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Abstract

We introduce the new concept of a distributional control system.
This class of systems is the natural generalization of distribution semi-
groups to input/state/output systems. We show that, under the
Laplace transform, this new class of systems is equivalent to the class
of distributional resolvent linear systems which we introduced in an
earlier article. There we showed that this latter class of systems is
the correct abstract setting in which to study many non-well-posed
control systems such as the heat equation with Dirichlet control and
Neumann observation. In this article we further show that any holo-
morphic function defined and polynomially bounded on some right
half-plane can be realized as the transfer function of some exponen-
tially bounded distributional resolvent linear system.

1 Introduction

In [12] Lions introduced the concept of a distribution semigroup. This was
subsequently studied by many authors (among them Chazarain [2], Arendt
et. al. [1], Kunstmann [10] and Kisynski [8, 9]). The reason for the intro-
duction of distribution semigroups was the study of Cauchy problems that
are not well-posed. A well-known example of such a non-well-posed Cauchy
problem is the Schrödinger equation on Lp with p 6= 2. In [13] we pointed
out that distribution semigroups are a very useful tool for another type of
problem as well. This application is in the field of control theory, where not
Cauchy problems but problems of the following type are studied:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 y(t) = Cx(t) +Du(t).
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Here A,B,C,D are (in general unbounded) operators on Banach spaces. Such
a control system is called well-posed if, for every t > 0, the map [x0, u] 7→
[x(t), y] is bounded from X×L2(0, t;U) to X×L2(0, t;Y ) (for sake of brevity
we are being a little bit sloppy here, see [18] for the precise details). This
class can be seen as the natural analogue of well-posed Cauchy problems and
the theory of strongly continuous semigroups plays an important role in the
theory of these well-posed linear systems. Not all interesting control systems
are however well-posed. This of course happens when the associated Cauchy
problem is not well-posed, but it can also happen when the associated Cauchy
problem is well-posed. A particular example of this latter case is the heat
equation with Dirichlet control and Neumann observation (see [13, Section 4]
for details). The non-well-posedness here is due to the effect of the control u
and the observation y. In this article we continue the investigation into non-
well-posed control systems initiated in [13]. In Section 2 we introduce the new
concept of a distributional control system (this is the natural generalization
of the concept of distribution semigroup). In Section 3 we recall the concept
of a resolvent linear system (this is the natural generalization of the concept
of resolvent) and the subclass of distributional resolvent linear systems from
[13]. In Section 4 we recall the Laplace transformation for certain classes of
distributions. Section 5 shows that the class of distributional control systems
and the class of distributional resolvent linear systems are equivalent via the
Laplace transform. Finally, in Section 6 we take up the issue of realization
theory.

1.1 Some notation

Denote by D the space of infinitely differentiable functions from R to C with
compact support equipped with its usual inductive limit topology. Let ∗0

denote the convolution-like mapping

f ∗0 g(t) =

∫ t

0

f(s)g(t− s) ds. (1)

Notice that if f is differentiable, then f ∗0 g is too, and

(f ∗0 g)′ = f ′ ∗0 g + f(0)g. (2)

Denote byD′(X ) the space of all continuous linear mappingsD → X supplied
with the topology of uniform convergence on the bounded subsets of D (here
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X is a Banach space). We denote the subset of elements with support in
[0,∞) by D′0(X ) and the subset of elements with support bounded to the
left by D′l(X ). By D+ we denote the set of restrictions of functions in D to
[0,∞).

2 Distributional control systems

In control theory one is interested in systems that can be described as

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t) +Du(t). (3)

In the classical case A, B, C and D are matrices of compatible dimensions
and the solutions are given explicitly by

x(t) = eAtx0+

∫ t

0

eA(t−s)Bu(s) ds, y(t) = CeAtx0+

∫ t

0

CeA(t−s)Bu(s) ds+Du(t).

(4)

Or in terms of Laplace transforms the solutions are given by

x̂(s) = (sI − A)−1x0 + (sI − A)−1Bû(s) (5)

ŷ(s) = C(sI − A)−1x0 +
(
C(sI − A)−1B +D

)
û(s).

Many systems described by partial differential equations or delay-differential
equations can also be described (in some sense) in the forms (3), (4), (5).
One does have to impose certain continuity assumptions and the main goal
is to impose assumptions that are weak enough to cover all interesting ex-
amples and strong enough to be able to solve all interesting problems. Of
course such a set of continuity assumptions does not exist and one has to find
a compromise between a “large class of systems” and a “large class of prob-
lems”. We refer to [3] and [18] for more background on infinite-dimensional
systems.

