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Abstract

In this paper we study the existence of linear quadratic Gaussian
(LQG)-balanced realizations for continuous-time infinite-dimensional sys-
tems. LQG-balanced realizations are those for which the optimal cost
operator for the system and its dual system are equal (and diagonal).
The class of systems we consider is that of distributional resolvent lin-
ear systems which includes well-posed linear systems as a subclass. We
prove the existence of LQG-balanced realizations under a finite cost con-
dition for both the system and its dual system. We also show that an
LQG-balanced realization of a well-posed transfer function is well-posed.
We further show that approximately controllable and observable LQG-
balanced realizations are unique up to a unitary state-space transforma-
tion. Finally, we show that the spectrum of the product of the optimal
cost operator of a system and its dual system is independent of the partic-
ular realization. Our method of proof shows the connections with coprime
factorizations, Lyapunov-balanced realizations, and discrete-time systems.
The main reason for studying LQG-balanced realizations is that truncated
LQG-balanced realizations provide a good approximation of the original
system. We show that, under certain conditions, this is also true in the
infinite-dimensional case by proving an error bound in the gap-metric.

1 Introduction

Simple models are normally preferred over complex ones in control systems de-
sign. Sometimes it is obvious how to construct a simple model for a physical
system, but sometimes it is not obvious what the characteristics essential to
the controller design of a physical system are. One way of obtaining a simple
model in the latter case is to first obtain a sophisticated model that takes every
aspect of possible interest into account and then perform model reduction on
this sophisticated model. A simple model reduction procedure was introduced
by Moore [9] and is now a textbook subject (see, e.g., Zhou and Doyle [24,
Chapter 7]). The method proposed by Moore consists of truncating a balanced
realization. A balanced realization (also called Lyapunov- or internally bal-
anced) is a realization for which the controllability and observability gramians
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are equal and diagonal. Lyapunov-balanced realizations are popular because
they are relatively easy to compute and there exists an error bound in the H-
infinity norm on the basis of which one can show that compensators based on
the reduced order model have a certain performance when applied to the full
order system. The Lyapunov-balanced realization method is applicable only
to stable systems. Alternatively for unstable systems one can use truncations
of a linear quadratic Gaussian (LQG)-balanced realization, which for rational
transfer functions always exists. An LQG-balanced realization is a realization
for which the optimal cost operator for the system and its dual system (with
respect to the standard quadratic cost functional) are equal and diagonal. This
method was proposed by Verriest [20], [21] and further developed by Jonck-
heere and Silverman [7]. For an alternative treatment see Mustafa and Glover
[10], and for the discrete-time case see Hoffmann, Prätzel-Wolters, and Zerz
[6]. The computation of an LQG-balanced realization can also be performed
reasonably efficiently, and there exists an error bound in the gap-metric which
provides advantages similar to those of the H-infinity error bound for the trun-
cated Lyapunov-balanced realization.

In the case that the system is infinite-dimensional, the model/controller
approximation becomes essential. One would like to use the methods of balanced
truncation and LQG-balanced truncation in this case, too.

The existence of Lyapunov-balanced and LQG-balanced realizations for ir-
rational transfer functions is nontrivial. A necessary and sufficient condition
for the existence of Lyapunov-balanced realizations in discrete time was given
by Young [23], [22] (see [19, section 9.5] for the continuous-time case). A nec-
essary and sufficient condition for the existence of LQG-balanced realizations
for discrete-time systems was given in [16]. The first of the main results of the
present article shows the analogous result for the continuous-time case.

As in the finite-dimensional case it is essential for controller design to have
convergence in the H-infinity norm (for Lyapunov-balanced realizations) or the
gap-metric (for LQG-balanced realizations); see [2]. Additional assumptions
need to be made to ensure this. Under appropriate additional assumptions, a
priori error bounds ensuring such convergence were given in [5] for continuous-
time Lyapunov-balanced realizations and in [1] for discrete-time Lyapunov-
balanced realizations. The second of the main aims of the present article is
to provide a priori error bounds in the gap-metric for LQG-balanced realiza-
tions in both discrete and continuous time.

The class of continuous-time systems we consider is very general: it includes
virtually all causal time-invariant linear systems studied in the literature. De-
tails on this class of systems are given in section 4.

The proofs of our results are based on the discrete-time case [16] supple-
mented by recent results on coprime factorizations [3] and on the Cayley trans-
form and the linear quadratic regulator (LQR) problem [15], [12].
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2 LQG-balanced realizations: The finite-dimensional
case

In this section we review some of the results on finite-dimensional LQG-balanced
realizations. We consider systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t) +Du(t), (1)

where A,B,C,D are matrices of compatible dimensions. We consider the linear
quadratic regulator (LQR) problem for the cost functional

J(x0, u) :=
∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2 dt,

where y is given in terms of x0 and u by (1). The LQR problem consists of
finding for a given x0 that u for which J(x0, u) is minimal. As is well known, this
problem has a unique solution when the system is minimal: the optimal input
uopt is given by the state feedback uopt(t) = −(I +D∗D)−1(D∗C + B∗Q)x(t),
where Q is the unique nonnegative solution of the Riccati equation

A∗Q+QA+ C∗C = (C∗D +QB)(I +D∗D)−1(D∗C +B∗Q),

and the optimal cost is given by J(x0, u
opt) = 〈x0, Qx0〉. By duality the “opti-

mal filter cost” is given by 〈x0, Px0〉, where P is the unique nonnegative solution
of the Riccati equation

PA∗ −AP +BB∗ = (BD∗ + PC∗)(I +DD∗)−1(DB∗ + CP ).

