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Abstract

We obtain explicit formulas for normalized doubly coprime factor-
izations of the transfer functions of the following class of linear sys-
tems: the input and output operators are vector-valued, but bounded,
and the system is input and output stabilizable. Moreover, we give
explicit formulas for the Bezout factors. Using a reciprocal approach
we extend our results to a larger class where the input and output op-
erators are allowed to be unbounded. This class is much larger than
the class of well-posed linear systems.

1 Introduction

The representation of a transfer function as a coprime factorization has
proven to be a powerful tool in systems theory. An important result for
rational transfer functions is the Youla-Bongiorno parameterization of all
stabilizing controllers in terms of doubly coprime factorizations of the ratio-
nal transfer function and its Bezout factors. If Σ(A,B,C,D) is a stabilizable
and detectable realization of the rational transfer function, then explicit for-
mulas for a doubly coprime factorization are known (see Nett et al. [24]
and Francis [11]). Another important result in finite-dimensional systems
theory is that of robustly stabilizing controllers with respect to factor per-
turbations. This relies on the existence of normalized left- or right-coprime
factorizations (see Glover and McFarlane [13] and Georgiou and Smith [12]).
Meyer and Franklin [22] obtained formulas for normalized coprime factor-
izations for any stabilizable and detectable realization Σ(A,B,C,D) of a
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rational transfer function. These formulas show that coprime factorization
is intimately connected to Riccati equation theory and we formulate these
well-known results in a slightly different way.
We recall that Σ(A,B,C,D) is stabilizable if and only if it satisfies the finite
cost condition: for each z0 there exists a u ∈ L2(0,∞;U) such that

J(z0, u) :=

∫ ∞
0

‖y(t)‖2 + ‖u(t)‖2dt <∞,

where ż(t) = Az(t) +Bu(t); z(0) = z0; y(t) = Cz(t) +Du(t).
Similarly, Σ(A,B,C,D) is detectable if and only if its dual system Σ(A∗, C∗, B∗, D∗)
satisfies the finite cost condition. If Σ(A,B,C,D) and Σ(A∗, C∗, B∗, D∗) sat-
isfy the finite cost condition, then there exist unique nonnegative solutions
Q,P of the control and filter Riccati equations, respectively:

A∗Q+QA+ CC∗ = (QB + C∗D)S−1(B∗Q+D∗C),

AP + PA∗ +BB∗ = (PC∗ +BD∗)R−1(CP +DB∗),

where S := I + D∗D, F := −S−1(D∗C + B∗Q), R := I + DD∗ and L :=
−(PC∗ + BD∗)R−1. Moreover, AQ := A + BF and AP := A + LC are
Hurwitz. A normalized doubly coprime factorization: G = NM−1 = M̃−1Ñ
with [

X̃ −Ỹ

−Ñ M̃

] [
M Y
N X

]
= I,

is given by[
M Y
N X

]
=

[
S−1/2 0
DS−1/2 R−1/2

]
+

[
F

(C +DF )

]
(sI−AQ)−1[BS−1/2,−LR−1/2],

[
X̃ −Ỹ

−Ñ M̃

]
=

[
S−1/2 0
R−1/2D R−1/2

]
+

[
S1/2F
R−1/2C

]
(sI−AP )−1[−(B+LD), L].

While any proper rational transfer function has a (normalized) doubly co-
prime factorization over the field of stable rational transfer functions, not
all irrational transfer functions have coprime factorizations. In [16] Inouye
showed that a matrix-valued transfer function has a coprime factorization
over H∞ if and only if it is input-output stabilizable (see also Smith [31]).

2



These are only existence results and give no procedure for finding formulas
for a coprime factorization. For control applications we are interested in ex-
plicit formulas for the coprime factorizations and the Bezout factors in terms
of the system parameters A,B,C,D. Some steps in this direction have been
made for special classes of exponentially stabilizable and detectable infinite-
dimensional systems. The finite-dimensional results sketched above general-
ize perfectly for exponentially stabilizable and detectable infinite-dimensional
systems with bounded input and output operators (Curtain and Zwart [6,
Chapters 7, 9.4]) and for exponentially stabilizable and detectable regular
linear systems with unbounded input and output operators (Curtain, Weiss
and Weiss [2]). However, there are many infinite-dimensional systems that
are not exponentially stabilizable or detectable, but which do have coprime
factorizations. In Curtain and Oostveen [4] and Oostveen [28] formulas for a
doubly coprime factorization using solutions to Riccati equations are derived
for a class with bounded input and output operators under the following as-
sumptions: A has no essential spectrum on the imaginary axis, U and Y are
finite-dimensional, and the system and its dual satisfy the finite cost condi-
tion. Formulas for the Bezout factors were not obtained. A more abstract
approach to this problem has been taken by Staffans in [33] and Mikkola
in [23] where they relate the existence of coprime factorizations to abstract
stabilizability and detectability notions. However, the price paid for this
generality is the loss of explicit formulas in terms of the generating operators
and the difficulty of verifying these abstract stabilizability and detectability
conditions (which are a priori stronger than the finite cost condition for the
system and its dual).
By contrast, our approach is simple and explicit. We first study the spe-
cial case of state linear systems, for which the input and output operators
are bounded. We show that the transfer function of a state linear system
has a normalized doubly coprime factorization provided that the state linear
system and its dual satisfy the finite cost condition. Moreover, we obtain
explicit formulas for the normalized doubly coprime factorization, including
the Bezout factors. Surprizingly, although our formulas for the coprime fac-
tors are consistent with the finite-dimensional ones given above, those for the
Bezout factors are different. They contain an extra parameter σ that must
be chosen to lie between 1 and r1/2(PQ(I + PQ)−1), where r denotes the
spectral radius and P,Q are solutions of the Riccati equations. If Σ is expo-
nentially stabilizable and detectable, we can choose σ = 1, but, in general,
it is not known whether these candidate Bezout factors will be in H∞.
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Using a reciprocal approach (introduced in Curtain [8]) we extend our results
to transfer functions of integrated nodes. This class of systems contains the
class of well-posed linear systems (the class studied by Staffans [33] and
Mikkola [23]) and several systems that are not well-posed (for example the
ones studied in Lasiecka and Triggiani [19], [20], [21]).
In the first 8 sections we study the special class of state linear systems, for
which the input and output operators are bounded. In this case, the finite
cost condition for the system and its dual is equivalent to input and output
stabilizability. After reviewing some known results on state linear systems
in Section 2, in Section 3 we prove some new results on energy preserving
systems. We examine the control Riccati equation and the properties of the
right factor system in Section 4. The key differences are that the Riccati
equations need not have unique solutions and so there may be several right
factor systems. In Section 5 we examine the right factorizations and by means
of a counter example we show that they need not always be normalized.
However, using the results on energy preserving systems from Section 3, we
show that a sufficient condition for the normalization property to hold is
to choose the smallest bounded nonnegative solution to the control Riccati
equation in the formula for the right factor. A sufficient condition for all
solutions to generate a normalized factorization is that σ(A)∩iR has measure
zero. To show that our candidate normalized right coprime factor is in fact
coprime we use Nehari’s theorem. In Section 6 we summarize some known
results on Nehari’s theorem from Curtain and Opmeer [10] and prove a crucial
new one. In Section 7 we prove our main results: we give sufficient conditions
for the existence of a normalized doubly coprime factorization and we give
explicit formulas for the normalized doubly coprime factorization and for
the Bezout factors. While the formulas for the normalized coprime factors
are the same as the finite-dimensional ones, as mentioned above, the Bezout
factors are not quite what one would expect. In Section 8 we use a reciprocal
approach to extend the results in Sections 2-7 for state linear systems to the
class of integrated nodes.

2 State linear systems

In this section we review known properties of state linear systems and prove
some interesting new ones. Following the terminology in Curtain and Zwart
[6] we call Σ(A,B,C,D) a state linear system if A is the infinitesimal gener-
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ator of a strongly continuous semigroup T (·) on a separable Hilbert space Z,
B ∈ L(U,Z), C ∈ L(Z, Y ), D ∈ L(U, Y ) with U, Y separable Hilbert spaces.

For an input u ∈ Lloc
2 (R+;U) and initial state z0 ∈ Z the state z(t) ∈ Z

at time t ∈ R+ is defined by

z(t) = T (t)z0 +

∫ t

0

T (t− s)Bu(s) ds.

If u is continuously differentiable and z0 ∈ D(A), then z as defined above is
continuously differentiable and for each t ∈ R+ z(t) ∈ D(A) and satisfies

ż(t) = Az(t) +Bu(t), z(0) = z0. (1)

The output of the state linear system is defined by

y(t) = Cz(t) +Du(t). (2)

The transfer function G of the state linear system Σ(A,B,C,D) is defined
by: G−D equals the Laplace transform of CT (t)B (on some right half-plane).

Instead of using the concept of exponential stability, we work with the
following stability concepts.

Definition 2.1 1. A state linear system is input stable if there exists a
constant β > 0 such that for all u ∈ L2(0,∞;U)
‖
∫∞

0
T (t)Bu(t) dt‖2 ≤ β

∫∞
0
‖u(t)‖2 dt;

2. A state linear system is output stable if there exists a constant γ > 0
such that for all z ∈ Z∫∞

0
‖CT (t)z‖2 dt ≤ γ‖z‖2;

3. A state linear system is input-output stable if the transfer function
G ∈ H∞(L(U, Y )).

4. A state linear system is a stable system if it is input, output and input-
output stable.

We note that the above three stability concepts (input stable, output stable,
input-output stable) are independent in the sense that any combination of
two of them does not imply the third.
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Definition 2.2 The output map C : Z → L2(0,∞;Y ) of an output stable
state linear system Σ(A,B,C,D) is defined by (Cz) (t) := CT (t)z and the
observability Gramian by LC := C∗C.

The input map B : L2(0,∞;U)→ Z of an input stable state linear system
is defined by Bu :=

∫∞
0
T (s)Bu(s) ds and the controllability Gramian by

LB := BB∗.

