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Abstract

We consider the classic problem of minimizing a quadratic cost func-
tional for well-posed linear systems over the class of inputs that are square
integrable and that produce a square integrable output. As is well-known,
the minimum cost can be expressed in terms of a bounded nonnegative
selfadjoint operator X that in the finite-dimensional case satisfies a Ric-
cati equation. Unfortunately, the infinite-dimensional generalization of
this Riccati equation is not always well-defined. We show that X always
satisfies alternative Riccati equations, which are more suitable for alge-
braic and numerical computations.

1 Introduction

The problem of minimizing a quadratic cost functional is a classic problem that
has recieved much attention in the control literature. We are interested in this
problem for the class of well-posed linear systems. Although this has been
extensively studied in the recent thesis of Mikkola [11], we obtain useful new
results here by taking a different perspective on the control problem. Our aim
is not to obtain a Riccati equation that most resembles the finite-dimensional
one, but to obtain a Riccati equation that is useful for algebraic and numerical
computations.

For clarity let us consider the finite-dimensional problem of minimizing the
cost functional

Q(x0, u) =
∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2dt = 〈u, u〉L2 + 〈y, y〉L2 (1)

over all inputs u ∈ L2(0,∞; Cm) such that y ∈ L2(0,∞; Cp) where u and y
satisfy

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (2)

y(t) = Cx(t) +Du(t), (3)

and A,B,C,D are matrices of compatible dimensions. Clearly it will be neces-
sary that for each x0 ∈ Rn, there exists an input u ∈ L2(0,∞; Cm) such that
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the corresponding output y ∈ L2(0,∞; Cp) and Q(x0, u) < ∞. We call this
optimizability. If this condition is satisfied, then for every initial state x0 there
exists a unique input umin ∈ L2(0,∞; Cm) such that Q(x0, umin) ≤ Q(x0, u)
for all inputs u and the minimum cost is given by

Q(x0, umin) = 〈x0, Xx0〉, (4)

where X is the smallest nonnegative selfadjoint solution to the Riccati equation

A∗X +XA+ C∗C = (XB + C∗D)(I +D∗D)−1(D∗C +B∗X). (5)

The above solution has been generalized to the class of well-posed linear sys-
tems by Zwart [20] and for more general cost functionals in Staffans [13] and
Mikkola [11]. While the optimizability condition guarantees the existence of a
unique minimizing input and the minumum cost has the form (4), the general-
ization of the Riccati equation (5) is incomplete. The problem lies in giving a
correct interpretation to all the unbounded operators in (5), which is not always
possible. The thesis [11] provides an exhaustive study of sufficient conditions
for the existence of various generalizations of the Riccati equation and it gives
very useful properties of the closed-loop system. In particular, it studies the
important question of when the optimal control can be expressed as an admis-
sible (and stabilizing) feedback of the state. We have nothing to add to this
monumental study. Our perspective is different. We obtain a number of new
Riccati equations to replace (5), the most interesting one being

A∗−X +XA− +C∗−C− = (XB− +C∗−D−)(I +D∗−D−)−1(D∗−C− +B∗−X), (6)

where, A− = A−1, B− = A−1B,C− = −CA−1, D− = G(0) and G is the char-
acteristic function of the well-posed linear system. Equation (6) is always well-
defined provided that 0 ∈ ρ(A). This is a mild assumption, and it guarantees
that A−1, A−1B and CA−1 are bounded operators. Equation (6) is the Riccati
equation associated with the optimal control problem for the reciprocal system
with generating operators A−1, A−1B,−CA−1,G(0).

We show that the optimal control problem for this reciprocal system has
a solution if and only if the optimal control problem for the well-posed linear
system has a solution. Moreover, the minimum cost for both is 〈x0, Xx0〉,
where X is the minimal solution to (6). The earlier paper, Curtain [3], on
the connection between the control problem for a well-posed linear system and
that for its reciprocal system considered only stable well-posed linear systems.
It gave a detailed analysis of the relationships between the Riccati equations
for the well-posed linear system and for its reciprocal system that we do not
attempt here. In Curtain [2] the connection between all solutions of the two
Riccati equations was made for the particular case when B is bounded. In this
paper we only consider the minimal solution.