The quantity 〈x0, Px0〉 can be interpreted as a measure of the difficulty of recon-
structing the initial state x0 from noisy measurements. The eigenvalues of the
product PQ are similarity invariants; their square roots are called the LQG-
characteristic values of the system. These invariants can be interpreted as a
measure of how important the subspace generated by the eigenvector is for the
compensator design. This can be seen from the LQG-balanced realization. An
LQG-balanced realization is a realization such that P = Q = Λ, where Λ is the
diagonal matrix containing the LQG-characteristic values. Let λi be the square
root of an eigenvalue of PQ with eigenvector xi of length one. Then, in the
LQG-balanced realization, the optimal cost with initial condition xi is λi and
the difficulty of reconstructing this initial state from noisy measurements is also
λi. The idea behind LQG-balanced truncation is to restrict the system to the
subspace generated by the eigenvectors corresponding to the largest eigenval-
ues. Since this subspace is most important for compensator design, the system
obtained by LQG-balanced truncation seems to be a reasonable approximation.
As mentioned in the introduction there is also an error bound which justifies
the above heuristics. Let δg denote the gap-metric (see Zhou and Doyle [24,
Chapter 7]), Σ the original (n-dimensional) system, and Σk the k-dimensional
LQG-balanced truncation. Then

δg(Σ,Σk) ≤ 2
n∑

i=k+1

λi√
1 + λ2

i

;
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see Mustafa and Glover [10, section 8.4.5].

3 Discrete-time systems

In this section we review the results in [16] on discrete-time infinite-dimensional
LQG-balanced realizations and give some extensions. The discrete-time case is
a key ingredient for the proof in continuous time.

Let U , X , Y be separable Hilbert spaces and[
A B
C D

]
∈ L

([
X
U

]
,

[
X
Y

])
.

Such a block operator will be called a discrete-time system. We will also denote
such a block operator using the notation [A,B;C,D] (we denote a block row
of operators by [X,Y ] and a block column by [X;Y ]). We denote the set of
nonnegative integers by Z+. For a given initial state x0 ∈ X and input u :
Z+ → U define the state x : Z+ → X and output y : Z+ → Y by

xn+1 = Axn +Bun, x0 = x0, yn = Cxn +Dun. (2)

A sequence h : Z+ → H is called Z-transformable if the power series
∞∑
i=0

hiz
i

has a positive radius of convergence. The Z-transform of a Z-transformable
sequence h is defined to be the sum of this series and is denoted by ĥ. For
operators A, B, C, D as above define the transfer function G : Dr → L(U ,Y)
by

G(z) = D +
∞∑
i=0

CAiBzi+1,

where Dr is defined to be the largest disc centered at the origin for which the
above sum converges (note that it definitely converges on the disc centered at
the origin with radius 1/r(A), where r(A) is the spectral radius of the operator
A). If the input sequence u is Z-transformable, then the output sequence y is
also Z-transformable, and if x0 = 0, then the Z-transform of the output is given
by

ŷ(z) = G(z)û(z)

on some neighborhood of the origin. The function D+Cz(I− zA)−1B is called
the characteristic function of the discrete-time system. Note that the transfer
function and the characteristic function are equal on some neighborhood of
the origin but may not be identically equal. A discrete-time system is called a
realization of the functionG ifG(z) = D+Cz(I−zA)−1B on some neighborhood
of the origin. Any L(U ,Y)-valued function that is holomorphic at the origin can
be realized as the transfer function of some discrete-time system. This discrete-
time system is far from unique.
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3.1 Lyapunov-balanced realizations in discrete time

Although we are studying LQG-balanced realizations, we do this by relating
them to Lyapunov-balanced realizations. In this subsection we review some
results on Lyapunov-balanced realizations that are needed in what follows. To
define what we exactly mean by a Lyapunov-balanced realization we first have
to define the input and output maps and the gramians of a discrete-time system.

The input map of a discrete-time system is defined for finitely nonzero u :
Z− → U by (here Z− is the set of negative integers)

Bu :=
∞∑
i=0

AiBu−i−1.

A discrete-time system is called approximately controllable if the range of B is
dense in X , and it is called input stable if B extends to a bounded operator
from l2(Z−;U) to X . For an input stable discrete-time system we define the
controllability gramian LB ∈ L(X ) by LB := BB∗.

The output map of a discrete-time system is defined for x ∈ X by

(Cx)k := CAkx, k ∈ Z+.

A discrete-time system is called approximately observable if C is one-to-one,
and it is called output stable if C is a bounded operator from X to l2(Z+;Y).
For an output stable discrete-time system we define the observability gramian
LC ∈ L(X ) by LC := C∗C. A discrete-time system is called minimal if it is both
approximately controllable and approximately observable.

The Hankel operator H of a discrete-time system is defined for finitely
nonzero u : Z− → U by

(Hu)k =
∞∑
i=0

CAiBuk−i−1, k ∈ Z+.

Note that H = CB and that H depends only on the transfer function of the
system.

Definition 3.1. A discrete-time system is called Lyapunov-balanced if it is
input and output stable and LB = LC , and it is called compact Lyapunov-
balanced if, in addition, LB = LC is compact.