The properties input and output stability are related to the existence of
solutions to Lyapunov equations (see Grabowski [14] and Hansen and Weiss
[15]).

Lemma 2.3 The state linear system Σ(A,B,C,D) is input stable if and only
if the following controllability Lyapunov equation has a bounded nonnegative
solution L ∈ L(Z) :

ALz + LA∗z = −BB∗z for all z ∈ D(A∗). (3)

In this case, the controllability Gramian LB is the smallest bounded nonneg-
ative solution of (3) and L

1/2
B T (t)∗z → 0 as t→∞ for all z ∈ Z.

The state linear system Σ(A,B,C,D) is output stable if and only if the fol-
lowing observability Lyapunov equation has a bounded nonnegative solution
L ∈ L(Z) :

A∗Lz + LAz = −C∗Cz for all z ∈ D(A). (4)

In this case, the observability Gramian LC is the smallest bounded nonnega-
tive solution of (4) and L

1/2
C T (t)z → 0 as t→∞ for all z ∈ Z.

The following new result shows that the Gramian is the only solution of the
Lyapunov equation with the convergence property as in Lemma 2.3.

Lemma 2.4 Suppose the state linear system Σ(A,B,C,D) is input stable
and L1 is a bounded nonnegative solution of the Lyapunov equation (3) such

that L
1/2
1 T (t)∗z → 0 as t → ∞ for all z ∈ Z. Then L1 = LB, the controlla-

bility Gramian of the system.
Suppose the state linear system Σ(A,B,C,D) is output stable and L2 is a

bounded nonnegative solution of the Lyapunov equation (4) such that L
1/2
2 T (t)z →

0 as t → ∞ for all z ∈ Z. Then L2 = LC, the observability Gramian of the
system.
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Proof We prove only the second statement, the first then follows from
duality. Let x ∈ D(A), define z = T (s)x, then we obtain from (4)

〈L2T (s)x,AT (s)x〉+ 〈AT (s)x, L2T (s)x〉+ 〈CT (s)x,CT (s)x〉 = 0.

We integrate from 0 to t to obtain, using (1),

〈L2T (t)x, T (t)x〉+

∫ t

0

‖CT (s)x‖2 = 〈L2x, x〉.

By continuity this holds for all x ∈ Z. Since, by assumption L
1/2
2 T (t)x→ 0,

and the second term on the left-hand side converges to ‖Cx‖2 which equals
〈LCx, x〉 we have 〈L2x, x〉 = 〈LCx, x〉. Since this holds for all x ∈ Z we
obtain L2 = LC . �

A related, but different, concept to that of a transfer function is that of
the characteristic function which we denote by G.
G(s) := D+C(sI−A)−1B for all s ∈ ρ(A). For s in some right half-plane we
have G = G, but they may differ outside this region. For a counter example
see Curtain and Zwart [6, Example 4.3.8] and for a more detailed discussion
Zwart [35]. To examine the connection between the two we introduce the
Laplace transforms of the input and output maps.

Definition 2.5 For an output stable state linear system we define Ĉ : Z →
H2(Y ) by Ĉz := Ĉz.

For an input stable state linear system we define B̂ for u ∈ U, z ∈ Z, s ∈ C+
0

by 〈B̂(s)u, z〉 := 〈u, B̂∗z(s̄)〉.

Rather surprizingly, under the assumption of either input or output sta-
bility, the characteristic function equals the transfer function in ρ(A) ∩ C+

0 .

Lemma 2.6 (Curtain and Opmeer [10, Lemma 3.4]).

1. If the state linear system Σ(A,B,C,D) is output stable, then

G(s) = D + Ĉ(s)B ∀s ∈ C+
0 (5)

G(s) = D + C(sI − A)−1B = G(s) ∀s ∈ C+
0 ∩ ρ(A). (6)
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2. If the state linear system Σ(A,B,C,D) is input stable, then (6) holds
and

G(s) = D + CB̂(s) ∀s ∈ C+
0 . (7)

The following result on boundary functions was proven in [10, Lemma 3.5].

Lemma 2.7 Let Σ(A,B,C,D) be input or output stable and assume that
either σ(A)∩ iR has measure zero or U and Y are finite-dimensional. Then
there exists an almost everywhere defined function G0 : iR → L(U, Y ) such
that for almost all ω ∈ R and all nontangential paths we have

G0(iω) = lim
s→iω

G(s).

If iω ∈ ρ(A) then G0(iω) = G(iω).

3 Energy preserving systems

In this section we prove some properties of energy-preserving state linear
systems.

Definition 3.1 A state linear system is called L-energy-preserving if there
exists an L = L∗ ∈ L(X) such that for any input signal u ∈ Lloc

2 (R+;U), any
initial state z0 ∈ Z and any time T ∈ R+ we have

〈Lz(T ), z(T )〉+

∫ T

0

‖y(t)‖2 dt = 〈Lz0, z0〉+

∫ T

0

‖u(t)‖2 dt. (8)

The following lemma is rather obvious, but important.

Lemma 3.2 Any L-energy preserving system with L nonnegative is output
stable and input-output stable.

The next theorem gives algebraic conditions for a system to be energy-
preserving.

Theorem 3.3 A state linear system Σ(A,B,C,D) is L-energy-preserving if

A∗L+ LA+ C∗C = 0 on D(A), D∗D = I, B∗L = −D∗C. (9)
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Proof Let u ∈ Lloc
2 (R+;U) be continuously differentiable. Then for z0 ∈

D(A), the state z is continuously differentiable, z(t) ∈ D(A) and it satisfies
ż(t) = Az(t) +Bu(t). We obtain

d

dt
〈Lz(t), z(t)〉 = 〈L[Az(t) +Bu(t)], z(t)〉+ 〈z(t), L[Az(t) +Bu(t)]〉.

= 〈[LA+ A∗L]z(t), z(t)〉+ 〈Bu(t), Lz(t)〉+ 〈Lz(t), Bu(t)〉.

Integrating from zero to T we obtain

〈Lz(T ), z(T )〉 − 〈Lz0, z0〉

=

∫ T

0

〈[LA+ A∗L]z(t), z(t)〉+ 〈u(t), B∗Lz(t)〉+ 〈B∗Lz(t), u(t)〉 dt

= −
∫ T

0

〈C∗Cz(t), z(t)〉 − 〈D∗Cz(t), u(t)〉 − 〈u(t), D∗Cz(t)〉dt.

On the other hand, we have∫ T

0

〈y(t), y(t)〉dt =

∫ T

0

〈Cz(t) +Du(t), Cz(t) +Du(t)〉dt

=

∫ T

0

〈C∗Cz(t), z(t)〉+〈D∗Cz(t), u(t)〉+〈u(t), D∗Cz(t)〉+〈D∗Du(t), u(t)〉 dt.

We now see that (9) implies (8) provided that u is continuously differentiable
for all z0 ∈ Z, since D(A) is dense in Z. The general case follows by approxi-
mating a locally square integrable u by continuously differentiable functions.
�

The following corollary is proven in the same way as Theorem 3.3.

Corollary 3.4 If (9) holds, then for input signals u1, u2 ∈ Lloc
2 (R+;U), ini-

tial states z1
0 , z

2
0 ∈ Z and any time T ∈ R+ we have

〈Lz1(T ), z2(T )〉+
∫ T

0

〈y1(t), y2(t)〉 dt = 〈Lz1
0 , z

2
0〉+

∫ T

0

〈u1(t), u2(t)〉 dt. (10)

The following lemma is probably known, but we could not find a proof in the
existing literature.
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Lemma 3.5 Let yi be the output of the state linear system Σ(A,B,C,D)
corresponding to the input ui ∈ L2(R+;U) and zi0 = 0 for i = 1, 2. If for all
u1, u2 ∈ L2(R+;U) there holds∫ ∞

0

〈u1(t), u2(t)〉 dt =

∫ ∞
0

〈y1(t), y2(t)〉 dt,

then the transfer function G has a boundary function and for almost all
ω ∈ R we have G(iω)∗G(iω) = I.

Proof The given equation with u1 = u2 shows that the state linear sys-
tem maps L2(R+;U) inputs into L2(R+;Y ) outputs. It follows as in Weiss
[34] that G ∈ H∞(L(U, Y )). Hence G has an almost everywhere defined
boundary function.

Let u1, u2 ∈ L2(R;U) with support bounded to the left. Suppose that
τ is such that u1 and u2 are equal to zero on (−∞, τ). If ui(t) := ui(t +
τ), then ui is equal to zero on (−∞, 0) and ui ∈ L2(R+;U). Let yi(t) :=∫ t
−∞CT (t − s)Bui(s) ds + Dui(t) be the output corresponding to ui and

define y
i
(t) := yi(t + τ). Invoking the time-invariance property, y

i
is the

output corresponding to ui and by causality y
i

is equal to zero on (−∞, 0).
Hence∫ ∞

0

〈u1(t), u2(t)〉 dt =

∫ ∞
0

〈y1(t), y2(t)〉 dt,

and so∫ ∞
−∞
〈u1(t), u2(t)〉 dt =

∫ ∞
−∞
〈y1(t), y2(t)〉 dt.

Taking Fourier transforms we obtain∫ ∞
−∞
〈û1(iω), û2(iω)〉 dω =

∫ ∞
−∞
〈ŷ1(iω), ŷ2(iω)〉 dω.

Now ŷ(iω) = G(iω)û(iω) and since û(iω) = eτiωû(iω) and ŷ(iω) = eτiωŷ(iω),
we obtain ŷ(iω) = G(iω)û(iω). Substituting this in the above we obtain∫ ∞

−∞
〈û1(iω), û2(iω)〉 dω =

∫ ∞
−∞
〈G(iω)∗G(iω)û1(iω), û2(iω)〉 dω
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and so∫ ∞
−∞
〈(G(iω)∗G(iω)− I) û1(iω), û2(iω)〉 dω = 0.

