MA20034. Probability & Random Processes Example Sheet Five

1. Simple Random Walk reflected at the origin.

Let $W = (W_n)_{n \ge 0}$ be a symmetric Simple Random Walk on \mathbb{Z} , SRW(1/2). Define $\hat{W} = (\hat{W}_n)_{n \ge 0}$ by $\hat{W}_n := |W_n|$. Draw a typical path of \hat{W} and describe its motion. Show that, for y > 0,

$$\mathbb{P}_x(W_n = y) = \mathbb{P}_x(W_n = y) + \mathbb{P}_x(W_n = -y).$$

2. Maximum of a Simple Random Walk.

Let $W = (W_n)_{n\geq 0}$ be a SRW(p). Define the maximum of the RW up to time n by $M_n := \max_{k\leq n} W_k$. Prove that, for $m \geq w$ and $m \geq 0$,

$$\mathbb{P}_0(M_n \ge m; W_n = w) = \binom{n}{u} p^v q^{n-v}$$

where $u := m + \frac{1}{2}(n - w)$ and $v := \frac{1}{2}(w + n)$.

Deduce that when p = q = 1/2 and $w \le m$, then

$$\mathbb{P}_0(M_n = m; W_n = w) = \mathbb{P}_0(W_n = 2m - w) - \mathbb{P}_0(W_n = 2m + 2 - w)$$

and then that

$$\mathbb{P}_0(M_n = m) = \mathbb{P}_0(W_n = m) + \mathbb{P}_0(W_n = m + 1).$$

3. Simple Random Walk killed at the origin.

Let $\tilde{W} = (\tilde{W}_n)_{n>0}$ be a SRW(p) killed at 0. Show that, for x > 0,

$$\mathbb{P}_{x}(\tilde{W}_{n} = y) = \left\{ \binom{n}{u} - \binom{n}{v} \right\} p^{u} q^{n-u}$$
$$= \mathbb{P}_{x}(W_{n} = y) - \left(\frac{p}{q}\right)^{y} \mathbb{P}_{x}(W_{n} = -y),$$

where u := (n + y - x)/2, v := (n + y + x)/2 and $W = (W_n)_{n \ge 0}$ is a (standard) SRW(p) on \mathbb{Z} .

[Hint: Any given path going from x to y over n steps must have exactly u upward jumps and the same probability of occurring. Use the reflection principle to find the number of such paths that avoid the origin.]

4. ‡* Consider the 8 possible patterns of three coin tosses: HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. Show that if I name *any* of these patterns, then you could name another one of them such that the chance that your pattern appears before mine in a sequence of fair coin tosses is *strictly* greater than 1/2. Try playing this game with your friends - how long until they realise what you are doing?

5. \ddagger^{**} Random Walk reflected in a strip.

Let \hat{W} be a symmetric SRW reflected at 0 and b, where $b \in \mathbb{N}$. That is, if $1 \leq \hat{W}_n \leq b-1$ the next jump is equally likely to be ± 1 independent of the past; if $\hat{W}_n = b$, then $\hat{W}_{n+1} = b-1$ with probability 1; if $\hat{W}_n = 0$, then $\hat{W}_{n+1} = 1$ with probability 1.

It can be shown that, for $x, y \in \{0, 1, \dots, b\}$,

$$\mathbb{P}_{x}(\hat{W}_{n} = y) = \sum_{n = -\infty}^{+\infty} \{\mathbb{P}_{x}(W_{n} = y + 2nb) + \mathbb{P}_{x}(W_{n} = -y + 2nb)\}$$

where $W = (W_n)_{n \ge 0}$ is a SRW(1/2) on \mathbb{Z} .

Draw the integer line, divide into strips of width b and mark with plus signs ' \oplus ' all the positions of W_n that appear in the sum above.

Observe, although convenient to write as an infinite summation, there will only be a finite number of non-zero terms since $|W_n - W_0| \le n$.

Can you convince yourself why this result should be true?

[**Hint:** Use the reflection principle repeatedly! Each time the path of a RW on \mathbb{Z} goes outside the strip $0, \ldots, b$, think of reflecting the path back inside. This way, try to map any given path of a RW on \mathbb{Z} to a path of the reflected RW. Similarly, from a path of a reflected RW, construct all the possible paths of the RW on \mathbb{Z} that could have given rise to it after applying your map. Each time the reflected path hits either boundary you should double the number of possible RW on \mathbb{Z} paths that could give rise to it!]

Note: Questions marked with ‡ are optional and * are harder. 11/11/2009 http://people.bath.ac.uk/massch