Following Mikkola [11] and Staffans [13], we consider the problem of mini-
mizing a more general quadratic functional than (1) for the class of well-posed
linear systems. We show that this problem is equivalent to minimizing an anal-
ogous quadratic cost functional for a related system. This system may be the
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reciprocal one mentioned above or a system obtained via a Cayley transform.
To each of these related systems corresponds a Riccati equation that has the
same nonnegative selfadjoint operator X as a solution, where the minimum
cost is 〈x0, Xx0〉. The reciprocal Riccati equation is a continuous-time Riccati
equation, but the Cayley transforms result in discrete-time Riccati equations.

The advantage of these new Riccati equations is that they are always well-
defined and all the operators are bounded. Consequently algebraic and numer-
ical computation for X becomes relatively straightforward. This opens the way
to obtaining explicit solutions to various J-spectral factorization problems for
well-posed linear systems using a technique developed by Curtain and Sasane
[6]. We believe that the new Riccati equations will provide an alternative ap-
proach for obtaining numerical approximations of the Riccati equation and for
H∞ control problems.

We emphasize that we solve one particular optimization problem over the
class of L2 inputs that produce L2 outputs. In Mikkola [11] other types of
problems are also considered, for example, over the class of strongly or expo-
nentially stabilizing inputs. However, by combining our result with his results it
is possible to obtain information concerning strongly or exponentially stabilizing
solutions.

The concept of a well-posed linear system is reviewed in Section 2 and in
Section 3 we review optimal control theory for this class of systems. In Section 4
we briefly review infinite-dimensional discrete-time systems. Section 5 contains
new results on Cayley transforms for well-posed linear systems. In Section 6
we review the concept of a reciprocal system and prove that the optimal cost
operator of a well-posed linear system equals the optimal cost operator of its
reciprocal system. This gives us the Riccati equation (6) for the optimal cost
operator of the well-posed linear system.

2 Well-posed linear systems

In this section we review the concept of well-posed linear system (see Staffans
[12], Mikkola [11] and for a survey [18]). We first introduce some notation. Let
R− = (−∞, 0), R+ = [0,∞), and for any function u defined on R denote

(τ tu)(s) = u(t+ s) ∀ t, s ∈ R,

(π−u)(s) =
{
u(s) ∀s ∈ R−,
0 ∀s ∈ R+,

(π+u)(s) =
{
u(s) ∀s ∈ R+,
0 ∀s ∈ R−.

All Hilbert spaces in this article are assumed to be separable. For each Hilbert
space U , each σ ∈ R and each interval I ⊂ R we let L2

σ(I;U) be the weighted
L2 space

L2
σ(I;U) := {u ∈ L2

loc(I;U) : (t 7→ e−σtu(t)) ∈ L2(I;U)}.
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This is a Hilbert space with the natural norm ‖e−σ.u(.)‖L2(I;U).

Definition 2.1. Let U,H and Y be Hilbert spaces. A quadruple Σ =
[

A B
C D

]
is called a well-posed linear system on (U,H, Y ) if there exists a σ ∈ R such
that

1. t 7→ A(t) is a strongly continuous semigroup of bounded operators on H;

2. B : L2
σ(R−;U)→ H is bounded and satisfies Bτ t = A(t)B for all t ∈ R+;

3. C : H → L2
σ(R+;Y ) is bounded and satisfies CA(t) = π+τ

tC for all t ∈ R+;

4. D : L2
σ(R;U) → L2

σ(R;Y ) is bounded and satisfies τ tD = Dτ t for all
t ∈ R, π−Dπ+ = 0, and π+Dπ− = CB.

