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Abstract

We solve the suboptimal Nehari problem for a transfer function that
has a state-space realization as a system-stable (input, output and input-
output stable) well-posed linear system. We obtain an explicit solution in
terms of the state-space parameters.

1 Introduction

The solution to the optimal Nehari problem is well known. The vector-valued
case was solved by Page [22] (see also Nikol’skĭı [20] and Peller [23]):

inf
K(−s)∈H∞(L(U,Y ))

‖ G + K ‖∞ = ‖ HG ‖,

where G ∈ L∞(L(U, Y )), U, Y are separable Hilbert spaces, and HG is the
Hankel operator associated with the symbol G. The suboptimal problem is to
find for any σ >‖ HG ‖ all solutions K(−s) ∈ H∞(L(U, Y )) to

‖ G + K ‖∞ ≤ σ.

The suboptimal Nehari problem for functions on the disc has been solved in
Kheifets [18] (see also Peller [23]), but for control applications we require explicit
solutions in terms of state-space parameters of the continuous-time system as
we explain below.

A crucial step in many control problems is solving the suboptimal Nehari
problem for the stable case: G ∈ H∞(L(U, Y )). In Salamon [26] it was shown
that any G ∈ H∞(L(U, Y )) has a system-stable well-posed realization; i.e., there
exists a state space Z and (in general unbounded) operators A,B,C, where A is
the infinitesimal generator of a strongly continuous semigroup on the separable
Hilbert space Z and the following stability assumptions are satisfied:

C(sI −A)−1z ∈ H2(Y ), B∗(sI −A∗)−1z ∈ H2(U) ∀z ∈ Z. (1)

G is the transfer function of the well-posed linear system in the sense that

G(s)−G(α) = (α− s)C(sI −A)−1(αI −A)−1B
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for all α and s in some open right half-plane. Conversely, every system-stable
well-posed linear system has a transfer function in H∞(L(U, Y )). Usually in
control applications not G, but A,B, and C are given, and one wants a solution
K in terms of these state-space parameters.

Recently, it has been shown in Curtain and Sasane [9] that if ρ(A)∩ iR 6= ∅,
the Nehari problem for a system-stable well-posed linear system can be reduced
to solving the Nehari problem for its reciprocal system which has bounded B
and C operators. (The reciprocal approach to well-posed linear systems was
introduced in Curtain [10] and [11].) Since problems with bounded B and C
operators are technically simpler, we first consider the special case of bounded
input and output operators. The next step is to use this special case to solve
the general case.

Our approach to solving the suboptimal Nehari problem is to obtain solutions
K via the J-spectral factorization problem of finding X such that

P∗(iω)JσP(iω) = X(iω)J1X(iω)∗ for almost all ω ∈ R, (2)

where

P(s) :=
[
IY G(s)
0 IU

]
and Jσ :=

[
IY 0
0 −σ2IU

]
.

The candidate solution for X involves the solutions of the Lyapunov equations

AL1 + L1A
∗ = −BB∗, A∗L2 + L2A = −C∗C. (3)

The smallest bounded nonnegative solutions are LB , LC , the controllability and
observability gramians of the system Σ(A,B,C, 0), respectively. These are not
necessarily the only bounded nonnegative solutions. Once it is shown that X is
indeed a solution to (2), the rest of the proof is relatively straightforward and
one obtains a solution in terms of the known system parameters A,B,C,L1, L2,
and σ.

There have been several versions of this approach in the literature; all but one
(Curtain and Oostveen [6]) assume that A is the generator of an exponentially
stable C0-semigroup. We mention Curtain and Zwart [4], Glover, Curtain, and
Partington [14], Ran [24], Curtain and Ran [2], Foias and Tannenbaum [13],
Curtain and Zwart [3], and Curtain and Ichikawa [5], who all treat the problem
under the assumption that A is the generator of an exponentially stable C0-
semigroup and varying additional assumptions.

For exponentially stable systems one can, since iR ⊂ ρ(A), verify directly
that (2) holds for all ω ∈ R. However, there exist many systems with a
stable transfer function for which A does not generate an exponentially sta-
ble C0-semigroup. This motivated Curtain and Oostveen [6] to consider the
class of system-stable systems satisfying (1) with bounded B and C and finite-
dimensional U and Y . Now assumptions (1) provide no information about
the spectrum of A and so it is not possible to verify (2) by a direct calcula-
tion. Unfortunately, this point was overlooked in [6]. We give an example of
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a system-stable system for which the candidate solution X does not satisfy (2)
for a certain pair of solutions L1, L2 to the Lyapunov equations (3). This does
not show that the claim in [6] is incorrect, since the claim in [6] is made only
for the smallest solutions LB and LC . However, this counterexample does show
that there is a gap in the proof in [6]. An easy remedy is to make an additional
assumption on the spectrum of A, e.g., assume that σ(A) ∩ iR has measure
zero or that C+

0 ⊂ ρ(A). Our major contribution is to show that if U and Y
are finite-dimensional, then these assumptions are unnecessary. This new re-
sult has consequences for the recent paper by Ball, Mikkola, and Sasane [1] on
the Nehari–Takagi problem, which is a generalization of the suboptimal Nehari
problem. Using a J-spectral factorization approach, they solve the suboptimal
Nehari–Takagi problem for finite-dimensional U and Y under our assumptions
(1) plus an assumption on the spectrum of A. Our result shows that the latter
assumption is redundant.

Summarizing, under the assumptions (1), for any σ > r1/2(L1L2) (here r(T )
is the spectral radius of the operator T ) we give an explicit formula for a spectral
factor X satisfying (2) in terms of the system parameters A,B,C, L1, and L2

under either of the following additional assumptions:

A1. σ(A) ∩ iR has measure zero.

A2. U and Y are finite-dimensional, and L1 and L2 are chosen to be the
controllability and observability gramians LB and LC , respectively.

This leads to our second main result: a solution of the suboptimal Nehari prob-
lem in terms of the system parameters A,B,C, L1, L2, and σ under either of the
above assumptions A1 or A2.

Our last main result is the extension of this result to the class of system-
stable well-posed linear systems satisfying the assumption ρ(A) ∩ iR 6= ∅ and
either assumption A1 or A2. We remark that in the well-posed case the standard
formulas for the solution need not be well-defined, but we obtain alternative
explicit formulas in terms of the reciprocal system as in Curtain and Sasane [9].

The paper is written to be as self-contained as possible. In section 2, we
summarize relevant known results on state linear systems and in section 3 we
prove some interesting new ones. Section 4 contains results on Riccati equations
in terms of the concepts of input and output stability and stabilizability. In
addition, we study two interesting Riccati equations connected to the Nehari
problem. In section 5 we give an example of a system-stable system for which the
candidate solution X does not satisfy (2) for a certain pair of solutions L1, L2 of
the Lyapunov equations. However, we show that in the case that L1 = LB and
L2 = LC , we can always construct a spectral factor of (2). We collect several
of its properties that enable us to obtain a solution of the suboptimal Nehari
problem in section 6. In section 7, we obtain a parametrization of a family
of solutions to the suboptimal Nehari problem for a system-stable state linear
system. Finally, in section 8 we recall the concepts of system-stable well-posed
linear systems and their reciprocals from [11]. Using the reciprocal approach
from [9] we extend our results to obtain an explicit solution of the suboptimal
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Nehari problem for the class of system-stable well-posed linear systems under
the assumption that ρ(A) ∩ iR 6= ∅ and either of the assumptions A1 or A2.

An interesting open question is whether our conclusions also hold if in as-
sumption A2 we allow U and Y to be infinite-dimensional. The existence of
frequency domain solutions is also known for this case (see Kheifets [18] or
Peller [23]).

2 State linear systems: Known results

First we recall several known results for systems with bounded input and output
operators. A is the generator of a strongly continuous semigroup T (·) on a
separable Hilbert space Z, B ∈ L(U,Z), C ∈ L(Z, Y ), D ∈ L(U, Y ) with U, Y
separable Hilbert spaces. Following the terminology in Curtain and Zwart [4]
we call Σ(A,B,C,D) a state linear system. We now define the transfer function
and the characteristic function of a state linear system.

Definition 2.1. The transfer function G is defined as follows: G − D equals
the Laplace transform of CT (t)B on some right half-plane. We define the char-
acteristic function G for all s ∈ ρ(A) by G = D + C(sI −A)−1B.

Remark 1. For s in some right half-plane we have G = G, but they may differ
outside this region. For a counterexample see Curtain and Zwart [4, Example
4.3.8]. A more detailed discussion is given in Zwart [33].

We introduce a stability concept that is weaker than exponential stability
but stronger than input-output stability. We will show that this is the right
stability concept for the Nehari problem.

Definition 2.2. The state linear system Σ(A,B,C,D) is system-stable if

• it is input stable: there exists a constant β > 0 such that for all u ∈
L2(0,∞;U), ‖

∫∞
0
T (t)Bu(t) dt‖2 ≤ β

∫∞
0
‖u(t)‖2 dt;

• it is output stable: there exists a constant γ > 0 such that for all z ∈ Z,∫∞
0
‖CT (t)z‖2 dt ≤ γ‖z‖2;

• it is input-output stable: the transfer function G ∈ H∞(L(U, Y )).

Remark 2. We note that other authors may require the additional assumption
that the semigroup be uniformly bounded for t > 0 for system stability (see
Staffans [30] or Mikkola [19, Definition 6.1.1]). The essential difference in our
definition is that we have made no stability assumptions on A and so it can
have spectrum in the right half-plane C+

0 .

Definition 2.3. The output map C : Z → L2(0,∞;Y ) of an output stable state
linear system Σ(A,B,C,D) is defined by (Cz) (t) := CT (t)z. The input map
B : L2(0,∞;U)→ Z of an input stable state linear system is defined by

Bu :=
∫ ∞

0

T (s)Bu(s) ds.
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The input and output stability properties are related to the existence of solutions
to Lyapunov equations (see Grabowski [15] and Hansen and Weiss [16]).

