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Abstract— We study error bounds for model reduction from
a functional analytic viewpoint. We give three examples of
linear distributed parameter systems that have very different
approximation properties. We also comment on implications of
this for numerical approximation schemes.

I. INTRODUCTION

The purpose of model reduction is to replace an elaborate
model with a simpler one that is close to the original model
[1]. Closeness is usually measured by the difference of the
input-output maps being small in the L(L2(0,∞)) norm.
This is equivalent to the difference of the transfer functions
being small in the H∞ norm. In this paper we consider three
examples from a functional analytic viewpoint. We show
that these three examples have very different approximation
properties. We also comment on implications for numerical
approximation schemes.

II. THE THREE EXAMPLES

Example 1: Consider the one-dimensional heat equation
on the unit interval with interior control and observation of
the state:

∂w

∂t
=
∂2w

∂ξ2
+ u(ξ, t),

∂w

∂ξ
(t, 0) = 0,

w(t, 1) = 0,

w(0, ξ) = 0

y(t, ξ) = w(t, ξ).
This can be written in the usual abstract state space form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

by choosing the spaces

X = U = Y = L2(0, 1),

and the operators

A =
∂2

∂ξ2
,

D(A) =
{
z ∈W 2,2(0, 1) : z′(0) = z(1) = 0

}
,

B = I,

C = I.
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The transfer function of this system is simply the resolvent
operator of A.

Example 2: Consider the one-dimensional heat equation
on the unit interval with Neumann boundary control and
observation of the temperature at the same boundary point:

∂w

∂t
=
∂2w

∂ξ2
,

∂w

∂ξ
(t, 0) = −u(t),

w(t, 1) = 0,

w(0, ξ) = 0

y(t) = w(t, 0).

This can be written in the usual abstract state space form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

by choosing the spaces

X = L2(0, 1),

U = Y = C,

and the operators

A =
∂2

∂ξ2
,

D(A) =
{
z ∈W 2,2(0, 1) : z′(0) = z(1) = 0

}
,

Cz = z(0),

D(C) = D(A),

B = C∗.

The transfer function of this system can be computed (as in
[3, Section 4.3]) to be

G(s) =

∞∑
k=1

2

s− λk
, (1)

where
λk = −µ2

k, µk = −π
2
+ kπ.

Another expression for the transfer function is

G(s) =
1√
s
tanh(

√
s).

Example 3: Consider the one-dimensional transport equa-
tion on the unit interval with boundary control at one end,



boundary observation at the other end and actuator dynamics:

∂w

∂t
= −∂w

∂ξ
,

w(t, 0) = f(t),

w(0, ξ) = 0

y(t) = w(t, 1),

f̂(s) = F (s)û(s),

where the rational transfer function F describes the actuator
dynamics and is assumed to have relative degree r.
The infinite-dimensional subsystem can be written in the
usual abstract state space form

ẋ(t) = Ax(t) +Bf(t),

y(t) = Cx(t),

by choosing the spaces

X = L2(0, 1),

U = Y = C,

and the operators

A = − ∂

∂ξ

D(A) =
{
z ∈W 1,2(0, 1) : z(0) = 0

}
,

Cz = z(1),

D(C) = D(A),

B = H∗,

where Hz = z(0) and D(H) =W 1,2(0, 1).
The transfer function of the overall system is

F (s)e−s.

III. ERROR BOUNDS

An important operator associated to a system is the Hankel
operator [10], [13], [15]. Especially important for model
reduction are the singular values of the Hankel operator.
Recall that the singular values of an operator T (where T is
an operator from a Hilbert space H to a Hilbert space K )
are defined as follows:

σn(T ) := inf
{Tn∈L(H ,K ): rank Tn<n}

‖T − Tn‖L(H ,K ).

If T is compact, then the nonzero singular values are pre-
cisely the squareroots of the eigenvalues of TT ∗ (or equiv-
alently: of T ∗T ) when we repeat the eigenvalues according
to their multiplicity. The McMillan degree of a transfer
function equals the number of nonzero singular values of
the corresponding Hankel operator.