Young [23], [22] proved that every holomorphic uniformly bounded func-
tion on the unit disc (i.e., every element of H∞(D,L(U ,Y))) has a minimal
Lyapunov-balanced realization. He also noted that if the Hankel operator that
has this given function as symbol is compact then there exists a minimal com-
pact Lyapunov-balanced realization. A simplification of the proof of Young
can be found in Peller [17, section 11.2] and an alternative proof can be found
in Staffans [19, section 9.5]. Young [23], [22] has also shown that minimal
Lyapunov-balanced realizations are unique up to a unitary transformation in
the state space. Let [A,B;C,D] be a compact Lyapunov-balanced realization
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and denote by P : X → X the projection onto the subspace spanned by the
eigenvectors of LB = LC corresponding to the largest n eigenvalues (eigen-
values are counted with multiplicity and it is assumed here that the n + 1st
eigenvalue is different from the nth eigenvalue). Then [PAP,PB;CP,D] is
called the n-dimensional truncated Lyapunov-balanced realization. Note that
the n-dimensional truncated Lyapunov-balanced realization may not be defined
for every n ∈ Z+ due to repeated eigenvalues. Since eigenvalues of compact
operators have finite multiplicity it is defined for infinitely many values of n.
When we mention n-dimensional truncated Lyapunov-balanced realizations in
what follows we will implictely assume that n is such that this notion is well
defined. A truncated Lyapunov-balanced realization is not unique, since the
Lyapunov-balanced realization is not. However, since two minimal Lyapunov-
balanced realizations of the same transfer function are unitarily equivalent, so
are all n-dimensional truncated balanced realizations. Consequently the transfer
function of an n-dimensional truncated balanced realization Gn is well defined.
The whole idea of Lyapunov-balanced realizations is that Gn is a good ap-
proximation of G. That this is indeed the case under certain conditions was
proven by Bonnet [1]. The result of Bonnet is the discrete-time version of the
continuous-time result in [5]. We summarize the results of Young and Bonnet in
the following theorem. We note that the singular values of a compact operator
T are the square roots of the eigenvalues of T ∗T and that an operator is called
nuclear if it is compact and its singular values form a summable sequence. The
Hankel singular values of a system are the singular values of its Hankel operator.

Theorem 3.2. 1. Every function in H∞(D,L(U ,Y)) has a minimal Lyapunov-
balanced realization. If the Hankel operator of the function is compact, then it
has a minimal compact Lyapunov-balanced realization.

2. If, in addition, the Hankel operator of the function is nuclear and the
input and output spaces are finite-dimensional, then

‖G−Gn‖∞ ≤ 2
∞∑

i=n+1

σi,

where Gn is the transfer function of a truncated compact Lyapunov-balanced
realization of G and the σi are the Hankel singular values.

Part 2 of the above theorem was proven in [1], following the continuous-time
version in [5], only for the case where the Hankel singular values are distinct.
As indicated in [5] the generalization to the case of possibly repeating Hankel
singular values is not difficult, except notationally. Details may be found in [14,
Chapter 10].

3.2 LQG-balanced realizations in discrete time

In this subsection we summarize the results obtained in [16] on LQG-balanced
realizations in discrete time. We also extend these by obtaining an error bound
on truncated compact LQG-balanced realizations.
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To exactly define the concept of an LQG-balanced discrete-time system we
first consider the LQR problem. This problem is as follows: for given x0 ∈ X
find an input u that minimizes

J(x0, u) :=
∞∑
n=0

‖un‖2 + ‖yn‖2, (3)

where y is given in terms of x0 and u by (2). We introduce the following concept:
a discrete-time system satisfies the finite cost condition if for every x0 ∈ X there
exists a u ∈ l2(Z+;U) such that the corresponding output y ∈ l2(Z+;Y). It is
well known (see, e.g., [4]) that if the finite cost condition is satisfied, then for
every x0 ∈ X there exists a unique uopt ∈ l2(Z+;U) that minimizes the cost
function (3) and there exists a bounded nonnegative operator Q such that the
minimal cost is given by 〈Qx0, x0〉. This operator Q is called the optimal cost
operator. Similarly, if for the dual system[

A B
C D

]∗
=
[
A∗ C∗

B∗ D∗

]
the finite cost condition is satisfied, then there exists an optimal cost operator
P for this dual system. This operator P is called the dual optimal cost operator
of the original system.

Definition 3.3. A discrete-time system is called LQG-balanced if it and its
dual both satisfy the finite cost condition and P = Q, and it is called compact
LQG-balanced if, in addition, P = Q is compact.

Below we state not only the main results obtained in [16], but also some
main steps in the proof. These intermediate results are also necessary to obtain
the continuous-time analogues.

The optimal cost operator satisfies the following Riccati equation:

A∗QA−Q+ C∗C = (C∗D +A∗QB)(I +D∗D +B∗QB)−1(B∗QA+D∗C).

The optimal input uopt can be given by a state feedback. To explain this we
consider the concept of an admissible state feedback pair.

Definition 3.4. An admissible state feedback pair for a discrete-time system
is a pair [K,F ] ∈ L([X ,U ],U) such that I − F is boundedly invertible. The
closed-loop system is given by

Acl := A+B(I − F )−1K, Bcl := B(I − F )−1,

Ccl :=
[

(I − F )−1K
C +D(I − F )−1K

]
, Dcl :=

[
(I − F )−1

D(I − F )−1

]
.

This closed-loop system is obtained by adding the equation un = Kxn +
Fun + rn to (2), considering [u; y] as the new output and r as the new input,
and solving. The state feedback pair

K := −(I+D∗D+B∗QB)−1/2(D∗C+B∗QA), F := I−(I+D∗D+B∗QB)−1/2
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is admissible and with zero input and initial condition x0 the output of the
closed-loop system is exactly [uopt; yopt], the optimal input and output for the
system [A,B;C,D]. The closed-loop system with this specific admissible state
feedback pair will be called the optimal closed-loop system corresponding to the
system [A,B;C,D].

We give some properties of the optimal closed-loop system that were proven
in [16] and some that follow from results in [3]. To formulate these we first recall
the concept of a (normalized) right coprime factor.

Definition 3.5. A function [M ;N ] ∈ H∞(D,L(U , [U ;Y])) is called a right
factor of a function G if M is invertible on some neighborhood of the origin and
G = NM−1 on this region. M and N as above are called right coprime if there
exists [X̃, Ỹ ] ∈ H∞(D,L([U ,Y],U)) such that X̃M − Ỹ N = I on the unit disc.
[M ;N ] as above is called normalized if M∗M + N∗N = I almost everywhere
on the unit circle.