Our motivation in writing [13] was to find a class of systems that included
(almost) all interesting examples and for which some interesting problems
could be solved at such a high level of generality. This article was based on
the representation (5). We called our class distributional resolvent linear sys-
tems. In [13] and [4], [5], [14] some interesting control problems were indeed
solved at this level of generality. The purpose of this article is to show how,
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starting from (a generalization of) the representation (4), one can obtain the
same class of systems (up to Laplace transformation of course).

As starting point we take the “impulse responses” of the system:

A(t) = eAt, B(t) = eAtB, C(t) = CeAt, D = CeAtB +Dδ.

These satisfy certain equations, e.g.

A(t+ s) = A(t)A(s),

B(t+ s) = A(t)B(s),

C(t+ s) = C(t)A(s).

Our generalization is as follows.

Definition 2.1 A distributional control system on a triple of Banach spaces
(U ,X ,Y) is a distribution[

A B
C D

]
∈ D′0(L (X × U ,X × Y)),

that satisfies for all ϕ, ψ ∈ D

A(ϕ ∗0 ψ) = A(ϕ)A(ψ), (6)

B(ϕ ∗0 ψ) = A(ϕ)B(ψ), (7)

C(ϕ ∗0 ψ) = C(ϕ)A(ψ), (8)

D(ϕ ∗0 ψ) = C(ϕ)B(ψ). (9)

Remark 2.2 A distributional control system defines a time-invariant causal
continuous operator from D′l(X ×U) to D′l(X ×Y) by convolution. It is this
operator that generalizes the integral representation (4).

The distribution A with the functional equation (6) as above is a distribution
semigroup. As defined above it is actually a generalization of the concept
introduced by Lions [12]. This generalization was called a quasi-distribution
semigroup by Wang [19], a pre-distribution semigroup by Kunstmann [10]
and simply a distribution semigroup by Kisynski [9]. We refer to these articles
and the references therein for more on distribution semigroups.

The following proposition gives an alternative characterization of distri-
butional control systems.
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Proposition 2.3 The distribution[
A B
C D

]
∈ D′0(L (X × U ,X × Y))

is a distributional control system if and only if for all ϕ, ψ ∈ D

ψ(0)A(ϕ)− ϕ(0)A(ψ) = A(ϕ′)A(ψ)− A(ϕ)A(ψ′), (10)

ψ(0)B(ϕ)− ϕ(0)B(ψ) = A(ϕ′)B(ψ)− A(ϕ)B(ψ′), (11)

ψ(0)C(ϕ)− ϕ(0)C(ψ) = C(ψ)A(ϕ′)− C(ψ′)A(ϕ), (12)

ψ(0)D(ϕ)− ϕ(0)D(ψ) = C(ϕ′)B(ψ)− C(ϕ)B(ψ′). (13)

Proof That the first equation given here is equivalent to the first equation
in Definition 2.1 is proven in Kisynksi [8, Theorem 2.6]. The equivalence of
the other equations given here to their counterparts in Definition 2.1 follow
using exactly the same arguments. We will give the details for the fourth
equation.

It follows from (2) that

ψ(0)ϕ− ϕ(0)ψ = ϕ′ ∗0 ψ − ϕ ∗0 ψ
′

since both ϕ∗0ψ
′+ψ(0)ϕ and ϕ′∗0ψ+ϕ(0)ψ are equal to (ϕ∗0ψ)′. Applying

D to this equation and using (9) gives (13). To prove the converse we define
the shift operators τ t on the spaces of functions R→ C to itself by (τ tf)(s) =
f(t+ s). Let ϕ, ψ ∈ D and let a be such that ϕ(s) = 0 for all s ≥ a. If a < 0
then, using that C and D have support in [0,∞), (13) reads 0 = 0 and we
are done. So suppose a ≥ 0.

Applying (13) to τ tϕ and τ−tψ we obtain

ψ(−t)D(τ tϕ)− ϕ(t)D(τ−tψ) = C(τ tϕ′)B(τ−tψ)− C(τ tϕ)B(τ−tψ′)

and we note that the last expression is equal to

d

dt

[
C(τ tϕ)B(τ−tψ)

]
.

