Llog L criterion for a class of multi-type superdiffusions with nonlocal branching mechanism

Yan-Xia Ren

Peking University

The Fourth Bath-Paris Meeting, Paris June 27-29, 2016.

Based on a working paper Zhen-Qing Chen and Renming Song

Outline

Outline

- **1** Motivation
- Model: Multi-type Superdiffusion
- 3 Assumptions
- Main Results
- Spine Decomposition

 $\{Z_n, n \ge 1\}$: a Galton-Watson branching process.

L: the number of children given by one particle.

 $\{p_n, n \ge 1\}$: the distribution of L.

Se

$$m:=\sum_{n=1}^{\infty}np_n.$$

m is the mean number of children given by one particle. Suppose m > 1 (supercritical).

It is known that $EZ_n = m^n$ and $\left\{\frac{Z_n}{m^n}; n \ge 1\right\}$ is a martingale and then

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty$$

The L log L criterion for G-W branching processes

 $\{Z_n, n \ge 1\}$: a Galton-Watson branching process.

L: the number of children given by one particle.

 $\{p_n, n \ge 1\}$: the distribution of *L*.

Set

$$m:=\sum_{n=1}^{\infty}np_n.$$

m is the mean number of children given by one particle. Suppose m > 1 (supercritical).

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty$$

The Llog L criterion for G-W branching processes

 $\{Z_n, n \ge 1\}$: a Galton-Watson branching process.

L: the number of children given by one particle.

 $\{p_n, n \ge 1\}$: the distribution of *L*.

Set

$$m:=\sum_{n=1}^{\infty}np_n.$$

m is the mean number of children given by one particle. Suppose m > 1 (supercritical).

It is known that $EZ_n = m^n$ and $\left\{ \frac{Z_n}{m^n}; n \ge 1 \right\}$ is a martingale and then

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

Classical Question: When is W nondegenerate? or equivalently, when does m^n gives the right growth rate of Z_n ?

In 1966, Kesten and Stigum proved that \it{W} is nondegenerate if and only if

$$(L\log L) \qquad E(L\log^+ L)) = \sum_{n=1}^{\infty} p_n(n\log n) < \infty.$$
 (1)

Moreover, if (1) is satisfied, E(W) = 1 and

$$P(W > 0) = P(Z_n = 0, \text{ for some } n > 0)$$

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

Classical Question: When is W nondegenerate? or equivalently, when does m^n gives the right growth rate of Z_n ?

In 1966, Kesten and Stigum proved that $\it W$ is nondegenerate if and only if

$$(L\log L) \qquad E(L\log^+ L)) = \sum_{n=1}^{\infty} p_n(n\log n) < \infty. \tag{1}$$

Moreover, if (1) is satisfied, E(W) = 1 and

$$P(W > 0) = P(Z_n = 0, \text{ for some } n > 0)$$

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

Classical Question: When is W nondegenerate? or equivalently, when does m^n gives the right growth rate of Z_n ?

In 1966, Kesten and Stigum proved that \it{W} is nondegenerate if and only if

$$(L\log L) \qquad E(L\log^+ L)) = \sum_{n=1}^{\infty} p_n(n\log n) < \infty.$$
 (1)

Moreover, if (1) is satisfied, E(W) = 1 and

$$P(W > 0) = P(Z_n = 0, \text{ for some } n > 0).$$

Later this method were extended to branching processes in multiple and general multiple type cases (see Kurtz-Lyons-Pemantle-Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walk. See, for example, Hu-Shi(2009); Aidekon-Shi(2011 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

Liu, R. and Song (2009, 2011) gave the corresponding $L \log L$ criterions for branching Hunt processes and superdiffusions with **local branching mechanism**.

Later this method were extended to branching processes in multiple and general multiple type cases (see Kurtz-Lyons-Pemantle-Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walk. See, for example, Hu-Shi(2009); Aidekon-Shi(2011 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

Liu, R. and Song (2009, 2011) gave the corresponding $L \log L$ criterions for branching Hunt processes and superdiffusions with **local branching mechanism**.

Later this method were extended to branching processes in multiple and general multiple type cases (see Kurtz-Lyons-Pemantle-Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walk. See, for example, Hu-Shi(2009); Aidekon-Shi(2011, 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

Liu, R. and Song (2009, 2011) gave the corresponding *L* log *L* criterions for branching Hunt processes and superdiffusions with **local branching mechanism**.