Lemma 2.4. The state linear system Σ(A,B,C,D) is input stable if and only
if the following controllability Lyapunov equation has a bounded nonnegative
solution L ∈ L(Z):

ALz + LA∗z = −BB∗z ∀ z ∈ D(A∗). (4)

In this case, the controllability gramian LB := BB∗ is the smallest bounded
nonnegative solution of (4) and L1/2

B T (t)∗z → 0 as t→∞ for all z ∈ Z.
The state linear system Σ(A,B,C,D) is output stable if and only if the

following observability Lyapunov equation has a bounded nonnegative solution
L ∈ L(Z):

A∗Lz + LAz = −C∗Cz ∀ z ∈ D(A). (5)

In this case, the observability gramian LC := C∗C is the smallest bounded non-
negative solution of (5) and L1/2

C T (t)z → 0 as t→∞ for all z ∈ Z.

The Hankel operator of a system is a fundamental concept.

Definition 2.5. For G ∈ L∞((−i∞, i∞);L(U, Y )) we define the Hankel oper-
ator with symbol G as the operator HG: H2(U)→ H2(Y ) given by

HGf = Π(ΛGf−) for f ∈ H2(U), (6)

where ΛG is the multiplication map on L2((−i∞, i∞);U) induced by G, Π is the
orthogonal projection from L2((−i∞, i∞);U) onto H2(U), and f−(s) := f(−s).

Given h ∈ Lloc
1 ([0,∞);L(U, Y )), we define the (time-domain) Hankel oper-

ator Γh associated with h for u ∈ Lloc
2 ([0,∞);U) with compact support by

(Γh)(t) :=
∫ ∞

0

h(t+ τ)u(τ)dτ. (7)

There is a nice relationship between the time-domain and frequency-domain
Hankel operators.
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Lemma 2.6. Suppose that Σ(A,B,C, 0) is a system-stable system with impulse
response h(t) = CT (t)B and transfer function G.

1. Γh = CB and it is isomorphic to HG via

(̂Γhu)(iω) = (HGû) (iω) for u ∈ L2([0,∞);U). (8)

Moreover,

‖ HG ‖=‖ Γh ‖= r
1
2 (LBLC), (9)

where r denotes the spectral radius and LB , LC are the controllability and
observability gramians, respectively, of Σ(A,B,C, 0).

2. If σ > r
1
2 (L1L2), where L1, L2 are arbitrary bounded nonnegative solu-

tions of the Lyapunov equations (4), (5), respectively, then Nσ := (I −
1
σ2L1L2)−1 ∈ L(Z). Moreover, W = NσL1 is nonnegative.

Proof. 1. See Oostveen [21, Lemma 7.1.5].
2. Now σ2 > r(L1L2) implies that the spectral radius of 1

σ2L1L2 is less than
1 and so I − 1

σ2L1L2 is boundedly invertible. Noting that L1 ≥ 0, the following
shows that W ≥ 0:

W =
(
I − 1

σ2
L1L2

)−1

L1 = L
1/2
1

(
I − 1

σ2
L

1/2
1 L2L

1/2
1

)−1

L
1/2
1 .

3 State linear systems: Some new results

In this section we develop several new results for state linear systems that we
use in what follows, many of which are interesting in their own right.

First we examine the properties of the various concepts of stability from
Definition 2.2 more closely.

Lemma 3.1. If Σ(A,B,C,D) is output stable with observability gramian LC ,
then for all u ∈ Lloc

2 (R;U) with compact support

L
1/2
C

∫ t

−∞
T (t− s)Bu(s) ds→ 0 as t→∞.

Proof. Let τ > 0 be such that u(t) = 0 for t > τ . Then

L
1/2
C

∫ t

−∞
T (t− s)Bu(s) ds = L

1/2
C

∫ τ

−∞
T (t− τ)T (τ − s)Bu(s) ds

= L
1/2
C T (t− τ)z(τ),

where z(τ) =
∫ τ
−∞ T (τ − s)Bu(s) ds is independent of t. Lemma 2.4 now gives

the result.
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We recall that the output of a state linear system Σ(A,B,C,D) with locally
square integrable inputs u with support bounded to the left is defined by

y(t) =
∫ t

−∞
CT (t− s)Bu(s) ds+Du(t). (10)

Output stability does not imply input-output stability, but we do have the
following partial result.

Lemma 3.2. If Σ(A,B,C,D) is output stable, then for inputs u ∈ Lloc
2 (R;U)

with compact support, the output given by (10) is in L2(R;Y ).
Proof. Since u is square integrable we can assume without loss of generality

that D = 0. Since u has compact support, there exists a τ > 0 such that
u(t) = 0 for t > τ . We calculate the output y(t) for t > τ as

y(t) =
∫ τ

−∞
CT (t− τ)T (τ − s)Bu(s) ds

= CT (t− τ)
∫ τ

−∞
T (τ − s)Bu(s) ds = CT (t− τ)z(τ),

where
z(τ) :=

∫ τ

−∞
T (τ − s)Bu(s) ds.

Since Σ(A,B,C,D) is output stable we have∫ ∞
τ

‖ y(t) ‖2 dt =
∫ ∞

0

‖ CT (t)z(τ) ‖2 dt

≤ const. ‖ z(τ) ‖2<∞.

Since the output of a state linear system is always locally square integrable and
the output has support bounded to the left by causality we have∫ ∞

−∞
‖ y(t) ‖2 dt =

∫ τ

−∞
‖ y(t) ‖2 dt+

∫ ∞
τ

‖ y(t) ‖2 dt <∞.

We next examine the connection between the transfer function and the charac-
teristic function of a state linear system.

Definition 3.3. For an output stable state linear system we define Ĉ : Z →
H2(Y ) by Ĉz := Ĉz.

For an input stable state linear system we define B̂ for u ∈ U, z ∈ Z, s ∈ C+
0

by 〈B̂(s)u, z〉 := 〈u, B̂∗z(s̄)〉.

The following lemma shows that input or output stability ensures that the
characteristic function and the transfer function are equal on the set where they
are both defined. Parts of this lemma were shown for well-posed linear systems
in [11, Lemma 2.3].
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Lemma 3.4. 1. If the state linear system Σ(A,B,C,D) is output stable,
then

G(s) = D + Ĉ(s)B ∀s ∈ C+
0 , (11)

G(s) = D + C(sI −A)−1B = G(s) ∀s ∈ C+
0 ∩ ρ(A). (12)

Moreover, for all u ∈ U we have that (G−D)u ∈ H2(Y ).

2. If the state linear system Σ(A,B,C,D) is input stable, then (12) holds
and

G(s) = D + CB̂(s) ∀s ∈ C+
0 . (13)

Moreover, for all u ∈ U, y ∈ Y we have that 〈(G−D)u, y〉 ∈ H2.

Proof. 1. Taking Laplace transforms of CT (·)z, we obtain C(sI−A)−1z = Ĉ(s)z
and G(s) = Ĉ(s)B + D for s in some right half-plane (see [4, Lemma 2.1.11]).
Now since Σ is output stable, Ĉz ∈ H2(Y ) for all z ∈ Z and so Ĉ is holomorphic
in C+

0 and (11) holds. Again using that Ĉ is holomorphic on C+
0 , the equality

Ĉ(s)(sI − A) = C for s in some right half-plane extends to C+
0 . Thus for

s ∈ C+
0 ∩ ρ(A) we have

Ĉ(s)(sI −A)(sI −A)−1B = C(sI −A)−1B,

which proves (12).
2. Similarly, input stability implies that V (s)z ∈ H2(U) for z ∈ Z, where

V (s)z := B∗(sI−A∗)−1z on some right half-plane. Then 〈u, V (s̄)z〉 = 〈B̂(s)u, z〉
for all z ∈ Z, u ∈ U . So for all s in some right half-plane we have

〈(sI −A)−1Bu, z〉 = 〈B̂(s)u, z〉, (14)

and letting z = C∗x, we obtain G = CB̂ + D on some right half-plane. Using
that B̂ is holomorphic, we obtain (13). To show (12) choose z ∈ D(A∗), let
x = (s̄I −A∗)z, and substitute in (14) to obtain for s in some right half-plane

〈Bu, x〉 = 〈(sI −A)B̂(s)u, x〉.

This extends to s ∈ C+
0 since B̂ is holomorphic and to all x ∈ Z by continuity.

Thus

(sI −A)B̂(s) = B ∀ s ∈ C+
0 , (15)

which proves (12).

It turns out that the existence of boundary functions of H2 functions is
crucial in our later proofs. We recall some basic results from [25]. Let ω ∈ R
and consider for α > 0 the cone

Γα = {s ∈ C+
0 : |Im(s)− ω| < α Re(s)}.
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If f ∈ H2(H), where H is a separable Hilbert space, then for almost all ω ∈ R
and all α > 0 the limit

lim
s→iω,s∈Γα

f(s)

exists. Such a limit is called a nontangential limit, and it associates with an
H2(H) function a function in L2(iR, H) (see [25, Theorems 4.6.B and 4.8.B]).

It is well known that if U and Y are finite-dimensional and for all u ∈ U
we have Gu ∈ H2(Y ), then G ∈ H2(L(U, Y )). Hence we obtain an almost
everywhere defined boundary function G : iR→ L(U, Y ).

In the case where U and Y are infinite-dimensional we do have that for all u ∈
U the function G(·)u has a boundary function in L2(iR;Y ). However, in general
there does not exist an almost everywhere defined function F : iR → L(U, Y )
such that F (iω)u equals this boundary function (see Mikkola [19, Example 3.3.6]
for a counter-example).

If Σ(A,B,C,D) is input or output stable and σ(A) ∩ iR has measure zero,
then G(s) = G(s) on C+

0 ∩ ρ(A) by Lemma 3.4 and since G(s) → G(iω) as
s→ iω by continuity of the map s 7→ (sI −A)−1, we have G(s)→ G(iω). So if
Σ(A,B,C,D) is input or output stable and σ(A) ∩ iR has measure zero, then
G has an almost everywhere defined operator-valued boundary function. From
the above we obtain the following.

