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1. DB-processes and rescaled limits

Let {ξn,i : n, i ≥ 1} be i.i.d. random variables in N := {0, 1, 2, · · · }.

Fix X0 ∈ N. A Discrete-time/state branching process (DB-process) {Xn : n ≥ 0} is
defined by (Bienaymé, 1845; Galton–Watson, 1874):

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1. (1)

• Consider a sequence of DB-processes

{X(k)
n : n ≥ 0}, k = 1, 2, · · · . (2)

• A continuous-time/state branching process (CB-process) {x(t) : t ≥ 0} arises as
the rescaled limit (Feller ’51; Jiřina ’58; Lamperti ’67):

k−1X
(k)
[kt] → x(t), k→∞. (3)

Basic idea: Theory of branching processes based on stochastic analysis.
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2. CB-processes with stable branching

Recall that a DB-process {Xn : n ≥ 0} is defined by:

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1.

Suppose that µ := P(ξ1,1) <∞. Then (µ− 1 =: β, 1 < α ≤ 2)

Xn = Xn−1 +

Xn−1∑
i=1

(ξn,i − µ) +Xn−1(µ− 1),

Xn = Xn−1 +
α
√
Xn−1

α
√
Xn−1

Xn−1∑
i=1

(ξn,i − µ) + βXn−1.

• A stable branching CB-process can be defined as the strong solution to (Fu–Li ’10):

dx(t) = α
√
αcx(t−)dZα(t) + βx(t−)dt, (4)

where {Zα(t)} is a spectrally positive α-stable Lévy process.

•When α = 2, it reduces to a Feller branching diffusion (Feller ’51).

•When β = 0, it has critical branching (⇔ µ = P(ξ1,1) = 1).
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3. The branching property

Let Pv be the distribution of a CB-process (x(t))t≥0 with x(0) = v on the space

D+[0,∞) := {positive càdlàg paths}.

Theorem 1 (Branching property) The family (Pv)v≥0 is a convolution semigroup, i.e.,

Pv1+v2 = Pv1 ∗ Pv2, v1, v2 ≥ 0. (5)

Proof (for critical Feller branching) Suppose that (x1(t))t≥0 and (x2(t))t≥0 are independent
with xi(0) = vi and

dxi(t) =
√

2cxi(t)dBi(t).

Let ξ(t) = x1(t) + x2(t). Then

dξ(t) =
√

2c
[√
x1(t)dB1(t) +

√
x2(t)dB2(t)

]
=
√

2cξ(t)dW (t),

where dW (t) is a Brownian motion defined by

dW (t) =
(√
ξ(t)

)−1[√
x1(t)dB1(t) +

√
x2(t)dB2(t)

]
. �

Problem Population models without branching property: (1) nonlinear branching;
(2) random environment.
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4. Generalized CB-processes

A nonlinear DB-process {Xk : k ≥ 0} is defined by (controlled, Sevast’yanov–Zubkov ’74;
ρ, r = positive functions):

Xk =

ρ(Xk−1)∑
i=1

Yk,i +

r(Xk−1)∑
i=1

Zk,i. (6)

Suppose that µ+ ν := P(Y1,1) + P(Z1,1) <∞. Then [f(x) := µρ(x) + νr(x)− x]:

Xk = Xk−1+

ρ(Xk−1)∑
i=1

(Yk,i − µ)+

r(Xk−1)∑
i=1

(Zk,i − ν) + µρ(Xk−1)+νr(Xk−1)−Xk−1,

Xn = X0 +

n∑
k=1

ρ(Xk−1)∑
i=1

(Yk,i − µ) +

n∑
k=1

r(Xk−1)∑
i=1

(Zk,i − ν) +

n∑
k=1

f(Xk−1).

• A nonlinear CB-process can be defined as the strong solution to (Li ’16+):

x(t) = x(0) +

∫ t

0

∫ ρ(x(s))

0

√
2cW (ds, du) +

∫ t

0

∫ r(x(s−))

0

∫ ∞
0

zÑ(ds, du, dz)−b
∫ t

0

f(x(s))ds,

where W (ds, du) is a Gaussian noise based on dsdu and Ñ(ds, dz, du) a compensated

Poisson noise based on dsm(dz)du (m = Lévy measure).
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Typical special cases: ρ(x) = r(x) = f(x) = xθ (linear: θ = 1; sublinear:
θ < 1; superlinear: θ > 1).