We also need the (non-standard) notion of characteristic
values of an operator. We will denote the sequence of char-
acteristic values by (κk)

∞
k=1. The characteristic values are

exactly the singular values where we however omit repeated
singular values, i.e. as sets {κk : k ∈ N} = {σk : k ∈ N},
but κi 6= κj for i 6= j. We still order the characteristic values
so that (κk)∞k=1 is a decreasing sequence.

The following theorem is trivial to prove, but important
none the less. For the rational case it appears in e.g. [8,
Section 10.2.3].

Theorem 4: Suppose that G ∈ H∞(C+
0 ;L(U ,Y ))

has Hankel singular values (σk)
∞
k=1. For any Gn ∈

H∞(C+
0 ;L(U ,Y )) with McMillan degree smaller than or

equal to n we have

σn+1 ≤ ‖G−Gn‖∞.
The next theorem, which gives an upper-bound on the error
for a particular approximation, is far from easy to prove in
the non-rational case. In the rational case it is due to Enns
[4] and Glover [6] (see also [8, Section 9.4.3]). The general
case under stronger assumptions then those mentioned here is
due to Glover, Curtain and Partington [7] (the assumptions
imposed by [7] for example exclude our Example 2). The
improvement given here was proven in [9].

Theorem 5: Suppose that G ∈ H∞(C+
0 ;L(U ,Y )) has

Hankel characteristic values (κk)
∞
k=1 and that U and Y

are finite-dimensional. For the transfer function Gn ∈
H∞(C+

0 ;L(U ,Y )) with McMillan degree equal to n ob-
tained by Lyapunov balanced truncation we have

‖G−Gn‖∞ ≤ 2

∞∑
k=n+1

κk.

By using an optimal Hankel norm approximation with an
appropriate feedthrough instead of a Lyapunov balanced
truncation, the error bound becomes

‖G−Gn‖∞ ≤
∞∑

k=n+1

κk.

See again Glover [6] (and also [8, Section 10.5.2]) for the
rational case and [7] and [9] for the general case.

For non-rational transfer functions, balanced truncations
and optimal Hankel norm approximations are generally im-
possible to compute exactly. Numerical approximations are
hampered by the need to do expensive very large scale
computations (but see e.g. [2]). However, the above upper-
bounds are extremely important for another reason: they
show that approximations with an error that is close to the
lowerbound obtained in Theorem 4 exist. This provides a
benchmark for other (perhaps computationally more feasible)
methods.

IV. DECAY OF HANKEL SINGULAR VALUES

It follows from the error-bounds mentioned in Section
III that the Hankel singular values are important objects
when considering model reduction error. In this section we
consider the asymptotic behavior of the Hankel singular
values.

A result by Ober [11] and Treil [17] shows that any
decreasing sequence of nonnegative numbers is the sequence
of singular values of some Hankel operator. So in general,
nothing can be said about the asymptotic behavior of the
Hankel singular values. However, for our three examples (and
cases like them) much can be said.



A. Interior control

We continue Example 1. The Hankel operator is in this
case self-adjoint and is given by∫ ∞

0

eA(t+s)u(s) ds.

It follows that the singular vectors of the Hankel operator are
vn(t, ξ) = eλntφn(ξ) and the singular values are σn = −1

2λn
,

where φn are the eigenvectors and λn the eigenvalues of the
self-adjoint operator A (which has a compact inverse). These
are given by

λn = −µ2
n, µn = −π

2
+ nπ, φn(ξ) =

√
2 cos(µnξ).

It follows from the lower-bound discussed in Section III that
for this example for any approximation Gn with McMillan
degree smaller than or equal to n

1

2µ2
n+1

=
1

2
(
π
2 + nπ

)2 ≤ ‖G−Gn‖∞. (2)

A balanced truncation can be exactly computed in this case.
The observability and controllability gramian are both equal
to − 1

2A
−1 so that the balancing modes are equal to the

eigenvectors of A. It follows that balanced truncation is in
this case the same as ‘modal approximation’. With respect
to the basis of eigenvectors (φk)

∞
k=1, the full order transfer

function has a diagonal matrix representation with diagonal
entries

[G(s)]ii =
1

s− λi
.