Lemma 3.5. Let Σ(A,B,C,D) be input or output stable and assume that either
σ(A)∩iR has measure zero or U and Y are finite-dimensional. Then there exists
an almost everywhere defined function G0 : iR→ L(U, Y ) such that for almost
all ω ∈ R and all nontangential paths we have

G0(iω) = lim
s→iω

G(s).

Moreover, if iω ∈ ρ(A), then G0(iω) = G(iω).

Proof. This follows from the paragraphs preceding the lemma.

We prove the following lemma that will be useful later.

Lemma 3.6. Let f : C+
0 → L(U, Y ) be such that for every u ∈ U we have

f(·)u ∈ H2(Y ). Assume there exists a function f0 ∈ L∞(iR;L(U, Y )) such that
for all u ∈ U there exists a set Nu of measure zero such that for all ω ∈ R−Nu
and all nontangential paths we have

f0(iω)u = lim
s→iω

f(s)u.

Then f ∈ H∞(L(U, Y )).

Proof. Since f(·)u ∈ H2(Y ) we have the Poisson representation [25, Theorem
4.8.A]

f(a+ ib)u =
1
π

∫
R

bf0(iω)u
(t− a)2 + b2

dt,
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so we have (using that the Poisson kernel has integral one)

‖f(a+ ib)u‖ ≤ 1
π

∫
R
‖f0(iω)u‖ b

(t− a)2 + b2
dt ≤ ess sup

t∈R
‖f0(it)‖ ‖u‖.

This shows that
sup
s∈C+

0

‖f(s)‖ ≤ ess sup
t∈R
‖f0(it)‖

and since f is holomorphic we have f ∈ H∞(L(U, Y )).

Lemma 3.7. Let Σ(A,B,C,D) be output stable and assume that either σ(A)∩
iR has measure zero or U and Y are finite-dimensional. Then for inputs with
compact support we have for almost all ω ∈ R

ŷ(iω) = G(iω)û(iω). (16)

Proof. We first prove the statement for the case that u is zero for negative time.
Now on some right half-plane we have

ŷ(s) = G(s)û(s). (17)

Since ŷ ∈ H2(Y ) by Lemma 3.2 (and causality) and G is holomorphic on C+
0

by Lemma 3.4 this extends to C+
0 . By Lemma 3.5 we have G(s) → G(iω) in

the operator norm as s→ iω. Since û ∈ H2(U) and ŷ ∈ H2(Y ), they converge
to their boundary functions as s → iω so we obtain (16). The general case
follows by applying the above to the function u(t) := u(t − τ) with output
y(t) := y(t− τ), where y is the output corresponding to u and τ is chosen such
that u is zero for negative time.

In the proof of Lemma 3.8 we need to study systems defined on the positive
time axis only and with a given initial state. We summarize some known results
for this type of system. For an input u ∈ Lloc

2 (0,∞;U) and initial state x0 ∈ X
the state x(t) ∈ X at time t ≥ 0 is defined by

x(t) = T (t)x0 +
∫ t

0

T (t− s)Bu(s) ds.

If u is continuously differentiable and x0 ∈ D(A), then x as defined above is
differentiable and satisfies

ẋ(t) = Ax(t) +Bu(t), x(0) = x0.

The output of the state linear system is defined by

y(t) = Cx(t) +Du(t).

A state linear system is well-posed in the sense that for all t > 0 there exists
a K > 0 such that for all u ∈ Lloc

2 (0,∞;U) and all x0 ∈ X

‖x(t)‖2 +
∫ t

0

‖y(s)‖2 ds ≤ K
(
‖x0‖2 +

∫ t

0

‖u(s)‖2 ds
)

;

10



i.e., the map from the initial state and the input restricted to (0, t) to the state
at time t and the output restricted to (0, t) is continuous from X × L2(0, t;U)
to X × L2(0, t;Y ).

Lemma 3.8. Let Σ(A,B,C, 0) be output stable with observability gramian LC
and let ui ∈ Lloc

2 (R;U) be an input with compact support. Denote by yi the
output of Σ(A,B,C, 0) with input ui given by (10) and by yLCi the output of
Σ(A,B,B∗LC , 0) with input ui given by the corresponding (10). Then we have
the following:∫ ∞

−∞
〈y1(t), y2(t)〉 dt =

∫ ∞
−∞
〈u1(t), yLC2 (t)〉 dt+

∫ ∞
−∞
〈yLC1 (t), u2(t)〉 dt. (18)

Proof. We first note that the integrals in (18) are well defined since yi ∈
L2(R;Y ) by Lemma 3.2 and the ui have compact support. Set zi(t) =

∫ t
−∞ T (t−

s)Bui(s) ds for i = 1, 2. If ui is continuously differentiable, then zi(t) is differ-
entiable and

d

dt
〈z1(t), LCz2(t)〉

= 〈Az1(t) +Bu1(t), LCz2(t)〉+ 〈LCz1(t), Az2(t) +Bu2(t)〉
= 〈Bu1(t), LCz2(t)〉+ 〈LCz1(t), Bu2(t)〉 − 〈Cz1(t), Cz2(t)〉,

where we have used (5). On integrating the above we obtain

〈z1(t), LCz2(t)〉 (19)

=
∫ t

−∞
〈u1(s), B∗LCz2(s)〉 ds (20)

+
∫ t

−∞
〈B∗LCz1(s), u2(s)〉 ds−

∫ t

−∞
〈Cz1(s), Cz2(s)〉 ds.

=
∫ t

−∞
〈u1(s), yLC2 (s)〉 ds (21)

+
∫ t

−∞
〈yLC1 (s), u2(s)〉 ds−

∫ t

−∞
〈y1(s), y2(s)〉 ds.

From Lemma 3.1 we conclude that the left-hand side of (21) converges to zero
as t → ∞. This proves (18) for the case of continuously differentiable inputs,
and the general case follows by the following approximation argument. Let
ui ∈ Lloc

2 (R;U) be inputs with compact support and let uni ∈ Lloc
2 (R;U) be

continuously differentiable inputs with compact support that converge to ui in
L2(R;U). Let τ be such that ui and uni are equal to zero on (τ,∞), and assume
that ui and uni are zero on (−∞, 0). By the well-posedness there exists a K(τ)
such that ∫ τ

−∞
‖yi(s)− yni (s)‖2 ds ≤ K(τ)

∫ τ

−∞
‖ui(s)− uni (s)‖2 ds

11



and hence ∫ τ

−∞
‖yi(s)− yni (s)‖2 ds→ 0 as n→∞.

For zni (τ) :=
∫ τ
−∞ T (τ − s)Bui(s) ds we have∫ ∞

τ

‖yi(s)− yni (s)‖2 ds =
∫ ∞

0

‖CT (s) (zi(τ)− zni (τ)) ‖2 ds.

Since Σ(A,B,C, 0) is output stable, there exists a γ > 0 such that∫ ∞
τ

‖yi(s)− yni (s)‖2 ds ≤ γ ‖zi(τ)− zni (τ)‖2,

and by the well-posedness there exists a K(τ) such that

‖zi(τ)− zni (τ)‖2 ≤ K(τ)
∫ τ

−∞
‖ui(s)− uni (s)‖2 ds.

Hence ∫ ∞
τ

‖yi(s)− yni (s)‖2 ds→ 0 as n→∞.

So we have yni → yi in L2(R;Y ). By the compact support of the inputs ui
and uni we need only yn,LCi → yLCi in L2(−∞, τ ;Y ) to establish (18). This
convergence follows from the well-posedness as above. Using this (18) follows.
The case that ui is not zero on (−∞, 0) can be reduced to the case that this is
the case by a time-shift as in the proof of Lemma 3.7.

We also need to study anticausal outputs of state linear systems. The
anticausal output of the state linear system Σ(A,B,C,D) for an input u ∈
Lloc

2 (R;U) with support bounded to the right is defined as

ya(t) :=
∫ ∞
t

CT (s− t)Bu(s) ds+Du(t). (22)

We have the following analogue of Lemma 3.2.

Lemma 3.9. If Σ(A,B,C,D) is output stable, then for inputs u ∈ Lloc
2 (R;U)

with compact support, the anticausal output given by (22) is in L2(R;Y ).

Proof. The proof is as in the proof of Lemma 3.2.

We have the following analogue of Lemma 3.7.

Lemma 3.10. Let Σ(A,B,C,D) be output stable and assume that either σ(A)∩
iR has measure zero or U and Y are finite-dimensional. Then for inputs with
compact support we have for almost all ω ∈ R

ŷa(iω) = G(−iω)û(iω), (23)

where ya is the anticausal output of Σ(A,B,C,D) defined by (22).

12



Proof. This follows as in the proof of Lemma 3.7, but now by first assuming u to
be zero for positive time and using the Hardy space H2 over the left half-plane.
Details are as follows. We first prove the statement for the case that u is zero
for positive time. Now on some left half-plane we have

ŷa(s) = G(−s)û(s). (24)

Since ŷa ∈ H2(C−0 ;Y ) by Lemma 3.9 (and anticausality) and G is holomorphic
on C+

0 by Lemma 3.4 this extends to C−0 . By Lemma 3.5 we have G(s)→ G(iω)
in the operator norm as s → iω. Since û ∈ H2(C−0 ;U) and ŷa ∈ H2(C−0 ;Y ),
they converge to their boundary functions as s → iω so we obtain (23). The
general case follows by applying the above to the function u(t) := u(t+ τ) with
output ya(t) := ya(t + τ), where y is the output corresponding to u and τ is
chosen such that u is zero for positive time.

The next result is a consequence of Lemma 3.8.

Lemma 3.11. Let Σ(A,B,C, 0) be input and output stable with observability
gramian LC and let ui ∈ Lloc

2 (R;U) be an input with compact support. Denote
by yi the output of Σ(A,B,C, 0) with input ui given by (10) and by yai the
anticausal output of Σ(A∗, LCB,B∗, 0) with input ui given by the corresponding
(22). Then we have yai ∈ L2(R;U) and the following:∫ ∞

−∞
〈y1(t), y2(t)〉 dt =

∫ ∞
−∞
〈ya1 (t), u2(t)〉 dt+

∫ ∞
−∞
〈u1(t), ya2 (t)〉 dt. (25)

Proof. Since Σ(A,B,C, 0) is input stable the system Σ(A∗, LCB,B∗, 0) is out-
put stable. Lemma 3.9 then implies that yai ∈ L2(R;U). Equation (25) follows
from (18) by an application of Fubini’s theorem and a change of variables.

