp(X,X). For more details on the Schatten class, we
refer to [36, p. 126]. The trace of T ∈ S1(X) is well-defined by the expression

(2.2) tr(T ) =

∞∑
i=1

〈ei, T ei〉 ,

where (ei) is an (arbitrary) orthonormal basis of X [38, p. 206]. For self-adjoint
and nonnegative P ∈ S1(X), the spectral theorem [38, Thm. VI.16] implies that
‖P‖S1(X) = tr(P ). Moreover, for T ∈ S2(X,Y ) it holds that T ∗T ∈ S1(X), TT ∗ ∈
S1(Y ) with ‖T ‖2S2(X,Y ) = ‖T ∗‖2S2(Y,X) = tr(T ∗T ) = tr(TT ∗).

3. Operator Lyapunov equations. We review basic facts about solvability of
operator Lyapunov equations. Consider the following setup throughout this article:
For Hilbert spaces U , X (which are assumed to be pivot spaces), let A : D(A) ⊂ X →
X and B ∈ B(U,D(A∗)′) be given. The operator Lyapunov equation is given by

(3.1) 2Re 〈Px,A∗x〉X + ‖B′x‖2U = 0 for all x ∈ D(A∗)

and has to be solved for the self-adjoint operator P ∈ B(X). Indeed, (3.1) is equivalent
to (1.1) in the case where A and B are real matrices. The property of B to possibly
map to a larger space D(A∗)′ ⊃ X is motivated by partial differential equations with
boundary control; see [14] and [54, Chap. 10].

To analyze solvability of operator Lyapunov equations we first need to introduce
the concept of strongly continuous semigroups, stability, and admissibility.

Definition 3.1 (strongly continuous semigroups, generators, exponential sta-
bility, contractivity, similarity). An operator-valued function T (·) : R≥0 → B(X) is
called a strongly continuous semigroup if T (0) = IX , T (t + s) = T (t) · T (s) for all
t, s ∈ R≥0, and

lim
t→0,t>0

T (t)x = x for all x ∈ X.

A strongly continuous semigroup is called bounded if there exists some M ∈ R≥0 such
that

‖T (t)‖B(X) ≤M for all t ∈ R≥0,

and exponentially stable if there exists some M ∈ R≥0, ω ∈ R>0, such that

‖T (t)‖B(X) ≤M · e−ωt for all t ∈ R≥0.

If there holds ‖T (t)‖ ≤ 1 for all t ∈ R≥0, then T (·) is called contractive. Two
semigroups T1(·) : R≥0 → B(X1) and T2(·) : R≥0 → B(X2) are called similar if there
exists some bijective H ∈ B(X1, X2), such that T1(t) = H−1T2(t)H for all t ∈ R≥0.
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The operator A : D(A) ⊂ X → X defined by

Ax = lim
t→0,t>0

1
t (T (t)x− x),

D(A) =

{
x ∈ X

∣∣∣∣ lim
t→0,t>0

1
t (T (t)x− x) ∈ X

}
is called the generator of the semigroup T (·).

The domains of A and its adjoint are known to be dense in X ; A is a closed
operator [54, Cor. 2.1.8, Prop. 2.3.1, Prop. 2.8.1].

Definition 3.2 (admissible control operator, Gramian operator). Let U,X be
Hilbert spaces, let A : D(A) ⊂ X → X be the generator of a strongly continuous
semigroup T (·) on X, and let B ∈ B(U,D(A∗)′). Then we call B an admissible
control operator for T (·) if for some (and then also any) t ∈ R>0, there holds

(3.2) Φtu :=

∫ t

0

T (τ)Bu(τ)dτ ∈ X for all u ∈ L2(R≥0, U).

The control operator B is called infinite-time admissible if the reachability map fulfills

(3.3) Φu :=

∫ ∞

0

T (τ)Bu(τ)dτ ∈ X for all u ∈ L2(R≥0, U).

If B is infinite-time admissible for T (·), then
P = ΦΦ∗ ∈ B(X)

is called the Gramian of (A,B).
Some comments on facts about the above definition are stated below.
Remark 3.3.

(a) Expression 3.2 has to be understood in the following way: As T (·) extends to
a strongly continuous semigroup on D(A∗)′ [54, Prop. 2.10.4], the function
T (·)Bu(·) is D(A∗)′-valued and measurable. Admissibility means that the
integral is even in the smaller space X .

(b) Admissibility implies Φt ∈ B(L2(R≥0, U), X) [25, p. 6], and infinite-time
admissibility implies the boundedness of the reachability map, i.e., Φ ∈
B(L2(R≥0, U),
X) [25, p. 5].

(c) If B is admissible for an exponentially stable semigroup T (·), then B is
infinite-time admissible [25, p. 6].

(d) Any B ∈ B(U,X) is admissible.
Note that fully dual statements hold true for observability Gramians [54, p. 134];

all results in this article can be formulated for that case in a straightforward manner.
Next, recall that the Gramian indeed solves the operator Lyapunov equation (3.1)

see [25].
Theorem 3.4 (see [25, Thm. 3.1]). Let U,X be Hilbert spaces and A : D(A) ⊂

X → X be the generator of a strongly continuous semigroup T (·) on X. Then there
holds the following:

(a) If B ∈ B(U,D(A∗)′) is an infinite-time admissible control operator for T (·),
then the Gramian P of (A,B) solves the operator Lyapunov equation (3.1).

(b) If, additionally, the adjoint of T (·) is a strongly stable semigroup (that is,
limt→∞ T ∗(t)x = 0 for all x ∈ X), then the Gramian P of (A,B) is the
unique solution of the operator Lyapunov equation (3.1). Moreover, all other
solutions Q ≥ 0 of (3.1) fulfill Q ≥ P .
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(c) On the other hand, if B ∈ B(U,D(A∗)′) and there exists some nonnegative
self-adjoint Q ∈ B(X) that satisfies

(3.4) 2Re 〈Qx,A∗x〉X + ‖B′x‖2U ≤ 0 for all x ∈ D(A∗),

then B is an admissible control operator for T (·). Moreover, all solutions
Q ≥ 0 of (3.4) fulfill Q ≥ P .

Remark 3.5. Being aware of 2Re〈Px,A∗x〉X = 〈Px,A∗x〉X + 〈A∗x, Px〉X ,
the substitution of x in (3.1) first by x + y and then by x + iy implies that the
operator Lyapunov equation is equivalent to

(3.5) 〈Px,A∗y〉X + 〈A∗x, Py〉X + 〈B′x,B′y〉U = 0 for all x, y ∈ D(A∗).

We briefly focus on the case where the generator A is self-adjoint and negative
and has a compact inverse, and the control operator fulfills B ∈ B(U,D((−A) 1

2 )′).
(The heat equation considered in section 6 is of this type.) The latter property is
equivalent to

(3.6) (−A)− 1
2B ∈ B(U,X).

Proposition 3.6. Assume that A : D(A) ⊂ X → X is self-adjoint and negative
and has compact resolvent. Let B : U → D(A)′ be such that (3.6) holds true. Then
the following hold true:

(a) A generates an exponentially stable and contractive semigroup T (·) on X.
(b) B is admissible for T (·).

Moreover, the Gramian P of (A,B) is nuclear if and only if (−A)−1/2B : U → X is
Hilbert–Schmidt. In this case, there holds

(3.7) ‖P‖S1(X) = tr(P ) = 1
2 · ‖(−A)−1/2B‖2S2(U,X) = − 1

2 · tr(B′A−1B).

Proof. By the assumptions on A, we may apply the spectral theorem
[39, Thm. XIII.64] to infer the existence of an orthonormal basis (ei)i of X and
a decreasing and unbounded sequence of negative real numbers (λi)i, such that

(3.8) Ax =

∞∑
i=1

〈x, ei〉X · ei for all x ∈ D(A).

In particular, we have A − λ1I ≤ 0, and the Lumer–Phillips theorem [34, Thm. 4.3]
implies that ‖T (t)‖B(X) ≤ eλ1t for all t ≥ 0. The semigroup T (·) is therefore expo-
nentially stable and contractive.

To prove that (b) holds true, we make use of (3.6) to see that there exists some
μ ∈ R>0 such that for all z ∈ X holds

‖B′(−A)− 1
2 z‖2U ≤ μ‖z‖2X.

Since this inequality holds clearly for all z ∈ D((−A) 1
2 ), we can perform the substi-

tution x = (−A)− 1
2 z to see that for all x ∈ D(A) = D(A∗) holds

‖B′x‖2U ≤ μ · ‖(−A) 1
2 x‖2X = −μ · 〈x,Ax〉X .

That is, (3.4) holds true for Q = μ
2 IX , and we may apply Theorem 3.4 (c) to conclude

admissibility of B.
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Since the vectors ei in the spectral decomposition (3.8) fulfill ei ∈ D(A), we may
replace x in (3.1) by ei to see

0 = 2Re 〈Aei, P ei〉X + ‖B′ei‖2U
= 2Re 〈λiei, P ei〉X + ‖B′ei‖2U = 2λi 〈ei, P ei〉X + ‖B′ei‖2U .

Solving this equation for 〈ei, P ei〉X and using that B′(−A)−1/2 = ((−A)−1/2B)∗, we
obtain

〈ei, P ei〉X = − 1
2λi

· ‖B′ei‖2U = 1
2 · ‖B′(−λi)−1/2ei‖2U

= 1
2 · ‖B′(−A)1/2ei‖2U = 1

2 ·
〈
ei, (−A)−1/2B

(
(−A)−1/2B

)∗
ei

〉
X
.

Since both P and (−A)−1/2B((−A)−1/2B)∗ are nonnegative, their nuclear norms are
equal to their respective traces. Moreover, since we have that (−A)−1/2B ∈ S2(U,X)
if and only if (−A)−1/2B((−A)−1/2B)∗ ∈ S1(X), equivalence between P ∈ S1(X)
and (−A)−1/2B ∈ S2(U,X) follows immediately. In this case, we have

tr(P ) = 1
2 · tr((−A)−1/2BB′(−A)−1/2) = 1

2 · tr((−A)−1/2B((−A)−1/2B)∗)

= 1
2 · ‖(−A)−1/2B‖2S2(U,X) = − 1

2 · tr(B′A−1B).