This shows that (G(iω)∗G(iω)− I) û1(iω) is orthogonal to a dense subset
of L2(iR;U) and hence equals zero. Let f : R → C be a function that has
compact support and such that f̂(iω) 6= 0 for almost all ω ∈ R (for example
the function equal to 1 on [0,1] and zero elsewhere). Now let u ∈ U and
define u1(t) = f(t)u. Since f̂(iω) is nonzero for almost all ω ∈ R we have for
almost all ω ∈ R

(G(iω)∗G(iω)− I)u = 0.

Since u was arbitrary this proves that for almost all ω ∈ R we have G(iω)∗G(iω) =
I. �
We quote the following result from Curtain and Opmeer [10, Lemma 3.1].

Lemma 3.6 If Σ(A,B,C,D) is output stable with observability Gramian
LC, then for all u ∈ L2(R+;U) with compact support

L
1/2
C

∫ t

0

T (t− s)Bu(s) ds→ 0 as t→∞.

The following corollary is crucial in obtaining the normalization property of
our candidate normalized coprime factor in Theorem 5.7.

Corollary 3.7 The transfer function of an output stable state linear system
Σ(A,B,C,D) for which the observability Gramian satisfies B∗LC = −D∗C
and D∗D = I holds is inner.

Proof First we note that since LC satisfies (4), Theorem 3.3 implies that
Σ(A,B,C,D) is energy preserving and by Lemma 3.2 it is input-output sta-
ble. Next in (10) substitute u1, u2 ∈ Lloc

2 (R+;U) with compact support,
z1
0 = z2

0 = 0 and L = LC . Letting T →∞ and using Lemma 3.6 we conclude
that ∫ ∞

0

〈y1(t), y2(t)〉 dt =

∫ ∞
0

〈u1(t), u2(t)〉 dt. (11)

Let u1, u2 ∈ L2(R+;U) and let u1
n, u

2
n be approximating sequences of func-

tions with compact support. Since Σ(A,B,C,D) is input-output stable
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yin, y
i ∈ L2(R+;Y ) and yin → yi. From this it follows that (11) holds for

all u1, u2 ∈ L2(R+;U). Lemma 3.5 now gives the result. �

We remark that the inner property need not hold for an arbitrary bounded
nonnegative solution to the Lyapunov equation, since Lemma 3.6 only need
hold for LC , the smallest solution.

While input stability does not in general imply input-output stability, for
L-energy preserving systems it does.

Lemma 3.8 An L-energy preserving system that is input stable is also input-
output stable.

Proof Let z0 = 0 and u ∈ L2(R+;U). From the input stability of the
system we obtain the existence of a β > 0 such that for all t ≥ 0

‖z(t)‖2 = ‖
∫ t

0

T (t− s)Bu(s) ds‖2 ≤ β

∫ ∞
0

‖u(s)‖2 ds.

This implies that for all T ≥ 0 we obtain the estimate

|〈Lz(T ), z(T )〉| ≤ ‖L‖ β
∫ ∞

0

‖u(s)‖2 ds

and using (8) this implies that for all T ≥ 0∫ T

0

‖y(t)‖2 dt =

∫ T

0

‖u(t)‖2 dt− 〈Lz(T ), z(T )〉

≤
∫ T

0

‖u(t)‖2 dt+ ‖L‖ β
∫ ∞

0

‖u(s)‖2 ds ≤ (1 + ‖L‖β)

∫ ∞
0

‖u(s)‖2 ds.

Hence y ∈ L2(R+;Y ). �

4 Riccati equation theory

There is a strong connection between coprime factorization and the linear
quadratic regulator problem, which we review in this section. Consider the
optimal control problem

min
u∈L2(0,∞;U)

∫ ∞
0

‖ y(t) ‖2 + ‖ u(t) ‖2 dt.
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It is well-known (see Curtain and Zwart [6, Chapter 6]) that if for all initial
states z0 ∈ Z there exists an input u ∈ L2(R+;U) such that the output
y ∈ L2(R+;Y ), then for each z0 ∈ Z there exists a unique uopt ∈ L2(R+;U)
for which the minimum is attained and there exists a bounded nonnegative
operator Qopt such that the minimal cost is given by 〈Qoptz0, z0〉. The optimal
input can be given by a state feedback: uopt(t) = F optzopt(t), where F opt :=
−S−1(D∗C +B∗Qopt), S := I +D∗D.
Qopt is the smallest bounded nonnegative solution to the control algebraic
Riccati equation on D(A)

A∗Q+QA+ C∗C = (QB + C∗D)S−1(B∗Q+D∗C). (12)

We introduce concepts of stabilizability that are refinements of the defi-
nitions introduced in Curtain and Oostveen [3].

Definition 4.1 Σ(A,B,C,D) is output stabilizable if there exists an F ∈
L(Z,U) such that Σ(A+BF,B, [C;F ], 0) is output stable.
Σ(A,B,C,D) is input stabilizable if there exists an L ∈ L(Y, Z) such that
Σ(A+ LC, [B,L], C, 0) is input stable.

Remark 4.2 It is easily seen that the finite cost condition holds if and only
if the system is output stabilizable and the finite cost condition for the dual
system holds if and only if the system is input stabilizable.

The following lemma relates stability and stabilizability.

Lemma 4.3 The state linear system Σ(A,B,C,D) is a stable system if and
only if it is input and output stabilizable and input-output stable.

Proof Without loss of generality we assume D = 0. Let F and L be as in
Definition 4.1 and denote AF := A+BF and AL = A+ LC. Then

C(sI − A)−1 = C(sI − AF )−1 − C(sI − A)−1BF (sI − AF )−1

shows that Σ(A,B,C,D) is output stable, and

(sI − A)−1B = (sI − AL)−1B − (sI − AL)−1LC(sI − A)−1B

shows that it is input stable. �
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The following results are extensions of the results in Curtain and Oostveen
[3]. In fact, they are special cases of analagous results for the very large class
of well-posed linear systems in Mikkola [23], but [23] is not so accessible and
our proofs are short.

Theorem 4.4 If the state linear system Σ(A,B,C,D) is output stabilizable,
then there exists a bounded nonnegative solution Q of the control Riccati
equation (12). Denote the closed-loop generator by AQ := A + BF , F :=
−S−1(D∗C +B∗Q), S := I +D∗D. Then the right factor system

Σ(AQ, BS
−1/2, [C +DF ;F ], [D; I]S−1/2) (13)

is output and input-output stable. If, in addition, Σ(A,B,C,D) is input
stabilizable, then the right factor system is a stable system.
If Σ(A,B,C,D) is input stabilizable, then there exists a bounded nonnegative
solution to the filter Riccati equation on D(A∗)

AP + PA∗ +BB∗ = (PC∗ +BD∗)R−1(CP +DB∗), (14)

where R := I +DD∗ and L := −(PC∗+BD∗)R−1. Moreover, the left factor
system

Σ(AP , [B + LD,L], R−1/2C,R−1/2[D, I]), (15)

where AP = A + LC, is input and input-output stable. If, in addition,
Σ(A,B,C,D) is output stabilizable, then the left factor system is a stable
system.

Proof The proof of the existence of a bounded nonnegative solution
to (12) is shown in [6, Theorem 6.2.4] for the case D = 0. The case
D 6= 0 can be reduced to the D = 0 case by considering the system Σ(A −
BS−1D∗C,BS−1/2, R−1/2C, 0) which has the same control Riccati equation.
It is readily verified that the right factor system satisfies equations (9) with
Σ(A,B,C,D) replaced by (13) and L replaced by Q. So it is Q-energy pre-
serving and Corollary 3.2 shows that the right factor system is output and
input-output stable.
Dual arguments apply to the filter Riccati equation.
The input stability of the closed-loop system can be proven as follows. Since
Σ(A,B,C,D) is input stabilizable, the filter Riccati equation has a bounded
nonnegative solution P . As in Curtain and Zwart [6, Lemma 9.4.10] it can
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be shown that (I + PQ)−1P is a solution of the control Lyapunov equation
of the right factor system. By Lemma 2.3 the closed-loop system is input
stable. �

The optimal right factor system (with Q = Qopt) has a special property.

Theorem 4.5 Suppose that the state linear system Σ(A,B,C,D) is output
stabilizable, and let Qopt denote the smallest bounded nonnegative solution to
the control Riccati equation (12). Then the optimal right factor system

Σ(AQopt , BS−1/2, [C +DF opt;F opt], [D; I]S−1/2) (16)

corresponding to Qopt has an inner transfer function.

Proof It is well-known that Qopt is the observability gramian of the system
(16). Using this it is readily verified that the conditions of Corollary 3.7 are
satisfied, which shows that (16) has an inner transfer function. �

Dually, the optimal left factor system

Σ(AP opt , [B + LoptD,Lopt], R−1/2C,R−1/2[D, I]) (17)

corresponding to P opt, the smallest bounded nonnegative solution to the fil-
ter Riccati equation (14), has a co-inner transfer function.

The following interesting properties about the spectrum of the closed-
loop generators AQ and AP on the right half-plane were shown in Curtain
and Opmeer [10, Lemma 4.4].

Lemma 4.6 Suppose that the state linear system Σ(A,B,C,D) is input and
output stabilizable. Then there exist smallest bounded nonnegative solutions
to the Riccati equations (12), (14), respectively, and for any pair of bounded
nonnegative solutions Q,P the closed-loop generators have following proper-
ties.

1. The closed-loop operators AQ = A−BS−1D∗C −BS−1B∗Q and AP =
A−BDR−1C − PR−1C∗C have the same spectrum and

(I + PQ)AQz = AP (I + PQ)z for z ∈ D(A). (18)
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2. The spectrum of the closed-loop generator AQ (AP ) in the right half-
plane is contained in the spectrum of A in the right half-plane. More-
over, σ(AQ) ∩ iR = σ(AP ) ∩ iR ⊂ σ(A) ∩ iR.

From Lemma 4.6 and Lemma 2.3 we obtain the following.

