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Abstract— This paper presents a model reduction technique continuous-time result and apply the theory to an example:

for infinite-dimensional systems called LQG-balancing. Theo- model reduction for an Euler-Bernoulli beam.

retical results on the existence and uniqueness of LQG-balanced In the next subsection we review the theory on finite-
realizations are given as well as error bounds for truncated di . | LOG-bal . In Section I . d h
LQG-balanced realizations. We illustrate the theory by studying ~dimensional LQG-balancing. In Section Il we introduce the

model reduction for an Euler-Bernoulli beam. class of systems we study. Section Il contains the theoretical
results on LQG-balancing for this class of systems. In
l. INTRODUCTION Section IV the example is studied.

Simple models are normally preferred over complex ones ] ] o .
to construct a simple model for a physical system, but wWe consider the system
sometimes it is not obvious what the characteristics essential

to the controller design of a physical system are. One way i(t) = Az(t) + Bu(t), x(0) = o, 1)
of obtaining a simple model in this last case is to first
obtain a sophisticated model that takes every aspect that y(t) = C(t) + Du(?), @)

could be of interest into account and then perform mOd%hereA B, C, D are matrices of compatible dimensions. We
reduction on this sophisticated model. A simple model re SN

duction procedure was introduced by Moore [13] and is nov(\:/onSlder the cost functu:onal
a textbook subject (see e.g. Zhou and Doyle [23], Chapter J (0, 1) ::/ lu(®)]|? + ()| 2dt. 3)
7). The method proposed by Moore consists of truncating ’

a balanced realization. A balanced realization (also call§gic \\all-known that if the system is minimal, then, for every

Lyapunov- or internally balanced) is a realization for whlchx0 € X, there exists a unique®® such thatJ (z, uPt) <

the controllability and observability gramians are equal ang(xo u) for all u # u°P. It is also well-known that there
diagonal. This procedure is only applicable to stable syste ist; a nonnegative métr@ such that

Alternatively for unstable systems one can use truncations
of a LQG-balanced realization, which for rational transfer 2 opt 2 opt /4112

. . ' . . t PH()||“dt = .
functions always exists. A LQG-balanced realization is a / Il O + ™ @ (@0, 7o)

realization for which the (linear quadranc regulator) 0pt|mal|_BiSQ is calledthe optimal cost operatoof the system. The
cost operator for a system and its dual system are equal an

diagonal. This method was proposed by Verriest [20], [21 attanQ I'S tge u nlg_ue r:_o nneg?tlve solution of the following
and further developed by Jonckheere and Silverman [1 ontrof-algebraic Riccall equation
For an alternative treatment see Mustafa and Glover [14].  A*Q + QA + C*C
The discrete-time case was considered in Hoffmann et al. " N1/ "
[9]. There is a relation between LQG-balanced truncation = (@B +C"D)(I+ D*D)~(D*C + B'Q).
and Lyapunov-balanced truncation of a normalized coprimghe dual Riccati equation, i.e.,
factor that we will comment on later.

In the case that the system is infinite-dimensional, the AP + PA* + BB*
model approximation becomes essential. One would like to = (PC* 4+ BD*)(I + DD*)"Y(DB* + CP),
use the methods of balanced truncation and LQG-balanced
truncation in this case too. The existence of Lyapuno\)NhiCh is called thefilter algebraic Riccati equatioralso
balanced and LQG-balanced realizations for irrational tran§as a unique nonnegative solution. It is easily seen that the
fer functions is however nontrivial. Necessary and sufficiergigenvalues of the produdt@ are similarity invariants and
conditions for the existence of LQG-balanced realization#ey thus only depend on the transfer functiGhof the
were proven in [16] for the discrete-time case and isystem and not on the particular realization. The square roots
[17] for the continuous-time case. Here we summarize thef these eigenvalues are called th@G-singular valuesof

the transfer function. It is proven in [10], [20], [21] that there
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and diagonal. Thus, there exist matricdsB,C, D and a C/(0, 00; C*) and the outpuy € L2 (0, 00; CY) as the unique
diagonal matrixX with nonnegative eigenvalues such that solutions of

