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1. DB-processes and rescaled limits

Let {&n, : n,¢ > 1} be i.i.d. random variables in N := {0,1,2,--- }.

Fix Xo € N. A Discrete-time/state branching process (DB-process) { X, : n > 0} is
defined by (Bienaymé, 1845; Galton—Watson, 1874):

Xn—l
Xn= Y &ni, n>1L (1)
=1

® Consider a sequence of DB-processes

{x®) :n >0}, k=1,2,---. )

® A continuous-time/state branching process (CB-process) {x(t) : t > 0} arises as
the rescaled limit (Feller ’51; Jifina '58; Lamperti '67):

k_lX[(,ft)] —z(t), k— oo. 3)

Basic idea: Theory of branching processes based on stochastic analysis.



2. CB-processes with stable branching

Recall that a DB-process {X,, : n > 0} is defined by:

n—1
Xn = Z £n,i7 n Z 1.
=1

Suppose that p := P(£1,1) < oco. Then(p—1=: 38,1 < a < 2)

Xn = Xn—l + Z (Sn,i - ,LL) + Xn—l(“ - 1),

Xn_Xn—1+ n IZ(‘Snz

= ) + BXn—1.
VXn-1 4 : '
® A stable branching CB-process can be defined as the strong solution to (Fu—Li’10):
dz(t) = ace(t—)dZ(t) + Bz(t—)dt, 4)

where {Z,(t)} is a spectrally positive a-stable Lévy process.
® When a = 2, it reduces to a Feller branching diffusion (Feller '51).

® When 8 = 0, it has critical branching (< pu = P(§1,1) = 1).



3. The branching property

Let P, be the distribution of a CB-process (x(t)):>o With £(0) = v on the space
D, [0, c0) := {positive cadlag paths}.

Theorem 1 (Branching property) The family (Py).>0 iS a convolution semigroup, i.e.,

P’vl—l—'uz - P'v1 * P'vza V1, V2 Z 0. (5)

Proof (for critical Feller branching) Suppose that (z1(t)):>0 and (x2(t)):>o are independent
with .’131(0) = v; and

d:l?z(t) = \/2C$i(t)dBi(t).

Let £(t) = @1 (t) + x2(¢). Then
de(t) = vV2¢[\/z1(t)dBi(t) + /z2(t)dBa(t)] = \/2c€(t)dW (¢),

where dW (t) is a Brownian motion defined by

dW (t) = (VE@®)) " [V@1(£)dBi(t) + /o2 (t)dBa(t)]- O

Problem Population models without branching property: (1) nonlinear branching;
(2) random environment.



4. Generalized CB-processes

A nonlinear DB-process { X : k > 0} is defined by (controlled, Sevast’'yanov—Zubkov '74
p, r = positive functions):

P(Xk—1) m(Xk—1)

Y Yei+ > Zig 6)
=1 =1

Suppose that u + v := P(Y1,1) + P(Z1,1) < oo. Then [f(x) := pp(x) + vr(z) — ]

P(Xk—1) r(Xk—1)
Xp = Xp_1+ Z (Yi,s — p)+ Z (Zr,i —v) + pp(Xp—1)+vr(Xp—1) — Xp_1,
1=1 =1
n P(Xk—1) n T(Xk-1) n
Xn = Xo+ Y Y Mei—m+>, > (Zri—v)+ > F(Xp—1)
k=1 <=1 k=1 <=1 k=1

® A nonlinear CB-process can be defined as the strong solution to (Li '16+):

z(t) = x(0) +//P(w(8)) 2¢W (ds, du) +/ /r(w(s ))/ zN(ds, du, dz) — / f(x(s))ds,

where W (ds, du) is a Gaussian noise based on dsdu and N (ds,dz,du) a compensated
Poisson noise based on dsm(dz)du (m = Lévy measure).



Typical special cases: p(z) = r(x) = f(x) = 29 (linear: & = 1; sublinear:
0 < 1; superlinear: 6 > 1).

Li (16+): Discrete-time/state approximation, Lamperti transformation, generator, mar-
tingale problem, entrance from or hitting to 0 and oo, expressions for P[¢], P[o],
P[¢ A o], where (explosion and extinction times):

C=inf{t >0:x2(t) =0}, o=inf{t >0:x(t) =0}

Let ¢ be the branching mechanism and ¢ = inf{z > 0 : ¢(z) > 0}.