B is called the input map, C the output map and D the input-output map. Given
an initial condition x0 ∈ H and an input u ∈ L2

σ(R+;U) the state x(t) ∈ H at
time t ∈ R+ and the output y ∈ L2

σ(R+;Y ) of Σ are given by[
x(t)
y

]
=
[

A(t) Bπ−τ
t

C D

] [
x0

u

]
=
[

A(t)x0 + Bπ−τ
tu

Cx0 + Du

]
. (7)

Finite-dimensional well-posed linear systems can be generated by a quadru-
ple of matrices A,B,C,D of compatible dimensions as

A(t) := eAt Bu :=
∫ 0

−∞
A(−s)Bu(s)ds Cx := (t 7→ CA(t)x t ≥ 0) (8)

Du :=
(
t 7→

∫ t

−∞
CA(t− s)Bu(s)ds+Du(t) t ∈ R

)
.

The state and output defined by (7) then satisfy the equations (2) and (3), re-
spectively. If A is the infinitesimal generator of a strongly continuous semigroup
A on H and B ∈ L(U,H), C ∈ L(H,Y ), D ∈ L(U, Y ), then (8) also defines a
well-posed linear system. We say that A,B,C,D are the generating operators of
the well-posed linear system. In fact, any well-posed linear system has uniquely
defined generating operators A,B,C where A is the infinitesimal generator of
the strongly continuous semigroup A and B and C are in general unbounded
operators (see Weiss [15], [16]). In general a feedthrough operator ‘D’ may not
exist. A well-posed linear system for which the feedthrough operator does exist
is called a regular linear system (see Weiss [17]).

We note that if Σ is a well-posed linear system with growth index σ, then
it defines a well-posed linear system with growth index σ′ for any σ′ > σ. This
implies that for any well-posed linear system the state and output can be defined
for an input in L2(R+;U).

We will also need to consider well-posed linear systems in the frequency
domain. Let L be the Laplace transform defined by

(Lu)(s) :=
∫ ∞

0

e−stu(t)dt.
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We remind the reader that the Laplace transform is a unitary map from L2
σ(R+;U)

onto the Hardy space H2(C+
σ ;U), where C+

σ is the right half-plane consisting of
those complex numbers that have real part larger than σ.

It is well-known that the map D is uniquely determined by its Toeplitz
operator D+ := Dπ+. We define the map D̂ : H2(C+

σ ;U) → H2(C+
σ ;Y ) by

D̂ = LD+L−1 . Then obviously D̂ uniquely determines D. It is also well-known
that there exists a function G in the Hardy space H∞(C+

σ ;L(U, Y )) such that
D̂ is multiplication by G. This G is called the transfer function of D or of the
well-posed linear system. We define Ĉ : H → H2(C+

σ ;Y ) by Ĉ = LC. Note that
the function Ĉ is given by the formula

Ĉ(s) = C(sI −A)−1 for s ∈ C+
σ̄ , (9)

and the transfer function G satisfies (see Weiss [17, formula 4.13])

G(s)−G(β) = (β − s)C(sI −A)−1(βI −A)−1B for s, β ∈ C+
σ̄ , (10)

where σ̄ is the maximum of σ and the growth bound of the semi-group A. As in
Staffans and Weiss [14] we define the characteristic function G of the well-posed
linear system on ρ(A) by fixing a β ∈ C+

σ̄ and then defining G(s) by

G(s)−G(β) = (β − s)C(sI −A)−1(βI −A)−1B for s ∈ ρ(A). (11)

We note that the transfer function and the characteristic function of a well-
posed linear system are equal on some right half-plane, but need not be equal
everywhere (this is explained in detail in [21]). The output y ∈ L2

σ(0,∞;Y )
of a well-posed linear system is related to the initial state x0 and input u ∈
L2
σ(0,∞;U) by

ŷ(s) = C(sI −A)−1x0 +G(s)û(s), s ∈ C+
σ̄ ,

where again σ̄ is the maximum of σ and the growth bound of the semi-group A.

3 Optimal control

In this section we study the following optimal control problem that was studied
in Staffans [13] and Mikkola [11].

Problem 3.1. Let Σ =
[

A B
C D

]
be a well-posed linear system, and let J =

J∗ ∈ L(Y ). The (nonstandard) quadratic cost minimization problem for the pair
(Σ, J) consists of finding, for each x0 ∈ H, the infimum over all u ∈ L2(R+;U)
such that y ∈ L2(R+;U), of the cost

Q(x0, u) = 〈y, Jy〉L2(R+;Y ), (12)

where y is the output of Σ with initial value x0 ∈ H and input u ∈ L2(R+;U)
according to (7). If there exists an operator X = X∗ ∈ L(H) such that the
optimal cost is given by

inf
{u∈L2(R+;U):y=Cx+Du∈L2(R+;Y )}

Q(x0, u) = 〈x0, Xx0〉H ,
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then X is called the optimal cost operator of the pair (Σ, J).