Li (’16+): Discrete-time/state approximation, Lamperti transformation, generator, mar-
tingale problem, entrance from or hitting to 0 and ∞, expressions for P[ζ], P[σ],
P[ζ ∧ σ], where (explosion and extinction times):

ζ = inf{t ≥ 0 : x(t) =∞}, σ = inf{t ≥ 0 : x(t) = 0}

Let φ be the branching mechanism and q = inf{z > 0 : φ(z) > 0}.

Laplace transform of the transition semigroup:

ρx(η, λ) =

∫ ∞
0

e−ηtdt

∫
[0,∞)

e−λyPt(x, dy), x, η, λ > 0. (7)

A Volterra-type equation (when 0 < λ < q):

Γ(θ)[ρx(η, λ)− ρx(η, q)] =

∫ q

λ
[ηρx(η, z)− e−zx]φ(z)−1(z − λ)θ−1dz. (8)
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A book on CB-processes with competition (nonlinear branching):
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5. Random environments

Recall N = {0, 1, 2, · · · }. Suppose that:

(1) G := {gn : n ≥ 1} are i.i.d. random probability generating functions;

(2) {ξn,i : n, i ≥ 1} are N-valued random variables;

(3) given gn, {ξn,i : i ≥ 1} are i.i.d. and P(sξn,i|G ) = gn(s);

(4) {ξm,i : i ≥ 1} and {ξn,i : i ≥ 1} independent for m 6= n.

Fix X0 ∈ N. A DB-process in random environment (DBRE-process) is defined by:

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1. (9)

See Smith–Wilkinson (’69) and Athreya–Karlin (’71), Vatutin–Dyakonova–Sagitov (’13).

•We are interested in a continuous-state counterpart of the DBRE-process, i.e., CB-
process in random environment (CBRE-process).
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6. Stable branching CBRE-processes

Recall that a GWRE-process is defined by [P(sξn,i|G ) = gn(s)]:

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1.

Suppose that 0 < µn := P(ξn,1|G ) = g′n(1−) <∞. Then (0 < α ≤ 1)

Xn = Xn−1 +

Xn−1∑
i=1

(ξn,i − µn) +Xn−1(µn − 1),

Xn = Xn−1 +
1+α
√
Xn−1

1+α
√
Xn−1

Xn−1∑
i=1

(ξn,i − µn) +Xn−1(µn − 1).

• A CB-process in random environment (CBRE-process) can be defined by:

dX(t) = 1+α
√

(1 + α)cX(t−)dZα(t) +X(t−)dL(t), (10)

where {Zα(t)} is a Brownian motion (if α = 1) or a spectrally positive (1+α)-stable
process (if 0 < α < 1), and {L(t)}t≥0 is a Lévy process with L(t)− L(t−) > −1.
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Theorem 2 (Bansaye–Millan–Smadi ’13; He–Li–Xu ’16+) For λ ≥ 0 and t ≥ r ≥ 0

we have (quenched law):

PL[e−λX(t)|X(s) : 0 ≤ s ≤ r] = exp{−X(r)vLr,t(λ)},

where r 7→ vLr,t(λ) is defined by (L(
←−
ds) = backward Itô integral, φ(λ) = cλ1+α):

vLr,t(λ) = λ−
∫ t

r
φ(vLs,t(λ))ds+

∫ t

r
vLs,t(λ)L(

←−
ds). (11)

• Suppose the environment {L(t)}t≥0 has the following Lévy-Itô decomposition:

L(t) = βt+ σB(t) +

∫ t

0

∫
[−1,1]

(ez − 1)Ñ(ds, dz) +

∫ t

0

∫
[−1,1]c

(ez − 1)N(ds, dz).

• The associated Lévy process {ξ(t)}t≥0 is defined by:

ξ(t) = β∗t+ σB(t) +

∫ t

0

∫
[−1,1]

zÑ(ds, dz) +

∫ t

0

∫
[−1,1]c

zN(ds, dz),

where (ν = Lévy measure)

β∗ = β −
σ2

2
−
∫

[−1,1]

(ez − 1− z)ν(dz).
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Note that σ({L(t) : t ≥ 0}) = σ({ξ(t) : t ≥ 0}).

Corollary For t > 0 we have:

(quenched probability) PL(X(t) = 0|X(0) = x) = e−xū
ξ
0,t,

and so

(annealed probability) P(X(t) = 0|X(0) = x) = P(e−xū
ξ
0,t),

where r 7→ ūξr,t is defined by (a.e. r ∈ [0, t], φ(λ) = cλ1+α):

d

dr
ūξr,t = eξ(r)φ(e−ξ(r)ūξr,t), ūξt−,t =∞. (12)

Corollary For t > 0 we have (annealed probability):

P(X(t) > 0|X(0) = x) = P
[
Fx

( ∫ t

0
e−αξ(s)ds

)]
, (13)

where Fx(z) = 1− exp{−x[cαz]−1/α}.