The transfer function of McMillan degree n obtained by
balanced truncation also has a diagonal matrix representation
with respect to this basis, namely that with diagonal entries

[Gn(s)]ii =

{
1

s−λi
i ≤ n,

0 i > n.

It is then easily directly computed that

‖G−Gn‖∞ =
1

−λn+1
=

1

µ2
n+1

=
1(

π
2 + nπ

)2 .
We see that this differs a factor two from the lower-bound
(2) and is much better than the upper-bound from Theorem
5 (note that Theorem 5 is however not applicable to this
example since the input and output spaces in this example
are both infinite-dimensional).

B. Boundary control

We now turn to Example 2. It follows from [12] that for
this example the sequence of Hankel singular values is in
`p(N) for all p > 0. It follows that for all q > 0 there exists
a Cq > 0 such that

σn ≤
Cq
nq
,

i.e. the Hankel singular values converge to zero faster than
any polynomial rate. This rapid decay has been often ob-
served numerically for examples like our Example 2, but to
the best of our knowledge, [12] provides the first rigorous

proof of this rapid decay. From this decay of the singular
values and the error-bound for balanced truncations from
Theorem 5, it follows that the balanced truncation error
converges to zero faster than any polynomial rate as well:
for all q > 0 there exists a Cq > 0 such that

‖G−Gn‖∞ ≤
Cq
nq
.

Remark 6: The crucial assumptions in [12] are analyticity
of the semigroup and that at least one of U or Y is finite-
dimensional. The main result used in the proof is a theorem
by Peller [14] and Semmes [16] that characterizes Schatten
class Hankel operators. From [15, Corollary 6.9.4] we see
that the Hankel operator is in the Schatten class Sp (i.e. its
singular values are in `p) if and only if the transfer function is
in the Besov space B1/p

pp (C+
0 ;Sp(U ,Y )). Both in Example

1 and Example 2, we have that the transfer function is in
B

1/p
pp (C+

0 ;L(U ,Y )). This follows from analyticity of the
semigroup. In the case of Example 2 this implies that the
transfer function is in B1/p

pp (C+
0 ;Sp(U ,Y )). This is because

the input and output spaces are finite-dimensional. In Exam-
ple 1 this implication is no longer true. In fact the condition
that the transfer function is in B1/p

pp (C+
0 ;Sp(U ,Y )) implies

that for every s ∈ C+
0 we have G(s) ∈ Sp(U ,Y ). In the

case of Example 1 this becomes (sI −A)−1 ∈ Sp(L2(0, 1))
and this is only true for p > 1

2 .
We note that we can also perform modal truncation in this

case using the explicit formula (1) for the transfer function.
This gives the approximant

Gn(s) =

n∑
k=1

2

s− λk
,

and the error can be explicitly computed as

‖G−Gn‖∞ =

∞∑
k=n+1

2

−λk

=

∞∑
k=n+1

2

µ2
k

=

∞∑
k=n+1

2(
−π2 + kπ

)2 .
It follows that asymptotically ‖G − Gn‖∞ ≈ C

n so that
modal truncation for this example is substantially inferior
to balanced truncation.

C. The transport equation

We continue Example 3. It follows from results in [5] that

nrσn → Cr 6= 0,

where we recall that r is the relative degree of the transfer
function describing the actuator dynamics. It follows that the
approximation properties of this system becomes better the
higher this relative degree is, but are never as good as those
of Example 2.



D. Exponential decay for bounded generators

In this section we show that if A is bounded and generates
an exponentially stable strongly continuous semigroup and
B and C are bounded with at least one of U and Y finite-
dimensional, then the corresponding Hankel singular values
decay exponentially. We note that the assumption that A
is bounded is unrealistic for systems described by partial
differential equations.

