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Abstract

We show that model order reduction by rational interpolation (also
known as moment matching or rational Krylov) can be seen as the special
case of balanced Proper Orthogonal Decomposition where all the snap-
shots are retained and particular numerical procedures are used to obtain
the snapshots.

1 Introduction

Three popular methods for model order reduction are

1. Balanced truncation and its variations,

2. (Balanced) proper orthogonal decomposition (POD, also known as Karhunen–
Loéve decomposition),

3. Rational interpolation (also known as moment matching, [rational] Krylov
and Padé approximation).

It is well-known that balanced POD is an approximate version of balanced
truncation (this is in fact already contained in the article [9] that introduced
balanced truncation). Other approximate balanced truncation algorithms (such
as the ADI method, low-rank Smith methods and approximating the Gramians
by numerical quadrature of their frequency domain integral representation) have
been connected to Krylov subspaces (see e.g. [8], [5], [10]). It is the objective
of this note to point out a direct connection between balanced POD and model
reduction by rational interpolation.

∗Mark Opmeer is with the Department of Mathematical Sciences, University of Bath, UK,
e-mail: (m.opmeer@maths.bath.ac.uk).
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For the convenience of the reader and to establish notation, in Sections 2.1
and 2.2 we very briefly review model order reduction by balanced POD and by
rational interpolation. Section 3 contains the main results. We first (Section 3.1)
consider the simplest case of interpolation at infinity and link this to balanced
POD with snapshots obtained by forward Euler. We next (Section 3.2) consider
the case of interpolation at a finite positive real point s0 and connect this to
balanced POD with snapshots obtained by backward Euler with stepsize 1

s0
. We

subsequently (Section 3.3) comment on interpolation at several distinct points.
In principle the backward Euler connection extends to complex interpolation
points if we allow for complex stepsizes. However, a slightly more satisfactory
connection is obtained for complex interpolation points by considering multi-
stage implicit numerical methods instead of backward Euler to generate the
POD snapshots (Section 3.4). For simplicity of exposition, Sections 2 and 3
deal only with SISO systems. We comment on MIMO systems in Section 3.5.
Finally, in Section 4 we consider two very simple examples that illustrate the
connections made.

2 A very short review of model order reduction

Given the dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t) +Du(t),

with state space Rn, input space R and output space R and a pair of operators
S : Rn → Rk and T : Rk → Rn with ST = I a reduced order system

ẋr(t) = Arxr(t) +Brur(t), xr(0) = x0r, yr(t) = Crxr(t) +Drur(t),

with state space Rk, input space R and output space R is obtained by setting[
Ar Br

Cr Dr

]
:=

[
SAT SB
CT D

]
.

Thus the reduced order system is obtained by a Petrov–Galerkin projection.
Note that the condition ST = I implies that (TS)2 = T (ST )S = TS so that
TS : Rn → Rn is indeed a projection.

Remark 1. For future reference note that if Q : Rk → Rk is a similarity trans-
formation and if we define S̃ = QS and T̃ = TQ−1, then the pair S̃, T̃ is
another Petrov–Galerkin pair whose reduced order system is related to the one
obtained from the pair S, T by the similarity transformation Q. In particular,
these reduced order systems have the same transfer function.

2.1 Model order reduction by balanced POD

Model order reduction by balanced POD is a Petrov–Galerkin projection method
where the Petrov–Galerkin operators are defined as follows ([11], [12]):
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1. Approximate the solution of

ẇ(t) = Aw(t), w(0) = B, (1)

at time instances {ti}Ni=1, which gives the vector BN := [ŵ(ti)]
N
i=1 ∈ RN .

2. Approximate the solution of

ż(t) = A∗z(t), z(0) = C∗, (2)

at time instances {ti}Ni=1, which gives the vector CN := [ẑ(ti)]
N
i=1 ∈ RN .

3. Form the empirical Hankel operator HN : RN → RN as

HN := C∗NBN .

4. Compute the Singular Value Decomposition of the empirical Hankel op-
erator

HN = UΣV ∗,

where without loss of generality we can assume that the diagonal elements
of Σ are ordered in a decreasing manner. We have U,Σ, V : RN → RN .

5. Decompose

Σ =

[
Σr 0
0 Σe

]
, U = [Ur, Ue], V = [Vr, Ve],

where Σr : Rk → Rk, Vr : Rk → RN and Ur : Rk → RN . We may assume
without loss of generality that Σr > 0.