Problem Asymptotics of P(X(t) > 0) as t → ∞; Bansaye–Millan–Smadi (’13),
Palau–Pardo (’15+), Li–Xu (’16), Palau–Pardo–Smadi (’16+).
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7. Asymptotic results for the survival probability

Let Φ(λ) = log P0[eλξ(1)] and D(Φ) = {λ ∈ R : Φ(λ) <∞} with interior D◦(Φ).
Suppose that {0, 1} ⊂ D◦(Φ). Then (Bansaye–Millan–Smadi ’13; Palau–Pardo
’15+; Li–Xu ’16+; Palau–Pardo–Smadi ’16+):

(1) [Supercritical case] If 0 < Φ′(0) < Φ′(1), then limt→∞ Px(x(t) = 0) = D1(α, Fx).

(2) [Critical case] If Φ′(0) = 0 < Φ′(1), then limt→∞ t
1/2Px(x(t) > 0) = D2(α, Fx).

(3) [Weakly subcritical case] If Φ′(0) < 0 < Φ′(1), then (0 < θ < 1, Φ′(θ) = 0)

lim
t→∞

t3/2e−tΦ(θ)Px(x(t) > 0) = D3(α, Fx).

(4) [Intermediately subcritical case] If Φ′(0) < 0 = Φ′(1), then

lim
t→∞

t1/2e−tΦ(1)Px(x(t) > 0) = x(cα)−1/αD4(α).

(5) [Strongly subcritical case] If Φ′(0) < Φ′(1) < 0, then

lim
t→∞

e−tΦ(1)Px(x(t) > 0) = x(cα)−1/αD5(α).

Theorem 3 (Li–Xu ’16) The Di’s can be given explicitly.
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8. Exponential functionals of Lévy processes

Let ξ = {ξ(t) : t ≥ 0} be a one-dimensional Lévy process. Given α > 0, we define
the exponential functional:

Aαt (ξ) =

∫ t

0
e−αξ(s)ds, 0 ≤ t ≤ ∞. (14)

Yor (’92, Proposition 2): characterization of (ξ = Brownian motion with drift)

P(Aαt (ξ) ∈ du, ξ(t) ∈ dx).

Carmona–Petit–Yor (’94, ’97): moments of AαT (ξ) for exponentially distributed T .

Bertoin–Yor (’05): Aα∞(ξ) <∞ if and only if limt→∞ ξ(t) =∞.

Bertoin–Yor (’05): distribution of Aα∞(ξ) when it is finite.

Pardo–Patie–Savov (’12): Wiener-Hopf type factorization for Aα∞(ξ) when it is finite.
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Problem For a positive decreasing function F satisfying F (z) → 0 as z → ∞,
study the asymptotics (decay rate and limiting coefficient) of

P[F (Aαt (ξ))] = P
[
F
( ∫ t

0
e−αξ(s)ds

)]
as t→∞. (15)

Kawazu–Tanaka (’93): F (z) = a(a+ z)−1 and ξ = Br.m. with drift.

Carmona–Petit–Yor (’94, ’97): F (z) = z−1 or = log z and λ−1/2ξ(λ·)→ Br.m.

Böeinghoff–Hutzenthaler (’12): F (z) = 1− exp{−cz} and ξ = Br.m. with drift.

Bansaye–Millan–Smadi (’13): F (z) = 1 − exp{−cz−1/α} (0 < α ≤ 1) and ξ has
bounded variation Lévy process.

Palau–Pardo (’15, ’16): F (z) = 1 − exp{−cz−1/α} (0 < α ≤ 1) and ξ = Br.m.
with drift.

For random walks: Afanasy’ev–Geiger–Kersting–Vatutin (’05), Dyakonova–Geiger–
Vatutin (’04), Geiger–Kersting (’02), Geiger–Kersting–Vatutin (’03), Guivarc’h–Liu (’01),
Kozlov (’76), Liu (’96), Vatutin–Dyakonova–Sagitov (’13) among others.
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9. The key observation

Let Ω0 = {infs≥0 ξ(s) = −∞}. Then:

(a) When Φ′(0) = P[ξ(1)] > 0, we have P(Ω0) = P(limt→∞ ξ(t) = ∞) = 1,
and so P0(Aα∞(ξ) <∞) = 1 by the result of Bertoin–Yor (’05).

