MA20034. Probability & random processes Example Sheet Three

1. Primes and the Riemann-Zeta function. Recall that a prime number of \mathbb{N} is one of 2, 3, 5, 7, ..., but note that 1 is *not* considered prime. Let s > 1 and suppose a RV X has

$$\mathbb{P}(X=n) = \frac{n^{-s}}{\zeta(s)} \qquad (n \in \mathbb{N})$$

where ζ is the famous *Riemann-Zeta function* defined by $\zeta(s) := \sum_{n=1}^{\infty} n^{-s}$, where the series converges for s > 1.

Let E_m be the event that X is divisible by m.

(a) Prove that $\mathbb{P}(E_m) = m^{-s}$ for $m \in \mathbb{N}$.

(b) Prove that the events $(E_p : p \text{ prime})$ are independent.

[**Hint:** If p_1 and p_2 are distinct primes, then a number is divisible by both p_1 and p_2 if and only if it is divisible by p_1p_2 ; and similarly for more than two distinct primes.]

(c) By considering $\cap_{p \text{ prime}} E_p^c$, prove Euler's formula that

$$\frac{1}{\zeta(s)} = \prod_{p \text{ prime}} \left(1 - p^{-s}\right).$$

2. Consider a RW W on \mathbb{Z} , $W_n := a + X_1 + \dots + X_n$, where X_1, X_2, \dots are IID with $\mathbb{P}(X_n = -1) = \frac{2}{7}$, $\mathbb{P}(X_n = 1) = \frac{2}{7}$, $\mathbb{P}(X_n = 2) = \frac{3}{7}$. (a) Define $x_k := \mathbb{P}_k(\text{hit } 0) := \mathbb{P}(\text{hit } 0|W_0 = k)$. By splitting the event of hitting 0 over the first move taken by the random walk, show that

$$x_1 = \frac{2}{7} + \frac{2}{7}x_2 + \frac{3}{7}x_3.$$

Noting that the RW can only move down 1 unit at any time, explain why $x_k = x_1^k$ for $k \ge 1$.

Calculate $\mathbb{E}(X_n)$ and explain why the Random Walk will drift off to $+\infty$, hence deduce that $x_1 < 1$. Show that $\mathbb{P}_k(\text{hit } 0) = 3^{-k}$ for $k \ge 1$. (b) For $k \ge -1$, define $y_k := \mathbb{P}_0(\text{hit } k) = \mathbb{P}_0(W_n = k \text{ for some } n \ge 0)$. State the values of y_{-1} and y_0 . Show that for $k \ge 1$,

$$y_k = \frac{2}{7}y_{k+1} + \frac{2}{7}y_{k-1} + \frac{3}{7}y_{k-2}.$$
 (*)

Does this equation hold for k = 0?

Look for solutions to (*) of the form $y_i \propto m^k$ and hence write down the auxillary equation that m must satisfy. Find the roots m_1, m_2, m_3 of the auxilliary equation. Since these roots are distinct, the general solution to the recurrence equation (*) is $y_k = Am_1^k + Bm_2^k + Cm_3^k$ for $k \geq -1$, for some constants A, B, C. Use the boundary conditions and the fact that $0 \leq y_k \leq 1$ for every k to determine A, B, C and hence give an expression for $\mathbb{P}_0(\operatorname{hit} k)$ for $k \geq 1$.

(c) Let $r := \mathbb{P}_0$ (return to 0). By considering the first move of the RW, find an expression for r in terms of y_1 and x_1 . Deduce r = 1/3.

3. Let $W = (W_n)_{n \ge 0}$ be a simple Random Walk, SRW(p).

Let $y_k := \mathbb{E}_k(T_0) := E(T_0|W_0 = k)$ where $T_0 := \inf\{n \ge 0 : W_n = 0\}$ is the first hitting time of 0. By splitting according to the first step of the RW, show that $y_1 = (1 - p) + p(1 + y_2)$. Explain why $y_k = k y_1$ for $k \ge 1$. Deduce that $\mathbb{E}_1(T_0) = 1/(1 - 2p)$ when p < 1/2. What is $\mathbb{E}_1(T_0)$ when $p \ge 1/2$?