C(sI —A)'B+D=C(sI —A)™'B+ D, @(t) = Az(t)+Bu(t), x(0) =wzo, y(t)= Cx(t)+Dult).
®)
As is well-known, these unique solutions are given explicitly
A X+ XA+ C*C by
_ * * —1 * * t
= (XB+C"D)(I+D'D)~(D°C+ B'X), z(t) = eMay + / eA(tfs)Bu(s) ds, (6)
and 0
t
AX + XA* + BB* y(t) = CeMug —|—/ Ce =% Bu(s) ds + Dul(t).
0

* * *\—1 *
= (XC" + BD")(I + DD*)"*(DB" + CX). If we Laplace transform the equations (5) and solve dor

Such a realization is calledQG-balanced We obtain ak- andy we obtain

dimensional LQG-balanced truncation of the LQG-balanced #(s) = (sI — A)"lag + (sI — A)"' Bi(s) )
realization by truncating the matrice§ B, C, D in such a R . . .
way that the truncations correspond to the largestQG- §(s) = C(sI — A) " wo + (C(sI — A)™' B + D) i(s).

singular values. In [10], [20], [21] it is proposed that thiS iSpyr approach to infinite-dimensional systems will be to
a good approximation technique, which can be understoQnerglize the situation (7) rather than the situation (5) or

from the following error-bound (see [14]). We have (6).
n i We first study the generalizations of the matrix-valued
5g(Z, %) €2 ) ———, (4) functions (sI — A)~%, (sI — A)~'B, C(sI — A)~! and
izh VI K C(sI —A)~'B+D.

Definition 2.1: A resolvent linear systeron a triple of
Hilbert spaceqi/, X,)) consists of a nonempty connected
open subsed of the complex plane and four operator valued
functionsa, b, ¢, 0 satisfying
a: A — L(X) satisfies

where they;'s are the LQG-singular values amg(%, 3j)
is the distance in the gap metric between the system
and itsk-dimensional LQG-balanced truncatiaéh,. See [23,
Chapter 17] for a definition of the gap metric.

Define epay := (1 4 p3)~/2. In Chapter 9 of [5] it is
shown that for a systeril and anye < enax there exists a  a(8) — a(a) = (a — B)a(B)a(a) for all o, € A. (8)

il 1 !

controller that stabilizes all system3 with (2, %) < e. b: A — LU, ) satisfies

This shows that if
n i ) b(B) —b(a) = (o — Ba(B)b(a) forall a, € A. (9)
i 2\—1/2
22 < (L)% ¢: A — L(X,)) satisfies

ik V1IT+ I

then there exists & dimensional controller that stabilizes () —¢(@) = (a = f)e(a)a(f) forall a,f € A (10)
the systent.. 2: A — L(U,D) satisfies

We note that there is a connection between LQG-balanced
truncations and Lyapunov-balanced truncations. [Bét N] (3) —v(a) = (a— B)e(B)b(er) for all o, 3 € A, (11)

be a normalized coprime factor af and let [My; Ni|  The functiona is called thepseudoresolvent theincoming
be the transfer function of the-dimensional truncation of wave function ¢ the outgoing wave functiorand v the

a Lyapunov-balanced realization @4/; N]. Then G :=  characteristic functiorof the resolvent linear system.