Laplace transform of the transition semigroup:

p=(1, A) = /

e_"tdt/ e N Py(x,dy), z,m, A > 0. (7
0 J[0,00)

A Volterra-type equation (when 0 < A < q):

I'(0)[pz(n,A) — pz(n,q)] = /:[npm(n, z) — e *®p(z) "Nz — NP tdz.  (8)



A book on CB-processes with competition (nonlinear branching):

Mathematical Biosciences Institute Lecture Series 1.6
Stochastics in Biological Systems

Etienne Pardoux

Probabilistic
Models of
Population
Evolution

Scaling Limits, Genealogies and
Interactions

mbi éﬁ &) Springer

Mathematical Biosciences Insttute



5. Random environments
RecallN = {0,1,2,---}. Suppose that:
(1) ¥ := {gn : n > 1} are i.i.d. random probability generating functions;
(@) {&n,i : n,i > 1} are N-valued random variables;
(3) given gn, {€n,; i > 1} are ii.d. and P(s5¢|9) = gn(s);
(4) {&m,i 1t > 1} and {&,,,; : ¢ > 1} independent for m # n.

Fix X¢ € N. A DB-process in random environment (DBRE-process) is defined by:

X'n.—l
Xn= Y &ni, n>L ©)
=1

See Smith—Wilkinson ('69) and Athreya—Karlin ("71), Vatutin—Dyakonova—Sagitov ('13)

® We are interested in a continuous-state counterpart of the DBRE-process, i.e., CB-
process in random environment (CBRE-process).



6. Stable branching CBRE-processes

Recall that a GWRE-process is defined by [P(s5%#|9) = gn(s)]:

n—1
X'I’L == Z Sn,i’ n 2 1-

Suppose that 0 < py, := P(£n,119) = g,,(1—) < co. Then (0 < o < 1)

Xn—l
Xn = Xn—l + Z (€n,i - ﬂn) + Xn—l(/»Ln - 1),
Xn =] Xn—l + 1tor Xn ! Z (gnz Nn) + Xn—l(llfn - 1)
n— 1

=1

® A CB-process in random environment (CBRE-process) can be defined by:

dX(t) = /(1 + a)eX (t—)dZ(t) + X (t—)dL(t), (10)

where {Z,(t)} is a Brownian motion (if « = 1) or a spectrally positive (1 + «)-stable
process (if 0 < a < 1), and {L(t)}+>0 is a Lévy process with L(t) — L(t—) > —1.



Theorem 2 (Bansaye—Millan—Smadi '13; He—Li—Xu ’16+) ForA > 0andt > r > 0
we have (quenched law):

Plle=2X()|X(s): 0< s < 7] = exp{—X(T‘)’Uf:t(A)},

where r — v, ()) is defined by (L(c(E) = backward Ité integral, ¢(\) = eA1T*):

t t
vf’t()\):)\—/ qﬁ(vf,t(A))ds—I—/ v, (A L(ds). (11)

® Suppose the environment { L(t) }+>o has the following Lévy-It6 decomposition:

L(t) = Bt + o B(t) +/()t/[;1’1](ez — 1)N(ds, dz) +/Ot/[ (e — 1)N(ds, dz).

_1’1]c

® The associated Lévy process {£(t) }+>o is defined by:

t t
£(t) = But + oB(t) +/0 /[_1 ; 2N (ds, dz) +/0 /[_1 . 2N (ds, dz),

where (v = Lévy measure)

2

o .
By =0 — - = /[_1’1](e 1 — 2)v(dz).



Note that o ({L(t) : t > 0}) = o ({&(t) : t > 0}).
Corollary Fort > 0 we have:

(quenched probability) PE(X(t) =0|X(0) = z) = e_mﬁg,t,
and so

(annealed probability)  P(X(t) = 0|X(0) = x) = P(e“”agyt),
where r — s, is defined by (a.e. 7 € [0,t], p(A) = cAl+*):

d
5'&% =efMepe~tMay,),  a;_, = oco. (12)

Corollary Fort > 0 we have (annealed probability):

P(X(t) > 0|X(0) = z) = P[Fw(/t

A e_ag(s)dsﬂ, (13)

where Fy(z) = 1 — exp{—x[caz]~'/*}.

Problem Asymptotics of P(X (t) > 0) as t — oo; Bansaye—Millan—Smadi (’13),
Palau—Pardo ('15+), Li—Xu ('16), Palau—Pardo—Smadi ('16+).



7. Asymptotic results for the survival probability
Let &(\) = log Po[e*™M] and 2(®) = {\ € R: &(\) < oo} with interior 2°(®).
Suppose that {0,1} C 2°(®). Then (Bansaye—Millan-Smadi '13; Palau—Pardo
'15+; Li—Xu ’'16+; Palau—Pardo—Smadi '16+):
(1) [Supercritical case] If0 < ®'(0) < ®’(1), thenlim; o0 Pr(x(t) = 0) = D1 (cx, Fy).
(2) [Critical case] If ®(0) = 0 < ®'(1), then limy_, oo t1/2P,(x(t) > 0) = Dy(c, Fy).
(3) [Weakly subcritical case] If ®/(0) < 0 < ®’(1), then (0 < 6 < 1, ®'(0) = 0)

lim t3/2e=** @) P_(x(t) > 0) = D3(a, Fy).

t—oo

(4) [Intermediately subcritical case] If ’(0) < 0 = ®’(1), then

lim t'/2e t**MP_(x(t) > 0) = x(ca) Y *Dy(a).

t—oo

(5) [Strongly subcritical case] If ®'(0) < ®’(1) < 0, then

Jim e WP (z(t) > 0) = z(ca)"V*Dy(a).
—00

Theorem 3 (Li—Xu '16) The D;’s can be given explicitly.