We have

C(ϕ)B(ψ) = −
∫ a

0

d

dt

[
C(τ tϕ)B(τ−tψ)

]
dt,
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where we have used that C(τaϕ) = 0 since (τaϕ)(s) = 0 for s ≥ 0 and
supp C ⊂ [0,∞). Hence we have

C(ϕ)B(ψ) =

∫ a

0

ϕ(t)D(τ−tψ)− ψ(−t)D(τ tϕ) dt,

the right-hand side of which equals D(ϕ ∗0 ψ) since∫ a

0

ϕ(t)ψ(s− t)− ψ(−t)ϕ(s+ t) dt =

∫ a

0

ϕ(t)ψ(s− t) dt−
∫ s+a

s

ψ(t)ϕ(s+ t) dt

=

∫ s

0

ϕ(t)ψ(s− t) dt = ϕ ∗0 ψ(s)

by supp ϕ ⊂ (−∞, a]. �

3 Distributional resolvent linear systems

We now briefly review the situation (5) that was treated in [13]. We first
consider the generalizations of the matrix-valued functions (sI−A)−1, (sI−
A)−1B, C(sI − A)−1 and C(sI − A)−1B +D as given in [13].

Definition 3.1 A resolvent linear system on a triple of Banach spaces (U ,X ,Y)
consists of a nonempty open connected subset Λ of the complex plane and four
operator valued function a, b, c, d such that
a : Λ→ L(X ) satisfies

a(β)− a(α) = (α− β)a(β)a(α) for all α, β ∈ Λ. (14)

b : Λ→ L(U ,X ) satisfies

b(β)− b(α) = (α− β)a(β)b(α) for all α, β ∈ Λ. (15)

c : Λ→ L(X ,Y) satisfies

c(β)− c(α) = (α− β)c(α)a(β) for all α, β ∈ Λ. (16)

d : Λ→ L(U ,Y) satisfies

d(β)− d(α) = (α− β)c(β)b(α) for all α, β ∈ Λ. (17)

The function a is called the pseudoresolvent, b the incoming wave function, c

the outgoing wave function and d the characteristic function of the resolvent
linear system.
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The following subclass was also identified in [13].

Definition 3.2 A distributional resolvent linear system is a resolvent linear
system with the additional propery that there exist constants α > 0, β ∈ R
and a polynomial p such that

ΛE(α, β) := {s ∈ C : Re s ≥ β, |Im s| ≤ eαRe s} ⊂ Λ (18)

and

‖a(s)‖ ≤ p(|s|) ∀ s ∈ ΛE. (19)

A region ΛE as above is called an exponential region (see [1]). Note that the
wavefunctions and characteristic function of a distributional resolvent linear
system are also polynomially bounded on ΛE (this follows from the equations
in Definition 3.1).

Equivalently we could assume that the pseudoresolvent is polynomially
bounded on a logarithmic region. A logarithmic region is a region of the form

ΛL(a, b, c) := {s ∈ C : Re s ≥ c,Re s ≥ 1

a
log |s|+ b} (20)

with a > 0 and b, c ∈ R. This is true since one can show that an exponential
region is contained in a logarithmic region is contained in an exponential
region (see [1]).

In [13] also a subclass of distributional resolvent linear systems was in-
troduced, namely the following.

Definition 3.3 A distributional resolvent linear system is called exponen-
tially bounded if there exists a γ ∈ R and a polynomial p such that

ΛH(γ) := {s ∈ C : Re s ≥ γ} ⊂ Λ (21)

and

‖a(s)‖ ≤ p(|s|) ∀ s ∈ ΛH . (22)

This subclass was called integrated resolvent linear systems in [13], but in
Section 5 we will see that exponentially bounded distributional resolvent
linear system is a better term.
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Remark 3.4 We briefly consider a relation between resolvent linear systems
and descriptor systems (also known as generalized state space systems, sin-
gular systems, differential algebraic systems; see [6] for an account of finite-
dimensional descriptor systems, infinite-dimensional descriptor systems do
not seem to have been intensively studied). Instead of (3) we could also have
considered

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t) +Du(t). (23)

After Laplace transforming we would then have obtained

x̂(s) = (sE − A)−1Ex0 + (sE − A)−1Bû(s) (24)

ŷ(s) = C(sE − A)−1Ex0 +
(
C(sE − A)−1B +D

)
û(s).