Lemma 3.12. If Σ(A,B,C, 0) is input and output stable with the observability
gramian LC , then

〈LCBu, B̂(s)u〉+ 〈B̂(s)u, LCBu〉 (26)

=‖ G(s)u ‖2 + 2Re s ‖L1/2
C B̂(s)u‖2 ∀ s ∈ C+

0 , u ∈ U.

Proof. We obtain a straightforward frequency domain identity from the Lya-
punov equation (5):

(s̄I −A∗)LC + LC(sI −A) = C∗C + 2Re s LC .

This leads to the following identity on some right half-plane:

B∗LC(sI −A)−1B +B∗(s̄I −A∗)−1LCB

= B∗(s̄I −A∗)−1C∗C(sI −A)−1B + 2Re sB∗(s̄I −A)−1LC(sI −A)−1B.

From this we obtain (26) for s in some right half-plane using Lemma 3.4. From
the input stability of Σ(A,B,C,D) we obtain that B̂ and G are holomorphic on
C+

0 . From the appendix (Corollaries 9.1 and 9.4) it follows that all terms in (26)
are real-analytic on C+

0 . By the identity theorem for real-analytic functions we
obtain (26) for s ∈ C+

0 .
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The next lemma is the main result of this section.

Lemma 3.13. Let Σ(A,B,C, 0) be input and output stable with the observability
gramian LC and assume that either σ(A)∩ iR has measure zero or U and Y are
finite-dimensional. Then for almost all ω ∈ R, all u ∈ U , and all nontangential
paths

lim
s→iω

Re s ‖ L1/2
C B̂(s)u ‖2= 0. (27)

Proof. Let ui be locally square integrable with compact support. Let yi denote
the output of Σ(A,B,C, 0) for input ui from (10) and let yai denote the anti-
causal output of Σ(A∗, LCB,B∗, 0) for input ui from the corresponding (22).
By Fourier transforming (25) we obtain∫ ∞
−∞
〈ŷ1(iω), ŷ2(iω)〉 dω =

∫ ∞
−∞
〈ŷa1 (iω), û2(iω)〉 dω +

∫ ∞
−∞
〈û1(iω), ŷa2 (iω)〉 dω.

From Lemmas 3.7 and 3.10 we obtain∫ ∞
−∞
〈G(iω)û1(iω),G(iω)û2(iω)〉 dω

=
∫ ∞
−∞
〈GLC(−iω)û1(iω), û2(iω)〉 dω +

∫ ∞
−∞
〈û1(iω),GLC(−iω)û2(iω)〉 dω,

where GLC is the transfer function of the system Σ(A∗, LCB,B∗, 0). Letting
ui(t) = f(t)v, where f is a scalar function with compact support and v ∈ U , we
obtain∫ ∞
−∞
|f̂(iω)|2

(
〈GLC(−iω)v, v〉+ 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2

)
dω = 0. (28)

From (26) we obtain using GLC(s) = B̂(s̄)∗LCB that for all s ∈ C+
0

〈GLC(s̄)v, v〉+ 〈v,GLC(s̄)v〉 − ‖G(s)v‖2 = 2Re s ‖L1/2
C B̂(s)v‖2 ≥ 0.

Taking nontangential limits (which exist for all three terms on the left-hand
side) we obtain for almost all ω ∈ R

〈GLC(−iω)v, v〉+ 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2 ≥ 0. (29)

Combining (28) and (29) we obtain for almost all ω ∈ R

|f̂(iω)|2
(
〈GLC(−iω)v, v〉+ 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2

)
= 0.

Now let f : R → C be a function that has compact support and such that
f̂(iω) 6= 0 for almost all ω ∈ R (for example, the function equal to 1 on [0,1]
and zero elsewhere). Then we obtain for all v ∈ U and almost all ω ∈ R

〈GLC(−iω)v, v〉+ 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2 = 0,

and comparing the above with (26) proves (27).
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It is an interesting open question whether Lemma 3.13 is true for infinite-
dimensional U and Y without the spectrum assumption.

We need the following property of the system Σ(A,B,B∗LC , 0) shown in
Weiss and Weiss [31, Theorem 11.1] (see also Oostveen [21, Lemma 4.2.6]).

Lemma 3.14. If Σ(A,B,C,D) is output stable and input-output stable with
observability gramian LC , then Σ(A,−, B∗LC ,−) is output stable.

By duality we obtain the following.

Corollary 3.15. If Σ(A,B,C,D) is input stable and input-output stable with
controllability gramian LB, then Σ(A,LBC∗,−,−) is input stable.

Lemma 3.13 has an easy corollary.

Corollary 3.16. Let Σ(A,B,C, 0) be a system-stable state linear system and as-
sume that either σ(A)∩ iR has measure zero or U and Y are finite-dimensional.
Denote by B̂LB(s̄)∗ and ĈLC(s) the holomorphic extensions to C+

0 of CLB(sI −
A∗)−1 and B∗LC(sI−A)−1, respectively. Then for almost all ω ∈ R, all u ∈ U ,
and all nontangential paths

lim
s→iω

Re s ‖ L1/2
C B̂LB(s)u ‖2= 0, (30)

lim
s→iω

Re s ‖ L1/2
B Ĉ(s̄)

∗y ‖2= 0, (31)

lim
s→iω

Re s ‖ L1/2
B ĈLC(s̄)∗y ‖2= 0. (32)

Proof. Equation (30) follows from Lemma 3.13, since by Lemma 3.15, Σ(A,LBC∗,
C, 0) is input stable and output stable and has observability gramian LC . Equa-
tion (31) is the dual of (27), and (32) is the dual of (30).

4 Riccati equations

In this section we obtain some new results on stabilizability and Riccati equa-
tions for state linear systems that we will need in what follows.
First we introduce concepts of stabilizability from Curtain [10] that are refine-
ments of the definitions introduced in Curtain and Oostveen [7].

Definition 4.1. Σ(A,B,C,D) is output stabilizable if there exists an F ∈
L(Z,U) such that Σ(A + BF,B, [C;F ], 0) is output stable. Σ(A,B,C,D) is
input stabilizable if there exists an L ∈ L(Y,Z) such that Σ(A+LC, [B,L], C, 0)
is input stable.

The following are extensions of the results in Curtain and Oostveen [7]. In
fact, they are special cases of analogous results for the very large class of well-
posed linear systems in Mikkola [19]. Since the proofs there are not so accessible,
we give simple proofs here.
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Theorem 4.2. If the state linear system Σ(A,B,C, 0) is output stabilizable,
then there exists a smallest bounded nonnegative solution of the control Riccati
equation for z ∈ D(A):

A∗Qz +QAz + C∗Cz −QBB∗Qz = 0. (33)

Moreover, for any bounded nonnegative solution, Σ(AQ, B, [C;−B∗Q], 0) is out-
put stable, where AQ = A−BB∗Q. If, in addition, Σ(A,B,C, 0) is input stabi-
lizable, then it is system-stable. If Σ(A,B,C, 0) is input stabilizable, then there
exists a smallest bounded nonnegative solution to the filter Riccati equation for
z ∈ D(A∗):

APz + PA∗z − PC∗CPz +BB∗z = 0. (34)

Moreover, for any bounded nonnegative solution, Σ(AP , [B,−PC∗], C, 0) is in-
put stable, where AP = A − PC∗C. If, in addition, Σ(A,B,C, 0) is output
stabilizable, then it is system-stable.

Proof. The existence of a smallest bounded nonnegative solution to the Riccati
equation has been shown in Curtain and Oostveen [7]. In fact, it follows from [4,
Theorem 6.2.4], since output stabilizability implies optimizability. Next we note
that the output stability of Σ(AQ, B, [C;−B∗Q], 0) follows from the following
equivalent formulation of the Riccati equation:

A∗QQz +QAQz +QBB∗Qz + C∗Cz = 0 for z ∈ D(A). (35)

This is the observability Lyapunov equation for Σ(AQ, B, [C;−B∗Q], 0), and
Lemma 2.4 shows that it is output stable.

Next we observe that the input stabilizability guarantees the existence of a
solution P to the dual filter Riccati equation (34). This in turn shows that the
solutions to the Lyapunov equations of the system Σ(AQ, B, [C;−B∗Q], 0) are
Q and P (I + QP )−1 (we use the dual version of Lemma 9.4.10 in [4]). So this
system is input stable (see Lemma 2.4). So, from Theorem 3.4, we can write
the transfer function [N; M] of the closed-loop system on C+

0 in two ways:

[N; M]− [0; I] = ĈQB = [C;−B∗Q]B̂Q,

where ĈQz is the Laplace transform of [C;−B∗Q]TQ(t)z, 〈B̂Qu, z〉 is the Laplace
transform of 〈TQ(t)Bu, z〉 for all z ∈ Z and u ∈ U , and TQ is the semigroup
generated by AQ. We use this latter version of [N; M] to compute for s ∈ C+

0

[N(s); M(s)]∗[N(s); M(s)] (36)

= B̂∗Q(s)[C∗C +QBB∗Q]B̂Q(s) + I − B̂∗Q(s)QB −B∗QB̂Q(s).

We then use the formulation (35) of the Riccati equation to obtain

C∗C +QBB∗Q = A∗QQ+QAQ = (sI −AQ)∗Q+Q(sI −AQ)− 2Re s Q.
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We substitute this into (36) and use the equality (15) applied to the closed-loop
system Σ(AQ, B, [C;−B∗Q], 0),

(s−AQ)B̂Q(s) = B for s ∈ C+
0 ,

to obtain

[N(s); M(s)]∗[N(s); M(s)] = I − 2Re s B̂∗Q(s)QB̂Q(s). (37)

This shows that [N(s); M(s)]∗[N(s); M(s)] ≤ I for all s ∈ C+
0 . Thus [N; M] ∈

H∞(L(U, Y ⊕ U)).