Remark 3.7. Note that, under the assumptions that A : D(A) ⊂ X → X is
negative and has compact resolvent, the input operator B fulfills (3.6) and, addition-
ally, the input space is finite-dimensional (i.e., without loss of generality U = Cm),
we can immediately infer from Proposition 3.6 that the Gramian P of (A,B) is nu-
clear. Namely,the expression ‖P‖S(X) = tr(P ) coincides with the trace of the matrix

− 1
2B

′A−1B ∈ Cm×m.
Remark 3.8. It is worthwhile to place particular emphasis on systems with di-

agonalizable A, the so-called Riesz-spectral operators [17, sect. 2.3] (which occur for
the heat and wave equation as well as at time-delay systems), that is, there exists
a Riesz basis of eigenvectors of A and, moreover, σ(A) is the closure of a totally
disconnected set. Roughly speaking, a Riesz basis is a family of vectors which is topo-
logically equivalent to an orthonormal system. A Riesz-spectral operator A generates
a strongly continuous T (·) if and only if supRe(σ(A)) < ∞; exponential stability of
T (·) is equivalent to sup(Re σ(A)) < 0 [17, Thm. 2.3.5]. Denoting σ(A) = {λi | i ∈ N},
let (φi)i be a Riesz basis of the eigenvectors of A

∗ (which exists due to [17, Lem. 2.3.2])
with A∗φi = λiφi for all i ∈ N. Then the Lyapunov equation (3.5) gives rise to

(3.9)
0 = 〈Pφi, A∗φj〉X + 〈A∗φi, Pφj〉X + 〈B′φi, B′φj〉U
=(λj + λi) 〈Pφi, φj〉X + 〈B′φi, B′φj〉U for all i, j ∈ N.

Then λi, λj ∈ C− implies λi + λj �= 0, and thus

〈Pφi, φj〉X = − 1

λi + λj
· 〈B′φi, B′φj〉U for all i, j ∈ N.

Note that, by the property of (φi)i being a Riesz basis, this relation uniquely deter-
mines P ; it can be considered as a Cauchy matrix representation [4] of P .

4. ADI iteration for operator Lyapunov equations. We now present an
algorithm, take a closer look at operator Lyapunov equations, and set up an iterative
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scheme for their solution; we consider the ADI iteration for the operator case and
discuss convergence. Before presenting results about convergence, we first present the
algorithm, which exactly reads as in the matrix case [44, p. 43]. Besides the pair
(A,B) defining a control system, this algorithm involves so-called shift parameters
pi ∈ C, which have to be chosen a priori. In the finite-dimensional case, they are
known to determine the velocity of convergence [44, p. 43]. Their choice in the case
of operator Lyapunov equations is discussed at the end of this section.

Algorithm 1. ADI iteration for operator Lyapunov equations.

Input: The generator A of a bounded strongly continuous semigroup T (·), an
infinite-time admissible control operator B ∈ B(U,D(A∗)′), and shift parameters
p1, . . . , pimax ∈ C−
Output: S = Simax ∈ B(U imax , X), such that SS∗ ≈ P , where P is the Gramian of
(A,B).

1: V1 = (A+ p1I)
−1B

2: S1 =
√−2Re(p1) · V1

3: for i = 2, 3, . . . , imax do
4: Vi = Vi−1 − (pi + pi−1) · (A+ piI)

−1Vi−1

5: Si = [Si−1 ,
√−2Re(pi) · Vi ]

6: end for

Remark 4.1.

(a) The operator A : D(A) ⊂ X → X uniquely extends to an operator in B(X,D
(A∗)′) [54, Cor. 2.10.3]. An immediate consequence is that, for p ∈ ρ(−A),
the operator (pI +A)−1 uniquely extends to an element of B(D(A∗)′, X). In
particular, there holds (pI +A)−1B ∈ B(U,X) for all p ∈ ρ(−A).

(b) It follows from the Hille–Yosida theorem (see, e.g., [50, Thm. 3.4.1)]) that
boundedness of the semigroup implies C− ⊂ ρ(−A).

(c) Since the shift parameters are assumed to have negative real part, the findings
in (a) and (b) guarantee the feasibility of the ADI iteration.

(d) In the case where (A,B) is in addition approximately controllable (that is,
imΦ = X), [54, Thm. 5.1.1.] guarantees weak stability of the semigroup T (·).
That is, limt→∞〈x1, T (t)x2〉X = 0 for all x1, x2 ∈ X .

(e) In the case of a finite-dimensional input space, i.e., U = Cm, we have Si ∈
B(Cm·i, X). This means that Pi = S∗

i Si has finite rank and, in the block
operator notation, Si consists of an m · i-tuple of elements of the state space
X . These elements are obtained by solving equations of type (piI+A)w = z.
In practice, A is usually a differential operator, and each step of ADI iteration
consists of a (numerical) solution of the corresponding differential equation
(see sect. 6).

(f) We note that the choice of imax has of course not to be done a priori. Rather
one might use a suitable stopping criterion. Due to Pi − Pi−1 = ViV

∗
i , we

have for each N ∈ {B,Sp} that

‖Pi − Pi−1‖N (X) = −2Re(pi) · ‖ViV ∗
i ‖N (X) = −2Re(pi) · ‖V ∗

i Vi‖N (U).

A suitable criterion for termination of the ADI iteration is therefore to check
whether the norm of the operator V ∗

i Vi ∈ B(U) (which is a matrix, if U = Cm)
goes below a given absolute or relative threshold. For an overview on stopping
criteria for the ADI iteration to solve matrix Lyapunov equations, we refer
to [44, sect. 4.6].
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Note that, for the class treated in Proposition 3.6, we will derive an explicit
expression for the approximation error P−Pi in the nuclear norm (see Propo-
sition 4.12).

(g) An important class of infinite-dimensional systems are the so-called boundary
control systems [15, 37]. They are, in an abstract setting, of the form

(4.1)
ẋ(t) = Ux(t),

px(t) = u(t),

where U : D(U) ⊂ X → X is densely defined and closed, and p ∈ B(D(U), U)
is onto. In case of well-posedness (that is, for all t ∈ R>0, x(t) ∈ X con-
tinuously depends on x(0) ∈ X and u ∈ L2([0, t], U)), this system can be
rewritten as ẋ(t) = Ax(t)+Bu(t), where the operator A generates a strongly
continuous semigroup T (·) on X , and B is admissible for T (·); see [37]. If
A generates a bounded semigroup, then we may use [15, Thm. 2.9] to infer
that for all p ∈ C−, z ∈ X , and u ∈ U , the vectors x1 = (A + pI)−1z and
x2 = (A + pI)−1Bu ∈ X are the unique solutions of the so-called abstract
elliptic problems

(4.2)
px1 + Ux1 = z, px2 + Ux2 = 0,

px1 = 0, px2 = u.

The Gramian P can therefore be computed by the ADI algorithm without
explicit use of A and B.

Our convergence result is stated below as Theorem 4.7. Its proof is based on the
(seemingly new) insight that the operator Si computed by ADI equals the restriction
of the reachability map Φ to a certain subspace Ui ⊂ L2(R≥0, U). More precisely, we
will derive a formula Si = Φ · ιi, where ιi : U i → Ui ⊂ L2(R≥0, U) is an isometry.

Convergence of ADI will then be deduced from
⋃

i∈N
Ui = L2(R≥0, U).

To derive this finding, denote q1, . . . , qJ to be the pairwise different shift param-
eters which have been involved in the first i ADI iterations. Further, let kj be the
number of iterations in which qj appears (thus i = k1 + · · ·+ kJ), and define

(4.3)
Fi =

i⊕
j=1

span
{
tleqjt

∣∣ l = 0, . . . , kj − 1
} ⊂ L2(R≥0),

Ui = Fi ⊗ U := { f(·) · v | f ∈ Fj , v ∈ U } ⊂ L2(R≥0, U).

The spaces defined in (4.3) under the Laplace transform (which is an isometric map-
ping from L2(R≥0, U) to H2(U)) become

(4.4)
F̂i =

i⊕
j=1

span

{
1

(s− qj)l

∣∣∣∣ l = 1, . . . , kj

}
⊂ H2,

Ûi = F̂i ⊗ U =
{
f̂(·) · v

∣∣∣ f̂ ∈ F̂j , v ∈ U
}
⊂ H2(U).

The Takenaka–Malmquist system [12] (ψ̂i)i for F̂j is defined through the iteration

(4.5)

φ̂1(s) =
1

−s+ p1
, ψ̂1(s) =

√
−2Re(p1) · φ̂1(s),

φ̂i(s) = φ̂i−1(s)− pi + pi−1

−s+ pi
· φ̂i−1(s), ψ̂i(s) =

√
−2Re(pi) · φ̂i(s).
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Note the similarity to the ADI iteration. Elementary properties of the Laplace trans-
form show that the corresponding time-domain iteration is

φ1(t) = −ep1t, ψ1(t) =
√
−2Re(p1) · φ1(t),

φi(t) = φi−1(t) + (pi + pi−1) · (epi· ∗ φi−1)(t), ψi(t) =
√
−2Re(pi) · φi(t),(4.6)

where ∗ denotes convolution, that is, (g ∗ h)(t) =
∫ t

0
g(t − τ)h(τ) dτ . We will call

the family (ψi)i as defined in (4.6) the time-domain Takenaka–Malmquist system. By
using that the operator Si obtained in the ADI iteration can be interpreted as a re-
striction of the reachability map to the space Ui = span{ψ1, . . . , ψi}⊗U , convergence
of ADI will be related to the question whether the time-domain Takenaka–Malmquist
system corresponding to the infinite sequence of shift parameters (pi)i forms an or-
thonormal basis of L2(R≥0). We will use classical results from complex analysis to
deduce that this is true if and only if

(4.7)

∞∑
i=1

|Re(pi)|
1 + |pi|2 = ∞.

Remark 4.2. Note that analogous results regarding the Takenaka-Malmquist
system have been mentioned for the discrete-time case (that is, one has to consider
the complex unit disc instead of a half plane) in passing in [53, p. 309]. Density for
the frequency domain version is known in more general spaces [12, Thm. 7.1.4].

Instead of translating the results mentioned in Remark 4.2 to our context, in the
lemma below we show how, by elementary arguments using Laplace transforms, the
property span { ψi | i ∈ N } = L2(R≥0) can be related to a standard result on the
zero distribution of certain holomorphic functions.

Remark 4.3. The condition opposite to (4.7), namely,
∑∞

i=1
|Re(pi)|
1+|pi|2 < ∞, is

called the Blaschke condition [20, sect. II.2] (since it guarantees the convergence of an
infinite Blaschke product). It therefore seems reasonable to call condition (4.7) the
non-Blaschke condition.

Lemma 4.4. The time-domain Takenaka–Malmquist system (ψi)i with parame-
ters (pi)i forms an orthonormal basis for L2(R≥0) if and only if (4.7) is satisfied.

Proof. It is shown in Appendix B that the Takenaka–Malmquist system (ψ̂i)i
is orthonormal in H2, whence, by the Paley–Wiener Theorem [50, Thm. 10.3.4], the
time-domain system (ψi)i is orthonormal in L2(R≥0). So it is an orthonormal basis
if and only if its orthogonal complement is trivial.

Assume that f ∈ L2(R≥0) is orthogonal to ep1t. By definition of Laplace trans-

form, this is equivalent to f̂(−p1) = 0. Differentiation under the integral sign implies

that orthogonality of f to tep1t is equivalent to d
ds f̂(s)|s=−p1 = 0. Continuing with this

argumentation, we see that f is orthogonal to all the Takenaka–Malmquist functions
if and only if f̂ ∈ H2 has zeros in pi (counting multiplicity).