6. Form the operators

S := Σ−1/2r U∗r C∗N , T := BNVrΣ−1/2r .

7. Form the reduced order system[
Ar Br

Cr Dr

]
:=

[
SAT SB
CT D

]
.

Remark 2. Note that S and T indeed form a Petrov–Galerkin pair since

ST = Σ−1/2r UrC∗NBNV ∗r Σ−1/2r

= Σ−1/2r U∗rHNVrΣ−1/2r

= Σ−1/2r U∗rUΣV ∗VrΣ−1/2r = I,

where we have used that[
I 0
0 I

]
= V ∗V =

[
V ∗r
V ∗e

]
[Vr, Ve] =

[
V ∗r Vr V ∗r Ve
V ∗e Vr V ∗e Ve

]
,

which shows that V ∗Vr = [ I0 ] and we have used that similarly U∗rU = [I, 0].
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Remark 3. Note that the time instances {ti}Ni=1 at which snapshots are taken
are user specified. The user also has to choose numerical methods to simulate
the ODEs in steps 1 and 2. In the literature usually not much information is
provided about these choices, especially the latter choice (of numerical method).
When we consider the connection with model order reduction by rational in-
terpolation we see that these choices are in fact crucial (mainly of course when
relatively few snapshots are generated).

2.2 Model order reduction by rational interpolation

Model order reduction by rational interpolation is a Petrov–Galerkin projection
method where the Petrov–Galerkin operators are defined as follows ([2, Chapter
11.3]):

1. Form the partial generalized controllability operators

RN (s) := [(sI −A)−1B, . . . , (sI −A)−NB],

RN (∞) := [B,AB, . . . , AN−1B],

and the partial generalized observability operators

ON (s) :=

C(sI −A)−1

...
C(sI −A)−N

 , ON (∞) :=


C
CA

...
CAN−1

 .
2. Form the operators

V := [Rk1
(s1), . . . ,Rkm

(sm)], (3)

W :=

Ok1
(sm+1)
. . .

Okm(s2m)

 , (4)

where si ∈ C ∪ {∞} (i = 1, . . . , 2m) are not eigenvalues of A and ki ∈ N
(i = 1, . . . ,m).

3. Assuming that WV is invertible define Z := (WV )−1W .

4. Form the reduced order system[
Ar Br

Cr Dr

]
:=

[
ZAV ZB
CV D

]
.

The reduced order system has the following property (G is the transfer func-
tion of the full order system and Gr the transfer function of the reduced order
system):

G(n)
r (si) = G(n)(si), n = 0, . . . , ki − 1,
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where G(n)(∞) must be interpreted as the n-th derivative at zero of G̃(z) :=
G(1/z).

If si = sm+i and ki = 1 or if m = 1 and s1 = s2 = ∞, then the reduced
order system in fact has the stronger property:

G(n)
r (si) = G(n)(si), n = 0, . . . , 2ki − 1,

see [2, Section 11.3.1].

Remark 4. Note that the interpolation points {si}2mi=1 and their multiplicities ki
are user specified. It is known that generically any reduced order system can be
obtained by the above procedure for appropriate choices of interpolation points
[4], [2, Chapter 11.3.2]. Therefore, these choices are crucial.

3 Rational interpolation as balanced POD

We will show that model order reduction by rational interpolation is in fact
model order reduction by balanced POD where the number of snapshots taken
is equal to the dimension of the reduced order system, the numerical method
(and the stepsize) used to obtain the snapshots is connected to the choice of
interpolation points and actually no singular value decomposition is performed
(all the snapshots are retained).

3.1 Interpolation at infinity

If we approximate the solution of the primal problem (1) using forward Euler
with stepsize h then

ŵ(hi) = (I + hA)iB.

So the resulting vector of snapshots is

BN = [B, (I + hA)B, . . . , (I + hA)N−1B].

Similarly applying forward Euler with stepsize h to the dual problem (2) results
in the vector of snapshots

CN = [C∗, (I + hA∗)C∗, . . . , (I + hA∗)N−1C∗].

Using the upper triangular matrix M defined by

Mij =

(
j − 1

i− 1

)
hi−1 i = 1 . . . , N, j = i, . . . , N,

these vectors of snapshots can be written in terms of the partial controllability
and observability operators as

BN = RN (∞)M, CN = ON (∞)∗M.
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It follows that the empirical Hankel operator satisfies

HN = M∗ON (∞)RN (∞)M. (5)

Using the above we have that (since no reduction is performed) the POD Petrov–
Galerkin operators are given by

S = Σ−1/2U∗M∗ON (∞), T = RN (∞)MV Σ−1/2.