We note that normalized right coprime factors are unique up to a unitary
transformation in L(U). The following theorem relates factorizations to the
optimal closed-loop system.

Theorem 3.6. If the system [A,B;C,D] satisfies the finite cost condition, then
the transfer function of its optimal closed-loop system is a normalized right
factor of its transfer function. If, in addition, the dual system also satisfies the
finite cost condition, then this factor is right coprime.

Proof. The first part of the proof follows from Corollary 5.8 of [16]. The
second part follows from Lemma 6.7 of [16] and the discrete-time version of
[3, Corollary 7.2].

Given a realization [Ǎ, B̌; [Č1; Č2], [Ď1; Ď2]] of a factor [M ;N ], we can obtain
a realization

A := Ǎ− B̌Ď−1
1 Č1, B := B̌Ď−1

1 , C := Č2 − Ď2Ď
−1
1 Č1, D := Ď2Ď

−1
1 (4)

of NM−1. This follows from [16, Lemma 5.7]. The next result shows how one
can obtain an LQG-balanced realization from a Lyapunov-balanced realization
of a normalized right coprime factor.

Theorem 3.7. Suppose that G has a normalized right coprime factor [M ;N ].
Let [Ǎ, B̌; [Č1; Č2], [Ď1; Ď2]] be a minimal Lyapunov-balanced realization of this
normalized right coprime factor. Define [A,B;C,D] by (4). Then [A,B;C,D]
and its dual both satisfy the finite cost condition; its optimal cost operator is L,
and its dual optimal cost operator is L(I−L2)−1, where L is the (controllability
and observability) gramian of the Lyapunov-balanced realization.

Proof. That [M ;N ] has a minimal Lyapunov-balanced realization follows
from Theorem 3.2. The rest follows from the first lines of the proof of [16,
Theorem 8.2].
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We note that I − L has a bounded inverse since the Hankel singular values
of the optimal closed-loop system are all strictly smaller than one. This last
fact follows from the coprimeness of the factorization as in [3, Corollary 7.2].

From the system [A,B;C,D] in Theorem 3.7 we obtain the LQG-balanced
realization [SAS−1, SB;CS−1, D], where S := (I − L2)−1/4. The following
theorem summarizes some properties of LQG-balanced realizations.

Theorem 3.8. 1. Let [Ai, Bi;Ci, Di] with i = 1, 2 be discrete-time systems that
satisfy the finite cost condition and whose duals also satisfy the finite cost con-
dition. If these two systems have the same transfer function, then the nonzero
elements of σ(P1Q1) equal the nonzero elements of σ(P2Q2).

2. If [A,B;C,D] and its dual both satisfy the finite cost condition, then its
transfer function has an LQG-balanced realization.

3. If [Ai, Bi;Ci, Di] with i = 1, 2 are two minimal LQG-balanced realizations
of the same transfer function, then there exists a unitary U ∈ L(X ) such that
[A1, B1;C1, D1] = [UA2U

−1, UB2;C2U
−1, D2].

Proof. 1. This is [16, Lemma 7.2] up to an additional assumption that was made
there. There it was assumed that the systems were approximately observable.
The reason for this was that in [16, Lemma 6.9] this assumption was needed.
It was shown in [3, Lemma 4.9] how this assumption can be removed from [16,
Lemma 6.9] and this implies that it can also be removed from [16, Lemma 7.2].

2. This is [16, Theorem 8.2].
3. This is [16, Lemma 8.3].

The square roots of the nonzero elements of σ(PQ) are called the LQG-
characteri-stic values. According to part 1 of Theorem 3.8 they do not depend
on the realization but only on the transfer function.

We now introduce the metric in which LQG-balanced approximations con-
verge under suitable assumptions. Assume both G1 and G2 have normalized
right coprime factors [M1;N1] and [M2;N2], respectively. Define for i = 1, 2 the
set Zi ⊂ H2(D, [U ;Y ]) by Zi = {(Miv;Niv) : v ∈ H2(D;U)}, and let Pi be the
orthogonal projection from H2(D, [U ;Y ]) onto Zi. Further define

δg(G1, G2) = ‖P1 − P2‖.

Note that this does not depend on the particular normalized right coprime
factors chosen. The function δg is called the gap-metric. More information on
the gap-metric can be found in [24, Chapter 17] and for nonrational functions
in [25]. What is important for us is that

δg(G1, G2) ≤
∥∥∥∥[ M1

N1

]
−
[
M2

N2

]∥∥∥∥
∞
. (5)

We define truncated LQG-balanced realizations similarly to truncated Lyapunov-
balanced realizations. The following new result provides an a priori error bound
in the gap-metric for truncated compact LQG-balanced realizations.
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Theorem 3.9. Suppose a discrete-time system satisfies the following assump-
tions:

• the finite cost condition is satisfied,

• the finite cost condition for the dual system is satisfied,

• the product PQ of the optimal cost operator and the dual optimal cost
operator is nuclear, and

• the input and output spaces are finite-dimensional.

Then the transfer function G has a compact LQG-balanced realization and

δg(G,Gn) ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

, (6)

where Gn is the transfer function of an n-dimensional truncated LQG-balanced
realization of G.