From the above it is clear that our question is equivalent to a question on the zero
distribution of H2 functions (and, in particular, what distribution of the zeros implies
that the function is identically equaly to zero). To answer this equation, we utilize a
classical result from complex analysis which generalizes the well-known fact that the
zeros of a nonzero holomorphic function must be isolated and have finite order. Since
the case of the disc is better studied, we translate to the disc. Let H2 denote the
Hardy space of the unit disc. Let μ ∈ C+ and define

(MF )(z) :=

√
2μ

1 + z
F

(
μ
1− z

1 + z

)
, (M−1G)(s) :=

2μ

μ+ s
G

(
μ− s

μ+ s

)
,
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and it is easily checked that these are indeed inverses and that M : H2 → H2,
M−1 : H2 → H2 are unitary (see, e.g., [26, pp. 128–131] for the case μ = 1). Define
zk := μ+pk

μ−pk
. Then the non-Blaschke condition (4.7) is equivalent to the non-Blaschke

condition for the disc (see, for example, [26, p. 132] or [20, p. 53]; the latter considers
the upper half-plane rather than the right half-plane), which is

∞∑
k=1

1− |zn| = ∞.

A classical result from complex analysis states that G ∈ H2 is nonzero if and only if its
zeros zn satisfy the Blaschke condition

∑∞
k=1 1−|zn| <∞. See, for example, [3, Thms.

5.2.2 and 5.2.3], [18, Thms. 2.3 and 2.4], [20, Thms. II.2.1 and II.2.2], [42, Thms. 15.21
and 15.23]; it is important to note in interpreting these references that H∞ ⊂ H2 ⊂ N ,
where N is the Nevalinna class; this result can also be found in the above references.

Combining the above, we have that f is orthogonal to all the Takenaka–Malmquist
functions and f̂ has zeros in −pk (counting multiplicity) if and only if G := Mf̂ has
zeros in zk (counting multiplicity). Since the non-Blaschke condition (4.7) is equivalent
to

∑∞
k=1 1 − |zn| = ∞, we see that f is orthogonal to all the Takenaka–Malmquist

functions if and only G = 0, i.e., if and only if f = 0.
Remark 4.5. The non-Blaschke condition is satisfied if all shift parameters are

equal. (In this case the Takenaka–Malmquist system becomes a Laguerre basis.) More
generally, the non-Blaschke condition is satisfied if for some J ∈ N the sequence (pi)i
is J-cyclic (that is, pJ+i = pi for all i ∈ N).

An example of an unbounded sequence where the non-Blaschke condition is satis-
fied is pk = −√

k, and two examples where the non-Blaschke condition is not satisfied
are given by pk = −k2 and pk = −1/k2.

Lemma 4.6. Let U,X be Hilbert spaces, let A : D(A) ⊂ X → X be the generator
of a bounded semigroup T (·), let B ∈ B(U,D(A∗)′) be an infinite-time admissible
control operator for T (·), let Φ ∈ B(L2(R≥0, U), X) be the input map of (A,B), and
let (pi)i be a sequence in C−. Then Algorithm 1 is feasible. Further, for the time-
domain Takenaka–Malmquist basis (ψi)i as in (4.6), the mapping

(4.8)

ιi : U i → Ui ⊂ L2(R≥0, U),

(v1, . . . , vi) 
→
i∑

j=1

ψj · vj

is an isometry, and there holds Si = Φ · ιi.
Proof. Since the semigroup is bounded, there holds C+ ⊂ ρ(A) by the Hille–

Yosida theorem (see, e.g., [50, Thm. 3.4.1)]). We particularly have −pi ∈ ρ(A), which
guarantees the feasibility of the ADI iteration.

The isometry property of ιi follows from (ψi)i being an orthonormal basis. To
show that Si = Φ · ιi holds true, we will make use of two formulas concerning the
reachability map: Assuming that u ∈ U , it follows from [50, Thm. 4.2.1(iii)] that for
μ ∈ C− holds

(4.9) Φ(eμ·v) = −(A+ μI)−1Bv.

The product rule together with d
dτ T (τ)x = AT (τ)x for all x ∈ X yields

d

dτ
eμτ (A+ μI)−1T (τ)B = eμτT (τ)B for all μ ∈ C−.
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Using this formula, we obtain by integration by parts that

(4.10)

Φ((eμ· ∗ f)v) =
∫ ∞

0

T (τ)B

∫ τ

0

eμ(τ−σ)f(σ)dσ · v dτ

=

∫ ∞

0

eμτT (τ)B

∫ τ

0

e−μσf(σ)dσ · v dτ

= eμτ (μI +A)−1T (τ)B

∫ τ

0

e−μσf(σ)dσ · v
∣∣∣∣τ=∞

τ=0

−
∫ ∞

0

eμτ (μI +A)−1T (τ)Be−μτf(τ) · v dτ

= −(μI +A)−1

∫ ∞

0

T (τ)Bf(τ) · v dτ

= −(μI +A)−1Φ(fv).

Applying the reachability map to both sides of the time-domain Takenaka–Malmquist
iteration equations (4.6) gives for v ∈ U

Φ(φ1v) = −Φ(ep1·v), Φ(ψ1v) =
√
−2Re(p1) · Φ(φ1v),

Φ(φiv) = Φ(φi−1v) + (pi + pi−1) · Φ((epi· ∗ φi−1)v), Φ(ψiv) =
√
−2Re(pi) · Φ(φiv).

Using (4.9) and (4.10), we obtain from this

Φ(φ1v) = (A+ p1I)
−1Bv, Φ(ψ1v) =

√
−2Re(p1) · Φ(φ1v),

Φ(φiv) =Φ(φi−1v)− (pi + pi−1)(A + piI)
−1Φ(φi−1v), Φ(ψiv) =

√
−2Re(pi) · Φ(φiv).

Since this is exactly the ADI iteration from Algorithm 1, we conclude that for j =
1, . . . , i and vj ∈ U holds

√−2Re(pj) · Vjvj = Φ(ψjvj), whence

Si · (v1, . . . , vi) =
i∑

j=1

√
−2Re(pi) · Vjvj =

i∑
j=1

Φ(ψiv)

= Φ

⎛⎝ i∑
j=1

ψiv

⎞⎠ = Φ ιi(v1, . . . , vi).

We are now prepared to formulate the main result of this paper. We show that
ADI iteration will be convergent to the Gramian if (A,B) is infinite-time admissible
(i.e., the Gramian P ∈ B(X) exists), the semigroup generated by A is bounded, and
the sequence of shift parameters fulfills the non-Blaschke condition.

Theorem 4.7. Let U,X be Hilbert spaces, let A : D(A) ⊂ X → X be the
generator of a bounded strongly continuous semigroup T (·), let B ∈ B(U,D(A∗)′) be
an infinite-time admissible control operator for T (·), and let P ∈ B(X) be the Gramian
of (A,B). Assume that the sequence of shifts (pi)i in C− satisfies the non-Blaschke
condition

∞∑
i=1

|Re(pi)|
1 + |pi|2 = ∞.

Then Algorithm 1 is feasible and the operator sequence (Pi)i = (SiS
∗
i )i is monotone

and is strongly convergent to P , i.e.,

lim
i→∞

Pix = Px for all x ∈ X.
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Moreover, the following holds true:
(a) If the Gramian P is compact, then

lim
i→∞

‖P − Pi‖B(X) = 0.

(b) If, for some p ∈ [1,∞), the Gramian P is of pth Schatten class, then

lim
i→∞

‖P − Pi‖Sp(X) = 0.

Proof. That Algorithm 1 is feasible was already shown in Lemma 4.6. Further,
using Lemma 4.6, we obtain

Pi = Φιiι
∗
iΦ

∗

with ιi ∈ B(U i, L2(R≥0, U)) defined as in (4.8). The construction of ιi, in particular
its isometry property, implies that ιiι

∗
i ∈ B(L2(R≥0, U)) is an orthogonal projection

onto

Ui = { f · v | f ∈ span{ψ1, . . . , ψi}, v ∈ U } ,
where ψ1, . . . , ψi are the first i functions in the time-domain Takenaka–Malmquist
basis. Since, by Lemma 4.4, (ψi)i is an orthonormal basis of L2(R≥0) provided that
the non-Blaschke condition is fulfilled, it follows that the operator sequence (ιiι

∗
i )i

in B(L2(R≥0, U)) is monotone and strongly convergent to the identity operator on
L2(R≥0, U). Hence, the sequence (Pi) = (Φιiι

∗
iΦ

∗) is monotone and strongly conver-
gent to the Gramian P = ΦΦ∗.

If we now assume that P is moreover pth Schatten class (compact), then Corol-
lary A.3 will imply that even convergence towards P in the pth Schatten norm (op-
erator norm) holds true.

Remark 4.8.

(a) Since the operator sequence (Pi)i is monotone and bounded from above, it
always converges strongly (Theorem A.1). However, it may converge to some-
thing other than the Gramian if the non-Blaschke condition (4.7) is not sat-
isfied.

(b) Though the non-Blaschke condition (4.7) is a necessary and sufficient condi-
tion for the Takenaka–Malmquist system to form an orthonormal basis for
L2(R≥0), it is only sufficient for the convergence of ADI to the Gramian. For
a trivial counterexample to necessity take B = 0, in which case P = 0 and
ADI converges to P no matter what the shift parameters are. In the single
input case U = C, a necessary and sufficient condition for ADI to converge
to the Gramian is that the Takenaka–Malmquist system forms an orthonor-
mal basis for the orthogonal complement of the kernel of the input map.
(Something similar is true in the general case, but this becomes difficult to
formulate concisely.) Using that the orthogonal complement of the kernel of
Φ equals the closure of the range of Φ∗, it follows for the single input case that
if we choose the shifts such that the closure of the range of Φ∗ is contained in⋃

i∈N
Ui, then ADI converges to the Gramian. An interesting case in which

this happens is where A is a Riesz-spectral operator (see Remark 3.8) and
the sequence of shifts equals the sequence of eigenvalues of A∗. Then ADI
converges to the Gramian even if this sequence of shifts does not satisfy the
non-Blaschke condition (4.7).
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(c) Note that by Lemma 4.6 the ADI approximation has the same structure as
the approximation obtained by truncating the singular value decomposition
(which is an optimal approximation). The only difference is that the space
which the input map is restricted to in the latter case consists of the eigen-
vectors of Φ∗Φ corresponding to the largest eigenvalues. Since in the case
where A is a Riesz-spectral operator (see Remark 3.8) the eigenvectors of
Φ∗Φ are (polynomials times) sums of exponentials where the exponents are
eigenvalues of A∗, this gives another justification for the well-known fact that
the shifts should somehow approximate the spectrum of A.