We proceed to deduce some interesting properties of the spectrum of the
closed-loop generators AQ and AP on the right half-plane.

Lemma 4.3. Suppose that the state linear system Σ(A,B,C, 0) is input and
output stabilizable. Then for any bounded nonnegative solutions Q,P to the
Riccati equations (33), (34), respectively, the closed-loop generators have the
following properties:

1. The closed-loop operators AQ = A − BB∗Q and AP = A − PC∗C have
the same spectrum and

(I + PQ)AQz = AP (I + PQ)z for z ∈ D(A). (38)

2. Let Q1, Q2 be two bounded nonnegative solutions of (33). Then σ(AQ1) =
σ(AQ2).

3. The spectra of the closed-loop generators AQ and AP in the closed right
half-plane are contained in the spectrum of A.

Proof. 1. First we prove (38). As in Curtain and Zwart [4, Lemma 4.1.24] we
have

Q : D(A)→ D(A∗), P : D(A∗)→ D(A).

So using (35) we obtain for z ∈ D(A)

(I + PQ)AQz
= AQz − P (A∗QQz +QB∗BQ+ CC)z
= (A− PC∗C)z −BB∗Qz − PA∗Qz
= AP z − P (A∗P + C∗CP )Qz −BB∗Qz
= AP z + (APP +BB∗)Qz −BBQz from (34)
= AP (I + PQ)z.

Since P,Q are bounded nonnegative operators, (I+PQ) is boundedly invertible
and σ(AQ) = σ(AP ).

2. From part 1 it follows that σ(AQ1) = σ(AP ) = σ(AQ2).
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3. Suppose that λ ∈ C+
0 is in the point spectrum of AQ; i.e., AQx = λx for

some nonzero x ∈ D(A). Then from (35) we obtain

2 Reλ〈Qx, x〉 = 〈AQx,Qx〉+ 〈Qx,AQx〉
= −‖B∗Qx‖2 − ‖Cx‖2.

Since Q ≥ 0 and Re λ ≥ 0 we must have B∗Qx = 0 = Cx, which implies that
λx = AQx = Ax. So λ is in the point spectrum of A. Suppose now that µ ∈ C+

0

is in the residual spectrum of AQ. Then by (38) µ̄ is in Pσ(A∗Q) = Pσ(A∗P ) and
so there exists a y ∈ D(A∗) such that A∗P y = µy. Now (34) can be reformulated
as

APPz + PA∗P z = −PC∗CPz −BB∗z, (39)

and substituting z = y and taking the inner product with y gives

2 Reµ〈Py, y〉 = 〈A∗P y, Py〉+ 〈Py,A∗P y〉
= −‖B∗y‖2 − ‖CPy‖2.

Since Re µ ≥ 0 and P ≥ 0, we must have CPy = 0 = B∗y, which implies
that µy = A∗P y = A∗y and so µ ∈ σ(A). Suppose now that λ ∈ C+

0 is in
the continuous spectrum of AQ. Then there exists a sequence xn ∈ D(A) with
‖xn‖ = 1 and ‖AQxn − λxn‖ → 0 as n→∞. Substituting in (35) we obtain

〈AQxn − λxn, Qxn〉+ 〈Qxn, AQxn − λxn〉
= −‖B∗Qxn‖2 − ‖Cxn‖2 − 2 Reλ〈Qxn, xn〉.

Since Q ≥ 0 and Re λ ≥ 0, we deduce that ‖B∗Qxn‖2 ≤ 2‖Q‖ ‖xn‖ ‖AQxn −
λxn‖ → 0 as n→∞. Thus

‖Axn − λxn‖ ≤ ‖AQxn − λxn‖+ ‖BB∗Qxn‖ → 0

as n → ∞. So λ is in the approximate point spectrum of A. The above shows
that ρ(AQ) ∩ C+

0 ⊂ ρ(A) ∩ C+
0 . Since by part 1 we have ρ(AQ) = ρ(AP ) this

proves the assertion.

In [6] it was discovered that two interesting Riccati equations play a role in
the solution to the Nehari problem.

Theorem 4.4. Let Σ(A,B,C, 0) be input and output stable and let L1, L2 be
arbitrary bounded nonnegative solutions to the Lyapunov equations (4), (5), re-
spectively. Let σ > r

1
2 (L1L2) and define Nσ := (I − σ−2L1L2)−1. Then

1. W := NσL1 is a bounded nonnegative solution of the following Riccati
equation for z ∈ D(A∗):

WA∗z +AWz − σ−2WC∗CWz +NσBB
∗N∗σz = 0; (40)

18



2. X := L2Nσ is a bounded nonnegative solution of the following Riccati
equation for z ∈ D(A):

A∗Xz +XAz − σ−2XBB∗Xz +N∗σC
∗CNσz = 0; (41)

3. the closed-loop systems Σ(AW , [NσB;WC∗], C) and Σ(AX , B, [CNσ;B∗X])
are system-stable, where AW = A−σ−2WC∗C and AX = A−σ−2BB∗X;

4. σ(AX)∩C+
0 ⊂ σ(A)∩C+

0 and σ(AX)∩ iR ⊂ σ(A)∩ iR and the closed-loop
generators are related by AX = N−1

σ AWNσ.
Proof. 1. and 2. The proofs of Lemmas 4.1.24 and 8.3.2 in [4] show that

L1D(A∗) ⊂ D(A), L2D(A) ⊂ D(A∗), NσD(A) ⊂ D(A), and N∗σD(A∗) ⊂
D(A∗). Thus WD(A∗) ⊂ D(A) and XD(A) ⊂ D(A∗). That W satisfies (40)
and X satisfies (41) can be readily verified algebraically.

3. The conclusions about the stability of the closed-loop systems then follow
from Theorem 4.2, noting that Σ(A, 1/σB,CNσ) is input stable and output
stabilizable (with F = −1/σB∗X) and that Σ(A,NσB, 1/σC) is output stable
and input stabilizable (with L = −1/σWC∗).

4. Theorem 4.3 shows that σ(AX) ∩ C+
0 ⊂ σ(A) ∩ C+

0 and σ(AX) ∩ iR ⊂
σ(A) ∩ iR. To relate AX and AW consider

AXN
−1
σ = A(I − σ−2L1L2)− σ−2BB∗L2

= A− σ−2(AL1 +BB∗)L2

= A+ σ−2L1A
∗L2

= A− σ−2L1(L2A+ C∗C)
= (I − σ−2L1L2)A− σ−2L1C

∗C

= N−1
σ AW .

5 The spectral factor

As in [4] and [6] we shall approach the solution of the Nehari problem for the
input and output stable state linear system Σ(A,B,C, 0) with transfer function
G by solving the following J-spectral factorization problem: find X such that

P(iω)∗JσP(iω) = X(iω)J1X(iω)∗ for almost all ω ∈ R, (42)

where

P(s) =
[
IY G(s)
0 IU

]
and Jσ =

[
IY 0
0 −σ2IU

]
.

Here we introduce the candidate solution and give some properties. Let L1

and L2 be arbitrary bounded nonnegative solutions of the controllability and
observability Lyapunov equations, respectively. For σ > r

1
2 (L1L2) we define

Nσ = (I − σ−2L1L2)−1 and we introduce the state linear system

19



Σ
(
A, σ−2Nσ

(
L1C

∗ −σB
)
,

[
C

B∗L2

]
,

[
IY 0
0 σIU

])
. (43)

We denote the characteristic function of the state linear system (43) by X and
its transfer function by X and we prove the following lemma.

Lemma 5.1. Let

P(s) =
[
IY G(s)
0 IU

]
.

Then R(s) = P(s)∗JσP(s)− X(s)J1X(s)∗ satisfies the following for s ∈ ρ(A):

R(s)11 = −2σ−2Re sC(sI −A)−1NσL1(sI −A)−∗C∗,
R(s)12 = −2σ−2Re sC(sI −A)−1NσL1(sI −A)−∗L2B,

R(s)21 = R(s)∗12,

R(s)22 = −2Re sB∗(sI −A)−∗L2(sI −A)−1B

−2σ−2Re sB∗L2(sI −A)−1NσL1(sI −A)−∗L2B.
Proof. We only prove the formula for R(s)11; the proof for the other com-

ponents is similar. We have on some right half-plane

R(s)11 = I − X11(s)X11(s)∗ + X12(s)X12(s)∗

= −σ−4C(sI −A)−1WC∗CW (sI −A)−∗C∗

+σ−2C(sI −A)−1NσBB
∗N∗σ(sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C
= σ−2C(sI −A)−1

(
−σ−2WC∗CW +NσBB

∗N∗σ
)

(sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C.

Using (40) we obtain

R(s)11 = σ−2C(sI −A)−1 (−WA∗ −AW ) (sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C
= σ−2C(sI −A)−1 (W (sI −A)∗ + (sI −A)W − 2Re s W ) (sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C
= −2σ−2Re s C(sI −A)−1NσL1(sI −A)−∗C∗.

It is clear from the above that if σ(A) ∩ iR has measure zero and L1, L2 are an
arbitrary pair of solutions to the Lyapunov equations, then X is a solution to
(42). If, in addition, (43) is input or output stable, then it follows from Lemma
3.5 that X is a solution to (42). The following example shows that in general
X need not provide a spectral factor.
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Example 5.2. We consider an example from Curtain and Sasane [8] (see also
Sasane [28]). The transfer function G0(s) = 1√

s2+1
was shown to have a realiza-

tion Σ(A,B,B∗, 0) on the state space `2(Z), where A ∈ L(`2(Z)) and B ∈ `2(Z)
are given by

Ai,i+1 = −1/2, Ai+1,i = 1/2, Ai,j = 0 otherwise,
B0 = 1, Bi = 0 otherwise.