Proof. From Theorem 3.6 it follows that the transfer function of the given sys-
tem has a normalized right coprime factor. We show that the Hankel operator
of this normalized right coprime factor is nuclear. It follows from [16, Lem-
mas 5.1 and 6.9] that LBLC = (I + PQ)−1PQ, where LB is the controllability
gramian of the optimal closed-loop system and LC is its observability gramian.
Since the product PQ is assumed compact, this shows that the product LBLC
is compact. The eigenvalues are related by

µi =
σi√

1− σ2
i

, σi =
µi√

1 + µ2
i

, (7)

where the µi are the square roots of the eigenvalues of PQ and the σi are the
square roots of the eigenvalues of LBLC . This shows that the square roots of
the eigenvalues of LBLC are summable. Denote the Hankel operator of the
normalized right coprime factor by Γ. As in [16, Lemma 7.2] it follows that the
spectrum of Γ∗Γ equals the spectrum of LBLC and the point spectrum of Γ∗Γ
equals the point spectrum of LBLC (both with the possible exception of zero).
This shows that Γ∗Γ has only point spectrum (with the possible exception of
zero) and that the square roots of the eigenvalues are summable. This shows
that the Hankel operator is nuclear.

Denote the normalized eigenvectors of the gramian L of the Lyapunov-
balanced realization of the normalized coprime factor by en. Since for the opti-
mal control operators of the LQG-balanced realization we have P bal = Qbal =
L(I − L2)−1/2 from Theorem 3.7 we see that this LQG-balanced realization
is actually compact LQG-balanced, and the corresponding orthonormal basis is
{en}. We note that the projections associated to Lyapunov-balanced truncation
and to LQG-balanced truncation are equal, since the orthonormal bases (includ-
ing order) are identical. We conclude that the system obtained by applying (4)
to the truncated Lyapunov-balanced realization is the truncated LQG-balanced
realization. From Theorem 3.2, (5), and (7) we now obtain the estimate (6).
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4 Resolvent linear systems

In this section we recall the concept of a distributional resolvent linear system
introduced in [12].

A finite-dimensional linear system is usually described by specifying four
matrices A,B,C,D and defining for a given initial state x0 and an input function
u ∈ L2

loc(0,∞; Cm) the state x ∈ C(0,∞; Cn) and the output y ∈ L2
loc(0,∞; Cp)

as the unique solutions of

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t) +Du(t). (8)

As is well known, these unique solutions are given explicitly by

x(t) = eAtx0 +
∫ t

0

eA(t−s)Bu(s) ds, (9)

y(t) = CeAtx0 +
∫ t

0

CeA(t−s)Bu(s) ds+Du(t).

If we Laplace-transform (8) and solve for x and y, we obtain

x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s), (10)

ŷ(s) = C(sI −A)−1x0 +
(
C(sI −A)−1B +D

)
û(s).

Our approach to infinite-dimensional systems will be to generalize situation (10)
rather than situation (8) or (9).

We first study the generalizations of the matrix-valued functions (sI−A)−1,
(sI −A)−1B, C(sI −A)−1, and C(sI −A)−1B +D.

Definition 4.1. A resolvent linear system on a triple of Hilbert spaces (U ,X ,Y)
consists of a nonempty connected open subset Λ of the complex plane and four
operator valued functions a, b, c, d satisfying

a : Λ→ L(X ) satisfies

a(β)− a(α) = (α− β)a(β)a(α) for all α, β ∈ Λ; (11)

b : Λ→ L(U ,X ) satisfies

b(β)− b(α) = (α− β)a(β)b(α) for all α, β ∈ Λ; (12)

c : Λ→ L(X ,Y) satisfies

c(β)− c(α) = (α− β)c(α)a(β) for all α, β ∈ Λ; (13)

d : Λ→ L(U ,Y) satisfies

d(β)− d(α) = (α− β)c(β)b(α) for all α, β ∈ Λ. (14)

The function a is called the pseudoresolvent, b is the incoming wave function,
c is the outgoing wave function, and d is the characteristic function of the
resolvent linear system.
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Figure 1: A typical example of the boundary of an exponential region

The motivation for introducing this class of systems is the following connec-
tion with discrete-time systems.

Definition 4.2. Let α > 0. The Cayley transform with parameter α of a
resolvent linear system with α ∈ Λ is the discrete-time system

Ad := −I + 2α a(α), Bd :=
√

2α b(α), (15)

Cd :=
√

2α c(α), Dd := d(α). (16)

Remark 4.3. The Cayley transform with parameter α gives a one-to-one corre-
spondence between the set of resolvent linear systems with α ∈ Λ and the set
of discrete-time systems.

The following relation between the characteristic function of a resolvent lin-
ear system and that of its Cayley transform is easily proven: G(s) = Gd(z),
where z := (α− s)/(α+ s).

We define two subclasses of resolvent linear systems for which one can make
sense of the dynamical system (10).

Definition 4.4. A distributional resolvent linear system is a resolvent linear
system with the additional property that there exist constants α, β > 0 and a
polynomial p such that

ΛE := {s ∈ C : Re s ≥ β, |Im s| ≤ eαRe s} ⊂ Λ (17)

and
‖a(s)‖ ≤ p(|s|) for all s ∈ ΛE . (18)

A region ΛE as above is called an exponential region (see Figure 1 for a
sketch of the boundary of such a region).

It is easily seen using the functional equations from Definition 4.1 that the
functions b, c, and d of a distributional resolvent linear system are also bounded
in norm by a polynomial on the exponential region ΛE .

12



Definition 4.5. A distributional resolvent linear system is called exponentially
bounded if there exist a constant γ > 0 and a polynomial p such that

ΛH := {s ∈ C : Re s ≥ γ} ⊂ Λ (19)

and
‖a(s)‖ ≤ p(|s|) for all s ∈ ΛH . (20)

Note that the difference between Definitions 4.4 and 4.5 is in the region
considered.

Remark 4.6. The term “exponentially bounded” stems from time-domain prop-
erties of this subclass. In [12] exponentially bounded distributional resolvent
linear systems were called integrated resolvent linear systems. In view of the
time-domain results in [13] the term exponentially bounded distributional re-
solvent linear system, however, seems to be more appropriate.