(d) With the interpretation of Lemma 4.6, column compression [44, sect. 4.4.1]
in ADI means restricting the input map to a space spanned by (polynomials
times) sums of exponentials rather than a space spanned by (polynomials
times) exponentials. Given the above mentioned connection with the singular
value decomposition, column compression indeed seems a logical thing to do.

Convergence to the Gramian follows from Theorem 4.7 for a wide range of shift
choices (namely, those that satisfy the non-Blaschke condition (4.7)). In the matrix
case some choices of shift parameters are know to give rise to fast convergence. Propo-
sition 4.10 generalizes an equality that is important for this analysis of shift choices
to the operator case. The following lemma is needed in the proof of Proposition 4.10.

Lemma 4.9. Let U,X be Hilbert spaces, let A : D(A) ⊂ X → X be the generator
of a bounded semigroup T (·), let B ∈ B(U,D(A∗)′) be an infinite-time admissible
control operator for T (·), and let P ∈ B(X) be the Gramian of (A,B). Then for all
p ∈ C−, there holds

(4.11)
(pI +A)−1P + P (pI +A∗)−1

−2Re(p)(pI +A)−1P (pI +A∗)−1 + (pI +A)−1BB′(pI +A∗)−1 = 0.

Proof. The bounded invertibility of pI + A follows from the boundedness of the
semigroup T (·) together with the Hille–Yosida theorem [50, Thm. 3.4.1)]. Moreover,
for all z ∈ X holds

(4.12) A∗(pI +A∗)−1z = (pI +A∗ − pI)(pI + A∗)−1z = z − p · (pI +A∗)−1z.

Now let z1, z2 ∈ X be arbitrary. Using that (pI + A∗)−1z1, (pI + A∗)−1z2 ∈ D(A∗),
we obtain from the Lyapunov equation (3.5) that

0 =
〈
P (pI +A∗)−1z1, A

∗(pI +A∗)−1z2
〉
X
+

〈
A∗(pI +A∗)−1z1, P (pI +A∗)−1z2

〉
X

+
〈
B′(pI +A∗)−1z1, B

′(pI +A∗)−1z2
〉
U

=
〈
P (pI +A∗)−1z1, z2

〉
X
− 〈

P (pI +A∗)−1z1, p(pI +A∗)−1z2
〉
X

+
〈
z1, P (pI +A∗)−1z2

〉
X
+

〈
p(pI +A∗)−1z1, P (pI +A∗)−1z2

〉
X

+
〈
B′(pI +A∗)−1z1, B

′(pI +A∗)−1z2
〉
U

=
〈
z1, (pI +A)−1Pz2

〉
X
− 〈

z1, p(pI +A)−1P (pI +A∗)−1z2
〉
X

+
〈
z1, P (pI +A∗)−1z2

〉
X
− 〈

z1, p(pI +A)−1P (pI +A∗)−1z2
〉
X

+
〈
z1, (pI +A)−1BB′(pI +A∗)−1z2

〉
X
.

The linearity of the inner product in the second argument now gives rise to the desired
result.

Proposition 4.10. Let U,X be Hilbert spaces, A be the generator of a bounded
semigroup T (·) on X, and B ∈ B(U,D(A∗)′) be an infinite-time admissible control
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operator for T (·). Let P ∈ B(X) be the Gramian of (A,B), let p1, . . . , pi ∈ C−, and
let

(4.13) Ti :=

i∏
j=1

(A− pjI)(A+ pjI)
−1.

Then the operator Pi ∈ B(X) recursively defined as in Algorithm 1 fulfills

(4.14) P − Pi = TiPT
∗
i .

Proof. The statement is proved by induction on i. For i = 0, the assertion is
fulfilled due to T0 = IX and P0 = 0. Now let i ∈ N and assume that (4.14) is fulfilled
for i − 1. By an argument as in (4.12), we see that the operators (A − p1I)(A +
p1I)

−1, . . . , (A− piI)(A + piI)
−1 commute, and furthermore,

Ti = (A− piI)(A + piI)
−1Ti−1 = Ti−1 − 2Re(pi)(A+ piI)

−1Ti−1.

In the notation of Algorithm 1, there holds Vi = (A+ piI)
−1Ti−1B. Now making use

of the induction assumption, we can infer from Lemma 4.9 and the construction of Pi

that

TiPT
∗
i = Ti−1PT

∗
i−1 − 2Re(pi)

(
Ti−1(A+ piI)

−1PT ∗
i−1 + Ti−1P (A

∗ + piI)
−1T ∗

i−1

)
+ 4Re(pi)

2Ti−1(A+ piI)
−1P (A∗ + piI)

−1T ∗
i−1

= P − Pi−1 + 2Re(pi)(A + piI)
−1Ti−1BB

′T ∗
i−1(A

∗ + piI)
−1

= P − Si−1S
∗
i−1 − (

√
2Re(−pi) · Vi)(

√
2Re(−pi) · Vi)∗

= P − SiS
∗
i = P − Pi.

Subsequently, we present some remarks about the shift parameter choice.
Remark 4.11 (shift parameters).
(a) Equation (4.14) gives rise to the fact that the approximation Pi ≈ P is better

the smaller Ti is. In practice, one is interested in fast convergence, since this
gives rise to good approximations of low rank.

(b) In the finite-dimensional case, the shift parameters are chosen in a way that
the spectral radius of TJ is minimized. With σ(A) = {λ1, . . . , λn}, this leads
to the optimization problem

min
p1,...,pJ∈C−

max
λ∈σ(A)

J∏
j=1

∣∣∣∣pj − λ

pj + λ

∣∣∣∣ .
This optimization problem can be solved by using advanced techniques of
complex analysis, in particular the theory of elliptic integrals [23]. Further-
more, several suboptimal choices of the shift parameters that do not require
the full information of the spectrum have been proposed and successfully
applied (see [44, p. 43] for an overview).

(c) In infinite dimensions and, in particular, in the case where A is unbounded,
any choice of the shift parameters in C− will lead to an iteration operator
fulfilling ρ(TJ) = 1. In the numerical experiments, we will choose the shift
parameters by applying the existing approaches to a sufficiently accurate
discretization of A.
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(d) We now consider the case of a Riesz-spectral operator as in Remark 3.8. With
σ(A) = {λi | i ∈ N}, let (ψi)i be a Riesz basis of eigenvectors of A. Assuming
that, for s ∈ N, Π[s] ∈ B(X) is a projector onto the s-dimensional space
span{ψ1, . . . , ψs} and along the complementary space span{ψs+1, ψs+2, . . .},
we obtain

(A+ pj)
−1Π[s]x = Π[s](A+ pj)

−1Π[s]x

= Π[s](A+ pj)
−1x for all x ∈ X and j ∈ N.

Thus TiΠ[s]x = Π[s]TiΠ[s]x = Π[s]Tix also holds true for all x ∈ X , i ∈ N.
Then (4.14) implies

(4.15) Π[s](P − Pi)(Π[s])
∗ = (Π[s]TiΠ[s])(Π[s]PΠ

∗
[s])(Π[s]TiΠ[s])

∗.

On the other hand, the spectral radius of the projected iteration matrix is
given by

ρ(Π[s]TiΠ[s]) = max
l=1,...,s

i∏
j=1

∣∣∣∣pj − λl
pj + λl

∣∣∣∣ < 1.

As a consequence, we have linear convergence of (Π[s]PiΠ
∗
[s])i to Π[s]PΠ

∗
[s] in

the operator norm for any s ∈ N. If the Gramian P of (A,B) is compact (or
even of Schatten class), then, by using

Π[s]PΠ
∗
[s] − P = Π[s](PΠ

∗
[s] − P ) + (Π[s]P − P ),

Theorem A.2 implies that there exists some s ∈ N such that ‖P−Π[s]PiΠ
∗
[s]‖B(X)

(‖P−Π[s]PiΠ
∗
[s]‖Sp(X)) is arbitrarily small. One has therefore to find shift pa-

rameters that guarantee fast convergence on the “dominant subspace of P .”
Anyway, various open questions in the (optimal) shift parameter selection are
left; this is an interesting topic for further research.

We finally give an explicit representation of the ADI approximation error for the
class of systems considered in Proposition 3.6. On the basis of this result, suitable
stopping criteria, i.e., the determination of imax in Algorithm 1, may be designed (see
also Remark 4.1(f)).

Proposition 4.12. Let A : D(A) ⊂ X → X be self-adjoint with A ≤ 0 and 0 ∈
ρ(A). Further assume that A has compact resolvent and let B : U → D((−A) 1

2 )′ such
that (−A)−1/2B : U → X is Hilbert–Schmidt. Let P be the Gramian of (A,B) and
let shift parameters p1, . . . , pi ∈ C− be given. Then, in the notation of Algorithm 1,
there holds

(4.16) ‖P − Pi‖S1(X) = −1

2
· tr(B′A−1B) + 2

i∑
k=1

Re(pi) · tr(V ∗
k Vk).

In particular, if U = Cn, then B′A−1B, V ∗
k Vk ∈ Cm×m are Hermitian matrices.

Proof. By Lemma 4.10, we have P − Pi ≥ 0, whence

‖P − Pi‖S1(X) = tr(P )− tr(Pi).
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Then the desired result follows from (3.7) and

tr(Pi) = tr

(
i∑

k=1

−2Re(pk) · VkV ∗
k

)
= −2

i∑
k=1

Re(pk) · tr (VkV ∗
k )

= −2

i∑
k=1

Re(pk) · tr (V ∗
k Vk) .

5. Inexact ADI iteration. Algorithm 1 can, in general, not be implemented for
practical purposes if the state space X is infinite-dimensional. Instead, one will have
to work with suitable approximations of the equations arising in each step of the ADI
iteration. That is, we approximate (A + piI)

−1 by some operator acting on a finite-
dimensional subspace. This is in what follows referred to as inexact ADI iteration.
For instance, if A is a differential operator, an approximation can be performed by
using (adaptive) finite-element methods (see section 6).

It is the goal of this section to present an error analysis for inexact ADI: we will
derive estimates for the error in the obtained approximation of the Gramian operator
for the case where the semigroup is similar to a contractive one.

Remark 5.1. The assumption that the semigroup is similar to a contractive one is
not very restrictive. Clearly a necessary condition is that the semigroup is bounded.
As indicated below, in the finite-dimensional case and in the Riesz spectral case, this
is also sufficient. There are, however, examples of bounded semigroups that are not
similar to contractive ones [16, 33].

(a) If the state space X is finite-dimensional, then every bounded semigroup is
similar to a contractive semigroup [28]. (In the notation of that reference the
similarity transformation is H1/2.)

(b) It follows immediately from the definition of Riesz bases in [17, Def. 2.3.1]
that Riesz-spectral operators are diagonalizable by bounded and boundedly
invertible transformations (see [17, p. 38]). That is, there exists some bijective
H ∈ B(�2, X) such that H−1AH = DA, where DA : D(DA) ⊂ �2 → �2 fulfills
DA(x1, x2, . . .) = (λ1x1, λ2x2, . . .) with

D(DA) = H−1D(A) = {(x1, x2, . . .) ∈ �2 | (λ1x1, λ2x2, . . .) ∈ �2}.