The next concept plays a crucial role in the optimal control problem.

Definition 3.2. Let Σ =
[

A B
C D

]
be a well-posed linear system and let x ∈ H.

The set U(x) of admissible inputs is defined by

U(x) = {u ∈ L2(R+;U) : y = Cx+ Du ∈ L2(R+;Y )}.

Σ is called optimizable if for all x ∈ H we have U(x) 6= ∅.

To formulate a sufficient condition under which this problem has a solution
we first investigate U(0). In Mikkola [11, Lemma 8.4.11c] it is shown that U(0)
is a Hilbert space under the norm

‖u‖U :=
√
‖u‖2L2(R+;U) + ‖Du‖2L2(R+;Y ),

and that D (and thus D+) restricts to an operator DU ∈ L(U(0), L2(R+;Y )).
The operator D is called positively J-coercive if D∗UJDU is positive and bound-
edly invertible. We note that D is positively J-coercive iff there exists an ε > 0
such that for all u ∈ U(0) we have

〈Du, JDu〉 ≥ ε(‖u‖22 + ‖Du‖22) (13)

(see Mikkola [11, Lemma 8.4.11]). This condition was used by Staffans in [13]
as a definition, but, unfortunately, he called it J-coercive and Mikkola uses J-
coercive for a slightly more general concept. We will use the terminology of
Mikkola.

In the stable case (i.e., D restricts to the bounded operator D+ from L2(R+;U)
to L2(R+;Y )) we have U(0) = L2(R+;Y ), the norms on U(0) and L2(R+;U)
are equivalent and D∗UJDU = π+D∗JDπ+ is the Popov-Toeplitz operator asso-
ciated with D and J . The positively J-coercive control problem in the stable
case was studied in Weiss and Weiss [19].

The following lemma follows from Mikkola [11, Theorem 8.4.3, Corollary
8.1.8 and Theorem 8.1.10].

Lemma 3.3. Let Σ =
[

A B
C D

]
be a well-posed linear system. If D is positively

J-coercive and Σ is optimizable, then, for every initial condition x0 ∈ H, the
cost functional (12) has a minimum that is achieved for a unique input umin
and the optimal cost operator exists.

We note that the linear quadratic regulator problem is a special case of
Problem 3.1. The LQR problem for a well-posed linear system Σ =

[
A B
C D

]
is

the same as Problem 3.1 for the system A B[
C
0

] [
D
I

] 
with the cost operator J = I. Positive J-coercivity is automatic in this case
since we can take ε = 1

2 in (13). In a similar manner, many optimal control
problems can be put in the framework of Problem 3.1.
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4 Discrete-time systems

In this section we very briefly review some definitions on discrete-time systems.
A discrete-time system is a quadruple of bounded operators (A,B,C,D) ∈
L(H) × L(U,H) × L(H,Y ) × L(U, Y ), where U,H, Y are Hilbert spaces. For
an input u and initial condition x0 the state x and output y of the system are
defined by

xn+1 = Axn +Bun, x(0) = x0, yn = Cxn +Dun. (14)

In the frequency domain this gives for z with |z| smaller than the spectral radius
of A

ŷ(z) = C(I − zA)−1x0 +
(
C(I − zA)−1zB +D

)
û(z),

where û and ŷ are the Z-transforms of u and y, respectively. The Z-transform
of a sequence h is given by

ĥ(z) =
∑
j∈Z

hjz
j ,

for those z ∈ C for which the sum converges absolutely. The concepts of the
quadratic cost minimization problem, admissible inputs, optimizability, positive
J-coercivity and other notions introduced earlier for continuous-time systems
have their natural discrete-time counterparts. We define the characteristic func-
tion of a discrete-time system by G(z) := C(I − zA)−1zB +D for 1/z ∈ ρ(A).
Note that the generating operators of a discrete-time system are bounded, which
makes the theory of discrete-time systems easier than the theory of well-posed
linear systems.