71 . . . .
NipM, " is the transfer function of @&-dimensional trun- ¢ js not possible to make sense out of the equations (7)

cation of a LQG-balanced realization &f. This implies \yithout some additional assumption. One possible assump-
that LQG-balanced approximation boils down to Lyapunoviign, is the following.

balanced approximation of the normalized coprime factors. pefinition 2.2: An integrated resolvent linear systeisa

resolvent linear system with the additional property that there
exist constants, C > 0 andn € N such that

The class of systems we consider was introduced in [15]. . )

It contains basically all systems described by linear partial Ap:={s€C:Res =7} CA (12)
differential equations whose coefficients do not depend and
time and all delay equations. la(s)| < C(1+|s])" V¥V se€An. (13)

We start with the intuition behind the definition. A finite- The above definition in words is: an integrated resolvent
dimensional linear system is usually described by specifyiniinear system is a resolvent linear system whose pseudoresol-
four matricesA, B, C, D and defining for a given initial state vent is polynomially bounded on some right half-plane. The
xo and an input functiont € L2 (0, 00; C*) the stater €  term “integrated” stems from the connection with integrated

loc

Il. THE CLASS OF SYSTEMS



semigroups. Note that due to the above functional equationsilt is interesting to note that under the conditions of Theo-
the wavefunctions and characteristic function of an integrateém 3.2 the characteristic function has a normalized coprime
resolvent linear system are also polynomially bounded odfactorization. The proof of Theorem 3.2 is based on the
Ag. To define the state and output we will need the followrelation between LQG-balanced realizations and Lyapunov-
ing well-known characterization of Laplace transformabldalanced realizations of the normalized coprime factor.
Banach space valued distributions by Schwartz. The imagelLet ¥ be a diagonally LQG-balanced integrated resolvent
of the Schwartz-Laplace transformable Banach space valulkdear system. Defin&; to be the projection o on the
distributions is exactly the set of polynomially boundedspace generated by the eigenvectors corresponding tb the
analytic functions defined on some right half-plane. Folargest LQG-singular valuesl, is called thek-dimensional
details see [18]. truncated LQG-balanced realization.

Definition 2.3: The stater and outputy of an integrated The following theorem gives sulfficient conditions for the
resolvent linear system corresponding to the initial statexistence of a diagonally LQG-balanced realization and an
o € X and the input (a U/-valued Laplace transformable error bound in the gap metric. We note that an operdtor
distribution) are defined through their Laplace transforms ds callednuclearif it is compact and its singular values (the

Al . N . eigenvalues of ™*T') form al' sequence.
i(s) :=a(s)z0+b(s)uls), §(s) := c(s)zo+(s)ufs). (14) Theorem 3.3:If an integrated resolvent linear system and
We now consider the linear quadratic regulator problem fo

. i . I s dual both satisfy the finite cost condition, the product
!n.tegrated resolvent linear systems. Titréte cos2t condition of the optimal cost operato) and the dual optimal cost
is: for everyzy € X there exists au € L?(0,00;U)

. . . rator P is nuclear, and the in n
such thaty € L?(0,00;)). It is shown in [15] that if the ope gtg s nuciear, a d the input a d putput spaces
e -~ . . . are finite-dimensional, then the characteristic function has
finite cost condition is satisfied, then for every € X

there exists a unique minimizing input®* for the quadratic a diagonally LQG-balanced realization and
cost functional (3) and a bounded operafprsuch that the
optimal cost is given byQz, z¢). This operator) is called
the optimal cost operatar The dual of a resolvent linear
system is given by (the right-hand side being finite) whe@* is the charac-

d _\x d ok teristic function of ak-dimensional truncated LQG-balanced

a®(s) :=a(5)*, b%s) :=c(3)7, o

realization ofG.
¢d(s):==b(5)*, 0U(s):=0(5)". Define epmax := (1 + p2)~1/2. In [7] it is shown that for
a systemy that satisfies the assumptions of Theorem 3.3
and anye < enmax there exists a controller that stabilizes
all systems¥’ with §,(X, %) < e. The result in [7] is an
extension of the results in Chapter 9 of [5] and of [6].
The above shows that if

5,(G,GFy <2 Yy ——— (15)
i V1Tt I

If the finite cost condition for this dual system is satisfied
then its optimal cost operatoP exists which is called
the dual optimal cost operatonf the original integrated
resolvent linear system.