The Lumer–Phillips theorem [34, Thm. 4.3] implies that the semigroup gen-
erated by DA is contractive if supi∈N Re(λi) ≤ 0. Hence, a Riesz-spectral
operator A with spectrum contained in C− generates a semigroup which is
similar to a contractive one.

(c) If A is nonpositive and has compact resolvent, then it is a Riesz-spectral
operator generating a contractive semigroup. This follows from the spectral
decomposition (3.8).

In this part we assume finite-dimensionality of the input space, i.e., U = Cm

for some m ∈ N. Note that this assumption is justified by practice: only finitely
many actuating variables are available to control a given system. As a consequence,
we have a representation B = [b1, . . . , bm] ∈ (D(A∗)′)m; the operators in the ADI
iteration may be written as Vi = [vi1, . . . , vm] ∈ Xm. In the first step of the ADI
iteration we therefore have to solve m equations (A + p1I)v1k = bk ∈ D(A∗)′; the
following steps consist of solving the equations (A+piI)xk = vi−1,k ∈ X . To suitably
approximate the equations arising in the ADI iteration, let (X(i)) be a sequence of
(finite-dimensional) subspaces of X , let Π(1) ∈ B(D(A∗)′) be a projector onto X(1),
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and, for i ≥ 2, let Π(i) ∈ B(X) be a projector onto X(i). Further, assume that, for

i ∈ N, the operators Ã
(i)
pi ∈ B(X(i)) are approximations on A+ piI in the sense that

the solution x ∈ X of the equation Ã
(i)
pi x = b is “close to (Ã

(i)
pi )

−1Π(i)b” for suitable
right-hand side b ∈ X or b ∈ D(A∗)′.

With these preparations we can formulate our inexact ADI iteration as follows.

Algorithm 2. Inexact ADI iteration for operator Lyapunov equations.

Input: A Hilbert spaceX , a sequence (X(i)) of subspaces of X , operators A : D(A) ⊂
X → X and B ∈ B(U,D(A∗)′); projectors Π(i) onto X(i) with Π(1) ∈ B(D(A∗)′) and
Π(j) ∈ B(X) for i ≥ 2; operators Ã

(i)
pi ∈ B(X(i)); shift parameters pi ∈ C−.

Output: S̃ = S̃imax ∈ B(U imax , X), such that S̃S̃∗ ≈ P , where P is the Gramian of
(A,B).

1: Ṽ1 = (A
(i)
p1 )

−1Π(i)B

2: S̃1 =
√−2Re(p1) · Ṽ1

3: for i = 2, 3, . . . , imax do

4: Ṽi = Ṽi−1 − (pi + pi−1)(Ã
(i)
pi )

−1Π(i)Ṽi−1

5: S̃i = [ S̃i−1 ,
√−2Re(pi) · Ṽi ]

6: end for

We will now derive expressions and estimates for the error between exact and
inexact ADI iteration. We will first derive estimates for Vi − Ṽi. Thereafter, we
will provide upper bounds for the difference between Si and S̃i, and, respectively,
Pi = SiS

∗
i and P̃i = S̃iS̃

∗
i .

Denoting

Ei = Vi − Ṽi,

GE
i = (A+ piI)

−1 − (Ã(i−1)
pi

)−1Π(i),

the construction of Vi and Ṽi in Algorithm 1 and Algorithm 2 yields that the error
recursively fulfills

(5.1) Ei = (A+ piI)
−1(A− piI)Ei−1 + (pi + pi−1) ·GE

i Ṽi−1.

Using that the operators (A+ pj)
−1, (A+ pk)

−1, (A− pjI), and (A− pkI) commute
for all j, k ∈ N, we may inductively conclude from (5.1) that for all i > 1, there holds
(5.2)

Ei = (A− p1I)(A + piI)
−1

(
i−1∏
k=2

(A− pkI)(A+ pkI)
−1

)
·GE

1 B +

i−1∑
j=2

(pj + pj−1)

· (A− pjI)(A + piI)
−1

⎛⎝ i−1∏
k=j+1

(A− pkI)(A + pkI)
−1

⎞⎠GE
j Ṽj−1

+ (pi + pi−1) ·GE
i Ṽi−1.

The error analysis will be performed for infinite-time admissible (A,B), where the
semigroup generated by A is similar to a contractive semigroup. The following auxil-
iary result will be crucial for our estimates.

Lemma 5.2. Let U,X be Hilbert spaces and A be the generator of a bounded
semigroup T (·) on X, which is similar to a contractive semigroup T1(·) on the Hilbert
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space X1. Let (pi)i be a sequence in C−. Then there exists some m ∈ R>0, such that
for all i, j ∈ N holds

(5.3)

∥∥∥∥∥∥
i∏

k=j+1

(A− pkI)(A + pkI)
−1

∥∥∥∥∥∥
B(X)

< m.

Proof. Let A1 : D(A1) ⊂ X1 → X1 be the generator of T1(·), and let H ∈
B(X1, X) be bijective with T1(t) = H−1T (t)H for all t ∈ R>0. By [50, Thm. 12.3.10],
there holds ∥∥(A1 − pkI)(A1 + pkI)

−1
∥∥
B(X1)

≤ 1.

Using that A and A1 are related by A1x = H−1AHx for all x ∈ D(A1) = H−1D(A)
[19, p. 59], we obtain∥∥∥∥∥∥

⎛⎝ i∏
k=j+1

(A− pkI)(A+ pkI)
−1

⎞⎠∥∥∥∥∥∥
B(X)

=

∥∥∥∥∥∥H
⎛⎝ i∏

k=j+1

(A1 − pkI)(A1 + pkI)
−1

⎞⎠H−1

∥∥∥∥∥∥
B(X)

≤ ‖H‖B(X1,X)

i∏
k=j+1

∥∥(A1 − pkI)(A1 + pkI)
−1

∥∥
B(X1)

· ‖H−1‖B(X,X1)

≤ ‖H‖B(X1,X) · ‖H−1‖B(X,X1).

That is, (5.3) holds true with m = ‖H‖B(X1,X) · ‖H−1‖B(X,X1).
Proposition 5.3. Let U,X be Hilbert spaces and A be the generator of a bounded

semigroup T (·) on X, which is similar to a contractive semigroup T1(·) on some Hilbert
space X1. Let B ∈ B(U,D(A∗)′) be an infinite-time admissible control operator for
T (·). Let P ∈ B(X) be the Gramian of (A,B) and let (pi)i be a J-cyclic sequence in
C−, i.e., pi = pi+J for all i ∈ N. Assume that the operators Vi = [vi1 , . . . , vim] ∈
B(Cm, X) are obtained by Algorithm 1.

Let (X(i)) be a sequence of subspaces of X, let Π(1) ∈ B(D(A∗)′) be a projector
onto X(1), and, for i ≥ 2, let Π(i) ∈ B(X) be a projector onto X(i). Further, let

Ã
(i)
pi ∈ B(X(i)), and assume that the operators Ṽi = [ṽi1 , . . . , ṽim] ∈ B(Cm, X) are

obtained by Algorithm 2.
Assume that

(5.4)
‖(A+ p1I)

−1bl − (Ã(1)
p1

)−1Π(1)bl‖X ≤ c(1l) for l = 1, . . . ,m, and

‖(A+ piI)
−1vi−1,l − (Ã(i)

pi
)−1Π(i)vi−1,l‖X ≤ c(il) for l = 1, . . . ,m, i > 1.

Let either ‖ · ‖ = ‖ · ‖B(X) or ‖ · ‖ = ‖ · ‖Sp(X) for some p ∈ [1,∞). Then the following
assertions hold true:

(a) There exists some M > 0 such that for all i ∈ N,

‖Ei‖ ≤M ·
i∑

k=1

m∑
l=1

c(kl).
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(b) If A is a Riesz-spectral operator, then there exists some M > 0, an increas-

ing sequence of finite-dimensional subspaces X[s] of X with X =
⋃

s∈N
X[s],

a bounded sequence of projectors Π[s] with imΠ[s] = X[s], and some M > 0,
such that for all s ∈ N there exists some ρ[s] ∈ (0, 1), such that

‖Π[s]Ei‖ ≤M ·
(

m∑
l=1

c(il) +

i−1∑
k=1

ρi−k−1
[s]

m∑
l=1

c(kl)

)
.

Proof. The following argumentation makes use of the fact that any x ∈ X can be
identified as an operator x ∈ B(C, X) via scalar multiplication. It can be seen that
this operator also belongs to any Schatten space with

‖x‖X = ‖x‖B(C,X) = ‖x‖Sp(C,X).

By the triangle inequality, we obtain that for any x1, . . . , xm ∈ X , the operator
V = [x1, . . . , xm] ∈ B(Cm, X) fulfills

‖V ‖B(C,X) ≤ ‖V ‖Sp(C,X) ≤
m∑
l=1

‖xl‖X .

(a) By Lemma 5.2, we know that there exists some m ∈ R>0, such that for all
i, j ∈ N, the inequality (5.3) holds true. Then, by setting

(5.5)
M = m ·max{‖(A− pjI)(A+ piI)

−1‖B(X) | i, j ∈ {1, . . . , J − 1}}
·max ({|pj+1 − pj | | j ∈ {1, . . . , J − 1}} ∪ {1}) ,

the desired result follows by a combination of (5.2) and (5.4).
(b) With the notation of Remark 5.1, define the projectors by Π[s] = H−1ΠD

[s]H ,

where ΠD
[s] ∈ B(�2) truncates after the sth position, i.e.,

ΠD
[s](x1, . . . , xj , xj+1, xj+2, . . .) = (x1, . . . , xj , 0, 0, . . .),

and set X[s] = imΠ[s]. Then we have dimX[s] = s and X =
⋃

s∈N
X[s].

Since ‖ΠD
[s]‖B(�2) = 1, the sequence (Π[s])s is bounded by C := ‖Π[s]‖B(X) ≤

‖H‖B(X) · ‖H−1‖B(X). The construction of Π[s] leads to

Π[s](A+ pkI)
−1 = Π[s](A+ pkI)

−1Π[s] = (A+ pkI)
−1Π[s],

and we can make use of (5.2) to see that
(5.6)

Π[s]Ei = (A− p1I)(A+ piI)
−1

(
i−1∏
k=2

Π[s](A− pkI)(A+ pkI)
−1Π[s]

)
·GE

1 B

+

i−2∑
j=1

(pj + pj−1) · (A− pjI)(A+ piI)
−1

·
⎛⎝ i−1∏

k=j+1

Π[s](A− pkI)(A+ pkI)
−1Π[s]

⎞⎠GE
j Ṽj−1

+ (pi + pi−1) ·Π[s]G
E
i Ṽi−1.
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As in Remark 4.11(d), we can infer that the spectral radius of the operator
products in the above expression are given by

(5.7) ρ

⎛⎝ i−1∏
k=j+1

Π[s](A− pkI)(A + pkI)
−1Π[s]

⎞⎠ = max
l=1,...,s

i−1∏
k=j+1

∣∣∣∣pk − λl
pk + λl

∣∣∣∣ .
The latter expression is below one, since the function z 
→ pj−z

pj+z maps C−
onto the open complex unit circle. By J-cyclicity of the shift parameters, we
can now infer that there exists some ρ[s] ∈ (0, 1), such that for all i, j ∈ N,
there holds

max
l=1,...,s

i−1∏
k=j+1

∣∣∣∣pk − λl
pk + λl

∣∣∣∣ ≤ ρi−j−1
[s] .