We now use Remark 1 with Q = MV Σ−1/2 to obtain the equivalent Petrov–
Galerkin pair (using (5) in the third equality)

S̃ = MV Σ−1U∗M∗ON (∞) = MH−1N M∗ON (∞) = (ON (∞)RN (∞))
−1ON (∞),

T̃ = RN (∞).

This we recognize as the Petrov–Galerkin pair corresponding to interpolation
at infinity.

Recapitulating: taking snapshots at {hi}N−1i=0 using forward Euler with step-
size h and forming the POD reduced order system on the basis of all of these
snapshots (so no reduction based on the singular value decomposition) gives the
same reduced order system as interpolating the transfer function and its first
2N − 1 derivatives at infinity using the method described in Section 2.2.

3.2 Interpolation at a finite point

If we approximate the solution of the primal problem (1) using backward Euler
with stepsize h then

ŵ(hi) = (I − hA)−iB.

If we ignore the zero-th iterate ŵ(0), then the resulting vector of snapshots is

BN = [(I − hA)−1B, . . . , (I − hA)−NB].

Similarly applying backward Euler with stepsize h to the dual problem (2)
results in the vector of snapshots

CN = [(I − hA∗)−1C∗, . . . , (I − hA∗)−NC∗].

Using the diagonal matrix M̃ defined by

M̃ii = h−i, i = 1 . . . , N,

these vectors of snapshots can be written in terms of the partial generalized
controllability and observability operators as

BN = RN (1/h)M̃, CN = ON (1/h)∗M̃.

It follows that the empirical Hankel operator satisfies

HN = M̃∗ON (1/h)RN (1/h)M̃. (6)
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Completely analogously to the forward Euler case we then have

S̃ = (ON (1/h)RN (1/h))
−1ON (1/h),

T̃ = RN (1/h).

This we recognize as the Petrov–Galerkin pair corresponding to interpolation
at s0 = 1

h .
Recapitulating: taking snapshots at {hi}Ni=1 using backward Euler with step-

size h and forming the balanced POD reduced order system on the basis of all
of these snapshots (so no reduction based on the singular value decomposition)
gives the same reduced order system as interpolating the transfer function and
its first N − 1 derivatives at s0 = 1

h using the method described in Section 2.2.

3.3 Interpolation at multiple points

If we approximate the solution of the primal problem (1) using forward Euler
with stepsize h1 to obtain {ŵ1(h1i)}N1−1

i=0 and using backward Euler with step-

sizes hj (j = 2, . . . ,m) to obtain {ŵj(hji)}
Nj

i=1 and collect these in a vector BN ,
then similarly as before

BN = V M̂B ,

where V is the matrix formed from partial generalized controllability matrices
as in (3) and M̂B is an invertible operator depending on the stepsizes hj (j =
1, . . . ,m).

If we approximate the solution of the dual problem (2) using forward Euler

with stepsize hm+1 to obtain {ẑ1(hm+1i)}Nm+1−1
i=0 and using backward Euler

with stepsizes hj (j = m + 2, . . . , 2m) to obtain {ẑj(hji)}
Nj

i=1 and collect these
in a vector CN , then similarly as before

CN = W ∗M̂C ,

where W is the matrix formed from partial generalized observability matrices
as in (4) and M̂C is an invertible operator depending on the stepsizes hj (j =
m+ 1, . . . , 2m).

Entirely analogously to before (noting that Q := M̂BV Σ−1/2), it follows that
the POD reduced order system formed on the basis of all of these snapshots (so
no reduction based on the singular value decomposition) is the same reduced
order system as the one obtained by interpolation of the transfer function at
s1 = sm+1 =∞ and the points sj = 1

hj
(j = 2, . . . ,m, j = m+ 1, . . . , 2m) with

the relevant multiplicities using the method described in Section 2.2.