In the matrix case it is easy to verify that this also gives a resolvent linear
system. The same holds true in the infinite-dimensional case for bounded E.
A partial converse exists in the sense that any pseudoresolvent is of the form
(sE − A)−1E for some operators A and E (see e.g. Kisynski [8, Section 1]
or [9, Section 8]). For a resolvent linear system one can however not always
define generators A, B, C, D and E as the following (finite-dimensional)
example shows. The following descriptor system is a realization of s

E =

[
0 0
1 0

]
, A =

[
1 0
0 1

]
, B =

[
−1

0

]
, C = [0 1], D = 0.

This realization is minimal in the sense that there does not exist a 1-dimensional
descriptor system that realizes s. However, the resolvent linear system

a = 0, b = −1, c = 1, d = s

is a 1-dimensional realization of s. This shows that the latter system cannot
be a descriptor system (which can also be verified directly). The conclusion
is that descriptor systems are resolvent linear systems, but that the converse
is not true.

4 Laplace transformation of distributions

To explain the relation between distributional control systems and distribu-
tional resolvent linear systems we study the Laplace transformation on some
spaces of distributions.
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The Laplace transform is defined for L1(0,∞) functions as

f̂(s) =

∫ ∞
0

e−stf(t) dt,

seeing f as defining a regular distribution Tf we see that f̂(s) = Tf (eλ),
where the function eλ : R → C is defined by eλ(t) = e−λt1[0,∞)(t). So what
we want to do is make sense out of T (eλ) for certain distributions T , note
that since eλ /∈ D it is not obvious that it does make sense.

We first consider the ”classical” case of exponentially bounded distribu-
tions. We recall the relevant spaces of test functions and distributions. Define
for k ∈ N the space K1,+,k as

K1,+,k := {f ∈ Ck([0,∞)) : sup
t≥0,i=0,...,k

ekt|f (i)(t)| <∞},

with the norm

‖f‖K1,+,k
:= sup

t≥0,i=0,...,k
ekt|f (i)(t)|

this space becomes a Banach space. We denote, for E a Banach space,
K′1,+,k(E) := L(K1,+,k, E) which is obviously a Banach space. We note that
K1,+,k+1 is contained in K1,+,k with a continuous embedding. The space K1,+

is defined as the inverse limit (also known as the projective limit) of the
spaces K1,+,k, i.e. the intersection of these spaces with as topology the least
upper bound topology. Since the K1,+,k are Banach spaces it follows that
K1,+ is a Frechet space.

The space of test functions K1,+ is closely related to K1 (which is used in
for example [20]). The difference is that the elements of K1,+ are defined on
the nonnegative axis only and the elements of K1 are defined on the whole
real axis.

We define the space K′1,+(E) := L(K1,+, E).
Alternatively we could have defined K1,+ in the following way. Define for

k ∈ N the space K̃1,+,k as

K̃1,+,k := {f ∈ Ck([0,∞)) : sup
i=0,...,k

∫ ∞
0

ekt|f (i)(t)| dt <∞},

with the norm

‖f‖K̃1,+,k
:= sup

i=0,...,k

∫ ∞
0

ekt|f (i)(t)| dt
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this space becomes a Banach space. Since

‖f‖K̃1,+,k
≤ ‖f‖K1,+,k+1

≤ ‖f‖K̃1,+,k+2

it follows that the inverse limit of the spaces K̃1,+,k equals K1,+. We note
that D+ is not dense in any of the K1,+,k, but that it is dense in all the
K̃1,+,k and in K1,+ (this last fact follows using exactly the same reasoning
that shows that D is dense in S as given in e.g. Rudin [15, Theorem 7.10]).
For each element of K′1,+(E) = L(K1,+, E) there exists a k such that this

element is continuous in the topology of K̃1,+,k (this follows from [16], which
characterizes continuous linear maps between locally convex spaces, using
that the semi-norms used in the definition of K1,+ are directed). Since D+,
and hence K1,+, is dense in K̃1,+,k the given element of L(K1,+, E) extends
to an element in K̃′1,+,k(E) and this extension is unique. Since there is no
possibility of confusion we will denote the extension by the same symbol.

Note that eλ ∈ K1,+,k if and only if Reλ ≥ k, that eλ ∈ K̃1,+,k if and only
if Reλ > k and that eλ /∈ K1,+ for any λ ∈ C.