Since the similarity transformation of the operator product in (5.7) with H ∈
B(X, �2) gives a diagonal operator, we obtain∥∥∥∥∥∥

i−1∏
k=j+1

Π[s](A− pkI)(A+ pkI)
−1Π[s]

∥∥∥∥∥∥
B(X)

≤ ‖H‖B(X,�2) · ‖H−1‖B(�2,X)︸ ︷︷ ︸
=:m

·ρi−j−1
[s] .

Now defining M as in (5.5), we obtain the desired result.
As an immediate consequence of Proposition 5.3 and the fact

(5.8) ‖Si − S̃i‖ ≤ −
i∑

k=1

Re(pk) · ‖Vk − Ṽk‖,

we may formulate the following estimates for ‖Si − S̃i‖.
Corollary 5.4. Under the assumptions and notation of Proposition 5.3 and

Algorithms 1 and 2, the following assertions hold true:
(a) There exists some M > 0 such that for all i ∈ N holds

‖Si − S̃i‖ ≤M ·
i∑

k=1

m∑
l=1

(i + 1− k) · c(kl).

(b) If A is a Riesz-spectral operator, then there exists a sequence of finite-dimen-

sional subspaces X[s] of X with X =
⋃

j∈N
X[s], and a sequence of projectors

Π[s] with imΠ[s] = X[s], such that for all s ∈ N there exists some M[s] > 0,
such that

‖Π[s](Si − S̃i)‖ ≤M[s] ·
(

i∑
k=1

m∑
l=1

c(kl)

)
.

Proof. Statement (a) follows from the triangle inequality in (5.8), and accordingly
using the error bound from Proposition 5.3(a). To prove (b), we construct X[s] and
Π[s] as in the proof of Proposition 5.3(b). Thereafter, making use of

‖Π[s](Si − S̃i)‖ ≤ −
i∑

k=1

Re(pk) · ‖Π[s](Vi − Ṽi)‖,
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the error bound in Proposition 5.3(b), and the formula for geometric sums gives rise
to the result.

Now we present estimates for the difference between approximative Gramians
provided by exact and inexact ADI iteration.

Corollary 5.5. Under the assumptions and notation of Proposition 5.3 and
Algorithms 1 and 2, the following assertions hold true:

(a) There exists some M > 0 such that for all i ∈ N and

Li =

i∑
k=1

m∑
l=1

(i+ 1− k) · c(kl),

there holds

‖Pi − P̃i‖ ≤M · (Li + L2
i

)
.

(b) If A is a Riesz-spectral operator, then there exists a sequence of finite-dimen-

sional subspaces X[s] of X with X =
⋃

j∈N
X[s] and a sequence of projectors

Π[s] with imΠ[s] = X[s], such that for all s ∈ N there exists some M[s] > 0,
such that for

Ki :=
i∑

k=1

m∑
l=1

c(kl),

there holds

‖Π[s](Pi − P̃i)Π
∗
[s]‖ ≤M[s] ·

(
Ki +K2

i

)
.

Proof. In the case of ‖ ·‖ = ‖ ·‖Sp(X), statement (a) follows from Corollary 5.5(a),
together with
(5.9)

‖Pi − P̃i‖Sp(X)

= ‖SiS
∗
i − S̃iS̃

∗
i ‖Sp(X)

≤ ‖Si(S
∗
i − S̃∗

i )‖Sp(X) + ‖(Si − S̃i)S̃
∗
i ‖Sp(X)

≤ ‖Si‖S2p(Ci·m,X) · ‖S∗
i − S̃∗

i ‖S2p(X,Ci·m) + ‖Si − S̃i‖S2p(Ci·m,X) · ‖S̃∗
i ‖S2p(X,Ci·m)

=
(
‖Si‖S2p(Ci·m,X) + ‖S̃i‖S2p(Ci·m,X)

)
· ‖Si − S̃i‖S2p(Ci·m,X)

≤
(
2‖Si‖S2p(Ci·m,X) + ‖Si − S̃i‖S2p(Ci·m,X)

)
· ‖Si − S̃i‖S2p(Ci·m,X)

≤
(
2‖Pi‖1/2Sp(X) + ‖Si − S̃i‖S2p(Ci·m,X)

)
· ‖Si − S̃i‖S2p(Ci·m,X).

If ‖ · ‖ is the standard operator norm, then we can analogously estimate

‖Pi − P̃i‖B(X) ≤
(
2‖Pi‖B(X) + ‖Si − S̃i‖B(X)

)
· ‖Si − S̃i‖B(X),

and we can argument as for Schatten norms.
To prove (b), we first construct X[s] and Π[s] as in the proof of Proposition 5.3(b).

Then, by determining bounds for ‖Π[s](Pi − P̃i)Π
∗
[s]‖ analogous to (5.9), the desired

result follows immediately from Corollary 5.4(b).
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Remark 5.6.

(a) If A is unbounded, then the construction of ρ[s] in Proposition 5.3 leads
to sups∈N ρ[s] = 1. According to their construction in Corollary 5.4, the
constants M[s] in Corollary 5.5(b) are therefore not uniformly bounded.

(b) Under the assumptions of Corollary 5.5(b) and, additionally,

K := lim
i→∞

Ki =
∞∑
k=1

m∑
l=1

c(kl) <∞,

the error bound in (b) can be slightly reformulated to

‖Π[s](Pi − P̃i)Π
∗
[s]‖ ≤ N[s] ·K

for some N[s] > 0.
Under the assumption that inexact ADI iteration converges, we now present esti-

mates for the difference between the limit of inexact ADI iteration and the Gramian
operator P .

Theorem 5.7. Let U,X be Hilbert spaces and A be a Riesz-spectral operator
that generates a bounded semigroup T (·) on X. Let B ∈ B(U,D(A∗)′) be an infinite-
time admissible control operator for T (·). Let P ∈ B(X) be the Gramian of (A,B),
let (pi)i be a J-cyclic sequence in C−, let (X(i)) be a sequence of subspaces of X,
let Π(1) ∈ B(D(A∗)′) be a projector onto X(1), and, for i ≥ 2, let Π(i) ∈ B(X) be

a projector onto X(i). Further, let Ã
(i)
pi ∈ B(X(i)), and assume that the operators

Ṽi = [ṽi1 , . . . , ṽim] ∈ B(Cm, X) are obtained by Algorithm 2.
(a) Assume that the Gramian P of (A,B) is compact and let ε ∈ R>0. Then for

all inexact ADI iterations with the property that the error bounds (5.4) are

fulfilled in each step, and (P̃i)i converges to some P̃ ∈ B(X) in the operator
norm, there exist M ∈ R>0, j ∈ N with the following property: For all i ∈ N

with i ≥ j, there holds

‖P − P̃i‖B(X) ≤ ε+M ·
∞∑
k=1

m∑
l=1

c(kl).

(b) Assume that the Gramian P of (A,B) is of pth Schatten class and let ε ∈ R>0.
Then for all inexact ADI iterations with the property that the error bounds
(5.4) are fulfilled in each step, and (P̃i)i converges to some P̃ ∈ Sp(X) in the
pth Schatten norm, there exist M ∈ R>0, j ∈ N with the following property:
For all i ∈ N with i ≥ j, there holds

‖P − P̃i‖Sp(X) ≤ ε+M ·
∞∑
k=1

m∑
l=1

c(kl).

Proof. We only prove (a), since (b) is analogous.

By construction we have P̃i ≤ P̃i+1 for all i ∈ N. Therefore, we have P̃i ≤ P̃ for
all i ∈ N. Let ε > 0. By Corollary A.3, there exists some j ∈ N such that for all i ≥ j,
there holds

‖P − Pi‖B(X) <
ε

5
and ‖P̃ − P̃i‖B(X) <

ε

5
.

Using a spectral decomposition of P , we can infer the existence of some orthogonal
projector Π ∈ B(X) with

‖P − P̃‖B(X) < ‖Π∗(P − P̃ )Π‖B(X) +
ε

5
.
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Let (Π[s])s be constructed as in the proof of Proposition 5.3, i.e., for the sequence
(λi)i of eigenvalues of A, Π

[s] projects onto the eigenspace corresponding to the eigen-
values λi, . . . , λs, and along the complementary eigenspace. By the property of A
being a Riesz-spectral operator, the sequence (Π[s])s converges in the strong operator
topology towards the identity operator. In particular, the Banach–Steinhaus theo-
rem [38, Thm. III.9] implies the existence of some C > 0 with ‖Π[s]‖ < C for all
s ∈ N. Another consequence of strong convergence of (Π[s])s to I is that the sequence
of complementary projectors (I−Π[s])s converges to zero in the strong operator topol-
ogy. Since imΠ is finite-dimensional, the operator Π is compact. Using Theorem A.2,
we obtain

lim
s→∞ ‖(I −Π[s])Π‖B(X) = 0.

Consequently, there exists some s ∈ N with

‖(I −Π[s])Π‖B(X) ·
(
‖P‖B(X) + ‖P̃‖B(X)

)
· (3C + 1) <

ε

5
.

Further, by making use of the monotonicity of (inexact) ADI iteration, we have

‖Pi − P̃i‖B(X) ≤ ‖P‖B(X) + ‖P̃‖B(X).