Remark 4.7. In what follows we will need the following well-known characteri-
zation of Laplace transformable Banach space valued distributions by Schwartz.
The image of the Schwartz–Laplace transformable Banach space valued distri-
butions is exactly the set of polynomially bounded analytic functions defined
on some right half-plane. For details see [18]. A generalization of this Laplace
transform was given by Kunstmann. He defined the Laplace transform in such
a way that the image of the set of Laplace transformable distributions is ex-
actly the set of functions that are analytic and polynomially bounded on an
exponential region (see Kunstmann [8]).

Definition 4.8. The state x and output y of a distributional resolvent lin-
ear system corresponding to the initial state x0 ∈ X and the input u (a U-
valued Kunstmann–Laplace transformable distribution) are defined through their
Kunstmann–Laplace
transforms as

x̂(s) := a(s)x0 + b(s)û(s), ŷ(s) := c(s)x0 + d(s)û(s). (21)
For the case of exponentially bounded distributional resolvent linear sys-

tems, if we restrict u to be Schwartz–Laplace transformable, then x and y are
Schwartz–Laplace transformable.

For a distributional resolvent linear system we define the set of stable input-
output pairs

V(x0) :=
{[

u
y

]
∈
[
L2(R+;U)
L2(R+;Y)

]
: y satisfies (21)

}
.

Definition 4.9. We say that a distributional resolvent linear system satisfies
the finite cost condition if for every x0 ∈ X the set V(x0) is nonempty.

For α > 0 the mapping Hd : H2(C+
0 ;H) → H2(D;H), where H is a Hilbert

space, is unitary. Here Hd is defined by

(Hdg)(z) =
√

2α
1 + z

g

(
α

1− z
1 + z

)
, (22)
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with its inverse given by

(H−1
d f)(s) =

√
2α

α+ s
f

(
α− s
α+ s

)
. (23)

C+
0 is the right half-plane and H2 is a Hardy space. The following theorem

shows that, for a suitably chosen parameter α, there is a one-to-one relationship
between the stable input-output pairs of a distributional resolvent linear system
and those of its Cayley transform.

Theorem 4.10. Let (a, b, c, d) be a distributional resolvent linear system with
α ∈ ΛE, where α > 0. Let [Ad, Bd;Cd, Dd] be its Cayley transform with param-
eter α. Then (u; y) ∈ V(x0) if and only if (Hdu;Hdy) ∈ Vd(x0).

The following is [12, Lemma 9].

Lemma 4.11. For a distributional resolvent linear system on a triple of Hilbert
spaces for which the finite cost condition is satisfied there exists a nonnegative
operator Q ∈ L(X ) such that the optimal cost for the cost function∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2 dt (24)

is given by 〈Qx0, x0〉. This Q satisfies the Riccati equation

−a(α)∗Q−Qa(α) + 2αa(α)∗Qa(α) + c(α)∗c(α)

= (c(α)∗d(α)−Qb(α) + 2αa(α)∗Qb(α))

(I + d(α)∗d(α) + 2αb(α)∗Qb(α))−1

(d(α)∗c(α)− b(α)∗Q+ 2αb(α)∗Qa(α))

for all α ∈ ΛE.

The operator Q mentioned above is called the optimal cost operator of the
distributional resolvent linear system. We now study admissible state feedbacks.

Definition 4.12. An admissible state feedback pair for a distributional resol-
vent linear system is a pair [k, f] : ΛE → L(X × U ,U) that satisfies

k(β)− k(α) = (α− β)k(α)a(β),
f(β)− f(α) = (α− β)k(β)b(α),

and such that (I−f(s))−1 exists and is polynomially bounded on some exponential
region.

The closed-loop system of a distributional resolvent linear system with an
admissible state feedback pair is the distributional resolvent linear system

acl := a + b(I − f)−1k, bcl := b(I − f)−1,

ccl :=
[

(I − f)−1k
c + d(I − f)−1k

]
, dcl :=

[
(I − f)−1

d(I − f)−1

]
.

14



It can be easily checked that this is indeed a distributional resolvent linear
system. The exponential region on which this closed-loop system is defined is
the largest exponential region contained in the intersection of the exponential
region on which the original system was defined and the exponential region on
which (I − f)−1 exists and is polynomially bounded.

The following is [12, Lemma 8].

Lemma 4.13. For a distributional resolvent linear system on a triple of Hilbert
spaces for which the finite cost condition is satisfied there exists an admissible
state feedback pair such that the optimal control uopt for the cost function (24)
is given by ûopt(s) = (I − f(s))−1k(s)x0 for s ∈ ΛE.

Remark 4.14. A proper proof of Lemma 4.13 is given in [12, Lemma 8]. We do
want to mention the main idea of the proof. First, one Cayley-transforms the
system with a suitable parameter α. One then defines k(α) and f(α) in terms
of the optimal admissible state feedback pair [K,F ] of the Cayley-transformed
system. The functions k and f are then extended to ΛE using the functional
equations from Definition 4.12. In the specific case of the optimal state feedback
it is simple to prove that (I − f)−1 exists and is polynomially bounded on an
exponential region: its Cayley transform equals the denominator Md of the
normalized right factor mentioned in Theorem 3.6. So the Cayley transform of
(I − f)−1 is in H∞ of the unit disc, from which it follows that (I − f)−1 is in
H∞ of the right half-plane.

Definition 4.15. An admissible state feedback pair for an exponentially bounded
distributional resolvent linear system is a pair [k, f] : ΛH → L(X × U ,U) that
satisfies

k(β)− k(α) = (α− β)k(α)a(β),
f(β)− f(α) = (α− β)k(β)b(α),

and such that (I − f(s))−1 exists and is polynomially bounded on some right
half-plane.