We first consider the discrete-time case.
Theorem 7: Assume that A ∈ L(X ) satisfies r(A) < 1

(spectral radius) with X a Hilbert space, B ∈ L(U ,X )
and C ∈ L(X ,Y ) with at least one of U and Y finite-
dimensional. Then the Hankel operator H : `2(N;U ) →
`2(N;Y ) defined through the block operator matrix Hij =
CAi+j−2B has singular values that satisfy

σn ≤MRn,

for some M > 0 and R ∈ (0, 1).
Proof: The proof is based on [13, Exercise 44].

Define
hk := CAk−1B.

We first note that by the assumption r(A) < 1 we have that
there exist M̃ > 0 and r ∈ (0, 1) such that

‖Aj‖ ≤ M̃rj .

It follows that

‖hj‖ = ‖CAj−1B‖ ≤ ‖C‖ M̃rj−1 ‖B‖ ≤ Nrj−1,

with
N := ‖C‖ M̃ ‖B‖.

We conclude that
∞∑

j=k+1

‖hj‖ ≤
∞∑

j=k+1

Nrj−1 = rk
N

1− r
. (3)

Now, for k ∈ N define the Hankel operator Hk through

Hk
ij =

{
hi+j i+ j ≤ k,
0 i+ j > k.

With m := min{dimU ,dimY } we have rank Hk ≤ km.
We conclude that

σkm+1 ≤ ‖H −Hk‖.

The operator H −Hk is also a Hankel operator. The `1(N)
norm of its impulse response is

∞∑
j=k+1

‖hj‖.

Since the operator norm of a Hankel operator is smaller than
or equal to the `1(N) norm of the impulse response, we
conclude that for all k ∈ N

σkm+1 ≤
∞∑

j=k+1

‖hj‖.

Using (3) we then have

σkm+1 ≤ rk
N

1− r
. (4)

Define

M :=
N

1− r
, R := r1/(m+1).

Then it follows from (4) that for all k ∈ N

σkm+1 ≤MRkm+m.

By using that the singular values form a non-increasing
sequence we then obtain for all n ∈ N

σn ≤MRn,

as desired.
The continuous-time case follows.

Theorem 8: Assume that A ∈ L(X ), with X a Hilbert
space, generates an exponentially stable strongly continuous
semigroup and that B ∈ L(U ,X ) and C ∈ L(X ,Y ) with
at least one of U and Y finite-dimensional. Then the Hankel
singular values satisfy

σn ≤MRn,

for some M > 0 and R ∈ (0, 1).
Proof: Use the Cayley transform to translate the

system to discrete-time. Since A is bounded and generates
an exponentially stable strongly continuous semigroup, its
Cayley transform has spectral radius strictly smaller than 1.
The discrete-time Hankel operator associated to the Cayley
transform is unitarily equivalent to the continuous-time Han-
kel operator. In particular, the continuous-time system and its
Cayley transform have the same Hankel singular values. The
result then follows from Theorem 7.

Remark 9: Note that if A is unbounded, then its Cayley
transform has −1 in its spectrum so that the spectral radius
of the Cayley transform in that case is not strictly smaller
than one. This is the reason that the above proof fails for
the case where A is unbounded. In fact, as the following
example shows, the conclusion of Theorem 8 is false if the
assumption that A is bounded is dropped.

Example 10: Consider the following modification of Ex-
ample 3:

∂w

∂t
= −∂w

∂ξ
− εw, t > 0, ξ ∈ (0, 1),

wt(t, 0) + w(t, 0) = u(t),

zt(t) + z(t) = w(t, 1),

y(t) = z(t).

This can be written in the standard state space form by
choosing the spaces

X = L2(0, 1)× C2,

U = Y = C,



and the operators

A =

− ∂
∂ξ − ε 0 0

0 −1 0
T1 0 −1

 , B =

01
0

 ,
C =

[
0 0 1

]
,

D(A) =
{
[z1; z2; z3] ∈W 1,2(0, 1)× C2 : z1(0) = z2

}
,

where T1x = x(1) with D(T1) =W 1,2(0, 1).
The transfer function of this system is

G(s) =
1

(s+ 1)2
e−(s+ε).