The spectrum of A is purely continuous and equals [−i, i]. The closed-loop
system Σ(A−BB∗, B,B∗, 0) is system-stable with the transfer function G(s) =

1
1+
√
s2+1

. It is continuous on the imaginary axis and it satisfies

G(iω) + G(iω)∗ = 2G(iω)∗G(iω) for |ω| > 1, (44)

G(iω) = G(iω)∗ =
1

1 +
√

1− ω2
for |ω| < 1. (45)

The Lyapunov equations have solutions L1 = L2 = 1/2 I, but note that it is
known from [28] that these are not the observability or controllability gramians.
The advantage of using these solutions is that the calculations are simple. In
this specific case the state linear system (43) is

Σ
(
A−BB∗, σ−2Nσ

[
B/2 −σB

]
,

[
B∗

B∗/2

]
,

[
1 0
0 σ

])
.

An easy calculation shows that for s ∈ ρ(A − BB∗) = ρ(A) = C − [−1, 1] we
have

X(s) =
[

1 0
0 σ

]
+ α

[
2 −4σ
1 −2σ

]
G(s),

where α = 1
4σ2−1 . This, together with the stability properties of the state linear

systems and Lemma 3.5, shows that we have for almost all ω ∈ R

X(iω) =
[

1 0
0 σ

]
+ α

[
2 −4σ
1 −2σ

]
G(iω).

It is now easily shown using (44) that (42) holds for |ω| > 1 and using (45) that
(42) does not hold for |ω| < 1.

If we choose the smallest bounded nonnegative solutions to the Lyapunov
equations we obtain stronger properties of the candidate spectral factor.

Lemma 5.3. If Σ(A,B,C, 0) is output and input-output stable and L2 = LC ,
the observability gramian of the system Σ(A,B,C, 0), then (43) is output stable.

Proof. This follows from Lemma 3.14.

Lemma 5.4. If Σ(A,B,C, 0) is system-stable and either σ(A) ∩ iR has mea-
sure zero or U and Y are finite-dimensional, and L1 = LB and L2 = LC ,
where LB , LC are the controllability and observability gramians of the system
Σ(A,B,C, 0), respectively, then X satisfies (42).
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Proof. It follows from Lemma 5.1 that on some right half-plane〈
R(s)

[
y
u

]
,

[
y
u

]〉
= − 2

σ2
Re s

(
‖α(s)y + β(s)u‖2 + σ2‖γ(s)u‖2

)
, (46)

where R is as in Lemma 5.1 and

α(s) = MσL
1/2
B (sI −A)−∗C∗, β(s) = MσL

1/2
B (sI −A)−∗LCB,

γ(s) = L
1/2
C (sI −A)−1B, Mσ = (I − 1

σ2
L

1/2
B LCL

1/2
B )−1/2.

From the stability properties we can replace α, β, and γ in (46) by their holo-
morphic extensions (Lemmas 3.4 and 3.14). Then as in Lemma 3.12, using the
real-analyticity property, it follows that the resulting equalities hold on C+

0 .
Using Lemma 3.13 and Corollary 3.16 we see that the right-hand side of

(46) converges to zero as Re s → 0 (here α, β, and γ are replaced by their
holomorphic extensions). From this we obtain the J-spectral factorization (42).

In the remainder of this section we collect some properties of the spectral
factor described by (43) and of its inverse system

Σ
(
A, σ−2

[
−L1C

∗ B
]
,

[
C

σ−1B∗L2

]
Nσ,

[
IY 0
0 σ−1IU

])
. (47)

We denote the characteristic function of the state linear system (47) by V and
its transfer function by V. It is the inverse of X in the following sense.

Lemma 5.5. Assume that Σ(A,B,C, 0) is input and output stable. Then for
s ∈ ρ(A) we have V(s)X(s) = I = X(s)V(s).

Proof. This follows from a straightforward calculation.

Lemma 5.6. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB, the
controllability gramian of the system Σ(A,B,C, 0). Then (47) is input stable.

Proof. This follows from Corollary 3.15.

Lemma 5.7. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB
and L2 = LC , the controllability and observability gramians of the system
Σ(A,B,C, 0), respectively. Then V(s)X(s) = I = X(s)V(s) for all s ∈ C+

0 .

Proof. From Lemmas 3.4, 5.3, 5.5, and 5.6 we have V(s)X(s) = I = X(s)V(s)
for all s ∈ C+

0 ∩ρ(A). From Lemmas 5.3 and 5.6 both X and V are holomorphic
on C+

0 and so the equality extends to this domain.

Lemma 5.8. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB
and L2 = LC , the controllability and observability gramians of the system
Σ(A,B,C, 0), respectively. If either σ(A)∩ iR has measure zero or U and Y are
finite-dimensional, then V(iω)X(iω) = I = X(iω)V(iω) for almost all ω ∈ R.
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Proof. This follows from Lemmas 5.3, 5.6, 5.7, and 3.5.

The (2,2) component of V plays a special role in what follows, and we need the
following extra properties.

Lemma 5.9. Assume that Σ(A,B,C, 0) is input and output stable. Then the
system Σ(A, σ−2B, σ−1B∗X,σ−1I) is input stable, and its characteristic func-
tion V22(s) is invertible for s ∈ ρ(A) ∩ ρ(AX). Its inverse is the characteristic
function of the system-stable state linear system

Σ(AX , B,−σ−1B∗X,σI), with X = L2Nσ. (48)

Moreover, the transfer function V22(s) is invertible for s ∈ C+
0 , and its inverse

is the transfer function of (48).

Proof. The input stability follows from that of Σ(A,B,C, 0). The invertibility of
the characteristic function V22 is a simple calculation, and the stability property
of (48) follows from Theorem 4.4. The invertibility of the transfer function
follows as in Lemma 5.7.

Lemma 5.10. Assume that Σ(A,B,C, 0) is input and output stable and that
either σ(A)∩ iR has measure zero or U and Y are finite-dimensional. Then the
boundary function of V22 is almost everywhere invertible, and its inverse is the
boundary
function of the transfer function of (48).

Proof. This follows from Lemmas 5.9 and 3.5.

Dual results for X11(s) can be proved similarly.

Corollary 5.11. Assume that Σ(A,B,C, 0) is input and output stable. Then
the system Σ(A, σ−2WC∗, C, I) is output stable, and its characteristic function
X11(s) is invertible for s ∈ ρ(A) ∩ ρ(AW ). Its inverse is the characteristic
function of the system-stable state linear system

Σ(AW ,−σ−2WC∗, C, I), with W = NσL1. (49)

Moreover, the transfer function X11(s) is invertible for s ∈ C+
0 , and its inverse

is the transfer function of (49).

Corollary 5.12. Assume that Σ(A,B,C, 0) is input and output stable and that
either σ(A)∩ iR has measure zero or U and Y are finite-dimensional. Then the
boundary function of X11 is almost everywhere invertible, and its inverse is the
boundary function of the transfer function of (49).

23



6 The central solution

We introduce the following state linear system

Σ(A∗W , L2B,−σ−2CW, 0), (50)

where W is as in Theorem 4.4. We denote its characteristic function by Z and its
transfer function by Z. The candidate solution to the Nehari problem is given
by Kc(−s) = Z(s). The state linear system (50) has the following properties.

Lemma 6.1. If Σ(A,B,C, 0) is input and output stable, then the following hold:

1. The state linear system (50) is output stable.

2. The characteristic functions of the state linear system (50) and of the state
linear system Σ(A∗X ,−σ−2XB,CL1, 0) coincide.

3. The state linear system Σ(A∗X ,−σ−2XB,CL1, 0) is input stable.

4. For s ∈ ρ(A∗) ∩ ρ(A∗W ) we have Z(s) = V21(s̄)∗V−1
22 (s̄)∗.

Proof. 1. This follows from Theorem 4.4, part 3.
2. This is an easy calculation using Theorem 4.4, part 4.
3. This follows from Theorem 4.4, part 3.
4. This is a simple calculation.

The above shows that we have one realization of Z that is output stable and
another that is input stable. We now show that Z is in H∞ under the assumption
A1.

Theorem 6.2. If Σ(A,B,C, 0) is system-stable and σ(A)∩iR has measure zero,
then Z ∈ H∞(L(U, Y )) and with Kc(−s) = Z(s) we have

‖G + Kc‖∞ ≤ σ.

Proof. It follows from Lemma 6.1, part 4, and Theorem 4.4, part 4, that for
almost all ω ∈ R we have

Kc(iω) = V21(iω)∗V22(iω)−∗. (51)

From Lemma 5.1 we see that for almost all ω ∈ R we have

P(iω)∗JσP(iω) = X(iω)J1X(iω)∗. (52)

From (51) we obtain for almost all ω ∈ R[
G(iω) + Kc(iω)

I

]
= P(iω)V(iω)∗

[
0

V22(iω)−∗

]
.
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So

(G(iω) + Kc(iω))∗(G(iω) + Kc(iω))− σ2I

=
[

G(iω) + Kc(iω)
I

]∗
Jσ

[
G(iω) + Kc(iω)

I

]
=
[

0
V22(iω)−∗

]∗
V(iω)P(iω)∗JσP(iω)V(iω)∗

[
0

V22(iω)−∗

]
=
[

0
V22(iω)−∗

]∗ [
I 0
0 −I

] [
0

V22(iω)−∗

]
, (53)

where in the last step we have used the spectral factorization (52). The above
shows that

‖G(iω) + Kc(iω)‖2 − σ2 = −‖V22(iω)−∗‖2,
and so for almost all ω ∈ R

‖G(iω) + Kc(iω)‖ ≤ σ,

which implies that G + Kc ∈ L∞(iR;L(U, Y )). Since G ∈ H∞(L(U, Y )) and
by Lemma 3.5 G coincides almost everywhere with the boundary function
of G on the imaginary axis, we have G ∈ L∞(iR;L(U, Y )) and thus Kc ∈
L∞(iR;L(U, Y )). From this it follows that Z ∈ L∞(iR;L(U, Y )). This, together
with the output stability of the state linear system (50) from Lemma 6.1 using
Lemmas 3.5 and 3.6, shows that Z ∈ H∞(L(U, Y )). Thus with Kc(−s) = Z(s)
we obtain ‖G + Kc‖∞ ≤ σ.