The closed-loop system of an exponentially bounded distributional resolvent
linear system and an admissible state feedback pair in the sense of Definition 4.15
is easily seen to be an exponentially bounded distributional resolvent linear
system. Theorem 4.13 holds for exponentially bounded distributional resolvent
linear systems with admissible state feedback operator now understood in the
stronger sense of Definition 4.15.

Definition 4.16. The dual of a resolvent linear system a, b, c, d is the resolvent
linear system

ad(s) := a(s̄)∗, bd(s) := c(s̄)∗, cd(s) := b(s̄)∗, dd(s) := d(s̄)∗.
Note that the dual of a distributional resolvent linear system is a distribu-

tional resolvent linear system and that the dual of an exponentially bounded
distributional resolvent linear system is an exponentially bounded distributional
resolvent linear system.
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The concept of approximate observability has a natural generalization to
distributional resolvent linear systems.

Definition 4.17. A distributional resolvent linear system is said to be approx-
imately observable if for zero input the output is zero if and only if the initial
state is zero.

Note that a distributional resolvent linear system is approximately observ-
able if and only if c(s)x0 = 0 for all s ∈ ΛE implies x0 = 0.

Definition 4.18. A distributional resolvent linear system is said to be approx-
imately controllable if its dual system is approximately observable. It is called
minimal if it is both approximately controllable and approximately observable.

It is easily seen that a distributional resolvent linear system is approximately
controllable (observable) if and only if its Cayley transform with a parameter
α ∈ ΛE is.

We denote by H∞(C+
0 , E) the Hardy space of uniformly bounded E-valued

analytic functions defined on the right half-plane, where E is a Banach space.

Definition 4.19. Let ΛE be an exponential region. A function G : ΛE →
L(U ,Y), is said to have a right factorization if there exist N ∈ H∞(C+

0 ,L(U ,Y))
and M ∈ H∞(C+

0 ,L(U)) such that M(s)−1 exists for all s ∈ ΛE and G =
NM−1 on ΛE.

This factorization is called normalized if [M ;N ] is inner, i.e., if for almost
all ω ∈ R we have

Mb(iω)∗Mb(iω) +Nb(iω)∗Nb(iω) = I,

where Mb and Nb are the boundary functions of M and N , respectively.
This factorization is called right coprime if there exist X̃ ∈ H∞(C+

0 ,L(U)),
Ỹ ∈ H∞(C+

0 ,L(Y,U)) such that

X̃M − Ỹ N = I on C+
0 . (25)

Using the Cayley transform, we obtain from Theorem 3.6 the following the-
orem.

Theorem 4.20. If a distributional resolvent linear system satisfies the finite
cost condition, then its characteristic function has a normalized right factor. If,
in addition, the dual finite cost condition is satisfied, then this factor is right
coprime.

The above theorem is a slight generalization of [3, Theorem 8.9]. The proof
is almost identical; one simply replaces the reciprocal transform used there by
the Cayley transform with a suitable parameter (i.e., positive and in ΛE). The
relation between characteristic functions mentioned in Remark 4.3 is of course
essential.
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5 Well-posed linear systems

We now show how the well-known class of well-posed linear systems fits into our
framework.

Definition 5.1. A resolvent linear system is called well-posed if

1. the pseudoresolvent is the resolvent of the generator of a strongly contin-
uous semigroup T ;

2. for every x ∈ X the function cx restricts to a function in H2(C+
ω ;Y),

where ω is some real number strictly larger than the growth bound of T ;

3. for every x ∈ X the function bdx restricts to a function in H2(C+
ω ;U),

where ω is some real number strictly larger than the growth bound of T ;
and

4. d restricts to a function in H∞(C+
ω ;L(U ,Y)), where ω is some real number

strictly larger than the growth bound of T .
The above definition is equivalent to the usual time-domain definition.

Definition 5.2. An admissible state feedback pair for a well-posed linear sys-
tem is a pair [k, f] : C+

ω → L(X × U ,U) that satisfies

k(β)− k(α) = (α− β)k(α)a(β),
f(β)− f(α) = (α− β)k(β)b(α),

and such that for every x ∈ X the function kx restricts to a function in H2(C+
ω ;U),

the function f restricts to a function in H∞(C+
ω ;L(U)), and (I − f(s))−1 exists

and is uniformly bounded on some right half-plane.

The above definition is equivalent to the time-domain definition in [19]. In
[19] it is shown that the closed-loop system of a well-posed linear system with
an admissible state feedback in the sense of Definition 5.2 is a well-posed linear
system.

6 LQG-balanced realizations

In this section we prove the continuous-time analogues of the discrete-time re-
sults of section 3.2.

Definition 6.1. For a distributional resolvent linear system that satisfies both
the finite cost condition and the dual finite cost condition the nonzero elements
of the set

√
σ(PQ), where Q is the optimal cost operator of the system and P

is the optimal cost operator of the dual system, are called LQG-characteristic
values.

The following theorem shows that the LQG-characteristic values depend only
on the characteristic function.
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Theorem 6.2. Two distributional resolvent linear systems that both satisfy
both the finite cost condition and the dual finite cost condition and whose char-
acteristic functions are equal on an exponential region have the same set of
LQG-characteristic values.

Proof. Cayley-transform both distributional resolvent linear systems with a pa-
rameter which is in the exponential region of both. The transfer functions of
the Cayley-transformed systems then agree in some neighborhood of zero. It
follows from Theorem 3.8 that the LQG-characteristic values of these Cayley-
transformed systems are equal. The LQG-characteristic values of a distribu-
tional resolvent linear system and its Cayley transform are equal, since the
optimal cost operators are equal (which follows from Theorem 4.10). Hence it
follows that the LQG-characteristic values of the two distributional resolvent
linear systems are equal.