5 The Cayley transforms

We first define the Cayley transforms of a well-posed linear system following
Staffans [12, Section 12.3] (see also Staffans and Weiss [14]).

Definition 5.1. Let U,H and Y be Hilbert spaces and let Σ =
[

A B
C D

]
be a

well-posed linear system with generating operators A,B,C. Let α ∈ ρ(A)∩C+
0 .

Let Σd be the discrete-time system with generating operators

Ad = (ᾱI +A)(αI −A)−1, Bd =
√

2Re α (αI −A)−1B, (15)

Cd =
√

2Re α C(αI −A)−1, Dd = G(α).

The discrete-time system Σd is called the Cayley transform (with parameter α)
of Σ.

Note that usually the Cayley transform with parameter α = 1 is used. The
following lemma is a combination of results from [2] and [5] and the proof consists
of algebraic manipulations with Riccati equations with bounded coefficients.
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Lemma 5.2. Let Σ be a regular linear system with bounded generating opera-
tors A,B,C,D and let Σd be its Cayley transform with parameter α. Then a
nonnegative selfadjoint operator X is solution of the Riccati equation

A∗X +XA+ C∗JC = (XB + C∗JD)(D∗JD)−1(D∗JC +B∗X) (16)

if and only if it is a solution of the discrete-time Riccati equation

A∗dXAd −X + C∗dJCd (17)

= (A∗dXBd + C∗dJDd)(D∗dJDd +B∗dXBd)
−1(B∗dXAd +D∗dJCd),

of Σd.

In the case of the linear quadratic regulator problem it is well-known that
both in continuous- (with bounded generating operators) and in discrete-time
the optimal cost operator is the smallest nonnegative solution of the appropriate
Riccati equation. This together with Lemma 5.2 gives the following.

Corollary 5.3. Let Σ be a regular linear system with bounded generating op-
erators A,B,C,D and let Σd be its Cayley transform with parameter α. Then
the optimal cost operator for the linear quadratic regulator problem for Σ equals
the optimal cost operator for the linear quadratic regulator problem for Σd.

The goal of the remainder of this section is to show that this generalizes
to well-posed linear systems if we choose the parameter α in the Cayley trans-
form suitably. The approach we use is based on the frequency domain relation
between a well-posed linear system and its Cayley transform. The following
lemma follows from easy algebraic manipulations.

Lemma 5.4. Let Σ be a well-posed linear system and let Σd be its Cayley
transform with parameter α. Then

C(sI −A)−1 =
1 + z√
2Re α

Cd(I − zAd)−1, G(s) = Gd(z), ∀s ∈ ρ(A)

where z = (α− s)/(α+ s).

In the remainder of this article we will take the parameter α to be real.
We now study the mapping s 7→ z = (α − s)/(α + s). It is easy to see that
if α > r ≥ 0 it maps the right half-plane C+

r bijectively onto the disc Dαr
with center −r/(α + r) and radius α/(α + r). Since α maps to zero we have
0 ∈ Dαr . The mapping induces a unitary transformation between H2 of the right
half-plane C+

0 and H2 of the unit disc by

(Hdg)(z) =
√

2α
1 + z

g

(
α

1− z
1 + z

)
,

with its inverse given by

(H−1
d f)(s) =

√
2α

α+ s
f

(
α− s
α+ s

)
.
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To show that this transformation is unitary we use that the norm of a H2 func-
tion is equal to the L2 norm of its boundary function (see Duren [9], Hoffmann
[10]). That the boundary function of g (defined on the imaginary axis) and
the boundary function of Hdg (defined on the unit circle) have the same L2

norm follows from the change of variables formula. The above implies that Hd
induces an isometric isomorphism Td between L2(0,∞;S) and l2(N;S) for a
Hilbert space S. The following theorem and its counterpart Theorem 5.6 are
the crucial parts of this article, they give the connection between the set of
admissible inputs of a well-posed linear system and the set of admissible inputs
of its Cayley transform with a suitable parameter.