3.4 Interpolation at complex points

If we allow for complex stepsizes, then an interpretation of model reduction by
interpolation at complex points in terms of backward Euler balanced POD can
be obtained exactly as above. However, a more convincing (though still not
very satisfactory) correspondence can be obtained by considering multi-stage
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implicit methods. We indicate below how the choice of interpolation points
is related to the poles of what in the numerical ODE literature is called the
stability function of the numerical method. We consider a typical example that
can easily be adapted to similar situations. We first note that the stability
function for forward Euler is φ(z) = 1 + z, which has a single pole at infinity,
and the stability function for backward Euler is φ(z) = 1

1−z , which has a single
pole at a real point (z = 1 in fact). The connection with the positioning of the
interpolation points in the complex plane should be apparent.

The typical example that we consider is Hammer–Hollingsworth [7] (see also
[3]). With stepsize h this results in the approximate solution

ŵ(hi) = (12I + 6hA+ h2A2)i(12I − 6hA+ h2A2)−iB,

and similarly for the dual system. This is not quite enough to make the con-
nection with rational interpolation, so we also consider an adapted version of
Hammer–Hollingsworth with stepsize h (we note that this adapted version is
not a very good numerical method), which results in

ŵ(hi) = (−12I + 6hA+ h2A2)i(12I − 6hA+ h2A2)−iB,

and similarly for the dual system. We now form the POD snapshot vectors by
taking the zero-th iterate and first iterate of Hammer–Hollingsworth and the
first iterate of the adapted Hammer–Hollingsworth:

B = [B, (12I+6hA+h2A2)(12I−6hA+h2A2)−1B, (−12I+6hA+h2A2)i(12I−6hA+h2A2)−iB].

It is easy to see that the range of B is the same as that of

B̃ = [B, (I − hz0A)−1B, (I − hz̄0A)−1B],

where z0 = 3 + i
√

3 and similarly for the dual system. It follows that balanced
POD with these snapshots corresponds to the following multi-point rational in-
terpolation: interpolation of G′(∞) and of G(s0) and G(s̄0) with s0 = 1

h(3+i
√
3)

.

We note that the stability function of Hammer–Hollingsworth is

φ(z) =
−12 + 6z + z2

12− 6z + z2
,

which has simple poles at 3± i
√

3, i.e. the reciprocals of 1
3±i
√
3
, which explains

the placing of the resulting interpolation points.
Interpolation in other pairs of complex conjugate points than those where

one is on the line through 1
(3+i

√
3)

can be achieved by considering other two-

stage implicit Runge–Kutta methods (we note that again these will generally
not be very good methods). Interpolation at more than one pair of complex
points can be achieved by combining the above with the idea in Section 3.3.

Remark 5. As remarked above, the position of the interpolation points in the
complex plane is related to the stability function of the numerical method.
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Implicit methods have stability functions with finite poles, explicit methods
have stability functions with poles at infinity. A popular implicit Runge–Kutta
method is Crank-Nicolson, which has stability function

φ(z) =
1 + z/2

1− z/2
= −1 +

2

1− z/2
.

It is easy to see that balanced POD with snapshots obtained by Crank-Nicolson
with stepsize 2h and balanced POD with snapshots obtained by backward Euler
with stepsize h gives the same result provided that the zero-th iterate is included
in both cases. Note that we excluded the zero-th iterate in the backward Euler
case when making the connection with interpolation at 1

h . Including the zero-
th iterate means that we not only interpolate moments at 1

h , but also one at
infinity (this follows as in Section 3.3).

3.5 MIMO systems

Balanced POD for MIMO systems simply uses all of the columns of the B matrix
subsequently as w(0) for the primal system (and similarly for C∗ for the dual
system) and collects all the resulting snapshots for the different columns into
the rows of a matrix BN (respectively CN ). The procedure than carries on as
in the SISO case with forming the empirical Hankel operator HN := C∗NBN and
so on ([11], [12]). Note that if the number of inputs is not equal to the number
of outputs, then HN is not square.

Model order reduction by rational interpolation in the MIMO case is typi-
cally done by tangential interpolation ([6], [1]), i.e. for each interpolation point
si (i = 1, . . . ,m) there is a vector in the input space ui such that the inter-
polation condition is G(si)ui = Gr(si)ui and for each interpolation point si
(i = m+ 1, . . . , 2m) there is a vector in the output space yi such that the inter-
polation condition is G(si)

∗yi = Gr(si)
∗yi. Similar interpolation conditions can

be put on the derivatives. The vectors ui and yi are user specified. To obtain
such a reduced order model, in the algorithm described in Section 2.2 one sim-
ply replaces B when it occurs in combination with si by Bui and C∗ when it
occurs in combination with si by C∗yi (see [1]). Note that in this formulation,
the resulting matrix WV (which is the interpolation equivalent of the empirical
Hankel operator HN in balanced POD) is forced to be square.