Recall that $\mathbb{P}_1(\text{hit } 0) = \mathbb{P}_1(T_0 < \infty) = (1-p)/p$ when $p \ge 1/2$. Deduce $\mathbb{P}_1(T_0 = \infty)$ for $p \ge 1/2$. In particular, for the symmetric simple Random Walk SRW(1/2), note that $\mathbb{P}_1(T_0 < \infty) = 1$ but $\mathbb{E}_1[T_0] = \infty$.

4. Consider any Random Walk $W = (W_n)_{n\geq 0}$ on \mathbb{Z} , that is, $W_n := a + X_1 + \cdots + X_n$ where X_1, X_2, \ldots are IID RVs.

Let $r := \mathbb{P}_0(\text{return to } 0)$ be the probability that W returns to 0 given it starts at 0. Let N be the total number of visits to 0 including the visit at time 0. Since intuitively the Random Walk 'starts afresh' whenever it first returns to 0, show that for $r \in [0, 1)$,

$$\mathbb{P}_0(N=k) = r^{k-1}(1-r) \qquad (k=1,2,\dots),$$

so that the total number of visits to 0 when started at 0 is a Geometrically distributed RV. Also note that $\mathbb{P}_0(N = +\infty) = 1$ when r = 1. Hence, calculate the expected total number of visits to 0 when starting at 0, $\mathbb{E}_0(N)$, in terms of r.

On the other hand, with $\xi_n := I_{\{W_n=0\}}$, note $N = \xi_0 + \xi_1 + \xi_2 + \ldots$ where the sum counts 1 for every time 0 is visited. By taking expectations and comparing expressions, deduce that

$$\frac{1}{1 - \mathbb{P}_0(W \text{ returns to } 0)} = \sum_{n=0}^{\infty} \mathbb{P}_0(W_n = 0). \quad (+)$$

5. Recurrence of symmetric simple Random Walks on \mathbb{Z} and \mathbb{Z}^2 (a) Let $W = (W_n)_{n>0}$ be a simple Random Walk, SRW(p). Show that

$$\mathbb{P}_0(W_n = 2k - n) = \binom{n}{k} p^k (1 - p)^{n-k} \qquad (k = 0, 1, 2, \dots, n).$$

Deduce that for the symmetric Random Walk, SRW(1/2),

$$\mathbb{P}_0(W_{2n}=0) = \frac{(2n)!}{(n!)^2 \, 2^{2n}}$$

Stirling's formula says that $n! \sim n^n e^{-n} \sqrt{2\pi n}$, that is

$$\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1.$$

Use this to show that $\mathbb{P}_0(W_{2n} = 0) \sim 1/\sqrt{\pi n}$. Using equation (+) above, deduce that $\mathbb{P}_0(W$ returns to 0) = 1, that is, the symmetric Simple Random Walk on \mathbb{Z} is *recurrent* (it will visit 0 infinitely often). (b) Consider the two dimensional Random Walk \mathbf{W} where $\mathbf{W}_n = (U_n, V_n)$ with $U = (U_n)_{n\geq 0}$ and $V = (V_n)_{n\geq 0}$ two *independent* symmetric simple Random Walks, SRW(1/2).

Draw a picture of how \mathbf{W} moves on \mathbb{Z}^2 and notice that, after rotation by 45^o and a relabeling of vertices, \mathbf{W} is equivalent to a symmetric simple Random walk on \mathbb{Z}^2 where a particle jumps from its current position to one of its four nearest neighbours with probability 1/4 each, independent of its past history. Show that

$$\mathbb{P}_{(0,0)}(\mathbf{W}_{2n} = (0,0)) = \mathbb{P}_0(U_{2n} = 0)\mathbb{P}_0(V_{2n} = 0) \sim \frac{1}{\pi n}$$

and hence deduce that the return probability to (0,0) for the symmetric simple Random Walk on \mathbb{Z}^2 is 1, that is, the Random Walk is recurrent.

29/10/2009 http://people.bath.ac.uk/massch