Let S ∈ K′1,+(E), from the above mentioned result it follows that there

exists a k ∈ N such that S ∈ K̃′1,+,k(E). We define the Laplace transform
of S as λ 7→ S(eλ), this Laplace transform is defined on the right half-plane
Reλ > k. The particular value of k used only affects the domain of the
Laplace transform, not its values.

The above definition is equivalent to the one originally given by Schwartz
who reduced the Laplace transform to the Fourier transform. One of the
advantages of the above formulation is its similarity to a lesser known exten-
sion that we shall recall below. We summarize some well-known properties
of this Laplace transform in the following proposition.

Proposition 4.1 Every element S of K′1,+(E) has a Laplace transform Ŝ
which is obtained by evaluating at exponentials. This Laplace transform is
holomorphic on some right half-plane and there exists a polynomial p such
that ‖Ŝ(λ)‖ ≤ p(|λ|) for all λ in this right half-plane. Conversely, every
polynomially bounded holomorphic E-valued function F on some right half-
plane is the Laplace transform of some element of K′1,+(E). This distribution
is given by

S(ϕ) =
1

2πi

∫
Γ

ϕ̂(iλ)F (λ) dλ,

10



where Γ is any vertical line in the mentioned right half-plane and ϕ̂ is the
Fourier transform of ϕ.

We review an extension of the above concept of Laplace transform due to
Kunstmann [11]. To this end we recall the following spaces that were intro-
duced in [11]. Define for α > 0, β, γ ∈ R the space W(α, β, γ) as

W(α, β, γ) := {f ∈
⋂
j≥0

Cj([αj,∞)) : sup
j≥0,t≥αj

e(β−γ)αj+γt|f (j)(t)| <∞},

with the norm

‖f‖W(α,β,γ) := sup
j≥0,t≥αj

e(β−γ)αj+γt|f (j)(t)|

this becomes a Banach space. The space Wk(α, β, γ) is defined as follows:
f ∈ Wk(α, β, γ) if and only if f (i) ∈ W(α, β, γ) for i = 0, . . . , k. With the
norm

‖f‖Wk(α,β,γ) := sup
i=0,...,k

‖f (i)‖W(α,β,γ)

this becomes a Banach space. We have

Wk(α, β, γ) ⊂ W k̃(α̃, β̃, γ̃)

with a continuous embedding if and only if α ≤ α̃, β ≥ β̃, γ ≥ γ̃, k ≥ k̃. So
if we define (α, β, γ, k) ≤ (α̃, β̃, γ̃, k̃) if the above holds then the inverse limit
of the spacesWk(α, β, γ) is well-defined. This inverse limit is denoted byW .
Since the inverse limit over the countable set α ∈ Q, β, γ, k ∈ N gives the
same space the inverse limit W is a Frechet space. We could have defined
W as the inverse limit of ”L1-type” spaces as was done for K1,+ above. The
space W̃ (α, β, γ) consists of all measurable functions from [0,∞) to C such
that

∞∑
j=0

ejα(β−γ)

∫ ∞
αj

eγt|f (j)(t)| dt <∞,

where the derivative is taken in the weak sense and the norm is the expression
on the left-hand side. The space D+ is dense in all the spaces W̃ k(α, β, γ)
and in W . We note that eλ ∈ Wk(α, β, γ) if and only if λ ∈ ΛL(α, β, γ) (see
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(20) for the definition of ΛL), eλ ∈ W̃k(α, β, γ) if and only if λ ∈ ΛL(α, β, γ)
and eλ is never in W . We have that if S ∈ W ′(E) then there exists α >
0, β, γ ∈ R, k ∈ N such that S ∈ W̃k(α, β, γ)′ by the above mentioned result
from [16] and we define the Laplace transform as S(eλ), where again only
the region of definition and not the values depend on the choices made. We
have the following proposition.

Proposition 4.2 Every element S of W ′(E) has a Laplace transform Ŝ
which is obtained by evaluating at exponentials. This Laplace transform is
holomorphic on some logarithmic region and there exists a polynomial p such
that ‖Ŝ(λ)‖ ≤ p(|λ|) for all λ in this logarithmic region. Conversely, every
polynomially bounded holomorphic E-valued function F on some logarithmic
region is the Laplace transform of some element of W ′(E). This distribution
is given by

S(ϕ) =
1

2πi

∫
Γ

ϕ̂(iλ)F (λ) dλ,

where Γ is the boundary of any logarithmic region contained in the mentioned
logarithmic region and ϕ̂ is the Fourier transform of ϕ.