Later this method were extended to branching processes in multiple and general multiple type cases (see Kurtz-Lyons-Pemantle-Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walk. See, for example, Hu-Shi(2009); Aidekon-Shi(2011, 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

Liu, R. and Song (2009, 2011) gave the corresponding $L \log L$ criterions for branching Hunt processes and superdiffusions with **local branching mechanism**.

Recently, Chen, R. and Yang(2016+) proved the SLLN for more general branching Hunt processes with **local branching mechanism** (including the $L \log L$ criterion).

I would like to talk the Llog L criterion for supercritical **multi-type** superdiffusions with **nonlocal** branching mechanisms.

Recently, Chen, R. and Yang(2016+) proved the SLLN for more general branching Hunt processes with **local branching mechanism** (including the $L \log L$ criterion).

I would like to talk the $L \log L$ criterion for supercritical **multi-type superdiffusions** with **nonlocal** branching mechanisms.

Outline

- **1** Motivation
- 2 Model: Multi-type Superdiffusion
- 3 Assumptions
- Main Results
- **5** Spine Decomposition

Multi-type Superdiffusion

Let $S := \{1, 2, \dots, K\}$ be the set of types, $2 \le K < +\infty$.

For each $k \in S$, L_k is a second order strictly elliptic differential operator:

$$L_k = \sum_{i,j=1}^{a} \frac{\partial}{\partial x_i} \left(a_{i,j}^{(k)} \frac{\partial}{\partial x_j} \right) \quad \text{on } \mathbb{R}^d,$$
 (2)

with $A^k(x) = (a^k_{ij}(x))_{1 \le i,j \le d}$ being a symmetric matrix-valued function on \mathbb{R}^d that is uniformly elliptic and bounded:

$$|\Lambda_1|v|^2 \le \sum_{i,j=1}^{\sigma} a_{i,j}^k(x) v_i v_j \le |\Lambda_2|v|^2$$
 for all $v \in \mathbb{R}^d$ and $x \in \mathbb{R}^d$

for some positive constants $0 < \Lambda_1 \le \Lambda_2 < \infty$, where $a_{ii}^k(x) \in C^{2,\gamma}(\mathbb{R}^d), 1 \le i,j \le d$ for some $\gamma \in (0,1)$.

Let $S := \{1, 2, \dots, K\}$ be the set of types, $2 \le K < +\infty$.

For each $k \in S$, L_k is a second order strictly elliptic differential operator:

$$L_{k} = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{i,j}^{(k)} \frac{\partial}{\partial x_{j}} \right) \quad \text{on } \mathbb{R}^{d},$$
 (2)

with $A^k(x) = (a^k_{ij}(x))_{1 \le i,j \le d}$ being a symmetric matrix-valued function on \mathbb{R}^d that is uniformly elliptic and bounded:

Assumptions

$$|\Lambda_1|v|^2 \leq \sum_{i,j=1}^d a_{i,j}^k(x) v_i v_j \leq \Lambda_2 |v|^2$$
 for all $v \in \mathbb{R}^d$ and $x \in \mathbb{R}^d$

for some positive constants $0 < \Lambda_1 \le \Lambda_2 < \infty$, where $a_{ii}^k(x) \in C^{2,\gamma}(\mathbb{R}^d), 1 \le i,j \le d$ for some $\gamma \in (0,1)$.

For any $i \in S$, $\{\xi_t^i, t \geq 0; \Pi_x^i\}$ is a diffusion with generator L_i starting from x.

Suppose D is a bounded domain in \mathbb{R}^d . For $x \in D$, we will use $(\xi_t^{i,D}, t \geq 0; \Pi_x^i)$ to denote the process obtained by killing ξ^i upon exiting from D.

 $\mathcal{M}_F(D \times S)$: the space of finite measures on $D \times S$. $N(D \times S)(\subset \mathcal{M}_F(D \times S))$: the space of integer-valued measures on $D \times S$.

$$\sup_{(x,i)\in D\times S}\int_{N(D)}\nu(1)F(x,i,d\nu)<\infty$$

Motivation

Spine Decomposition

Suppose D is a bounded domain in \mathbb{R}^d . For $x \in D$, we will use $(\xi_t^{i,D}, t \geq 0; \Pi_x^i)$ to denote the process obtained by killing ξ^i upon exiting from D.

 $\mathcal{M}_F(D \times S)$: the space of finite measures on $D \times S$. $N(D \times S)(\subset \mathcal{M}_F(D \times S))$: the space of integer-valued measures on $D \times S$.

$$\sup_{(x,i)\in D\times S}\int_{N(D)}\nu(1)F(x,i,d\nu)<\infty$$

For any $i \in S$, $\{\xi_t^i, t \geq 0; \Pi_x^i\}$ is a diffusion with generator L_i starting from x.