This system satisfies all the assumptions of Theorem 8
except that in this case A is unbounded. Using the explicit
description of the transfer function, it follows from [5] that

n2σn → C 6= 0.

In particular, the Hankel singular values of this system do
not decay at an exponential rate.

V. NUMERICAL METHODS

As mentioned, balanced truncations of irrational functions
can usually not be calculated explicitly. The standard proce-
dure to obtain a reduced order model is to use a numerical
discretization method (such as finite elements) for the un-
derlying partial differential equation and then to calculate
a balanced truncation of that system using numerical linear
algebra. The first question that should be asked when using
this method is whether the so obtained reduced order model
is close to the exact balanced truncation of the underlying
partial differential equation. The following result taken from
[9] shows that –under very reasonable assumptions (which
however exclude our Example 1)– this is (asymptotically)
true.

Theorem 11: Assume that U and Y are finite-
dimensional and that the impulse responses (hm)m∈N of the
numerical discretization converge in L1(0,∞;L(U ,Y )) to
the impulse response h of the full order system. Denote the
reduced order transfer functions obtained from the numerical
discretization by balanced truncation by (Gmn )m∈N and
the reduced order transfer function obtained by balanced
truncation of the full order system by Gn. Then there exists
a subsequence of (Gmn )m∈N that converges in H∞ to Gn.
In the case where the Hankel singular values of the full
order system are distinct, convergence of the full sequence
(Gmn )m∈N to Gn in H∞ can be concluded.

The second question is how well the initial numerical
discretization approximates the full order system. We give
some results for our first two examples.

A. Interior control

In this case the standard estimates for finite element
approximations give the following error-bound:

‖G−GN‖∞ ≤
C

N2
,

where GN is the transfer function of the piecewise linear
finite element approximation. Comparing this to the lower-
bound (2), we see that piecewise linear finite elements is
asymptotically optimal for this example (i.e. the power 2 is
optimal). For slightly different norms this is known [18].

B. Boundary control

In the case of boundary control and observation, the
standard estimates for finite element approximations give the
following error-bound:

‖G−GN‖∞ ≤
C

N
,

where GN is the transfer function of the piecewise linear
finite element approximation. The loss from N2 to N com-
pared to the interior control case is due to unboundedness of
the control and observation operators in the boundary control
case.

Numerical calculations indicate that this bound is sharp:
the error very much seems to behave like C

N (see figure 1).
As we saw in Section IV-B, the balanced truncation error
decays at a rate faster than any polynomial rate. Yet the
piecewise linear finite element approximation decays only at
a linear rate. So in contrast to the interior control case, in
the boundary control case, piecewise linear finite elements
is very far from asymptotically optimal.

An alternative numerical method based on the eigenvector
expansion of the differential operator A leads to modal
approximation and was already discussed in Section IV-B.
This also gives a decay rate of C

N and is therefore also very
far from asymptotically optimal.

The Chebyshev collocation method performs asymptoti-
cally better for this example: numerical calculations indicate
that the decay rate for that method is C

N2 . This is however
still very far from asymptotically optimal.

Fig. 1. Numerical approximation of Example 2 by finite elements (-),
modal truncation (- -) and Chebyshev collocation (:). Dimension of reduced
order system on horizontal axis, H∞ error on vertical axis.

VI. CONCLUSION

We have considered model reduction of systems described
by partial differential equations from a functional analytic
and numerical analysis perspective.



The functional analytic perspective provided a lower-
bound on the H∞ error and -by analyzing balanced
truncation- an upper-bound on the achievable H∞ error
as well. These bounds are both in terms of the Hankel
singular values of the full order system. By considering
specific system classes, these Hankel singular values can be
estimated, so providing decay rates in terms of the McMillan
degree of the reduced order system.

The numerical analysis of the underlying partial differen-
tial equations shows that some commonly used numerical
discretizations are asymptotically optimal for an interior
control example, but are very far from asymptotically optimal
for a boundary control example.
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