8. Exponential functionals of Lévy processes

Let ¢ = {&(¢) : t > 0} be a one-dimensional Lévy process. Given o > 0, we define
the exponential functional:

t
A%(€) = /0 e €G)ds, 0<t< oo. (14)

Yor (’92, Proposition 2): characterization of (¢ = Brownian motion with drift)
P(A$(¢) € du,&(t) € dz).

Carmona—Petit—Yor ('94, '97): moments of AZ(£) for exponentially distributed T'.

Bertoin—Yor ('05): AZ (§) < oo if and only if lim;_, o £(t) = oo.

Bertoin—Yor ('05): distribution of AZ (&) when it is finite.

Pardo—Patie—Savov ('12): Wiener-Hopf type factorization for AZ, (£) when it is finite.



Problem For a positive decreasing function F' satisfying F(z) — 0 as z — oo,
study the asymptotics (decay rate and limiting coefficient) of

P[F(A%(¢))] = P[F(/Ot e—aﬁ@dsﬂ as t — oo. (15)

Kawazu—Tanaka ('93): F(z) = a(a + z)~! and ¢ = Br.m. with drift.
Carmona—Petit-Yor ('94, '97): F(z) = z~' or = log z and A~ /2¢(\.) — Br.m.
Boeinghoff-Hutzenthaler ('12): F(z) = 1 — exp{—cz} and £ = Br.m. with drift.

Bansaye—Millan—-Smadi ('13): F(z) = 1 — exp{—cz~1/2} (0 < a < 1) and £ has
bounded variation Lévy process.

Palau—Pardo (15, '16): F(z) = 1 — exp{—cz~ %} (0 < a < 1) and £ = Br.m.
with drift.

For random walks: Afanasy’ev—Geiger—Kersting—Vatutin ('05), Dyakonova—Geiger—
Vatutin ('04), Geiger—Kersting ('02), Geiger—Kersting—Vatutin ('03), Guivarc’h—Liu ('01),
Kozlov ('76), Liu ('96), Vatutin—-Dyakonova—Sagitov ('13) among others.



9. The key observation
Let 2o = {inf,>¢&(s) = —oo}. Then:
(@) When #/(0) = P[£(1)] > 0, we have P(£2p) = P(lim;—, o &£(t) = o0) = 1,
and so Po(AZ (§) < oo) = 1 by the result of Bertoin—Yor ('05).
(b) When #/(0) = P[£(1)] < 0, we have P(liminf; o £(t) = —o0) = 1, SO
P(£2,) = 0.

Theorem 4(i) If0 < &#'(0) < ¥'(B), then

Jim PLE(A(€)] = PIP(AZ(€)] = P[F( [~ emo¢as)].

Observation When #/(0) < 0, the asymptotics of P[F(Ag(£))] is determined by
the behavior of P near the “boundary” of 2. Note that

2= ({r—=>1t} =1lim |lim {r_5 > t}. (16)
x>01t>0

where 7_, = inf{t > 0: & < —x}.



10. Transformations of Lévy processes
Let £2 be the set of cadlag paths from [0, co) to R.

Let ¢ = (2, %, %, E(t), P,) be the canonical realization of a one-dimensional Lévy
process. See Bertoin ("96) and Kyprianou ('14).

Let {L(t) : t > 0} be the local time at 0 of the reflected process t — sup,¢o,4 £(8)—
£(t). Let

inf{s > 0: L(s) > t}, t < L(o0);
00, otherwise.

() = {

The ladder height process { H(t) : t > 0} of £ is a subordinator defined by

(EE7O), ¢ <L) )

H(t) = .
00, otherwise.

The renewal function V is defined by

V(z) = /Ooo Po(H(t) < z)dt, > 0. (18)



Let € = (2,7, %, &(t), Py) be the dual process of & where P, is the law of
{—&(t) : t > 0} under P_,.

Let ~ denote the quantities associated with £.
Let m, =inf{t > 0: & < z} forxz € R.

For any x > 0 the process t +— V(g(t)—)l{mﬁ} is a P,-martingale and t —
V (£(t)—)1{ro>ty is @ Py-martingales.