Incorporating the above findings, we find that for all i ≥ j, there holds

‖P − P̃i‖B(X)

≤ ‖P − P̃‖B(X) + ‖P̃ − P̃i‖B(X)︸ ︷︷ ︸
< ε

5

< ‖Π∗(P − P̃ )Π‖B(X) +
2ε

5

≤ ‖Π∗(P − Pi)Π‖B(X)︸ ︷︷ ︸
< ε

5

+‖Π∗(Pi − P̃i)Π‖B(X) + ‖Π∗(P̃i − P̃ )Π‖B(X)︸ ︷︷ ︸
< ε

5

+
2ε

5

<
4ε

5
+ ‖Π∗(Pi − P̃i)Π‖B(X)

<
4ε

5
+ ‖Π∗(Π[s])∗(Pi − P̃i)Π

[s]Π‖B(X) + 2‖Π∗(Π[s])∗(Pi − P̃i)(I −Π[s])Π‖B(X)

+ ‖((I −Π[s])Π)∗(Pi − P̃i)((I −Π[s])Π)‖B(X)

≤ 4ε

5
+ ‖(Π[s])∗(Pi − P̃i)Π

[s]‖B(X) + 2 ‖Π[s]‖B(X)︸ ︷︷ ︸
≤C

‖Pi − P̃i‖B(X)︸ ︷︷ ︸
≤‖P‖B(X)+‖ ˜P‖B(X)

‖(I −Π[s])Π‖B(X)

+ ‖Π(I −Π[s])‖B(X)︸ ︷︷ ︸
≤1+C

‖Pi − P̃i‖B(X)︸ ︷︷ ︸
≤‖P‖B(X)+‖ ˜P‖B(X)

‖(I −Π[s])Π)‖B(X)

≤ 4ε

5
+ ‖(Π[s])∗(Pi − P̃i)Π

[s]‖B(X)

+ (3C + 1) ·
(
‖P‖B(X) + ‖P̃‖B(X)

)
· ‖(I −Π[s])Π)‖B(X)︸ ︷︷ ︸

< ε
5

< ε+ ‖(Π[s])∗(Pi − P̃i)Π
[s]‖B(X).
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Now using Corollary 5.5 (see also Remark 5.6(b)), there exists some M > 0 such that

‖Π[s](Pi − P̃i)Π
∗
[s]‖ ≤M ·

∞∑
k=1

m∑
l=1

c(kl),

which implies (a).
Remark 5.8. The above assumptions on inexact ADI iteration are, for instance,

fulfilled if the projectors Π(i) = Π̃ and spaces X(i) = X̃ are finite-dimensional and
constant, with, moreover

(Ã(i)
pi
)−1 = (Ã+ piM̃)−1 · M̃,

where M̃, Ã ∈ B(X̃) are invertible operators with the additional property that Ã+pM̃
is invertible for all p ∈ C−. This follows from the results in [7].

6. Systems governed by the heat equation. To demonstrate the applicabil-
ity of the presented operator theoretic results, we consider an infinite-dimensional sys-
tem that is governed by the heat equation with spatially (but not time) constant Robin
boundary conditions; the latter is assumed to be the input variable u(·) : R≥0 → R

of the system.
More precisely, for a bounded domain Ω ⊂ Rn with piecewise C2 boundary ∂Ω [1],

we consider the heat equation

(6.1a)
∂x

∂t
(ξ, t) = Δx(ξ, t), (ξ, t) ∈ Ω× R≥0

with boundary condition

(6.1b) ν(ξ)T∇x(ξ, t) + αx(ξ, t) = u(t), (ξ, t) ∈ ∂Ω× R≥0,

where ν(ξ) denotes the outward normal to ∂Ω in ξ ∈ ∂Ω, α ∈ R>0, and u ∈ L2(R≥0)
is the input of the system.

In the first step, we rewrite this as a system ẋ(t) = Ax(t) + Bu(t), where the
state is given by the spatial temperature function at time t, that is, x(t) := x(·, t) ∈
L2(Ω) := X ; the input is one-dimensional, i.e., U = C. The construction of A and
B has been performed in [14] in the case where α = 0; our case can be treated
analogously. (It can, for instance, be derived from the results in [14] by additionally
employing the output feedback theory presented in [55].) The operators A and B are
given by

(6.2)

D(A) = {x ∈ H1(Ω) |Δx ∈ L2(Ω), νT∇x+ αx = 0 on ∂Ω},
Ax = Δx for all x ∈ D(A),

〈Bu, z〉D(A∗)′,D(A∗) = u ·
∫
∂Ω

z(ξ) dσξ,

where by dσξ we denote the surface measure on ∂Ω. It follows by the Gauß Theorem
that A is self-adjoint with A ≤ 0. Furthermore, 0 ∈ ρ(A), since the elliptic problem

−Δx(ξ) = z(ξ), ξ ∈ Ω,

ν(ξ)T∇x(ξ) + αx(ξ) = 0, ξ ∈ ∂Ω

has a unique solution for all z ∈ L2(Ω). By the Rellich–Kondrachov Theorem [1,
Thm. 6.3], H1(Ω) is compactly embedded in L2(Ω). This gives rise to A−1 ∈
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K(L2(Ω)), whence, by the resolvent identity [54, Rem. 2.2.5], A has compact resolvent.
The construction of B in (6.2) further leads to

B′z =
∫
∂Ω

z(ξ)dσξ for all z ∈ D(A∗) = D(A).

Now we can infer from the Gauß theorem and the Cauchy–Schwarz inequality that
for all z ∈ D(A) holds

‖z‖2
D((−A)

1
2 )

= ‖z‖2L2(Ω) − 〈z, Az〉L2(Ω) = ‖z‖2L2(Ω) −
∫
Ω

z(ξ)Δz(ξ)dξ

= ‖z‖2L2(Ω) + ‖∇z‖2L2(Ω) + α

∫
∂Ω

|z(ξ)|2dσξ ≥ α

∫
∂Ω

|z(ξ)|2dσξ

≥ α

σ(∂Ω)2
·
∣∣∣∣∫

∂Ω

z(ξ)dσξ

∣∣∣∣2 =
α

σ(∂Ω)2
· |B′z|2,

where σ(∂Ω) =
∫
∂Ω dσξ. The control operator therefore fulfills B ∈ B(C, D((−A) 1

2 )),
whence, due to the one-dimensionality of the input space, there further holds B ∈
S2(C, D((−A) 1

2 )). Altogether, we are now in the situation of Proposition 3.6 and are
able formulate the following result.

Corollary 6.1. Assume that Ω ⊂ Rn is a bounded domain with piecewise C2

boundary ∂Ω. Then the operator A as defined in (6.2) generates an exponentially
stable semigroup T (·). The control operator B as in (6.2) is moreover admissible for
T (·). Furthermore, the Gramian P of (A,B) is nuclear with

(6.3a) ‖P‖S1(X) =
1

2
·
∫
∂Ω

x(ξ)dσξ ,

where x ∈ H1(Ω) solves

(6.3b)
−Δx(ξ) = 0, ξ ∈ Ω,

ν(ξ)T∇x(ξ) + αx(ξ) = 1, ξ ∈ ∂Ω.

Proof. The considerations in front of this theorem imply that A is self-adjoint
with compact resolvent, A ≤ 0, 0 ∈ ρ(A) and (−A)− 1

2B ∈ S2(C, L2(Ω)). Exponen-
tial stability of the semigroup T (·) generated by A, admissibility of B for T (·), and
nuclearity of the Gramian P are then immediate consequences of Proposition 3.6.

Formula (6.3) follows by an application of the findings in Remark 4.1(g) to the
expression (3.7) for the trace of the Gramian.

We now consider the ADI iteration for the heat equation (6.1). Since A is self-
adjoint in this case, it makes sense to only choose real shift parameters. A substitution
qi = −pi of the shift parameters leads, according to Remark 4.1(g), to the ADI
algorithm in the following form.

Remark 6.2. Algorithm 3 requires the solution of a sequence of Helmholtz equa-
tions. These can be solved via a finite element method. Note that if the grid is chosen
to be the same in all equations, then Algorithm 3 will be arithmetically equivalent
to the approach of semidiscretizing the heat equation with respect to space, and an
accordant application of the matrix version of the ADI method to the semidiscretized
system.
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Algorithm 3 . ADI iteration for heat equation with one-dimensional

Robin boundary control (6.1).

Input: Bounded domain Ω ⊂ Rn with piecewise C2 boundary ∂Ω, negatives of the
shift parameters q1, . . . , qimax ∈ R>0

Output: S = Simax ∈ B(Rimax , X), such that SS∗ ≈ P , where P is the Gramian of
(A,B) (with A,B as in (6.2)).

1: Solve

q1 · v1(ξ)−Δv1(ξ) = 0, ξ ∈ Ω,

ν(ξ)T∇v1(ξ) + αv1(ξ) = 1, ξ ∈ ∂Ω

for v1 ∈ L2(Ω).
2: Define S1 =

√
2q1 · v1 ∈ B(C, L2(Ω)).

3: for i = 2, 3, . . . , imax do
4: Solve

qi · v̂(ξ)−Δv̂(ξ) = vi−1(ξ), ξ ∈ Ω,

ν(ξ)T∇v̂(ξ) + αv̂(ξ) = 0, ξ ∈ ∂Ω

for v̂ ∈ L2(Ω).
5: Set vi = vi−1 − (qi + qi−1) · v̂.
6: Si = [Si−1 ,

√
2qi · vi ] ∈ B(Ri, L2(Ω))

7: end for

Applying Proposition 4.12 to the heat equation considered in this part, we can
derive the following expression for the error of the ADI iteration.

Corollary 6.3. Assume that Ω ⊂ Rn is a bounded domain with piecewise C2

boundary ∂Ω. Then, in the notation of Algorithm 3, there holds

(6.4) ‖P − Pi‖S1(X) =
1

2
·
∫
∂Ω

x(ξ)dσξ − 2

i∑
k=1

qk ·
∫
Ω

|vk(ξ)|2dξ,

where x ∈ H1(Ω) solves (6.3b).

6.1. Numerical results. Now, we illustrate our findings with a short numerical
example. To this end we consider (6.1) on the L-shaped domain (0, 1)2 \ (0.5, 1)2. We
fix α = 1 and can evaluate (6.3) exactly as ‖P‖S1(X) = 2 because the solution to (6.3b)

is given by x(·) ≡ 1
α = 1. Now, we can apply the inexact version of Algorithm 3,

compare Algorithm 2 to calculate approximate values Ṽi and S̃i. To do so, we use a
finite element discretization of the PDE’s given in Algorithm 3. The discretization
is done using a Cartesian mesh consisting of square elements with maximal diameter
h. On this mesh we define a subspace Vh ⊂ H1(Ω) using piecewise bilinear finite
elements. The calculations are done using the toolkit DOpElib [22] based upon the
C++-library deal.II; see [8, 9]. In order to assert that the approximation error
during the solution of the discrete PDE is below a given tolerance, TOL > 0, we
employ a standard residual based L2-error estimator η; see, e.g., [2]. Thus we can
allow for refinement of the discretization if the error is too large, i.e., η > TOL and for
optional coarsening of the discretization once the error is too small, i.e., η < 0.1TOL.
Note that this means that the different approximations are not obtained with the same
discretization and thus the software needs to work with solutions given on different
meshes, which is done in the library DOpElib.
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Fig. 6.1. Behavior of the approximated Gramians for different algorithmic settings.

As a first test case we consider the behavior of ‖P̃i‖S1(X) for various settings in the
algorithm. The results are depicted in Figure 6.1. The shift parameters where chosen
by applying the method of Wachspress [52] on the basis of the lowest hundred
eigenvalues of the Robin Laplacian on the unit square (0, 1)2, which are given by
π2(i2 + j2), where i, j = 1, . . . , 10. By this we generate a set of 10 shift parameters
for the use in our example, i.e., J = 10.