Lemma 4.7 Suppose that the state linear system Σ(A,B,C,D) is input and
output stabilizable, P opt is the smallest bounded nonnegative solution of the
Riccati equation (14) and Q is an arbitrary bounded nonnegative solution of
the Riccati equation (12). Then for all z ∈ Z we have (P opt)1/2T ∗P opt(t)z → 0
and (P opt)1/2T ∗Q(t)z → 0 as t→∞.

Proof That (P opt)1/2T ∗P opt(t)z → 0 follows from the fact that P opt is
the controllability Gramian of the system (17) and Lemma 2.3. Since by
Lemma 4.6 we have T ∗P opt(t) = (I + QP opt)−1T ∗Q(t)(I + QP opt) we obtain

from this that (P opt)1/2(I + QP opt)−1T ∗Q(t)z → 0 for all z ∈ Z. Since

(P opt)1/2(I + QP opt)−1 = (I + (P opt)1/2Q(P opt)1/2)−1(P opt)1/2 we obtain
(P opt)1/2T ∗Q(t)z → 0. �

As we already saw in the proof of Theorem 4.4 there is a connection
between the Riccati equations of Σ(A,B,C,D) and the Lyapunov equations
of the closed-loop system; we investigate this further.

Theorem 4.8 Suppose that the state linear system Σ(A,B,C,D) is input
and output stabilizable and Q,P are arbitrary bounded nonnegative solu-
tions of the Riccati equations (12), (14), respectively. Then the controlla-
bility and observability Lyapunov equations of the right factor system (13)
have solutions L1 = (I + PQ)−1P and L2 = Q, respectively. Moreover,
r1/2(LBLC) ≤ r1/2(L1L2) < 1.

Proof Note that the control Riccati equation can be reformulated as the
observability Lyapunov equation of the right factor system

A∗QQ+QAQ +QBS−1B∗Q+ (C +DF )∗(C +DF ) + F ∗F = 0.

This show that L2 = Q is a solution of this Lyapunov equation. In the proof
of Theorem 4.5 we pointed out that the observability Lyapunov equation for
the right factor system is precisely (12). That L1 = P (I+PQ)−1 is a solution
to the controllability Lyapunov equation can be verified algebraically as in
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[6, Theorem 9.4.10]. Next note that for a bounded nonnegative operator X
we have

(I +X)−1X < I ⇐⇒ X(I +X) < (I +X)2 ⇐⇒ 0 < I +X,

and the latter is true, since X ≥ 0. Applying this to X = Q1/2PQ1/2 we
obtain

I > (I +Q1/2PQ1/2)−1Q1/2PQ1/2 = Q1/2(I + PQ)−1PQ1/2.

Thus

r(L1L2) = r((I + PQ)−1PQ) = r(Q1/2(I + PQ)−1PQ1/2) < 1.

But we know that LC , LB are the smallest solutions to the Lyapunov equa-
tions and so

r(LBLC) = r(L
1/2
C LBL

1/2
C ) ≤ r(L

1/2
C L1L

1/2
C ) = r(L

1/2
1 LCL

1/2
1 )

≤ r(L
1/2
1 L2L

1/2
1 ) = r(L1L2) < 1.

�

The next lemma gives an explicit formula for the controllability Gramian
of the right factor system.

Lemma 4.9 Suppose that the state linear system Σ(A,B,C,D) is input and
output stabilizable, P opt is the smallest bounded nonnegative solution of the
filter Riccati equation (14) and Q is an arbitrary bounded nonnegative solu-
tion of the control Riccati equation (12). Then L1 := P opt(I+QP opt)−1 = LB,
the controllability Gramian of right factor system (13).

Proof According to Kato [17, Lemma V.3.43 page 284] we have the fol-
lowing representation for the square root of a bounded nonnegative operator
T :

T 1/2z =
1

π

∫ ∞
0

λ−1/2(T + λ)−1Tz dλ

and we have the following resolvent estimate [17, equation (V.3.38) page 279]

‖(T + λ)−1‖ ≤ 1

λ
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for λ > 0. Applying this with L1 and P opt we obtain

L
1/2
1 z− (P opt)1/2z =

1

π

∫ ∞
0

λ−1/2
[
(L1 + λ)−1L1 − (P opt + λ)−1P opt

]
z dλ

and some rewriting of the integrand gives

L
1/2
1 z − (P opt)1/2z =

1

π

∫ ∞
0

λ1/2(L1 + λ)−1L1Q(P opt + λ)−1P optz dλ.

Using the above resolvent estimate we obtain

‖λ1/2(L1 + λ)−1L1Q(P opt + λ)−1P optz‖ ≤ λ−3/2 ‖L1‖ ‖Q‖ ‖P optz‖

and so

‖
∫ ∞

1

λ1/2(L1 + λ)−1L1Q(P opt + λ)−1P optz dλ‖ ≤ 2‖L1‖ ‖Q‖ ‖P optz‖.

Since (L1 + λ)−1L1 = I − λ(L1 + λ)−1 we obtain from the above resolvent
estimate ‖(L1 + λ)−1L1‖ ≤ 2 and so

‖λ1/2(L1 + λ)−1L1Q(P opt + λ)−1P optz‖ ≤ 2λ−1/2 ‖Q‖ ‖P optz‖,

which gives

‖
∫ 1

0

λ1/2(L1 + λ)−1L1Q(P opt + λ)−1P optz dλ‖ ≤ 4 ‖Q‖ ‖P optz‖.

Combining the above two estimates we obtain

‖
∫ ∞

0

λ1/2(L1 +λ)−1L1Q(P opt +λ)−1P optz dλ‖ ≤ 2 (2+‖L1‖) ‖Q‖ ‖P optz‖

and so

‖L1/2
1 z − (P opt)1/2z‖ ≤ 2

π
(2 + ‖L1‖) ‖Q‖ ‖P optz‖,

which gives

‖L1/2
1 z‖ ≤ ‖(P opt)1/2z‖+

2

π
(2 + ‖L1‖) ‖Q‖ ‖P optz‖.

With z = T ∗Q(t)x and using Lemma 4.7 we obtain L
1/2
1 T ∗Q(t)x → 0 for all

x ∈ Z. By Lemma 2.4 we obtain that L1 is the Gramian. �
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5 Normalized Factorizations

In this section we prove normalization and other properties of the trans-
fer function [NQ; MQ] of the right factor (13) and of the transfer function
[Nopt; Mopt] of the optimal right factor (16) and of their respective charac-
teristic functions [NQ; MQ] and [Nopt; Mopt]. We recall some definitions.

First we define the precise concept of coprimeness we will work with.

Definition 5.1 [N; M] ∈ H∞(L(U, Y ⊕ U)) is right coprime if there exist
X̃, Ỹ such that [X̃, Ỹ] ∈ H∞(L(U ⊕ Y, U)) and for all s ∈ C+

0 there holds

X̃(s)M(s)− Ỹ(s)N(s) = I. (19)

Definition 5.2 [Ñ, M̃] ∈ H∞(L(Y ⊕U, Y )) is left coprime over C+
0 if there

exist X,Y such that [X; Y] ∈ H∞(L(Y, Y ⊕ U)) and for all s ∈ C+
0 there

holds

M̃(s)X(s)− Ñ(s)Y(s) = I. (20)

Of particular interest are normalized pairs.

Definition 5.3 We call [N; M] ∈ H∞(L(U, Y ⊕U)) normalized if for almost
all ω ∈ R the following holds

M(iω)∗M(iω) + N(iω)∗N(iω) = I. (21)

(i.e., [N; M] is inner).
We call [Ñ, M̃] ∈ H∞(L(Y ⊕ U, Y )) normalized if for almost all ω ∈ R the
following holds

M̃(iω)M̃(iω)∗ + Ñ(iω)Ñ(iω)∗ = I. (22)

(i.e., [Ñ, M̃] is co-inner).

We now define coprime factorizations of a function G.

Definition 5.4 The function G has a right-coprime factorization if there
exist [N; M] ∈ H∞(L(U, Y ⊕ U)) that are right coprime, M has an inverse
on some right half-plane and G(s) = N(s)M(s)−1 on some right half-plane.
It has a left-coprime factorization if there exist [Ñ; M̃] ∈ H∞(L(Y ⊕ U, Y ))
that are left coprime, M̃ has an inverse on some right half-plane and G(s) =
M̃(s)−1Ñ(s) on some right half-plane.
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Definition 5.5 A function has a doubly coprime factorization if it has a
right-coprime factorization [N; M] ∈ H∞(L(Y ⊕ U,U)) with Bezout fac-
tor [X̃, Ỹ] ∈ H∞(L(U ⊕ Y, U)) and a left-coprime factorization [Ñ, M̃] ∈
H∞(L(Y ⊕ U, Y )), with Bezout factor [X; Y] ∈ H∞(L(Y, Y ⊕ U)) such that[

X̃ −Ỹ

−Ñ M̃

] [
M Y
N X

]
= I =

[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
. (23)

holds on C+
0 .

We prove some properties of the transfer function [NQ; MQ] and of the
characteristic function [NQ; MQ] of the right factor system (13).

Theorem 5.6 If Σ(A,B,C,D) is output stabilizable with transfer function
G and characteristic function G then

1. [NQ; MQ] ∈ H∞(L(U, Y ⊕ U)).

2. MQ has an inverse on ρ(AQ)∩ρ(A) which is the characteristic function
of the state linear system

Σ(A,B,−S1/2F, S1/2). (24)

3. MQ is invertible on some right half-plane and its inverse is the transfer
function of the state linear system (24).

4. On ρ(A) ∩ ρ(AQ) there holds G = NQMQ−1
.

5. On C+
0 ∩ρ(AQ), and hence on C+

0 ∩ρ(A), the transfer function [NQ; MQ]
and the characteristic function [NQ; MQ] are equal.

6. On some right half-plane there holds G = NQMQ−1
.

7. If σ(A)∩iR has measure zero, then the boundary function of the transfer
function [NQ; MQ] and the characteristic function [NQ; MQ] are equal
almost everywhere on iR.