It is now easy to see that tangential interpolation corresponds to balanced
POD (with the choice of step-size and numerical method as explained in the
SISO case) where not all columns of B and C∗ are used for obtaining the snap-
shots, but only some linear combinations of them (namely Bui and C∗yi). Of
course when, for a fixed si, {ui} forms a basis for the input space and {yi}
forms a basis for the output space (this corresponds to matrix interpolation
rather than ‘pure’ tangential interpolation), then in fact all columns are used
(but note that this choice of vectors is only allowed in the interpolation frame-
work if the number of inputs equals the number of outputs).

9



4 Examples

We illustrate the results by two very simple examples. They are not chosen
to illustrate the model reduction procedures themselves (which are each amply
illustrated in the literature), but only their connection. We first consider a SISO
system and then a MISO system.

4.1 A SISO example

As the full-order model, we consider a standard (piecewise linear) finite element
approximation of the following heat equation

∂w

∂t
=
∂2w

∂x2
, t > 0, x ∈ (0, 1),

w(0, x) = 0,
∂w

∂x
(t, 0) = u(t), w(t, 1) = 0, y(t) = −w(t, 0).

The four-dimensional finite element approximation that we will take as our full-
order system has transfer function

G(s) =
13.86s3 + 2565s2 + 109452s+ 875615

s4 + 281.1s3 + 21092s2 + 401324s+ 875615
,

and realization

[
A B
C D

]
=


−70.27 89.07 −23.75 5.94 −13.86

44.54 −82.14 47.51 −11.88 3.71
−11.88 47.51 −70.27 41.57 −0.99

2.97 −11.88 41.57 −58.39 0.25
−1 0 0 0 0

 .
The two-dimensional approximation obtained from this by forward Euler has
transfer function

GFE(s) =
13.86s+ 1292

s2 + 189.2s+ 4379
,

and it can be checked that this indeed matches the first four moments at infinity.
The realization obtain using forward Euler (in this case with h = 2) is −158.8 −21.2 −3.04

−21.2 −30.4 2.15
−3.04 2.15 0

 ,
and the realization obtained by interpolation at infinity is 0 −4379 1

1 −189.2 0
13.86 −1329 0

 ,
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and it can be seen that these are indeed related by the similarity transformation

Q = MV Σ−1/2 =

[
0.0011 0.4664
0.0023 0.0032

]
.

The two-dimensional approximation obtained from the full-order model by
backward Euler with step size one has transfer function

GBE(s) =
9.228s+ 101.4

s2 + 43.03s+ 101.4
,

and it can be checked that indeed Gk)(1) = G
(k)
BE(1) for k = 0, 1, 2, 3. The

realization obtain using backward Euler is −3.30 −5.46 −1.81
−5.46 −39.73 −2.44
−1.81 −2.44 0

 ,
and the realization obtained by interpolation at one is −44 −1 45

145 1 −145
0.76 0.17 0

 ,
and it can be seen that these are indeed related by the similarity transformation

Q̃ = M̃V Σ−1/2 =

[
−2.24 −16.79
−0.63 60.05

]
.

The three-dimensional approximation obtained from the full-order model by
adapted Hammer-Hollingsworth as described above (which must have an odd
order) with step size one has transfer function

GHH(s) =
13.86s2 + 1138s+ 10525

s3 + 178s2 + 4645s+ 10526
,

and it can be checked that indeed

G

(
1

3 + i
√

3

)
= GHH

(
1

3 + i
√

3

)
and G

(
1

3− i
√

3

)
= GHH

(
1

3− i
√

3

)
,

and that the first two moments at infinity are matched. Similarly as above, the
respective realizations (adapted Hammer-Hollingsworth and interpolation) are
seen to be similar.