Theorem 5.5. Let Σ be a well-posed linear system. Let Σd be its Cayley trans-
form with parameter α, where α is larger than the growth bound of the semigroup
of Σ and larger than zero. Let y be the output of Σ for the initial state x0 and
input u ∈ U(x0). Then yd := Tdy is the output of Σd for the initial state x0 and
input ud := Tdu.

Proof. Define r to be a number larger than the growth bound of the semigroup
of Σ and larger than zero, but smaller than α. Since y ∈ L2(0,∞;Y ) we have
for z in the unit disc

ŷd(z) =
√

2α
1 + z

ŷ

(
α

1− z
1 + z

)
.

If z ∈ Dαr then s := α(1− z)/(1 + z) ∈ C+
r and since r is larger than the growth

bound of the semigroup of Σ and larger than zero we have for z ∈ Dαr

ŷ (s) = C (sI −A)−1
x0 +G (s) û (s) .

Since on C+
r the transfer function and the characteristic function are equal, we

have for z ∈ Dαr
ŷ (s) = C (sI −A)−1

x0 + G (s) û (s) .

We now use Lemma 5.4 to conclude that for z ∈ Dαr

ŷd(z) =
√

2α
1 + z

ŷ (s) = Cd(I − zAd)−1x0 + Gd(z)ûd(z).

Here we have also used that since u ∈ L2(0,∞;U) for z in the unit disc there
holds

ûd(z) =
√

2α
1 + z

û (s) .

Since Dαr is a connected subset of ρ(Ad) containing zero, the transfer function
and the characteristic function are equal on Dαr and we thus have

ŷd(z) = Cd(I − zAd)−1x0 +Gd(z)ûd(z).

This shows that yd is indeed the output of the system Σd for the initial state
x0 and input ud.
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Theorem 5.5 has the following counterpart, which can be proven similarly.

Theorem 5.6. Let Σ be a well-posed linear system. Let Σd be its Cayley trans-
form with parameter α, where α is larger than the growth bound of the semigroup
of Σ and larger than zero. Let yd be the output of Σd for the initial state x0 and
input ud ∈ Ud(x0). Then y := T −1

d yd is the output of Σ for the initial state x0

and input u := T −1
d ud.

From Theorems 5.5 and 5.6 and the fact that Cayley transforms are iso-
metric isomorphisms between stable continuous-time and discrete-time signals,
it follows that U(x0) and Ud(x0) are isomorphic under the Cayley transforms.
Thus a well-posed linear system is optimizable if and only if its Cayley transform
is. Moreover, for all initial states x0 ∈ H and inputs u ∈ U(x0) we have

Q(x0, u) = Qd(x0, ud).

This proves the following theorem.

Theorem 5.7. Let Σ be a well-posed linear system. Let Σd be its Cayley trans-
form with parameter α, where α is larger than the growth bound of the semigroup
of Σ and larger than zero. Then, if Σ is positively J-coercive and optimizable,
then so is Σd and the optimal cost operators of Σ and Σd are equal. Moreover,
the optimal inputs are related by ud,min = Tdumin.

Theorem 5.7 gives us a Riccati equation for the optimal cost operator of the
well-posed linear system: the optimal cost operator is a nonnegative selfadjoint
solution of the (discrete-time) Riccati equation corresponding to the Cayley
transform of Σ with a suitable parameter α.

6 Reciprocal systems

In this section we define the reciprocal system of a well-posed linear system as
introduced in Curtain [4].

Definition 6.1. Let Σ =
[

A B
C D

]
be a well-posed linear system with gener-

ating operators A,B,C and characteristic function G. Assume that 0 ∈ ρ(A).
Define

A− = A−1, B− = A−1B, C− = −CA−1, D− = G(0). (18)

The well-posed linear system generated by A−, B−, C−, D− is called the recip-
rocal system of Σ and is denoted by Σ− =

[
A− B−
C− D−

]
.

Many system-theoretic properties of well-posed linear systems carry over to
the reciprocal system and vice versa (see Curtain [2]-[4]). The following was
noted in Curtain [2], the proof consists of elementary algebraic manipulations.