(b) When Φ′(0) = P[ξ(1)] ≤ 0, we have P(lim inf t→∞ ξ(t) = −∞) = 1, so
P(Ω0) = 0.

Theorem 4 (i) If 0 < Φ′(0) < Φ′(β), then

lim
t→∞

P[F (Aαt (ξ))] = P[F (Aα∞(ξ))] = P
[
F
( ∫ ∞

0
e−αξ(s)ds

)]
.

Observation When Φ′(0) ≤ 0, the asymptotics of P[F (Aαt (ξ))] is determined by
the behavior of P near the “boundary” of Ω0. Note that

Ω0 =
⋃
x≥0

⋂
t≥0

{τ−x > t} = ↑ lim
x→∞

↓lim
t→∞
{τ−x > t}. (16)

where τ−x = inf{t > 0 : ξt ≤ −x}.
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10. Transformations of Lévy processes

Let Ω be the set of càdlàg paths from [0,∞) to R.

Let ξ = (Ω ,F ,Ft, ξ(t),Px) be the canonical realization of a one-dimensional Lévy
process. See Bertoin (’96) and Kyprianou (’14).

Let {L(t) : t ≥ 0} be the local time at 0 of the reflected process t 7→ sups∈[0,t] ξ(s)−
ξ(t). Let

L−1(t) =
{ inf{s > 0 : L(s) > t}, t < L(∞);

∞, otherwise.

The ladder height process {H(t) : t ≥ 0} of ξ is a subordinator defined by

H(t) =
{ ξ(L−1(t)), t < L(∞);

∞, otherwise.
(17)

The renewal function V is defined by

V (x) =

∫ ∞
0

P0(H(t) ≤ x)dt, x ≥ 0. (18)
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Let ξ̂ = (Ω ,F ,Ft, ξ(t), P̂x) be the dual process of ξ, where P̂x is the law of
{−ξ(t) : t ≥ 0} under P−x.

Let ̂ denote the quantities associated with ξ̂.

Let τx = inf{t > 0 : ξt ≤ x} for x ∈ R.

For any x > 0 the process t 7→ V̂ (ξ(t)−)1{τ0>t} is a Px-martingale and t 7→
V (ξ(t)−)1{τ0>t} is a P̂x-martingales.

We can define the probability measures Qx and Q̂x by (A ∈ Ft and t ≥ 0):

Qx(A) = V̂ (x−)−1

∫
A
V̂ (ξ(t)−)1{τ0>t}dPx (19)

and

Q̂x(A) = V (x−)−1

∫
A
V (ξ(t)−)1{τ0>t}dP̂x. (20)

Call Ξ = (Ω ,F ,Ft, ξ(t),Qx) and Ξ̂ = (Ω ,F ,Ft, ξ(t), Q̂x) the h-transformations
by the renewal functions.
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Let Φ(λ) = log P0[eλξ(1)] be the Laplace exponent and let

D(Φ) = {λ ∈ R : Φ(λ) <∞}.

For any θ ∈ D(Φ), the process t 7→ eθξ(t)−Φ(θ)t is a Px-martingale.

By Escheer’s theorem, we can define the probability measure P(θ)
x on (Ω ,F ) by

P(θ)
x (A) =

∫
A
eθξ(t)−Φ(θ)tdPx, A ∈ Ft, t ≥ 0. (21)

The Escheer’s transform ξ(θ) = (Ω ,F ,Ft, ξ(t),P(θ)
x ) is a Lévy process with Laplace

exponent λ→ Φ(λ+ θ)− Φ(θ).

Let ξ̂(θ) = (Ω ,F ,Ft, ξ(t), P̂
(θ)

x ) be the dual process of ξ(θ).

Let (θ) denote the quantities associated with ξ(θ).

Let Ξ (θ) = (Ω ,F ,Ft, ξ(t),Q(θ)
x ) and Ξ̂ (θ) = (Ω ,F ,Ft, ξ(t), Q̂

(θ)

x ) be the h-
transformations by the renewal functions of ξ(θ) and ξ̂(θ), respectively.
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11. The case Φ′(0) = P0[ξ(1)] = 0

Recall that Φ(λ) = log P0[eλξ(1)] and D(Φ) = {λ ∈ R : Φ(λ) <∞}.

Let α > 0 and assume {0, β} ⊂ interior of D(Φ) ∩ [0,∞).