We now consider an illustration of Remark 5. The two-dimensional approx-
imation obtained from the full-order model by backward Euler with step size
one where also the zero-th iterate is used in balanced POD has transfer function

GBE0(s) =
13.86s+ 335.7

s2 + 102.2s+ 338.4
, (7)
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and it can be checked that indeed Gk)(1) = G
(k)
1 (1) for k = 0, 1 and that the

first two moments at infinity are matched. The two-dimensional approximation
obtained from the full-order model by Crank-Nicolson with step size two where
also the zero-th iterate is used in balanced POD has transfer function (7). The
two-dimensional approximation obtained from the full-order model by Crank-
Nicolson with step size two where the zero-th iterate is not used in balanced
POD however has transfer function

GCN (s) =
13.84s+ 430.5

s2 + 124.9s+ 510.8
,

and this does not have any obvious interpolation properties.
For comparison with what from a numerical ODE perspective seems a more

sensible thing to do, the two-dimensional approximation obtained from the full-
order model by Hammer-Hollingsworth (not the adapted version) with step size
one where the zero-th iterate is not used in balanced POD has transfer function

GHH1 =
12.97s+ 902.2

s2 + 162.8s+ 3128
,

and if we do include the zero-th iterate, then the transfer function is

GHH0 =
13.86s+ 407.6

s2 + 125.3s+ 452.1
.

Again, these functions do not have obvious interpolation properties.

4.2 A MISO example

As the full-order model, we consider a standard (piecewise linear) finite element
approximation of the following heat equation with two inputs (in comparison to
the previous section, there is an additional point control) and one output

∂w

∂t
=
∂2w

∂x2
+ u2(t)δ2/3(x), t > 0, x ∈ (0, 1),

w(0, x) = 0,
∂w

∂x
(t, 0) = u1(t), w(t, 1) = 0, y(t) = −w(t, 0).

The finite element approximation with a finite-element space of dimension four
that we will take as our full-order system has transfer function G = [G1, G2]
with G1 the full order transfer function from Section 4.1 and

G2(s) =
0.9897s3 − 142.5s2 + 437808

s4 + 281.1s3 + 21092s2 + 401324s+ 875615
.

Balanced POD with snapshots obtained by backward Euler with stepsize h = 1
gives the four-dimensional approximation (here –contrary to the rest of this
note– a singular value decomposition is performed, but it just omits the zero
singular values which arise because the empirical Hankel matrix is not square)

GBE(s) =

[
8.115s+ 81.64

s2 + 35.36s+ 81.64
,
−1.046s+ 40.82

s2 + 35.36s+ 81.64

]
.
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This cannot be obtained by tangential interpolation as described above, since the
number of inputs (two) is not equal to the number of outputs (one). However,
as can be checked G(1) = GBE(1) and G′(1) = G′BE(1).

If we consider tangential interpolation with s1 = s2 = 1, u1 = [ 10 ], u2 = [ 01 ],
s3 = 1, y1 = 1, s4 = 10, y2 = 1 then we obtain

GTI(s) =

[
8.526s+ 83.38

s2 + 36.53s+ 83.27
,
−0.9746s+ 41.70

s2 + 36.53s+ 83.27

]
,

and we see that G(1) = GTI(1), G′(1) = G′TI(1) and G(10) = GTI(10). The
realization obtained is −23.36 7.56 24.36 −7.56

29.68 −13.17 −29.68 14.17
0.76 0.34 0 0

 .
The same transfer function is obtained by applying backward Euler balanced
POD (as always in this note: without reduction based on the singular value
decomposition) with the following choices of snapshots. Stepsize h = 1 with
the initial conditions Bu1 and Bu2 for the primal system and initial condition
C∗ for the dual system. Stepsize h = 1

10 with initial condition C∗ for the dual
system. This gives the realization −3.83 15.72 −3.98 −0.84

2.67 −32.7 3.37 −1.42
−1.04 1.3 0 0

 .
It can be checked that these two realizations are indeed related by the similarity
transformation

Q̂ = M̂BV Σ−1/2 =

[
−1.07 5.96
−0.66 −9.60

]
.

5 Conclusion

As is known, model order reduction by balanced POD with a large number of
snapshots approximates model order reduction by balanced truncation. In this
paper we have shown that on the other hand model order reduction by balanced
POD with the number of snapshots equal to the dimension of the reduced or-
der model and assuming that the snapshots are obtained by certain numerical
methods is the same as model order reduction by rational interpolation (the
interpolation points depending on the numerical method used to generate the
snapshots).

It is interesting to note that interpolation at infinity corresponds to an
explicit method whereas interpolation at finite points corresponds to implicit
methods. It is well-known that implicit methods are better for stiff equations
(e.g. those arising from spatial discretization of partial differential equations)
and this –together with the connection made here between balanced POD and

13



rational interpolation– seems to explain the observation often made that in-
terpolation at finite points is better for certain problems than interpolation at
infinity.
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