I1l. LQG-BALANCING: THEORETICAL RESULTS ad ,
_ ) _ 23 M (R
In this section we state theoretical results on LQG- 1+ 2 M1 ’
. e . . . i=k-+1 +:ul
balancing for infinite-dimensional systems. Proofs can be
found in [17]. then there exists &-dimensional controller that stabilizes

As in the finite-dimensional case, it can be shown thdhe system:.
the square rootg:; of the eigenvalues of the produét@ )
(with the possible exception of zero) do not depend on the _IV' LQG'BALANCING'_ AN EXAMPLF_
particular realization, but only on the characteristic function. In this section we present a simple but nontrivial example.
[?ef|n|t|on '3..1: An mtegratgd resolvent linear sys.tem for A. The model
which the finite cost condition and the dual finite cost ) ) ) )
condition are satisfied is callddQG-balancedf its optimal The system we consider is a one-dimensional Euler-
cost operator) and dual optimal cost operatdt are equal. Bernoulli beam with Voight-damping and with free ends. The
It is called daigonally LQG-balancedf in addition P = Q measurements are the displacement and the angle of rotation
has a set of eigenvectors that form a basis for the state spagkthe middle of the beam. As actuators we choose a force
The following theorem gives necessary and sufficient condnd @ moment at the middie of the beam.

tions for the existence of a LQG-balanced realization. We obtain the partial differential equation
Theorem 3.2:The characteristic function of any integrated 92w 95w 4w ud — und’

resolvent linear system for which the finite cost condition iz TBgpag T 050 = a

and the dual finite cost condition are satisfied has a LQG-

balanced realization. 5371”(_1 £) =0 337“’(1 =0
This existence theorem is complemented by a uniqueness ox3 7 b0

theorem: minimal LQG-balanced realizations are unique up 92w 92w

to a unitary transformation in the state space. @(—17?5) =0, W(Lt) =0



y(t) = [ gfu(07t) ] ’ satisfies the finite cost condition. That the system satisfies
52 (0,1) the dual finite cost condition follows similarly. From the fact
where w(t, z) is the displacement of the beam at positiorfhat _the semigroup is analytic and the control operator not
z € (—1,1) at timet, u () is the force applied ands(t) maX|maIIy.unbounded we conclude that 'Fhe' optimal state
the moment applied to the middle: (= 0) of the beam, feedback is bounded (see [11]). From this it follows that
y(t) holds the measurementp,a,a and 3 are physical the optimal closed-loop system as considered in [15] has an

parameters and is the Dirac delta distribution and is analytic semigroup, a control operato_r that is not maximally
its distributional derivative. A derivation of this model from UnPounded and a bounded observation operator. We invoke

physical considerations is given in Bontsema [1]. [4, Theorem 6] to show that the Hankel operator of this
closed-loop system is nuclear. This shows thét is nuclear.
B. Theoretical results u

The next proposition shows that our beam system haSPe{oposition 4.1 shows that the controller design method

diagonally LQG-balanced realization and the error bounfténtioned in Sec_:tion i performgq ona high_ enough LQG
(15) holds. balanced truncation results in a finite-dimensional stabilizing

Proposition 4.1: The system considered satisfies all thecontroller for the beam.

assumptions of 3.3. .
Proof: If follows from [1, Lemma 2.13] that the system C- Numerical results

under consideration is a well-posed linear system, which For the numerical part of this article we choose the
implies that it is an integrated resolvent linear system. Thghysical parameters in accordance with De Silva [19], see
input and output space are both two-dimensional. It remaiR§so Bontsema et. al. [2]. We analyze different approximation
to show that the finite cost condition and the dual finite CO&bchniqueS using LQG-SingL"ar values and Bode diagramsl
condition are satisfied, and th&) is nuclear. Due to lack of space we only show the Bode diagrams
A spectral decomposition of the main operatdr as from the first input to the first output, the response from the
performed in [1] shows thatl hasa/g in its continuous second input to the second output is similar and the other two
spectrum, the other spectral points are eigenvalues and thesgponses are zero. Also, we only show the Bode magnitude
are either located on a circle with centef/3 or on the real djagram.
line (see figure 1). All spectral points are in the open left 1) Modal approximation:lt is relatively easy to obtain a
modal approximation of our model based on the eigenvectors