Condition A There is a constant K > 0 so that F (z) ≤ Kz−β/α for z ≥ 1.

Theorem 4 (ii) If Φ′(0) = 0 < Φ′(β) and Condition A holds, then

lim
t→∞

t1/2P0[F (Aαt (ξ))] =

√
2

πΦ′′(0)
P̂0[H(1)]D2(α, F ),

where D2(α, F ) = limx→∞ V̂ (x−)Qx[F (e−αxAα∞(ξ))].

Lemma (Hirano ’01) For any s ≥ 0 and x > 0 we have, as t→∞,

t1/2P0(τ−x > t)→

√
2

πΦ′′(0)
P̂0[H(1)]V̂ (x−)

and

P0({ξ(r)}r∈[0,s] ∈ ·|τ−x > t)→ Qx({ξ(r)− x}r∈[0,s] ∈ ·).
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Proof of Theorem 2 (ii):

Step 1. Write

lim
t→∞

t1/2P0[F (Aαt (ξ))] = lim
x→∞

lim
t→∞

t1/2P0[F (Aαt (ξ)); τ−x > t]

+ lim
x→∞

lim
t→∞

t1/2P0[F (Aαt (ξ)); τ−x ≤ t]. (22)

Step 2. Prove the second term vanishes.

Step 3. Use Lemma 3 to see

lim
t→∞

t1/2P0[F (Aαt (ξ)); τ−x > t]

= lim
s→∞

lim
t→∞

t1/2P0[F (Aαs (ξ)); τ−x > t]

= lim
s→∞

lim
t→∞

t1/2P0(τ−x > t) · P0[F (Aαs (ξ))|τ−x > t]

= lim
s→∞

√
2

πΦ′′(0)
P̂0[H(1)]V̂ (x−) · Qx[F (e−αxAαs (ξ))]

=

√
2

πΦ′′(0)
P̂0[H(1)]V̂ (x−) · Qx[F (e−αxAα∞(ξ))]. �
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12. The case Φ′(0) = P0[ξ(1)] < 0

Theorem 4 (iii) Suppose that Φ′(0) < 0 < Φ′(β) and Condition A holds. Let
% ∈ (0, β) be the solution of Φ′(%) = 0. Then

lim
t→∞

t3/2e−tΦ(%)P0[F (Aαt (ξ))] =
c(%)√

2πΦ′′(%)
D3(α, F ),

where

c(%) = exp
{ ∫ ∞

0
(e−t − 1)t−1e−tΦ(%)P0(ξ(t) = 0)dt

}
, (23)

D3(α, F ) = lim
x→∞

e%xV̂ (%)(x−)

∫ ∞
0

e−%yV (%)(y)G(x, y)dy (24)

and

G(x, y) = Q(%)
(x,y){F (e−αx[Aα∞(ξ) +Aα∞(ξ̂)])} (25)

with (W, G , Gt, (ξ(t), ξ̂(t)),Q
(%)
(x,y)) being the independent coupling of Ξ (%) and Ξ̂ (%).
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Condition B There is a constant K > 0 so that F (z) ∼ Kz−β/α as z →∞.

Theorem 4 (iv) If Φ′(0) < Φ′(β) = 0 and Condition B holds, then

lim
t→∞

t1/2e−tΦ(β)P0[F (Aαt (ξ))] = K

√
2

πΦ′′(β)
P(β)

0 [H(1)]D4(α, β),

where

D4(α, β) = lim
x→∞

V (β)(x−)Q(β)
x [e−βxAα∞(−ξ)−β/α].

Theorem 4 (v) If Φ′(0) < Φ′(β) < 0 and Condition B holds, then

lim
t→∞

e−tΦ(β)P0[F (Aαt (ξ))] = KP(β)
0 [Aα∞(−ξ)−β/α].
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Summary

A stable branching CBRE-process can be constructed as the strong solution of a
stochastic equation, where the environment is modeled by a Lévy process {L(t) :

t ≥ 0} with L(t)− L(t−) > −1.

The survival probability of the population model is given by some expectation involving
an exponential functional of another Lévy process {ξ(t) : t ≥ 0} determined by the
environment.

Some results for the asymptotics, convergence rates and limiting coefficients, of ex-
ponential functionals of the Lévy process are presented.

The limiting coefficients are represented in terms of some transformations based on
the renewal functions.

The key of the work is the observation that the asymptotics only depends on sample
paths with local infimum decreasing slowly, i.e., those in “neighborhoods” of

Ω0 :=
{

inf
s≥0

ξ(s) > −∞
}
.
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