Proof 1. This is a consequence of Theorem 4.4.
2. This follows from an easy algebraic computation.
3. This follows from part 2. and the fact that the transfer function and char-
acteristic function of a state linear system are equal on some right half-plane.
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4. This is an easy algebraic computation.
5. From Theorem 4.4 we obtain that the state linear system (13) is output
stable and the result then follows from Lemma 2.6 part 1 and Lemma 4.6
part 2.
6. This follows from parts 4. and 5.
7. This follows using Lemma 2.7. �

We give sufficient conditions for the factorizations to be normalized.

Theorem 5.7 Suppose that the state linear system Σ(A,B,C,D) with trans-
fer function G is output stabilizable. Then

1. [Nopt; Mopt] is a normalized factorization of G.

2. If the spectrum of A on the imaginary axis has measure zero, then
[NQ; MQ] is a normalized factorization of G.

Proof 1. This follows from Theorem 4.5.
2. The formulas for D 6= 0 have been treated in detail in Curtain and Zwart
[6, Theorem 7.3.11], so for simplicity we assume that D = 0. We know from
Lemma 4.6 part 2. and our assumption on σ(A) that (iωI−AQ)−1 is bounded
for almost all ω ∈ R and direct calculation using (12) yields for almost all
ω ∈ R

MQ(iω)∗MQ(iω) + NQ(iω)∗NQ(iω)− I
= −B∗Q(iωI − AQ)−1B −B∗(−iωI − A∗Q)−1QB +

B∗(−iωI − A∗Q)−1[C∗C +QBB∗Q](iωI − AQ)−1B

= −B∗Q(iωI − AQ)−1B +B∗(iωI + A∗Q)−1QB −
B∗(iωI + A∗Q)−1(−iωI − A∗Q)Q(iωI − AQ)−1B −
B∗(iωI + A∗Q)−1Q(iωI − AQ)(iωI − AQ)−1B

= 0.

So [NQ; MQ] is normalized. The result now follows from Theorem 5.6 part
7. �

That the condition in part 2. of Theorem 5.7 is not superfluous follows
from the following example.
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Example 5.8 In Curtain and Sasane [7] the transfer function G(s) = 1√
s2+1

is shown to have a realization Σ(A,B,B∗, 0) on the state space `2(Z), where
A ∈ L(`2(Z)) and B ∈ `2(Z) are given by

Ai,i+1 = −1/2, Ai+1,i = 1/2, Ai,j = 0 otherwise ;

B0 = 1, Bi = 0 otherwise .

The spectrum of A is purely continuous and equals [−i, i]. By inspection,
the control and filter Riccati equations for Σ(A,B,B∗, 0) have the solutions
P = Q = I. So the system is input and output stabilizable and [MQ; NQ] is
a right factor. In Curtain and Sasane [7] it is shown that NQ(s) = 1

1+
√
s2+1

,

MQ(s) = I −NQ(s). Moreover, it is coprime with Bezout factors X̃ = 1 =
−Ỹ. However, a simple calculation shows that [MQ; NQ] is only normalized
on |ω| ≥ 1, whereas for |ω| ≤ 1 there holds

MQ(iω)∗MQ(iω) + NQ(iω)∗NQ(iω) =
2− ω2

2− ω2 + 2
√

1− ω2
.

In [7] it is shown that AQ = AP = A− BB∗ generates a uniformly bounded
(contraction) semigroup TB(t), but it is not strongly stable (σ(A− BB∗) =
σc(A − BB∗) = [−i, i]). It is readily verified that [MQ; NQ] is continuous
on the extended imaginary axis and so its Hankel operator is compact. In-
spection of Theorem 6.2 shows that its Lyapunov equations must have a pair
of solutions whose product is compact. Consequently, the Riccati equation
solutions P = Q = I are not unique. There must exist another solution pair
Q1, P1 such that P1Q1 is compact and Q1, P1 ≤ I.

This example raises the interesting question: ifQ1, Q2 are two solutions to the
control Riccati equation and one of them generates a coprime factorization,
does the other one?

Lemma 5.9 Suppose that Σ(A,B,C,D) is input and output stabilizable with
transfer function G and (12) has two self-adjoint nonnegative solutions Q1

and Q2. Define for i = 1, 2 [Ni; Mi] as the transfer function of the state linear
system (13) with Q = Qi. Then [N1; M1] is a right-coprime factorization of
G if and only if [N2; M2] is.

Proof For simplicity we take D = 0. Define ∆ := Q1 − Q2. Then it is
readily verified that

[N1; M1] = [N2; M2]E, (25)
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where E is the transfer function of the state linear system

Σ(AQ1 , B,−B∗∆, I). (26)

E has an inverse which is the transfer function of the state linear system

Σ(AQ2 , B,B
∗∆, I). (27)

Since we have

A∗Q1
∆ + ∆AQ1 + ∆BB∗∆ = 0 on D(A)

it follows from Theorem 3.3 that (26) is ∆-energy preserving and by Theorem
4.4 that (26) is input stable. Lemma 3.8 now shows that E ∈ H∞(U).
Similarly we have E−1 ∈ H∞(U) since (27) is −∆-energy preserving.

Assume that [N1; M1] is right coprime, then there exist [X̃1, Ỹ1] ∈ H∞(L(U⊕
Y, U)) such that

X̃1M1 − Ỹ1N1 = I on C+
0 .

From (25) we deduce that

EX̃1M2 − EỸ1N2 = I,

and since E ∈ H∞, [X̃2, Ỹ2] = E[X̃1, Ỹ1] is a Bezout factor and [N2; M2] is
right coprime. �

This lemma shows that in our example all other solutions to the Riccati
equation also provide a coprime factorization. Theorem 5.7 shows that the
factor corresponding to the smallest one will also be normalized.

6 The Nehari problem

As mentioned in the introduction we obtain coprimeness from the solution
of the suboptimal Nehari problem. The suboptimal Nehari problem is: for
G ∈ L∞(L(U, Y )) and a given σ >‖ HG ‖ (HG is the Hankel operator with
symbol G) find all K(−s) ∈ H∞(L(U, Y )) such that

‖ G + K ‖∞≤ σ. (28)
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The vector-valued case was solved in Kheifets [18] (see also Peller [29]).
For our application we need a state space realization for a solution K(−s)

in terms of a given state space realization for G ∈ H∞(L(U, Y )). In [10] such
an explicit solution was given under one of two assumptions: either U, Y were
finite-dimensional and L1 = LB, L2 = LC or σ(A)∩ iR has measure zero. For
our purposes one solution suffices and in this section we derive one such
solution without assuming either of these conditions. We begin by recalling
some basic definitions and results from [10].

Definition 6.1 For G ∈ L∞((−i∞, i∞);L(U, Y )) we define the Hankel op-
erator with symbol G as the operator HG: H2(U)→ H2(Y ) given by

HGf = Π(ΛGf−) for f ∈ H2(U), (29)

where ΛG is the multiplication map on L2((−i∞, i∞);U) induced by G, Π is
the orthogonal projection from L2((−i∞, i∞);U) onto H2(U) and f−(s) :=
f(−s).
Given h ∈ Lloc

1 ([0,∞);L(U, Y )), we define the (time-domain) Hankel opera-
tor Γh associated with h for u ∈ Lloc

2 ([0,∞);U) with compact support by

(Γhu)(t) :=

∫ ∞
0

h(t+ τ)u(τ)dτ. (30)

There is a nice relationship between the time-domain and frequency-
domain Hankel operators.

Lemma 6.2 Suppose that Σ(A,B,C, 0) is a stable system with impulse re-
sponse h(t) = CT (t)B and transfer function G.

1. Γh = CB and it is isomorphic to HG via

(̂Γhu)(jω) = (HGû) (jω) for u ∈ L2(0,∞;u). (31)

Moreover,

‖ HG ‖=‖ Γh ‖= r
1
2 (LBLC), (32)

where r denotes the spectral radius and LB, LC are the controllability
and observability Gramians, respectively, of Σ(A,B,C, 0).
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2. If σ > r
1
2 (L1L2), where L1, L2 are arbitrary solutions of the Lyapunov

equations (3), (4), respectively, then Nσ := (I − 1
σ2L1L2)

−1 ∈ L(Z).

3. W = NσL1 is a bounded nonnegative solution of the following Riccati
equation on D(A∗)

WA∗W + AWW + σ−2WC∗CW +NσBB
∗N∗σ = 0, (33)

where AW = A − σ−2WC∗C. Moreover, Σ(AW , [NσB;WC∗], C) is a
stable system and σ(AW ) ∩ C+

0 ⊂ σ(A) ∩ C+
0 .

Proof 1. Follows from Oostveen [28, Lemma 7.1.5].
2. Follows from [10, Lemma 2.8].
3. Follows from [10, Theorem 4.4].
�

Following the notation of [10] we define

P =

[
IY G
0 IU

]
, Jσ =

[
IY 0
0 −σ−2IU

]
,

X as the transfer function of the state linear system

Σ(A, σ−2Nσ[L1C
∗,−σB],

[
C

B∗L2

]
,

[
IY 0
0 σIU

]
), (34)

and V as the transfer function of the state linear system

Σ(A, σ−2[−L1C
∗, B],

[
C

σ−1B∗L2

]
Nσ,

[
IY 0
0 σ−1IU

]
). (35)

As in [10, Lemma 6.1] we define Z to be transfer function of the output stable
state linear system Σ(A∗W , L2B,−σ−2CW, 0).

Lemma 6.3 Let Σ(A,B,C, 0) be a stable state linear system and assume
that L1 = LB and L2 = LC, then (34) is output stable, (35) is input stable,

V(s)X(s) = I on C+
0 (36)

and

Z(s) = V21(s̄)
∗V22(s̄)

−∗ on C+
0 . (37)
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Proof This follows from [10, Lemma 5.3, Lemma 5.6, Lemma 5.7, Lemma
6.1] �

The following was shown in [10, Theorem 6.2].