The above proposition was proven in [11].

5 Equivalence of distributional control sys-

tems and distributional resolvent linear sys-

tems

The following was shown for special cases in Chazarain [2] and Kunstmann
[10] and in the general case by Kisynksi [8, Theorem 4.18] [9, Section 10
Theorem 1]. Note that the result was not formulated in this way in the
above three papers since they did not use the space of distributions W , but
that the formulation below easily follows (see also Kunstmann [11, Theorem
4.1]).

Proposition 5.1 A distribution semigroup is an element ofW ′(L(X )), so it
has a Laplace transform which is holomorphic and polynomially bounded on
a logarithmic region. This Laplace transform satisfies the resolvent equation.
Conversely, every polynomially bounded holomorphic L(X ) valued function
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on a logarithmic region that satisfies the resolvent equation is the Laplace
transform of a distribution semigroup.

We use the above proposition to prove the equivalence of distributional con-
trol systems and distributional resolvent linear systems. This proof is very
similar (in fact, almost identical) to the proof of the above proposition.

Let [A,B; C,D] be a distributional control system. We show that this
distribution is an element of W ′(L(X × U ,X × Y)) and that its Laplace
transform satisfies the desired equations. Let ψ ∈ D be such that ψ(0) = 1,
let ϕ ∈ W and define

B̃(ϕ) := ϕ(0)B(ψ) + A(ϕ′)B(ψ)− A(ϕ)B(ψ′),

C̃(ϕ) := ϕ(0)C(ψ) + C(ψ)A(ϕ′)− C(ψ′)A(ϕ),

D̃(ϕ) := ϕ(0)D(ψ) + C̃(ϕ′)B(ψ)− C̃(ϕ)B(ψ′).

Since A ∈ W ′(L(X )) by Proposition 5.1 these are elements ofW ′. By Propo-
sition 2.3 they coincide with B, C and D, respectively, on D. Since D+ is
dense in W they are the unique continuous extensions of these distributions.
Hence we can view B, C and D as elements ofW ′. Denote the Laplace trans-
forms by b, c and d, respectively. The equations (10),(11),(12),(13) extend
by continuity to ϕ, ψ ∈ W . From this with ϕ = eβ and ψ = eα we obtain the
equation

b(β)− b(α) = −βa(β)b(α) + αa(β)b(α),

which is equation (15) and similarly we obtain (16) and (17).
Let [a, b; c, d] be a distributional resolvent linear system. Let Γ be a curve

as in Proposition 4.2 and define for ϕ ∈ D

B(ϕ) =
1

2πi

∫
Γ

ϕ̂(iλ)b(λ) dλ,

C(ϕ) =
1

2πi

∫
Γ

ϕ̂(iλ)c(λ) dλ,

D(ϕ) =
1

2πi

∫
Γ

ϕ̂(iλ)d(λ) dλ,

it follows as in Chazarain [2] (see also Kisynski [8, Theorem 4.18]) that
these expressions are independent of the particular path Γ and that they
are elements of D′0. We have

ψ(0)B(ϕ)−ϕ(0)B(ψ) = ψ(0)
1

2πi

∫
Γ

ϕ̂(iλ)b(λ) dλ−ϕ(0)
1

2πi

∫
Γ

ψ̂(iλ)b(λ) dλ.
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By using Cauchy’s theorem and the Fourier inversion formula it follows as in
Kisynski [8, page 32] that

η(0) =
1

2πi

∫
Γ

η̂(iα) dα.

Substituting this in the above we obtain

1

2πi

∫
Γ

ψ̂(iα) dα
1

2πi

∫
Γ

ϕ̂(iλ)b(λ) dλ− 1

2πi

∫
Γ

ϕ̂(iα) dα
1

2πi

∫
Γ

ψ̂(iλ)b(λ) dλ.

using (15) in the first term and renaming variables in the second we see that
the above equals

1

2πi

∫
Γ

ψ̂(iα)
1

2πi

∫
Γ

ϕ̂(iλ) [b(α) + (α− λ)a(λ)b(α)] dλ dα

− 1

2πi

∫
Γ

ϕ̂(iλ) dλ
1

2πi

∫
Γ

ψ̂(iα)b(α) dα,

canceling terms we obtain

1

2πi

∫
Γ

ψ̂(iα)
1

2πi

∫
Γ

ϕ̂(iλ)(α− λ)a(λ)b(α) dλ dα.