300 T

. T of the fourth derivative operator with boundary conditions as
* above. For more complicated models of physical systems it
200} o will not be easy (or even possible) to obtain a modal approx-
* . imation. In figure 2 the solid line is a Bode-diagram of the 30
- N dimensional modal approximation. Table | shows the largest
X ten LQG-characteristic values for modal approximations.
*
*
o * — i TABLE |
j LARGEST 10 LQG-CHARACTERISTIC VALUES FOR MODAL
# APPROXIMATIONS
-100 %
" " 6 modes| 10 modes| 14 modes| 22 modes| 30 modes
200l * 24142 | 24134 2.4134 2.4134 2.4134
* 2.4135 | 2.4123 2.4116 2.4111 2.4109
x 0.4143 | 0.4146 0.4147 0.4147 0.4148
w0 ‘ ‘ ‘ ‘ Py 0.4142 | 0.4144 0.4144 0.4144 0.4144
“1a00 -1200 -1000 -800 -600 -400 -200 0 0.1071 0.1071 0.1071 0.1071 0.1071

0.1068 0.1068 0.1068 0.1068 0.1068
- 0.1010 0.1010 0.1010 0.1010
0.1004 0.1004 0.1004 0.1004

. - 0.0009 | 0.0104 | 0.0104 | 0.0104
half-plane, except for a quadruple eigenvalue at zero. From - 0.0009 0.0102 0.0102 0.0102

the above spectral decomposition one can conclude that the
operatorA generates an analytic semigroup (this follows as
in the appendix of [3]). It is shown in [1] that the control If we construct the controller mentioned in Section IlI
operator B is unbounded, but not maximally unboundeddased on a 4 mode approximation it stabilizes the 30
and that the observation operatoris bounded. Using the mode approximation, for a lower order approximation this
spectral decomposition aoft we can split the system into is no longer the case. Since the unstable subspace is four-
a stable part and an unstable part as in [5, Section 5.2limensional this is of course not very surprizing.

Since the unstable part is controllable we conclude that the 2) Finite-difference approximation:We have obtained
system is exponentially stabilizable, which implies that ifinite-difference approximations of our model. In figure 2

Fig. 1. Eigenvalues of thel operator of the beam




TABLE I

the dashed line is a 30 dimensional finite-difference approx-

imation and in figure 3 the dashed line is a 6 dimensional

finite-difference approximation.

Bode Magnitude Diagram

50 T

50|

Magnitude (dB)

-100

=150

-200 L L I

10° 10° 10 10*
Frequency (rad/sec)

Fig. 2. 30 mode approximation (-) and 30 dimensional finite difference

approximation (:)

Bode Magnitude Diagram

10

50 T

Magnitude (dB)

-100

-150

-200 L L I

10 10 10 10"
Frequency (rad/sec)

Fig. 3. 30 mode approximation (-) and 6 dimensional finite differencez; -so- B

approximation (:)

From this and the ‘intermediate’ Bode diagrams not shows _io| 1

10

10

10

fARGEST 10 LQG-CHARACTERISTIC VALUES FOR FINITE DIFFERENCE
APPROXIMATIONS

6 dim f-d | 10 dim f-d | 14 dim f-d | 22 dim f-d | 30 dim f-d
2.4142 2.4129 2.4129 2.4131 2.4132
0.9964 2.4125 2.4122 2.4116 2.4113
0.9799 0.4146 0.4146 0.4147 0.4147
0.6408 0.4144 0.4145 0.4144 0.4144
0.6394 0.3189 0.2286 0.1711 0.1503
0.4142 0.3183 0.2282 0.1708 0.1500