Theorem 6.4 Let Σ(A,B,C, 0) be a stable state linear system such that
σ(A) ∩ iR has measure zero, with transfer function G and let L1, L2 be ar-
bitrary self-adjoint nonnegative solutions to the Lyapunov equations (3), (4),
respectively. If σ > r1/2(L1L2), where r denotes the spectral radius, then a so-
lution to the suboptimal Nehari problem (28) is given by Kc(−s) = Z(s) where
Z is the transfer function of the state linear system Σ(A∗W , L2B,−σ−2CW, 0).

The next theorem shows that the condition σ(A)∩ iR can be replaced by
the condition that L1 and L2 are the smallest solutions of their respective
Lyapunov equations. This is an improvement of [10, Theorem 6.3] where this
was proven only for U, Y finite-dimensional.

Theorem 6.5 Let Σ(A,B,C, 0) be a stable state linear system with transfer
function G and let LB, LC be its controllability and observability Gramian, re-
spectively. If σ > r1/2(LBLC), where r denotes the spectral radius, then a so-
lution to the suboptimal Nehari problem (28) is given by Kc(−s) = Z(s) where
Z is the transfer function of the state linear system Σ(A∗W , LCB,−σ−2CW, 0).

Proof Noting that all the transfer functions G, V, and Z are holomor-
phic on C+

0 , we perform some elementary calculations on C+
0 . We first verify

that [
G(s) + Z(s̄)

I

]
= P(s)V(s)∗

[
0

V22(s)
−∗

]
(38)

by expanding the right hand-side:[
I G(s)
0 I

] [
V11(s)

∗ V21(s)
∗

V12(s)
∗ V22(s)

∗

] [
0

V22(s)
−∗

]

=

[
I G(s)
0 I

] [
V21(s)

∗V22(s)
−∗

I

]
=

[
G(s) + Z(s̄)

I

]
,
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where we have used (37). We now use (38) to obtain

(G(s) + Z(s̄))∗ (G(s) + Z(s̄))− σ2I

=

[
G(s) + Z(s̄)

I

]∗
Jσ

[
G(s) + Z(s̄)

I

]
=

[
0

V22(s)
−∗

]∗
V(s)P(s)∗JσP(s)V(s)∗

[
0

V22(s)
−∗

]
. (39)

In [10, Lemma 5.1] the following J-spectral factorization identity is shown
to hold on ρ(A) for the corresponding characteristic functions

P(s)∗JσP(s)−X(s)J1X(s)∗ = R(s), (40)

where the remainder characteristic function is nonpositive. As in the proof of
[10, Lemma 5.4], using the properties of real-analytic functions, this identity
extends to the transfer functions on C+

0 . Moreover, the remainder transfer
function R(s) is nonpositive on C+

0 . From (40) and (36), we obtain

V(s)P(s)∗JσP(s)V(s)∗ = J1 + V(s)R(s)V(s)∗.

We now substitute this expression in (39) to calculate

(G(s) + Z(s̄))∗ (G(s) + Z(s̄))− σ2I

= −V22(s)
−1V22(s)

−∗ +

[
V21(s)

∗V22(s)
−∗

I

]∗
R(s)

[
V21(s)

∗V22(s)
−∗

I

]
.

≤ 0 on C+
0 ,

since R(s) ≤ 0 on C+
0 . This shows that the holomomorphic function Z(s)

is bounded in norm on C+
0 and so it is in H∞. Now Kc(s) := Z(−s) is in

H∞(C−0 ;L(U, Y )) and Kc has a boundary function with Kc(iω) = Z(−iω).
So the function Kc ∈ H∞(C−0 ;L(U, Y )) satisfies the following for almost all
ω ∈ R

‖G(iω) + K(iω)‖ ≤ σ.

�
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7 Normalized coprime factorizations and Be-

zout factors

In this section we show that our candidate coprime factorizations are indeed
coprime and we give explicit formulas for Bezout factors. Our first result is
the following easy to prove but important theorem.

Theorem 7.1 Let G ∈ H∞(L(U, Y )) be an inner function with Hankel norm
strictly less than 1. Then G has a left inverse.

Proof From the Nehari theorem we obtain the existence of a K ∈ H∞(L(Y, U))
such that

‖G∗ + K‖∞ < 1,

and using that G is inner we obtain

‖I + KG‖∞ ≤ ‖G∗ + K‖∞‖G‖∞ < 1.

Since KG ∈ H∞(L(U)) and H∞(L(U)) is a Banach algebra we obtain that
KG is invertible over H∞(L(U)). Thus there exists a Q such that QKG = I.
But then QK is a left-inverse of G. �

For us the following corollary of this theorem is of interest.

Corollary 7.2 Let G be a transfer function with a normalized right factor-
ization [N; M]. Then it is coprime if and only if the Hankel norm of [N; M]
is strictly less than 1.

Proof The if part follows from Theorem 7.1. The only if part was shown
in Oostveen and Curtain [27]. �

We can now state one of our main results.

Theorem 7.3 If the state linear system Σ(A,B,C,D) is input and output
stabilizable, then its transfer function has a normalized right-coprime factor-
ization given by [Nopt; Mopt], the transfer function of the optimal right factor
system (16). The transfer function [NQ; MQ] of an arbitrary right factor
system (13) is also a right-coprime factorization. If σ(A) ∩ iR has measure
zero, then it is also normalized.
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Proof From Theorems 4.8 and 5.7 and Lemma 6.2 part 1. we see that
[Mopt; Nopt] satisfies the assumptions of Corollary 7.2. So [Mopt; Nopt] is a
normalized right-coprime factorization. By Lemma 5.9 [MQ; NQ] is also a
right-coprime factorization. The last statement folows from Lemma 5.7. �

This theorem has an obvious dual and so we deduce the existence of a
left and a right coprime factorization for an input and output stabilizable
system. As is well-known this implies the existence of a doubly coprime
factorization for an input and output stabilizable system. However, in the
Youla-Bongiorno parameterization of all stabilizing controllers one needs ex-
plicit formulas for the Bezout factors. The proof of Theorem 7.1 shows that
to find the Bezout factors for a right-coprime factorization we need to solve
the suboptimal Nehari problem

‖
[
−NQ∗ + U,MQ∗ + V

]
‖∞< 1,

whenever [NQ; MQ] is normalized. We remark that this connection was first
exploited in [13] to solve the problem of robust stabilization of normalized
coprime factor descriptions. For the case D = 0 the above suboptimal Nehari
problem is equivalent to the suboptimal Nehari problem for −[C;B∗Q](sI −
AQ)−1B:

‖ −[C,B∗Q](sI − AQ)−1B + K ‖∞< 1,

where K(−s) = [U(s̄)∗,V(s̄)∗+I]. Recall that we can only solve suboptimal
Nehari problems of the form

‖ −[C,B∗Q](sI − AQ)−1B + K ‖∞≤ σ,

where σ is larger than the norm of the Hankel operator. For 1 > σ >
r1/2(PQ(I + PQ)−1) this can be done and we obtain the following rather
surprizing result.

Theorem 7.4 Suppose that the state linear system Σ(A,B,C, 0) is input and
output stabilizable, and let P0, Q0 denote bounded nonnegative solutions of
the respective Riccati equations (14) and (12) with D = 0. Let [NQ

0 ; MQ
0 ] and

[ÑQ
0 , M̃

Q
0 ] denote the transfer functions of the right and left factor systems

(16) and (17) with P0, Q0 and D = 0. Let σ be any number satisfying 1 >
σ > r1/2(P0Q0(I + P0Q0)

−1.
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1. If either σ(A)∩ iR has measure zero or Q0 is the smallest nonnegative
solution to the control Riccati equation, then [NQ

0 ; MQ
0 ] is a normal-

ized right-coprime factorization of C(sI − A)−1B with Bezout factors
[X̃0, Ỹ0], the transfer function of the stable state linear system

Σ(ÃL0 , [B, L̃0], B
∗Q0, [I, 0]),

where W̃0 = (I + P0Q0 − σ−2P0Q0)
−1, L̃0 = −σ−2W̃0P0C

∗ and ÃL0 =
A+ L̃0C.

2. If either σ(A) ∩ iR has measure zero or P0 is the smallest nonnega-
tive solution to the filter Riccati equation, then the transfer function
[ÑP

0 , M̃
P
0 ] is a normalized left-coprime factorization of C(sI − A)−1B

with Bezout factors [X0; Y0], the transfer function of the stable state
linear system

Σ(ÃF0 , P0C
∗, [C; F̃0], [I, 0]),

where F̃0 = −σ−2B∗Q0W̃0 and ÃF0 = A+BF̃0.

3. Under the above assumptions, we obtain a normalized doubly coprime
factorization, i.e., M0,N0, M̃0, M̃0,X0,Y0, X̃0, Ỹ0 satisfy (23).

Proof The statements about normalized coprime factors already follow from
Theorem 7.3. As remarked above, to find the Bezout factors for a normalized
right-coprime factor we need to solve the suboptimal Nehari problem for the
right factor system Σ(AQ0 , B, [C;B∗Q0], 0)

‖ [C,B∗Q0](sI − AQ0)
−1B −K ‖∞≤ σ.

Under our assumptions we can apply either Theorem 6.5 or Theorem 6.4 to
calculate a solution. Denote W̃0 = (I + P0Q0 − σ−2P0Q0)

−1 and N0
σ =

(I − σ−2P0Q0(I + P0Q0)
−1)−1 = W̃0(I + P0Q0). Then W0 := N0

σ(I +
P0Q0)

−1P0 = W̃0P0 satisfies the Riccati equation given by (33) for the right
factor system with AQ0

W = AQ0 − σ−2W̃0P0C
∗C − σ−2W̃0P0Q0BB

∗Q0 and

Σ(AQ0

W , [NQ0
σ B; W̃0P0C

∗; W̃0P0Q0B], [C,B∗Q0], 0) is a stable system. From
this we deduce the important fact that
Σ(AQ0

W , [N0
σB; L̃0;B], [C,B∗Q0], 0) is a stable system.