Here, the solid black line corresponds to the case when one (fixed) uniform mesh
of mesh size h is used to discretize the PDE. Then from a priori error estimates we
can conclude that the approximation errors in (5.4) satisfy

c(il) ≤ Ch2α‖ṽi−1‖, i > 1,

c(1l) ≤ Ch2α.

Here the exponent α = 2/3 is given by singularities due to the reentrant corner; see,
e.g., [31].

Thus by the fact that the elements ‖ṽi‖ are summable we deduce that the error
‖P − P̃i‖S1(X) will be bounded, which can seen as well in the numerical result.

Further, to qualitatively test our error estimates, we in addition employed refine-
ment and coarsening during the ADI-iteration. To this end, we employed a standard
residual based L2-error estimator η. With minor modifications to assert reliability of η
on nonconvex domains, we can steer the meshes in such a way that the approximation
errors c(il) (i = 1, . . .; l = 1) given in (5.4) satisfy

c(il) ≈ TOL .

Since
∑∞

i=1 c
(il) = ∞, we expect the error to grow as i→ ∞.

Finally, we have a more fine grained look onto the iteration. As is shown in
Table 6.1, including the possibility to coarsen the mesh allows an almost identical
approximation of the Gramian with severely fewer unknowns needed in the calculation.
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Table 6.1

Convergence of the ADI-iterations with fixed mesh (left) and adjusted to tolerance 10−4 (right).

Iter. (i) Unknowns ‖P̃i‖S1(X) ‖ṽi‖ Unknowns ‖P̃i‖S1(X) ‖ṽi‖
0 49665 1.21309 0.030728 49665 1.21309 0.030728
1 49665 1.62615 0.00910443 49665 1.62615 0.00910443
2 49665 1.74612 0.00121557 3201 1.74606 0.00121501
3 49665 1.79888 0.000267274 3201 1.79899 0.000268148
4 49665 1.82545 6.76124e-05 3201 1.82592 6.85014e-05
5 49665 1.841 2.18725e-05 225 1.8459 2.81147e-05
6 49665 1.85054 7.57344e-06 225 1.85887 1.02857e-05
7 49665 1.85676 2.61384e-06 225 1.86706 3.44507e-06
8 49665 1.86073 1.22589e-06 225 1.87312 1.87149e-06
9 49665 1.86353 7.09549e-07 225 1.87935 1.57927e-06
10 49665 1.94405 0.00203958 65 1.95994 0.00204132
11 49665 1.97195 0.000614905 833 1.98789 0.00061603
12 49665 1.97869 6.83044e-05 833 1.99473 6.93052e-05
13 49665 1.98125 1.29659e-05 833 1.99748 1.39308e-05
14 49665 1.98244 3.0429e-06 833 1.99903 3.94527e-06

Table 6.2

Convergence of the ADI-iterations with shift parameters not satisfying the non-Blaschke con-
dition.

Iter. (i) Unknowns ‖P̃i‖S1(X)

0 49665 0.722646
1 49665 0.967484
2 49665 1.08674
3 49665 1.15745
4 49665 1.20112
5 49665 1.2323
6 49665 1.2544
7 49665 1.2707
8 49665 1.28382
9 49665 1.29425
10 49665 1.30297
11 49665 1.31023
12 49665 1.31644
13 49665 1.32178
14 49665 1.32643
15 49665 1.33048
16 49665 1.33405
17 49665 1.33722
18 49665 1.34007
19 49665 1.34263

To illustrate the non-Blaschke condition on the shifts, we now consider a choice of
shift parameters that does not satisfy this condition. We again consider the eigenval-
ues of the Robin Laplacian on the unit square (0, 1)2, which are given by π2(i2 + j2),
where i, j = 1, 2, . . . , but instead of making a cyclic choice as we did above, we now
consider an infinite subsequence which converges to infinity rapidly. Specifically, we
order the values π2(i2 + j2) by modulus to obtain a sequence (λn)

∞
n=1 indexed by one

natural number and define the shift parameters as pn := −λn2+1. Then pn = O(n2)
so that the non-Blaschke condition is not satisfied. By Remark 4.8(a) the sequence Pi

obtained by ADI still converges, but it may not converge to the Gramian. Table 6.2
shows that with this choice of shift parameters ADI produces a bad approximation
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of the Gramian and strongly suggests that convergence to something other than the
Gramian in fact occurs.

7. Conclusion. In this work, the ADI iteration has been generalized to opera-
tor Lyapunov equations for infinite-time admissible control systems with a bounded
semigroup. This method provides approximations of the Gramian, which will be of
finite rank if the input space is finite-dimensional. Under the assumption that the
shift parameters fulfill the so-called non-Blaschke condition, strong convergence of
the iteration to the Gramian has been proved. The non-Blaschke condition includes
cyclic shift parameter choices. It has been furthermore shown that convergence in the
operator and Schatten norm holds true if the Gramian is compact or, respectively, of
Schatten class.

Motivated by the fact that computations in infinite-dimensional spaces (such as,
the solution of partial differential equations) can usually only be done approximatively,
we have also presented an error analysis for inexact ADI iteration.

The presented theory and methods have been applied to a heat equation with
boundary control. It turned out that, for this class, the ADI iteration for determina-
tion of Gramians requires the numerical solution of a sequence of Helmholtz equations.
This has been done by employing an adaptive finite-element solver.

Appendix A. Convergence of operator sequences. We state two classical
convergence results for sequences of operators adapted slightly for our purposes.

Theorem A.1 (see [40, p. 263]). Let X be a Hilbert space and (Pi)i be a sequence
of self-adjoint operators in B(X) with Pi+1 ≥ Pi for all i ∈ N. Moreover, assume that
there exists some Q ∈ B(X) such that Pi ≤ Q for all i ∈ N. Then there exists some
self-adjoint P ∈ B(X) such that (Pi)i converges to P in the strong operator topology,
that is,

lim
i→∞

Pix = Px for all x ∈ X.

The following is a classical result on compact and Schatten class operators.
Theorem A.2. Let X1 and X2 be Hilbert spaces, and let Πn ∈ B(X1) be a

sequence of self-adjoint operators which converges in the strong operator topology to
Π ∈ B(X1).

(a) If T ∈ K(X1, X2), then

lim
n→∞ ‖ΠnT −ΠT ‖B(X1,X2) = 0.

(b) If T ∈ Sp(X1, X2) with p ∈ [1,∞), then

lim
n→∞ ‖ΠnT −ΠT ‖Sp(X1,X2) = 0.

Proof. This follows from [21, Thm. III.6.3] (noting that by [21, Thm. III.7.1] the
sets K(X1, X2), Sp(X1, X2) are separable symmetric norm ideals) by applying that
theorem on the space X1 ×X2 with the operators

Xn =

[
0 0
0 Πn

]
, A =

[
0 T
0 0

]
.

Corollary A.3. Let X1 and X2 be Hilbert spaces, let Πn ∈ B(X1) be a sequence
of self-adjoint operators which converges in the strong operator topology to the identity,
and let T ∈ B(X1, X2).
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(a) If T ∗T ∈ K(X1), then

lim
n→∞ ‖T ∗ΠnT − T ∗T ‖B(X1) = 0.

(b) If T ∗T ∈ Sp(X1) with p ∈ [1,∞), then

lim
n→∞ ‖T ∗ΠnT − T ∗T ‖Sp(X1) = 0.

Proof. Since the singular values of T equal the square roots of the singular values
of T ∗T , the property T ∗T ∈ K(X1) (T

∗T ∈ Sp(X1)) is equivalent to T ∈ K(X1, X2)
(T ∈ S2p(X1, X2)). From [21, Prop. 2, p. 92] we then obtain

‖T ∗ΠnT − T ∗T ‖B(X1) ≤ ‖T ∗‖B(X2,X1) ‖ΠnT − T ‖B(X1,X2),

(‖T ∗ΠnT − T ∗T ‖Sp(X1) ≤ ‖T ∗‖S2p(X2,X1) ‖ΠnT − T ‖S2p(X1,X2)).

From Theorem A.2 we obtain that the right-hand side converges to zero, and the
result follows.

Appendix B. Orthonormality of the Takenaka–Malmquist system.
Theorem B.1. Let (pi) be a sequence in C−. Then the Takenaka–Malmquist

system (4.5) is an orthonormal system in H2.
Proof. The frequency domain iteration can be rewritten as

φ̂1(s) =
1

−s+ pi
= − 1

s− pi
,

φ̂i(s) = φ̂i−1(s)− pi + pi−1

−s+ pi
· φ̂i−1(s) =

s+ pi−1

s− pi
φ̂i−1(s),

from which it follows that

ψ̂k(s) =
−√−2Re(pk)

s− pk

k−1∏
i=1

s+ pi
s− pi

.

We define the functions (obtained from ψ̂k by replacing s by −s and pi by pi):

fk(s) :=

√−2Re(pk)

s+ pk

k−1∏
i=1

s− pi
s+ pi

.

We then have for n ≥ k〈
ψ̂n, ψ̂k

〉
L2(iR)

=
1

2π

∫ ∞

−∞
ψ̂n(iω)ψ̂k(iω) dω =

1

2π

∫ ∞

−∞
ψ̂n(iω)fk(iω) dω.

Using the explicit expressions for ψ̂n and fk, their product can be calculated as

ψ̂n(s)fk(s) =
−√−2Re(pn)

s− pn

√−2Re(pk)

s+ pk

n−1∏
i=k

s+ pi
s− pi

.

With ΓR the positively oriented curve consisting of the segment [−iR, iR] on the
imaginary axis together with the semi-circle in the right-half plane of radius R with
center the origin, we have for R large enough that

1

2π

∫ ∞

−∞
ψ̂n(iω)fk(iω) dω =

−1

2πi

∫
ΓR

ψ̂n(s)fk(s) ds,
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since s = iω so that ds = idω and the factor −1 is obtained from orientation reversion,
and the integrand behaves like O(R−2) on the semi-circle so that the integral over the
semi-circle converges to zero as R → ∞.

If n > k, then the above expression for the product further simplifies to

ψ̂n(s)fk(s) =
−√−2Re(pn)

s− pn

√−2Re(pk)

s− pk

n−1∏
i=k+1

s+ pi
s− pi

,

and if n = k, then it simplifies to

ψ̂n(s)fn(s) =
2Re(pn)

(s− pn)(s+ pn)
.

We see that for n > k, the product is holomorphic on the right-half plane, so that by

Cauchy’s theorem we obtain 〈ψ̂n, ψ̂k〉 = 0. For n = k, the curve ΓR contains only the

simple pole −pn in its interior. The residue of ψ̂nfn at this pole is −1, so that by the

residue theorem, 〈ψ̂n, ψ̂n〉 = 1. This shows that the Takenaka–Malmquist system is
indeed orthonormal.
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