Definition 6.3. A distributional resolvent linear system is called LQG-balanced
if it and its dual both satisfy the finite cost condition and if the optimal cost
operators of the system and that of its dual are equal. It is called compact
LQG-balanced if, in addition, this operator is compact.

The following theorem gives a necessary and sufficient condition for the
existence of LQG-balanced realizations.

Theorem 6.4. An L(U ,Y)-valued holomorphic function, defined and polyno-
mially bounded on an exponential region, has a normalized right coprime factor
if and only if it has an LQG-balanced realization.

Proof. Assume the given function d has a normalized right coprime factor [M ;N ].
It follows from [11] or [19, section 9.5] that [M ;N ] has a minimal well-posed
Lyapunov-balanced realization aL, bL, [c1L; c2L], [M ;N ]. Consider the well-posed
linear system aL, bL, c2L, N and the feedback pair [k, f] := [−c1L, I −M ]. This
feedback pair is admissible for the given system: the algebraic relations easily
follow from the fact that the Lyapunov-balanced system is a resolvent linear
system (even a well-posed linear system). Since (I − f(s))−1 = M−1 it remains
to show that M−1 is polynomially bounded on some exponential region. This
follows from the equation M−1 = X−Y d on ΛE , which follows from the Bezout
equation (25). The closed-loop system of the above system with the given feed-
back pair is aL − bLM

−1c1L, bLM
−1, [−M−1c1L; c2L −NM−1c1L], [M−1;NM−1].

It follows that this is a distributional resolvent linear system. We drop one of
the components and obtain the following distributional resolvent linear system:

as := aL − bLM
−1c1L, bs := bLM

−1, cs := c2L −NM−1c1L, ds := NM−1.
(26)

Now choose α > 0 in the intersection of the exponential regions of all the systems
considered above and Cayley-transform these systems with this parameter. It is
obvious from the constructions and Theorem 3.7 that the system (26) has L as its
optimal cost operator and L(I−L2)−1 as its dual optimal cost operator, where L
is the gramian of the Lyapunov-balanced realization. Define S := (I −L2)−1/4,
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and define al := SasS
−1, bl := Sb, cl := cS−1, dl = ds. We conclude that al,

bl, cl, dl is LQG-balanced. Since dl = NM−1 = d this distributional resolvent
linear system is an LQG-balanced realization of d.

The converse trivially follows from Theorem 4.20.

Theorem 6.4 can be rephrased in terms of realizations as follows. Here
Theorem 4.20 is used.

Corollary 6.5. For a distributional resolvent linear system that satisfies both
the finite cost condition and the dual finite cost condition there exists an LQG-
balanced distributional resolvent linear system such that the characteristic func-
tions of these two systems are equal on some exponential region.

The following two corollaries show that in the special cases of exponentially
bounded distributional resolvent linear systems and well-posed linear systems
the LQG-balanced realization belongs to the same class.

Corollary 6.6. For an exponentially bounded distributional resolvent linear sys-
tem that satisfies both the finite cost condition and the dual finite cost condition
there exists an LQG-balanced exponentially bounded distributional resolvent lin-
ear system such that the characteristic functions of these two systems are equal
on some right half-plane.

Proof. This follows from the proof of Theorem 6.4 noting that the Bezout equa-
tion now shows that the feedback is admissible in the sense of Definition 4.15.

Corollary 6.7. For a well-posed linear system that satisfies both the finite cost
condition and the dual finite cost condition there exists an LQG-balanced well-
posed linear system such that the characteristic functions of these two systems
are equal on some right half-plane.

Proof. This follows from the proof of Theorem 6.4 noting that the Bezout equa-
tion now shows that the feedback is admissible in the sense of Definition 5.2.

Let a, b, c, d be an LQG-balanced distributional resolvent linear system,
and let U ∈ L(X ) be unitary. Then obviously UaU∗, Ub, cU∗, d is also an
LQG-balanced distributional resolvent linear system. The next theorem shows
that these are all LQG-balanced distributional resolvent linear systems with
characteristic function d if we assume a minimality assumption on the state
space.

Theorem 6.8. If two distributional resolvent linear systems whose characteris-
tic functions agree on some exponential region are both LQG-balanced, approx-
imately controllable, and approximately observable, then there exists a unitary
state-space transformation between them.
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Proof. Choose a parameter that is in the exponential region of both systems,
and Cayley-transform both systems with this parameter. The resulting systems
are LQG-balanced, approximately controllable, and approximately observable
and have the same transfer function. It follows from part 3 of Theorem 3.8 that
these discrete-time systems are unitarily equivalent. From this it follows that
the distributional resolvent linear systems are unitarily equivalent.

The gap-metric in continuous time is defined in exactly the same way as was
done in discrete time in section 3.2, but with the unit disc D replaced by the right
half-plane C+

0 . It is easily seen that the distance between two systems equals
the distance between their Cayley transforms (taken with the same parameter,
obviously).

Using the Cayley transform, the following theorem follows immediately from
Theorem 3.9.

Theorem 6.9. Suppose a distributional resolvent linear system satisfies the
following assumptions:

• the finite cost condition is satisfied,

• the finite cost condition for the dual system is satisfied,

• the product PQ of the optimal cost operator and the dual optimal cost
operator is nuclear, and

• the input and output spaces are finite-dimensional.

Then there exists a compact LQG-balanced distributional resolvent linear system
whose characteristic function equals the characteristic function of the original
system on some exponential region and

δg(d, Gn) ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

, (27)

where Gn is the transfer function of an n-dimensional truncated LQG-balanced
realization.

7 Conclusions

In this article we have obtained existence and uniqueness results for LQG-
balanced realizations for continuous-time infinite-dimensional systems. We also
obtained a priori error bounds in the gap-metric for both the continuous-time
and the discrete-time cases.
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