Our main result in this section is to show that under assumption A2, Z ∈ H∞
and Kc solves the suboptimal Nehari problem.

Theorem 6.3. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB
and L2 = LC , the controllability and observability gramians of the system
Σ(A,B,C, 0), respectively, and that U and Y are finite-dimensional. Then
Z ∈ H∞(L(U, Y )) and with Kc(−s) = Z(s) we have

‖G + Kc‖∞ ≤ σ.

Proof. The idea is to follow the lines of the proof of Theorem 6.2, replacing
the characteristic functions by their corresponding transfer functions. So all we
need to show is that the following two key properties hold for almost all ω ∈ R:

Z(iω) = V21(−iω)∗V−1
22 (−iω)∗, (54)

P(iω)∗JσP(iω) = X(iω)J1X(iω)∗. (55)

Since (55) has already been shown in Lemma 5.4, it remains to show only (54).
By Lemma 6.1, part 4, on some right half-plane we have Z(s) = V21(s̄)∗V−1

22 (s̄)∗.
Using Lemma 6.1, part 1, Lemma 5.6, and Lemma 5.9 this equality holds on
C+

0 (all functions are holomorphic on C+
0 ). Lemmas 3.5 and 5.10 now give (54).
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Under assumption A2 we can show that Z has a realization as a system-stable
state linear system.

Corollary 6.4. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB
and L2 = LC , the controllability and observability gramians of the system
Σ(A,B,C, 0), respectively, and that U and Y are finite-dimensional. Then
Σ(A∗W , L2B,−σ−2CW, 0) and Σ(A∗X ,−σ−2XB,CL1, 0) are system-stable state
linear systems.

Proof. We have already shown in Lemma 6.1 and Theorem 6.3 that Σ(A∗W , LCB,
−σ−2CW, 0) is output and input-output stable. The input stability follows from
the identity

B∗LC(sI −AW )−1 = B∗LC(sI −A)−1 − σ−2B∗LC(sI −AW )−1WC∗C(sI −A)−1

and the fact B∗LC(sI − A)−1z ∈ H2(Y ) (Lemma 3.14), that B∗LC(sI −
AW )−1WC∗ ∈ H∞(L(Y,U)) (the input-output stability shown earlier), and
that C(sI − A)−1z ∈ H2(Y ) for all z ∈ Z. The proof for the other realization
is similar.

7 Parametrization of solutions

First we give a parameterization of a family of solutions to the Nehari problem in
terms of the transfer function of (47) and an H∞ parameter under assumption
A2.

Theorem 7.1. Let Σ(A,B,C, 0) be system-stable with transfer function G and
let LB and LC be the controllability and observability gramians, respectively.
Assume that U and Y are finite-dimensional. For σ > r

1
2 (LBLC) define[

R1(s)
R2(s)

]
= V(s̄)∗

[
Q(−s)
IU

]
, (56)

where Q(−s) ∈ H∞(L(U, Y )). If ‖Q‖∞ ≤ 1, then K(−s) = R1(s)R2(s)−1 ∈
H∞(L(U, Y )) and satisfies

‖K + G‖∞ ≤ σ.

We prove this in a series of lemmas.

Lemma 7.2. Under the assumptions of Theorem 7.1 we have the following.
For all s ∈ C+

0 and almost all s ∈ iR we have ‖V12(s)V−1
22 (s)‖ < 1.

Proof. Consider the state linear system Σ(A, σ−1B,CNσ, 0), and denote its
transfer function by E. The control Riccati equation (33) corresponding to this
system is precisely (41). From the proof of Theorem 4.2, specifically by (37),
we have ‖[N; M]‖∞ ≤ 1, where [N; M] is the transfer function of the closed-
loop system Σ(AX , σ−1B, [CNσ,−σ−1B∗X], [0; I]). It is easily calculated that
V12(s)V−1

22 (s) = N(s). It also easily seen that N(s) = E(s)M(s) on some
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right half-plane. By stability this extends to the right half-plane and by taking
nontangential limits to almost everywhere on the imaginary axis.

From the above inequality we obtain for almost all ω ∈ R that ‖N(iω)‖ ≤
1. We show that, in fact, strict inequality holds. Suppose, on the contrary,
that ‖N(iω0)‖ = 1. Then there would exist a sequence un with norm one
such that ‖N(iω0)un‖ → 1. From the above H∞ bound we conclude that
‖M(iω0)un‖ → 0. Since for almost all ω ∈ R we have N(iω) = E(iω)M(iω),
we obtain ‖N(iω0)un‖ → 0. This gives the desired contradiction.

We now extend this inequality to s ∈ C+
0 . From the above we know that

‖V12V−1
22 ‖∞ = ‖N‖∞ ≤ 1. Suppose that there exists a point s0 ∈ C+

0 such that
‖V12(s0)V−1

22 (s0)‖ = 1. Then ‖V12(s)V−1
22 (s)‖ has a maximum in C+

0 and is
therefore constant by the maximum modulus principle; see, e.g., [17, Theorem
3.13.1, p. 100]. This implies that ‖V12(s)V−1

22 (s)‖ = 1 for all s ∈ C+
0 . But then

the boundary function would have norm one almost everywhere, and we have
shown that this is not true.

The next lemma ensures that K is well defined.

Lemma 7.3. Under the assumptions of Theorem 7.1, R2(s) is invertible for all
s ∈ C+

0 and almost all s ∈ iR.

Proof. Define P(s) := Q(−s̄)∗. Then P ∈ H∞(L(U, Y )), and ‖P‖∞ ≤ 1. Next,
using Lemma 7.2 we obtain ‖P(s)V12(s)V−1

22 (s)‖ < 1. From this we see that
(I + P(s)V12(s)V−1

22 (s))−1 = V22(s)(V22(s) + P(s)V12(s))−1 exists. Hence
T := (V22 + PV12)−1 exists. Since we have R2(s)−1 = T(s̄)∗ we have that
R2(s)−1 exists.

Next we prove Theorem 7.1 under the assumption ‖Q‖∞ < 1.

Lemma 7.4. Theorem 7.1 is true for all Q(−s) ∈ H∞(L(U, Y )) with ‖Q‖∞ <
1.

Proof. We show that R−1
2 ∈ H∞(L(U)). This follows as the proof of Lemma

7.3 using that H∞ is a Banach algebra: from ‖PV12V−1
22 ‖∞ < 1 we conclude

that (I + PV12V−1
22 )−1 ∈ H∞, and using that V−1

22 ∈ H∞ by Lemma 5.9 it
follows that R−1

2 ∈ H∞(L(U)).
K(−s) := R1(s)R2(s)−1 defines an L∞ function which satisfies ‖G+K‖∞ ≤

σ. The proof is similar to that of Theorem 6.2.
Last we show that K(−s) ∈ H∞(L(U, Y )).
Since for all s ∈ C+

0 we have V(s)X(s) = I, we obtain

X11(s)V11(s) + X12(s)V21(s) = I

and
X11(s)V12(s) + X12(s)V22(s) = 0,

from which we obtain

V11(s) = X11(s)−1 + V12(s)V22(s)−1V21(s).
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So

R1(s) = V21(s̄)∗ + V11(s̄)∗Q(−s)
= X11(s̄)−∗Q(−s) + V21(s̄)∗(I + V22(s̄)−∗V12(s̄)∗Q(−s))
= X11(s̄)−∗Q(−s) + V21(s̄)∗V22(s̄)−∗R2(s)
= X11(s̄)−∗Q(−s) + Kc(−s)R2(s),

and so

K(−s) = X11(s̄)−∗Q(−s)R2(s)−1 + Kc(−s).

Now Kc(−s) ∈ H∞ by Theorem 6.3, X−1
11 ∈ H∞ by Corollary 5.11, R2(s)−1 ∈

H∞ as we proved above, and Q(−s) ∈ H∞ is given. So K(−s) ∈ H∞(U, Y ).

The proof for the case ‖Q‖∞ ≤ 1 follows the approach in [1].

Lemma 7.5. Theorem 7.1 is true for all Q(−s) ∈ H∞(L(U, Y )) with ‖Q‖∞ ≤
1.

Proof. We first note that H∞ is weak-∗ closed in L∞. In the case of the unit
disc and the unit circle instead of the right half-plane and the imaginary axis,
this follows as in [27, p. 197]. The case we consider follows, using a Möbius
transform.

Next we note that if a bounded sequence Fn in L∞ converges pointwise to
F ∈ L∞, then Fn converges to F in the weak-∗ topology. In the case of the
unit disc and the unit circle instead of the right half-plane and the imaginary
axis, this follows as in [1, Proposition 2.3]. The case we consider follows, using
a Möbius transformation.

Using these two results, we prove the lemma. For t ∈ (0, 1) define Qt := tQ.
Then ‖Qt‖ ≤ t < 1. Define Kt in terms of Qt. Then by Lemma 7.4 we have
Kt ∈ H∞. If t→ 1, then for almost all ω ∈ R we have Kt(iω)→ K(iω). Since
Kt is bounded in norm by ‖G‖∞ + σ, the limit function (which is well defined
by Corollary 7.3) is in L∞. By the above this implies that Kt converges to K in
the weak-∗ topology. Since H∞ is closed in the weak-∗ topology and Kt ∈ H∞,
we obtain K ∈ H∞.

Remark 3. It is clear from the results in the previous section and from the proof
of Theorem 7.1 that the conclusions also hold under assumption A1: σ(A)∩ iR
has measure zero. In this case LB and LC can be replaced by arbitrary bounded
nonnegative solutions of the Lyapunov equations, and the assumption that U
and Y should be finite-dimensional is redundant.