On the other hand we have

A(ϕ′)B(ψ)− A(ϕ)B(ψ′) =

− 1

2πi

∫
Γ

λϕ̂(iλ)a(λ) dλ
1

2πi

∫
Γ

ψ̂(is)b(s) ds+
1

2πi

∫
Γ

ϕ̂(iλ)a(λ) dλ
1

2πi

∫
Γ

sψ̂(is)b(s) ds.

Hence we see that

ψ(0)B(ϕ)− ϕ(0)B(ψ) = A(ϕ′)B(ψ)− A(ϕ)B(ψ′).

The equations (12) and (13) are proved similarly. Hence we obtain the fol-
lowing.

Theorem 5.2 A distributional control system is an element of W ′(L(X ×
U ,X × Y)), its Laplace transform is a distributional resolvent linear sys-
tem. Conversely, every distributional resolvent linear system is the Laplace
transform of a distributional control system.
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We now return to the study of exponentially bounded systems. A distribution
is called exponentially bounded if it is an element of K′1,+. We call a distribu-
tional control system exponentially bounded if the distribution [A,B; C,D] is
exponentially bounded. It is easily seen that a distributional control system
is exponentially bounded if and only if A is (this is similar to the fact proven
above that a distributional control system is in W ′ if and only if A is). The
following theorem is then easily proven.

Theorem 5.3 The Laplace transform of an exponentially bounded distribu-
tional control system is an exponentially bounded distributional resolvent lin-
ear system. Conversely, every exponentially bounded distributional resolvent
linear system is the Laplace transform of an exponentially bounded distribu-
tional control system.

Remark 5.4 The example that we mentioned in the introduction, the heat
equation with Dirichlet control and Neumann observation, was shown to be
desribed by an exponentially bounded distributional resolvent linear system in
[13]. It follows from the results obtained that it can also be described by an
exponentially bounded distributional control system.

6 Realization theory

It is easy to see that the characteristic function of an exponentially bounded
distributional resolvent linear system is polynomially bounded on the right
half-plane ΛH . We will show that the converse is also true: any polynomi-
ally bounded holomorphic operator-valued function defined on some right
half-plane is the characteristic function of some exponentially bounded dis-
tributional resolvent linear system.

Theorem 6.1 Let U and Y be Banach spaces and let G : ΛH(γ)→ L(U ,Y)
be holomorphic and satisfy

‖G(s)‖ ≤ p(|s|) ∀ s ∈ ΛH

for some polynomial p. Then there exists an exponentially bounded distribu-
tional resolvent linear system such that its characteristic function restricted
to some right half-plane equals G.
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Proof Since G is polynomially bounded there exists a k such that G0(s) :=
G(s)/sk is uniformly bounded on some right half-plane. This G0 has a real-
ization as a well-posed linear system [18, Section 2.6 combined with Corollary
4.6.10] (note that every well-posed linear system is an exponentially bounded
distributional resolvent linear system). That the function s has a realization
as an exponentially bounded resolvent linear system was already mentioned
in Remark 3.4: the resolvent linear system

a = 0, b = −1, c = 1, d = s

is a 1-dimensional realization of s. As is easily checked, one obtains a realiza-
tion for a product of two functions in terms of realizations for the individual
functions as follows:

a =

[
a1 0

b2c1 a2

]
, b =

[
b1

b2d1

]
, c = [d2c1 c2], d = d2d1.

From these formulas we conclude that if the realizations for the factors are
exponentially bounded distributional resolvent linear systems then the same
is true for the product. Since we have exponentially bounded realizations
for G0 and s we can obtain an exponentially bounded realization for G(s) =
skG0(s). �
Using Theorems 5.3 and 6.1 we then obtain the following.

Theorem 6.2 Let U and Y be Banach spaces. Every exponentially bounded
L(U ,Y) valued distribution is the input-output impulse response of an expo-
nentially bounded distributional control system.

Finally, we formulate the following conjecture.

Conjecture 6.3 Every distribution in W ′(L(U ,Y)) is the input-output im-
pulse response of a distributional control system.

Acknowledgement The author would like to thank Erik Thomas for
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