As in Theorem 6.5 for s ∈ ρ(A∗) ∩ C+
0 we obtain

Kc(−s) = Z(s) = σ−2[C,B∗Q0]W0(sI − AQ0

W

∗
)−1Q0B,
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where we have used that σ(AQ0

W )∩C+
0 ⊂ σ(AQ0)∩C+

0 ⊂ σ(A)∩C+
0 by Lemma

4.6 part 2 and Lemma 6.2 part 3. But [U(s),V(s) + I] = Kc(−s̄)∗ and so
for s ∈ ρ(A) ∩ C+

0 we have

U(s) = σ−2B∗Q0(s− AQ0

W )−1W̃0P0C
∗

V(s) = −I + σ−2B∗Q0(s− AQ0

W )−1W̃0P0Q0B,

From the proof of Theorem 7.1 we know that UNQ
0 −VMQ

0 has an inverse
in H∞ and Bezout factors are provided by X̃0 = (VMQ

0 − UNQ
0 )−1V ∈

H∞(L(U)) and Ỹ0 = (VMQ
0 −UNQ

0 )−1U ∈ H∞(L(Y, U)).
We can compute these explicitly for s ∈ ρ(A) ∩ ρ(ÃL0) ∩ C+

0 as follows

[U(s)NQ
0 (s)−V(s)MQ

0 (s)]−1 = [I −B∗Q0(sI − AQ0

W )−1NQ0
σ B]−1

= I + σ−2B∗Q0(sI − ÃL0)
−1N0

σB,

where ÃL0 = A − σ−2W̃0P0C
∗C = A + L̃0C as above. Using this, a simple

calculation yields the formulas, for s ∈ ρ(A) ∩ ρ(ÃL0) ∩ C+
0

[X̃0(s), Ỹ0(s)] = [I, 0] +B∗Q0(sI − ÃL0)
−1[B, L̃0].

To identify [X̃0, Ỹ0] as the transfer function of the system
ΣL0 = Σ(ÃL0 , [B, L̃0], B

∗Q0, [I, 0]), we need to show that it is either input
or output stable. We show that it is both. Note that ÃL0 = AQ0

W − W̃0(I +
P0Q0)BB

∗Q0 = AQ0

W −NQ0
σ BB∗Q0 and so

(sI − ÃL0)
−1 = (sI − AQ0

W )−1 − (sI − AQ0

W )−1NQ0
σ BB∗Q0(sI − ÃL0)

−1.

Now we showed above that Σ(AQ0

W , [N0
σB; L̃0, B], [C,B∗Q0], 0) is a stable sys-

tem and B∗Q0(sI − ÃL0)
−1[B, L̃0] is in H∞ which implies the input stability

of ΣL0 .
The output stability follows by a similar argument, noting that ÃL0 =
AQ0 +BB∗Q0 + L̃0C and so

(sI− ÃL0)
−1 = (sI−AQ0)

−1 + (sI− ÃL0)
−1(BB∗Q0 + L̃0C)(sI−AQ0)

−1.

A dual argument establishes part 2.
To prove the doubly coprime property one needs to verify that

X̃0(s)Y0(s)− Ỹ0(s)X0(s) = 0 on C+
0 .
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A straightforward algebraic calculation shows that this indeed holds on C+
0 ∩

ρ(A)∩ρ(ÃL0)∩ρ(ÃF0) and it extends to C+
0 by the analyticity of the terms. �

If we can take σ = 1 in the Bezout formulas, we would obtain the usual
finite-dimensional formulas. This will be the case if AQ generates an expo-
nentially stable semigroup, but in general this remains an open question.

For the case of non zero D, as in the finite-dimensional case, it is straight-
forward to deduce the left- and right-coprime factorizations and Bezout fac-
tors from the case D = 0.[

MQ

NQ

]
=

[
I 0
D I

] [
MQ

0

NQ
0

]
,[

X
Y

]
=

[
I D
0 I

] [
X0

Y0

]
,

[
M̃P ÑP

]
=

[
M̃P

0 ÑP
0

] [ I D
0 I

]
,

[
X̃ Ỹ

]
=

[
X̃0 Ỹ0

] [ I 0
D I

]
.

It is easy to see that this provides a doubly coprime factorization, but that it
is not normalized. In the next theorem we obtain formulas for a normalized
doubly coprime factorization for the D 6= 0 case.

Theorem 7.5 Suppose that the state linear system Σ(A,B,C,D) is input
and output stabilizable, σ is any number satisfying 1 > σ > r1/2(PQ(I +
PQ)−1.

1. If either σ(A)∩ iR has measure zero or Q = Qopt, the smallest nonneg-
ative solution to the control Riccati equation, then [NQ; MQ] is a nor-
malized right-coprime factorization of G with Bezout factors [X̃, Ỹ],
the transfer function of the stable state linear system

Σ(ÃL, [B + L̃D, L̃], S−1/2B∗Q,S−1/2[I,−D∗]),

where W̃ = (I + PQ− σ−2PQ)−1, L̃ = −(σ−2W̃PC∗ + BD∗)R−1 and
ÃL = A+ L̃C.

2. If either σ(A)∩ iR has measure zero or P = P opt, the smallest nonneg-
ative solution to the filter Riccati equation, then the transfer function
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[ÑP , M̃P ] is a normalized left-coprime factorization of G with Bezout
factors [X; Y], the transfer function of the stable state linear system

Σ(ÃF , PC
∗R−1/2, [C +DF̃ ; F̃ ], [I,−D∗]R−1/2),

where F̃ = −S−1(σ−2B∗QW̃ +D∗C) and ÃF = A+BF̃ .

3. Under the above assumptions, we obtain a normalized doubly coprime
factorization, i.e., M,N, M̃, M̃,X,Y, X̃, Ỹ satisfy (23).

Proof First we note that Σ1 = Σ(A − BS−1D∗C,BS−1/2, R−1/2C, 0) has
the same control and filter Riccati equations as Σ(A,B,C,D). We apply
Theorem 7.4 to system Σ1 and obtain the normalized right-coprime factors
defined on ρ(AQ) ∩ C+

0 by

[N1(s); M1(s)] = [0; I] + [R−1/2C;−S−1/2B∗Q](sI − AQ)−1BS−1/2

and the Bezout factors defined on ρ(ÃL) ∩ C+
0 by

[X̃1(s), Ỹ1(s)] = [I, 0]+S−1/2B∗Q(sI−ÃL)−1[BS−1/2,−σ−2W̃PC∗R−1/2].

The right-coprime factors [NQ; MQ] of Σ(A,B,C,D) satisfy[
N1

M1

]
=

[
R 0
0 S

]−1/2 [
I −D
D∗ I

] [
N
M

]
.

We already know that X̃1M1 − Ỹ1N1 = I and so can deduce that Bezout
factors for [NQ; MQ] are given by

[
X̃ Ỹ

]
=
[

X̃1 Ỹ1

] [ S 0
0 R

]−1/2 [
I −D∗
D I

]
.

Dual arguments show that the normalized left-coprime factors of Σ1 are given
on ρ(AP ) ∩ C+

0 by

[Ñ1(s), M̃1(s)] = [0, I] +R−1/2C(sI − AP )−1[BS−1/2,−PC∗R−1/2]

and the Bezout factors are given on ρ(ÃF ) ∩ C+
0 by

[X1(s); Y1(s)] = [I, 0]+[R−1/2C;−σ−2S−1/2B∗QW̃ ](sI−ÃF )−1PC∗R−1/2.
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As above, we can deduce the Bezout factors for [Ñ, M̃] to be given by[
Y
−X

]
=

[
I D∗

−D I

] [
S 0
0 R

]−1/2 [
Y1

−X1

]
.

It is easily checked that with the obtained pairs of Bezout factors we have a
doubly coprime factorization, i.e. (23) holds. For example we have[

X̃ Ỹ
] [ Y
−X

]
= [X̃1, Ỹ1]

[
S 0
0 R

]−1/2 [
I −D∗
D I

] [
I D∗

−D I

] [
S 0
0 R

]−1/2 [
Y1

−X1

]
= X̃1Y1 − Ỹ1X1

= 0

which shows that the factorization is doubly coprime. �

Even if [NQ; MQ] is not normalized, then it is a right-coprime factoriza-
tion, but in general, we do not know if the candidate Bezout factors from
Theorem 7.5 will be in H∞. We can always find suitable Bezout factors using
Lemma 5.9, but this leads to messy formulas.

8 Integrated nodes and reciprocals

First we briefy review the definition of an operator node (see Staffans [32,
Section 4.7]) and introduce the concept of an integrated node (this is a spe-
cialization of the concept of a distributional resolvent linear system intro-
duced in Opmeer [26]). U , Y , Z are separable Hilbert spaces. An operator
node is specified by three operators A,B,C and a characteristic function G.
These are assumed to satisfy:
• A is a closed densely defined operator on Z with nonempty resolvent set.
• C ∈ L(D(A), Y ) is bounded where D(A) is equipped with the graph norm.
• B∗ ∈ L(D(A∗), U) is bounded where D(A∗) is equipped with the graph
norm.
• G : ρ(A)→ L(U, Y ) satisfies

G(s)−G(α) = (α− s)C(sI − A)−1(αI − A)−1B. (41)

for α, s ∈ ρ(A). The dual of an operator node is specified by the operators
A∗, C∗, B∗, G(ᾱ)∗.
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Definition 8.1 An integrated node is an operator node for which ρ(A) con-
tains a right half-plane and there exist a polynomial p such that for s in this
right half-plane

‖(sI − A)−1‖ ≤ p(|s|).

The above resolvent estimate is equivalent to the statement: A generates an
exponentially bounded integrated semigroup (see Arendt et al. [1, Section
3.2]).

Note that (sI − A)−1B, C(sI − A)−1 and the characteristic function of
an integrated node are polynomially bounded on the same right half-plane
as the resolvent.