We can define the probability measures @, and Q@ by (A € %, and t > 0):
0:(4) = V(a=)" [ V(E®)1(ns0dPs (19)
and

Au(A) = V(z—)~1 /A V(E(H) =) Lirys ey dPa. 20)

Call & = (2,7, %,£(t), Qz) and g = (2,7, %:,&(t), Ow) the h-transformations
by the renewal functions.



Let #(\) = log Po[e*¢(M)] be the Laplace exponent and let

7(8) = {A €R: B(N) < oo}

For any 8 € 2(®), the process t — e =20t is g P_-martingale.

By Escheer’s theorem, we can define the probability measure Pf) on (£2,.7) by

POA) = [ KOS Oap., a0 o
A

The Escheer’s transform ¢(©) = (2,.7, %, £(t), P9)) is a Lévy process with Laplace
exponent A — #(A + 0) — $(0).

Let €0 = (2,.7, F, £(t), P( )) be the dual process of ¢(9).
Let (® denote the quantities associated with £(©).

Let 5O = (2,7, 5, £(t),@®) and EO) = (2, 7, 74, £(t), @) be the h-
transformations by the renewal functions of £(®) and £(®), respectively.



11. The case #'(0) = Py[£(1)] =0
Recall that #(\) = log Po[e*M] and 2(#) = {\ € R: $(\) < oo}.

Let &« > 0 and assume {0, 3} C interior of Z(®) N [0, o).
Condition A There is a constant K > 0 so that F(z) < Kz=P/* for z > 1.
Theorem 4 (ii) If #/(0) = 0 < &’(3) and Condition A holds, then
2 &
. 1/2 o _
Jim £/2B[F(AZO)] = || s P H WD (e P,
where Da(c, F) = limg 00 V (2—) Qu[F (e~ A2 (€))].

Lemma (Hirano ’01) Forany s > 0 andx > 0 we have, ast — oo,

tY2Py(1_p > t) — Po[H(1)]V (z—)

7 ®"(0)
and

Po({£(r)}refo,s] € *IT—2 > t) = Qz({6(7) — Z}repo,s) € *)-



Proof of Theorem 2 (ii):

Step 1. Write

Jim tY/2Po[F(A7(€))] = lim lim ¢'/2Po[F (A7 (€)); T—a > 1]
+ lim lim tY2Po[F(A2(€)); T—s < t]. (22)

T—o0 t—o0

Step 2. Prove the second term vanishes.

Step 3. Use Lemma 3 to see
Jlim ¢1/2Po[F(AZ(€)); o > 1

= lim Tim £1/2Po[F(AS(€)); o > 1]

= lim lim tY/2Pg(7_gz > t) - Po[F(A%(&))|T—z > t]

8—00 t—00

= lim

Am [ gy POV (@=) - QulF(e™ AT ()]

= o PV @) - Q[P O O



12. The case #/(0) = Py[£(1)] < O

Theorem 4 (iii) Suppose that #/(0) < 0 < @’(B) and Condition A holds. Let
o € (0, B) be the solution of #'(o) = 0. Then

. 43/2_—td(p) a _ c(e)
tli)l’{.lot € PO[F(At (S))] \/WDS(Q, F)?
where
(@) = exp { / T (et — 1)t—te~t@ Py (¢(t) = o)dt}, (23)
0
Ds(a, F) = lim €2V (@ (z—) /OO e~V (9 ()G (x,y)dy (24)
r—ro0 0
and
G(z,y) = QP {F(e™"[A%(£) + AL ()]} (25)

with (W, %, %, (&(¢), £(t)), Q"2

(a.y)) being the independent coupling of & (@ and £(@),



Condition B There is a constant K > 0 so that F(z) ~ Kz=P/* as z — oo.

Theorem 4(iv) If '(0) < @’(B3) = 0 and Condition B holds, then

Jim £1/2e=%0) Py[F (A7 (€))] = K,/%P&ﬁ) [H(1)]Da(a, B),

where

Di(a, B) = Jlim VO (2—) QP e~ A%, (—€) /1.

Theorem 4 (v) If #'(0) < #’(B) < 0 and Condition B holds, then

lim e~**) Py[F(AX(£))] = KPP [AX (—€)~F/?).

t—o0



Summary

A stable branching CBRE-process can be constructed as the strong solution of a
stochastic equation, where the environment is modeled by a Lévy process {L(t) :
t > 0} with L(t) — L(t—) > —1.

The survival probability of the population model is given by some expectation involving
an exponential functional of another Lévy process {£(t) : t > 0} determined by the
environment.

Some results for the asymptotics, convergence rates and limiting coefficients, of ex-
ponential functionals of the Lévy process are presented.

The limiting coefficients are represented in terms of some transformations based on
the renewal functions.

The key of the work is the observation that the asymptotics only depends on sample
paths with local infimum decreasing slowly, i.e., those in “neighborhoods” of

2 = {iggg(s) > —oo}.
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