Lemma 6.2. Let Σ be a well-posed linear system with 0 ∈ ρ(A), let Σd be its
Cayley transform with parameter α , let Σ− be the reciprocal system of Σ and
let Σ−,d be the Cayley transform with parameter 1/α ∈ ρ(A−1) of Σ−. Then
A−,d = −Ad, B−,d = −Bd, C−,d = Cd, D−,d = Dd.
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This lemma gives the following.

Lemma 6.3. Let Σ be a positively J-coercive and optimizable well-posed linear
system with 0 ∈ ρ(A). Let Σd be its Cayley transform with parameter α, where
α is larger than the growth bound of the semigroup of Σ and larger than zero.
Let Σ− be the reciprocal system of Σ and let Σ−,d be the Cayley transform with
parameter 1/α ∈ ρ(A−1) of Σ−. Then Σd and Σ−,d are positively J-coercive
and optimizable and they have the same optimal cost operator.

Proof. That Σd is positively J-coercive and optimizable follows from Theorem
5.7. It is easily seen that if y is the output of Σd for initial condition x0 and
input u, then ỹ defined by ỹn := (−1)nyn is the output of Σ−,d for the same
initial condition and input ũn := (−1)nun. This shows that Σ−,d is positively
J-coercive and optimizable and that the optimal cost operators of Σd and Σ−,d
are equal.

Corollary 5.3, Theorem 5.7 and Lemma 6.3 give us the following.

Lemma 6.4. Let Σ be an optimizable well-posed linear system with 0 ∈ ρ(A)
and let Σ− be its reciprocal system. Then Σ− is optimizable and Σ and Σ− have
the same optimal cost operator for the linear quadratic regulator problem.

Proof. Theorem 5.7 shows that Σ and its Cayley transform with parameter α,
suitably chosen, have the same optimal cost operator. Corollary 5.3 shows that
Σ− and its Cayley transform with parameter 1/α have the same optimal cost
operator. Lemma 6.3 shows that the two Cayley transforms have the same
optimal cost operator. This shows that Σ and Σ− have the same optimal cost
operator. Note that 1/α may be in the wrong region of the complex plane, so
we cannot use Theorem 5.7 to conclude that Σ− and its Cayley transform have
the same optimal cost operator.

Since the generating operators of the reciprocal system are bounded, its
optimal cost operator satisfies a Riccati equation.

Corollary 6.5. Let Σ be an optimizable well-posed linear system with 0 ∈ ρ(A).
Then its optimal cost operator for the linear quadratic regulator problem satisfies

A∗−X +XA− + C∗−C− = (XB− + C∗−D−)(I +D∗−D−)−1(D∗−C− +B∗−X),

where A− = A−1, B− = A−1B,C− = −CA−1, D− = G(0) and G is the charac-
teristic function of the well-posed linear system.

We remark that for the general problem (Problem 3.1) we can also obtain
a reciprocal Riccati equation as in Corollary 6.5 under a certain assumption on
the spectrum of A. To specify this assumption we define Ω as the component
of ρ(A) ∩ C+

0 that contains a right half-plane. The generalization of Corollary
6.5 to the general case of Problem 3.1 is then true under the extra condition
that 0 ∈ Ω. The proof follows as in Section 5 for the Cayley transform, but now
using the fact that s 7→ 1/s defines a unitary transformation on H2 of the right
half-plane.
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7 Conclusions

We examined the classic problem of minimizing a quadratic cost functional for
well-posed linear systems. We have derived Riccati equations for the optimal
cost operator where the coefficients are bounded operators. Notice that the re-
ciprocal Riccati equation retains the form of continuous-time Riccati equations,
but the Cayley transform results in discrete-time Riccati equations. We believe
that the reciprocal transformation used in this paper can be profitably used
to translate other problems for well-posed linear systems into a problem with
bounded generators, for example, J-spectral factorization problems as in [6],
[7], H∞ control problems and numerical algorithms for finding the optimal cost
operator. Finally, we remark that the approach taken here for well-posed lin-
ear systems has an obvious extension to the slightly more general class of nodes.
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