- 0.1133 0.1255 0.1225 0.1183
- 0.1129 0.1250 0.1219 0.1177
- 0.0089 0.0073 0.0109 0.0114
- 0.0088 0.0072 0.0108 0.0112

correct values. It turns out that the controller mentioned in
Section Il when based on a 6 dimensional finite difference
approximation is not stabilizing and that the one based on
a 10 dimensional finite difference approximation is. We
conclude that controller-design using finite-difference ap-
proximations leads to a controller of more then 6 dimensions.
3) LQG-balanced approximationWe have shown that
our model has a diagonally LQG-balanced realization. Com-
puting this realization exactly is however impossible. The
method of LQG-balancing can however be used to obtain
good low-order approximations of good high-order approx-
imations. We compute a LQG-balanced realization for the
30 dimensional finite-difference approximation of the beam
(this is finite-dimensional LQG-balancing, so it can be done
using an algorithm from finite-dimensional theory). The
Bode diagram of a 14 dimensional LQG-balanced truncation
of the 30 dimensional finite-difference approximation of the
beam is shown in figure 4 and that of a 4 dimensional LQG-
balanced truncation of the 30 dimensional finite-difference
approximation of the beam is shown in figure 5.

Bode Magnitude Diagram
50 T

nitude (

=)

it can be seen that the resonance peaks are at too low
a frequency and this error converges slowly to zero. The

6 dimensional finite-difference approximation also has an -1sof

incorrect slope for low frequencies. In table Il the LQG-
characteristic values for finite difference approximations are
given.

We can see here also that the 6 dimensional finite-

difference approximation is not good and that convergence ,l_§g

-200

4. 30 dimensional finite difference approximation (-) and its 14

10!
Frequency (rad/sec)

slower then in the modal approximation. However, from th@imensional LQG-balanced truncation

10 dimensional finite-difference approximation on the first

four LQG-characteristic values are fairly accurate and the As can be seen the approximation is about as good as
other LQG-characteristic values seem to converge to thaian be expected given the order of the approximation. The

10



Bode Magnitude Diagram
50 T

(1]
(2]

(3]

(4]

Magnitude (dB)

-100 7

(5]
(6]

-150 B

~200 . . . . .
10" 107 10 10 10 10 10
Frequency (rad/sec)

, (7]

(8]
(9]

Fig. 5. 30 dimensional finite difference approximation (-) and its 4
dimensional LQG-balanced truncation

controller mentioned in Section Il when based on a 410
dimensional LQG-balanced truncation of a 30 dimensional
finite difference approximation stabilizes the 30 dimensional1]
modal approximation. Thus it can be expected that it will
stabilize the beam.

4) Conclusions for the exampl&Ve showed that the beam [12]
has a diagonally LQG-balanced realization and we obtain 9
an error bound that showed that there is a finite—dimensior?af’]
stabilizing controller. To explicitly compute such a controller
we had to resort to numerical approximations (as is usual). [
was shown that a finite difference approximation followed by g
a LQG-balanced truncation gives a stabilizing 4 dimensional
controller. This is as good as can be obtained using [&6]
modal approximation. A stabilizing controller based only
on a finite difference approximation must have more then @7]
states. This shows that the combination of a finite difference
approximation and LQG-balancing is better than a finitélg]
difference approximation alone.

V. CONCLUDING REMARKS [19]

We have shown that a very large class of infinite dimenpg
sional systems have a LQG-balanced realization. Systems
in a large subclass of this class have a diagonally Lqul]
balanced realization. For these systems we do not only have
an existence result, but also an error-bound. We studied tf#e]
example of a beam which shows an application of theﬁgg]
theoretical results.
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