We recall that the Laplace transform can be defined for certain Banach
space valued distributions and that the image of the set of Laplace trans-
formable distributions is exactly the set of functions defined on some right
half-plane that are analytic and polynomially bounded (see Schwartz [30]).
This allows us to define the state and output of an integrated node as Laplace
transformable distributions (Z-valued and Y -valued, respectively).

Definition 8.2 For an initial state z0 ∈ Z and a Laplace transformable
distribution u the state and output of an integrated node are defined through
their Laplace transforms by

ẑ(s) = (sI − A)−1z0 + (sI − A)−1Bû(s),

ŷ(s) = C(sI − A)−1z0 + G(s)û(s),

with s in some right half-plane that is contained in ρ(A).

The finite cost condition for integrated nodes is defined exactly the same as
for state linear systems.

Definition 8.3 The finite cost condition for an integrated node is: for every
z0 ∈ Z there exists a u ∈ L2(0,∞;U) such that the corresponding output
y ∈ L2(0,∞;Y ).

We define stability of integrated nodes. Note that for state linear systems
this definition is equivalent to Definition 2.1.

Definition 8.4 An integrated node is output stable if for every z0 ∈ Z the
output with zero input is in L2(0,∞;Y ) and satisfies

‖y‖L2(0,∞;Y ) ≤M‖z0‖
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for some M > 0 independent of z0.
An integrated node is input-output stable if for every input u ∈ L2(0,∞;U)

the output with zero initial condition is in L2(0,∞;Y ) and satisfies

‖y‖L2(0,∞;Y ) ≤M‖u‖L2(0,∞;U)

for some M > 0 independent of u.
An integrated node is input stable if its dual node is output stable. An

integrated node is called stable if it is input, output and input-output stable.

The transfer function of an integrated node is defined as the maximal analytic
extension of a restriction of the characteristic function. The precise defintion
is as follows.

Definition 8.5 Consider an integrated node specified by the operators A,B,C
and the characteristic function G. Let ω be such that C+

ω ⊂ ρ(A). Define
G1 : C+

ω → L(U, Y ) as the restriction of the characteristic function. Let
γ ∈ [−∞, ω] be such that G1 has an analytic extension to C+

γ , but not to
C+
σ for any σ < γ. Define the transfer function G : C+

γ → L(U, Y ) as the
analytic extension of G1.

We note that as in the case of state linear systems we have G(s) = G(s) for
s in a right half-plane as long as this right half-plane is contained in ρ(A).
However, as in the case of state linear systems, these equalities may not hold
outside such a right half-plane.

The concept of a reciprocal system was introduced in [8] for well-posed
linear system and it easily extends to operator nodes.

Definition 8.6 Suppose that the operator node Σ with generating operators
A,B,C and characteristic function G is such that 0 ∈ ρ(A). Its reciprocal
system is the state linear system Σ(A−1, A−1B,−CA−1,G(0)).

The following theorem follows as in [8].

Theorem 8.7 Suppose that A,B,C are the generating operators of an in-
tegrated node Σ with transfer function G and zero is in the resolvent set of
A. Denote the characteristic function of its reciprocal system by Gr and the
transfer function of its reciprocal system by Gr. Then

1. G(s) = Gr(
1
s
) whenever s is in the resolvent set of A.
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2. Σ is output stable if and only if its reciprocal system is output stable.

3. Σ is input stable if and only if its reciprocal system is input stable.

4. Σ is a stable system if and only if its reciprocal system is a stable system.
In this case, we have G(s) = Gr(

1
s
) for s ∈ C+

0 .

Although the following theorem was stated in [25] for well-posed linear sys-
tems, its proof applies to integrated nodes as well.

Theorem 8.8 An integrated node Σ with 0 ∈ ρ(A) satisfies the finite cost
condition if and only if its reciprocal system does. Moreover, if the finite cost
condition is satisfied, then there exist unique optimal controls for Σ and for
its reciprocal system and the optimal costs are equal.

Since the reciprocal system is a state linear system, the results stated earlier
in this article are applicable to it. First we consider the regulator problem
and apply Theorem 4.4 to the reciprocal system. We obtain the optimal cost
operator for this problem as the smallest bounded nonnegative solution to
the following reciprocal control Riccati equation.

A−∗Q+QA−1 + A−∗C∗CA−1 =

(QA−1B − A−∗C∗Dr)S
−1
r (B∗A−∗Q−D∗rCA−1),

where Dr = G(0) and Sr = I + D∗rDr. According to Theorem 8.8, the
optimal cost operator for the regulator problem for an integrated node is
the smallest bounded nonnegative solution to the above reciprocal control
Riccati equation.

Next we consider the problem of coprime factorizations for an integrated
node.

Theorem 8.9 Let Σ be an integrated node with 0 ∈ ρ(A). Assume that the
finite cost condition for Σ and for its dual system are both satisfied. Then
the transfer function of Σ has a normalized doubly coprime factorization.

Proof It follows from Theorem 8.8 that the reciprocal system Σr of Σ and its
dual satisfy the finite cost condition. In other words, Σr is input and output
stabilizable. So we can apply Theorem 7.5 to the reciprocal system Σr to
show that its transfer function has a normalized doubly coprime factorization.
Denote the coprime factors and Bezout factors by Mr, Nr, M̃r, M̃r, Xr, Yr,
X̃r, Ỹr and define M(s) = Mr(1/s), N(s) = Nr(1/s), M̃(s) = M̃r(1/s),
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M̃(s) = M̃r(1/s), X(s) = Xr(1/s), Y(s) = Yr(1/s), X̃(s) = X̃r(1/s),
Ỹ(s) = Ỹr(1/s). Then it is easily seen that this provides a normalized
doubly coprime factorization of the transfer function of Σ. As an example
of the arguments involved we show that the transfer function of Σ equals
NM−1 on some right half-plane.

By Theorem 5.6 part 4. and Lemma 4.6 part 2. we see that Gr(s) =
Nr(s)Mr(s)

−1 for s ∈ C+
0 ∩ ρ(Ar). Since s ∈ C+

0 ∩ ρ(A) if and only if
1/s ∈ C+

0 ∩ ρ(Ar) this gives G(s) = N(s)M(s)−1 for s ∈ C+
0 ∩ ρ(A). Us-

ing that N = N, M = M and G = G on some right half-plane we obtain
G(s) = N(s)M(s)−1 for s in some right half-plane. �

Remark 8.10 From the proof of Theorem 8.9 and Theorem 7.5 one can de-
duce explicit formulas for the coprime factors and Bezout factors. These are
in terms of the generating operators of the reciprocal system. This leads to a
complete Youla-Bongiorno type parameterization of all stabilizing controllers
as in [5].

Remark 8.11 It is possible to obtain the existence of a normalized doubly
coprime factorization without the assumption 0 ∈ ρ(A). One should reprove
all our results on state linear systems for discrete-time systems and then use
the connection between the linear quadratic regulator problem for integrated
nodes and that for it Cayley transform (a discrete-time system) as was shown
in [25] (for well-posed linear systems, but the proof applies to integrated
nodes as well). Finally, we remark that the results of this section can be
extended to the slightly more general case of distributional resolvent linear
systems as introduced in [26].
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2001.

[2] R.F. Curtain and G. Weiss and M. Weiss. Coprime Factorizations for
Regular Linear Systems, Automatica, 32: 1519-1532, 1996.

38



[3] R.F. Curtain and J.C. Oostveen. Necessary and sufficient conditions for
strong stability of distributed parameter systems, Systems and Control
Letters, 37: 11–18, 1999.

[4] R.F. Curtain and J.C. Oostveen. Normalized coprime factorizations for
strongly stabilizable systems. In Advances in Mathematical Control The-
ory (in honour of Diederich Hinrichsen), pages 265–280, Boston, 2000.
Birkhäuser.
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233. Birkhäuser, Basel, 2000.

[19] I. Lasiecka and R. Triggiani. Differential and algebraic Riccati equations
with application to boundary/point control problems: continuous theory
and approximation theory, volume 164 of Lecture Notes in Control and
Information Sciences. Springer-Verlag, Berlin, 1991.

[20] Irena Lasiecka and Roberto Triggiani. Control theory for partial differ-
ential equations: continuous and approximation theories. I, volume 74
of Encyclopedia of Mathematics and its Applications. Cambridge Uni-
versity Press, Cambridge, 2000. Abstract parabolic systems.

[21] Irena Lasiecka and Roberto Triggiani. Control theory for partial differ-
ential equations: continuous and approximation theories. II, volume 75
of Encyclopedia of Mathematics and its Applications. Cambridge Uni-
versity Press, Cambridge, 2000. Abstract hyperbolic-like systems over a
finite time horizon.

40



[22] D.G. Meyer and G.F. Franklin. A connection between normalized co-
prime factorizations and linear quadratic regulator theory. IEEE Trans.
Automat. Control, 32:227–228, 1987.

[23] K. Mikkola. Infinite-Dimensional Linear Systems, Optimal Control and
Riccati Equations. PhD thesis, October 2002, Helsinki University of
Technology. Available at http://www.math.hut.fi/reports

[24] C.N. Nett and C.A. Jacobson and M.A. Balas. A connection between
state space and doubly coprime factorizations, IEEE Trans. Autom.
Control 29: 831-832, 1984.

[25] Mark R. Opmeer and Ruth F. Curtain. New Riccati equations for well-
posed linear systems. Systems Control Lett., 52(5):339–347, 2004.

[26] Mark R. Opmeer. Infinite-dimensional linear systems: a distributional
approach. Proceedings of the London Mathematical Society, to appear.

[27] J.C. Oostveen and R.F. Curtain. Robustly stabilizing controllers for
disipative infinite-dimensional systems with collocated actuators and
sensors. Automatica, 36: 337–348, 2000.

[28] J.C. Oostveen. Strongly Stabilizable Distributed Parameter Systems.
SIAM, Philadelphia, 2000.

[29] Vladimir V. Peller. Hankel operators and their applications, Springer
Monographs in Mathematics, Springer-Verlag, New York, 2003.
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