8 Well-posed linear systems and reciprocals

In this section we solve the suboptimal Nehari problem via the reciprocal system
as in Curtain and Sasane [9].
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First we briefly review the definitions of a well-posed linear system (see Weiss
[32], Staffans [29]). Given an L(U, Y )-valued function G that is holomorphic
and uniformly bounded on some right half-plane, there exist operators A,B,C
such that
• A is the infinitesimal generator of a strongly continuous semigroup T (·) on

a separable Hilbert space Z;
• C ∈ L(D(A), Y ) is an admissible observation operator with respect to

T (·); i.e., given τ > 0, there exists a γ > 0 such that∫ τ

0

‖CT (t)z‖2 dt ≤ γ‖z‖2 ∀ z ∈ D(A);

• B∗ ∈ L(D(A∗), U), and B is an admissible control operator for T (·); i.e.,
for any τ > 0, there exists a β > 0 such that for all u ∈ L2(0, τ ;U)∥∥∥∥∫ τ

0

T (t− s)Bu(s) ds
∥∥∥∥2

≤ β
∫ τ

0

‖u(t)‖2 dt;

• The operators A,B,C should be such that

G(s)−G(α) = (α− s)C(sI −A)−1(αI −A)−1B (57)

for any α, s larger than the growth bound of the semigroup T .
A triple A,B,C that satisfies the above conditions is called a realization of

the function G. Such a realization is not unique. A well-posed linear system is
specified by operators A,B,C and a transfer function G that satisfy the above
conditions.

The expression (57) is defined for all s ∈ ρ(A), and as in section 2 to avoid
confusion, we call this the characteristic function and denote it by G. If the
admissibility definitions can be extended to τ =∞, then the term infinite-time
admissible is used. Well-posed linear systems form a nice generalization of state
linear systems, and the concepts of infinite-time admissibility are the natural
extensions of input and output stability in Definition 2.2, and we shall use the
terms input and output stability. In Grabowski [15] and Hansen and Weiss [16]
it is shown that Lemma 2.4 generalizes perfectly to well-posed linear systems
and in Curtain [11] that Lemma 3.4 also applies to well-posed linear systems.
We call Σ a system-stable well-posed linear system if it is input stable and output
stable and G ∈ H∞(L(U, Y )).

The concept of a reciprocal system was introduced in [10].

Definition 8.1. Suppose that the well-posed linear system Σ with generating
operators A,B,C and transfer function G is such that 0 ∈ ρ(A). Its reciprocal
system is the state linear system Σ(A−1, A−1B,−CA−1,G(0)).

The justification for this definition is the nice relationship between the well-
posed linear system and its reciprocal system shown in [11, Lemma 3.2].
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Theorem 8.2. Suppose that A,B,C are the generating operators of a well-
posed linear system Σ with transfer function G and zero is in the resolvent set
of A. Denote the characteristic function of its reciprocal system by Gr and the
transfer function of its reciprocal system by Gr. Then the following hold:

1. G(s) = Gr( 1
s ) whenever s is in the resolvent set of A.

2. Σ is output stable if and only if its reciprocal system is output stable. If
they are output stable, then their observability gramians are identical.

3. Σ is input stable if and only if its reciprocal system is input stable. If they
are input stable, then their controllability gramians are identical.

4. The well-posed linear system is system-stable if and only if its reciprocal
system is system-stable. In this case, we have G(s) = Gr( 1

s ) for s ∈ C+
0 .

The advantages of working with the reciprocal system are that all its generat-
ing operators are bounded and the close connections with the original well-posed
linear system give us the following result.

Theorem 8.3. Let Σ be a system-stable well-posed linear system with generating
operators A,B,C and transfer function G and assume that 0 ∈ ρ(A). Let Gr de-
note the transfer function of its reciprocal system Σ(A−1, A−1B,−CA−1,G(0)).
Then K(−s) ∈ H∞(L(U, Y )) satisfies

‖ G + K ‖≤ σ

if and only if Kr(−s) ∈ H∞(L(U, Y )) satisfies

‖ Gr −G(0) + Kr ‖≤ σ, (58)

where K(s) = Kr( 1
s )−G(0) for all s ∈ C+

0 and almost all s ∈ iR.

Proof. From Theorem 8.2, part 4, we have G(s) = G−( 1
s ) for s ∈ C+

0 and
by input-output stability this extends to almost everywhere on iR. So for all
s ∈ C+

0 and almost all s ∈ iR we have

K(−s) + G(s) = Kr

(
−1
s

)
+
[
Gr

(
1
s

)
−G(0)

]
.

Thus

sup
C+

0

‖ K(−s) + G(s) ‖ = sup
C+

0

∥∥∥∥Kr

(
−1
s

)
+ Gr

(
1
s

)
−G(0)

∥∥∥∥
= sup

C+
0

‖ Kr(−s) + Gr(s)−G(0) ‖,

which proves the claim.
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Remark 4. 1. Since Gr( 1
s )−G(0) is the transfer function of the system-stable

state linear system Σ(A−1, A−1B,−CA−1, 0), the results on state linear systems
in this article generalize to well-posed linear systems in an obvious way. Note
that the formulas that we so obtain are not the same as for the case of state
linear systems but are in terms of the generating operators of the reciprocal
system. The analogous formulas for the well-posed linear system need not be
well defined.

2. Finally, we remark that the assumption in Theorem 8.3 that 0 ∈ ρ(A)
can be relaxed. The arguments in this section can be adapted to the alterna-
tive assumption that iω ∈ ρ(A) for some real ω. Denoting Aω = A − iωI, we
introduce the ω-reciprocal systems Σ(A−1

ω , A−1
ω ,−CA−1

ω ,G(iω)) with transfer
function Gω

r . Noting that G(s + iω) = Gω
r ( 1

s ), we can obtain connections be-
tween the Nehari problem for Σ and this new reciprocal system. By proving our
results on state linear systems in discrete time and using the Cayley transform,
one can even obtain Theorem 8.3 without any assumption on the spectrum.

9 Appendix

In this appendix we study real-analytic functions on a complex Banach space
E following Dieudonné [12]. A function f : Ω ⊂ R2 → E with Ω open is called
real-analytic if at every point ω ∈ Ω there exist vectors ci,j ∈ E such that

f(x, y) =
∑
i,j∈N2

ci,j(x− ω1)i(y − ω2)j

for all points (x, y) in a neighborhood of ω, the series converging absolutely in
this neighborhood.

Consider a holomorphic function h : Ω ⊂ C→ E. It follows from Goursat’s
theorem [12, section 9.10, Problem 1] that at every point h can be expanded
in an absolutely convergent power series in the complex variable z. Define
hR : Ω ⊂ R2 → E by hR(x, y) := h(x + iy). It is easily seen that hR is real-
analytic: the series expansion in x and y follows from the series expansion in
x+ iy. We further note that if g : Ω→ C is real-analytic, then so is ḡ.

Corollary 9.1. Using the notation and assumptions of Lemma 3.12, we have
that (x, y) 7→ 〈B̂(x + iy)u, LCBu〉 and (x, y) 7→ 〈LCBu, B̂(x + iy)u〉 are real-
analytic on the right half-plane.

Proof. With h(s) = g(s) = 〈B̂(s)u, LCBu〉 this follows from the above discus-
sion.

We have the following characterization of real-analyticity.

Lemma 9.2. f : Ω ⊂ R2 → E is real-analytic if and only if there exists an open
set ΩC ⊂ C2 such that ΩC ∩ R2 = Ω and a holomorphic function fC : ΩC → E
such that fC|Ω = f .
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Proof. This follows from [12, subsection 9.4.5, p. 209] and Goursat’s theorem
[12, section 9.10, Problem 1].

Theorem 9.3. If f, g : Ω→ H are real-analytic, then 〈f, g〉 is real-analytic.

Proof. Since f is real-analytic, there exists a holomorphic function fC of which
f is the restriction. Since ḡ is real-analytic, there exists a holomorphic function
ḡC of which ḡ is the restriction. We thus have that (fC, ḡC) is holomorphic.
We define a bilinear function by B(h1, h2) = 〈h1, h̄2〉. Since the composition of
holomorphic functions is holomorphic (and a bilinear function is holomorphic),
we have that if h1 and h2 are holomorphic, then B(h1, h2) is. We thus have
that 〈fC, ḡC〉 is holomorphic. Restricted to Ω, this function equals 〈f, g〉. This
shows that 〈f, g〉 is real-analytic.

The above theorem in particular shows that the squared norm of a real-
analytic function is real-analytic, which implies that the squared norm of a
holomorphic function is real-analytic. This gives the following corollary.

Corollary 9.4. Using the notation and assumptions of Lemma 3.12, we have
that (x, y) 7→ ‖G(x+iy)u‖2 and (x, y) 7→ 2x ‖L1/2

C B̂(x+iy)u‖2 are real-analytic.

We quote the following identity theorem for real-analytic functions. This
is used in Lemmas 3.12 and 5.4 with A the right half-plane and U some right
half-plane.

Lemma 9.5. Let A ⊂ R2 be an open connected set, and let f and g be two real-
analytic functions in A with values in E. If there is a nonempty open subset U
of A such that f(x) = g(x) in U , then f(x) = g(x) for every x ∈ A.

Proof. This follows from [12, subsection 9.4.2, p. 208].
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[12] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New
York, 1969.

[13] C. Foias and A. Tannenbaum, On the Nehari problem for a certain class
of L∞-functions appearing in control theory, J. Funct. Anal., 74 (1987), pp.
146–159.

[14] K. Glover, R. F. Curtain, and J. R. Partington, Realisation and ap-
proximation of linear infinite-dimensional systems with error bounds, SIAM
J. Control Optim., 26 (1988), pp. 863–898.

[15] P. Grabowski, On the spectral-Lyapunov approach to parametric opti-
mization of distributed parameter systems, IMA J. Math. Control Inform.,
7 (1991), pp. 317–338.

[16] S. Hansen and G. Weiss, New results on the operator Carleson measure
criterion, IMA J. Math. Control Inform., 14 (1997), pp. 3–32.

33



[17] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups,
Amer. Math. Soc. Colloq. Publ., 31, AMS, Providence, RI, 1957.

[18] A. Kheifets, Parametrization of solutions of the Nehari problem and
nonorthogonal dynamics, in Operator Theory and Interpolation (Bloom-
ington, IN, 1996), Oper. Theory Adv. Appl. 115, Birkhäuser, Basel, 2000,
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