Suppose D is a bounded domain in \mathbb{R}^d . For $x \in D$, we will use $(\xi_t^{i,D}, t \geq 0; \Pi_x^i)$ to denote the process obtained by killing ξ^i upon exiting from D.

 $\mathcal{M}_F(D \times S)$: the space of finite measures on $D \times S$. $N(D \times S)(\subset \mathcal{M}_F(D \times S))$: the space of integer-valued measures on $D \times S$.

$$\sup_{(x,i)\in D\times S}\int_{N(D)}\nu(1)F(x,i,d\nu)<\infty$$

Motivation

Spine Decomposition

For any $i \in S$, $\{\xi_t^i, t \ge 0; \Pi_x^i\}$ is a diffusion with generator L_i starting from x.

Suppose D is a bounded domain in \mathbb{R}^d . For $x \in D$, we will use $(\xi_t^{i,D}, t \geq 0; \Pi_x^i)$ to denote the process obtained by killing ξ^i upon exiting from D.

 $\mathcal{M}_F(D \times S)$: the space of finite measures on $D \times S$. $N(D \times S)(\subset \mathcal{M}_F(D \times S))$: the space of integer-valued measures on $D \times S$.

$$\sup_{(x,i)\in D\times S}\int_{N(D)}\nu(1)F(x,i,d\nu)<\infty.$$

Nonlocal branching particle system

A branching particle system with parameters $(\xi^{i,D}, b, F)$ is described by the following properties:

- (a) The particles in D with type i move randomly according to the law of $\mathcal{E}^{i,D}$.
- (b) For a type *i* particle which is alive at time *r* and follows the path $(\xi_t^{i,D})_{t>r}$, the conditional probability of survival during the time interval [r,t] is $\rho(r,t) := \exp\left(-\int_r^t b(\xi_s^{i,D},i)ds\right)$.
- (c) When a type *i* particle dies at a point $x \in D$, it gives birth to a random number of offspring in $D \times S$ according to the probability kernel $F(x, i, d\nu)$. The offspring then start to move from their locations.

Nonlocal branching particle system

A branching particle system with parameters ($\xi^{i,D}, b, F$) is described by the following properties:

- (a) The particles in D with type i move randomly according to the law of $\mathcal{E}^{i,D}$.
- (b) For a type i particle which is alive at time r and follows the path $(\xi_t^{i,D})_{t>r}$, the conditional probability of survival during the time interval [r,t] is $\rho(r,t) := \exp\left(-\int_r^t b(\xi_s^{i,D},i)ds\right)$.
- (c) When a type i particle dies at a point $x \in D$, it gives birth to a random number of offspring in $D \times S$ according to the probability kernel $F(x, i, d\nu)$. The offspring then start to move from their locations.

It is assumed that the migrations, the lifetimes and the branchings of the particles are independent of each other.

Nonlocal branching particle system

Let $\Gamma_t(B \times \{i\})$ denote the number of type i particles located in $B \in \mathcal{B}(D)$ that are alive at time $t \geq 0$ and assume $\Gamma_0(D \times S) < \infty$. Then $(\Gamma_t, t \geq 0)$ is a Markov process taking values in $\mathcal{M}_F(D \times S)$.

Let $(\Gamma_t^n: t \ge 0), n \ge 1$, be a sequence of branching particle systems with parameters $(\xi^{D,i}, b_n, F_n)$. Under some conditions, one has

$$\left(\frac{1}{n}\Gamma_t^n, \quad t\geq 0\right) \to (\chi_t:t\geq 0) \quad n\to\infty.$$

The measure-valued Markov process $(\chi_t : t \ge 0)$ is called a multi-type superdiffusion. For details see Dawson, Gorostiza and Li (2002).

branching mechanism = local branching + nonlocal branching.

We will focus on **nonlocal branching mechanism**.

Nonlocal branching particle system

Let $\Gamma_t(B \times \{i\})$ denote the number of type *i* particles located in $B \in \mathcal{B}(D)$ that are alive at time t > 0 and assume $\Gamma_0(D \times S) < \infty$. Then $(\Gamma_t, t \ge 0)$ is a Markov process taking values in $\mathcal{M}_F(D \times S)$.

Let $(\Gamma_t^n: t \ge 0), n \ge 1$, be a sequence of branching particle systems with parameters $(\xi^{D,i}, b_n, F_n)$. Under some conditions, one has

$$\left(\frac{1}{n}\Gamma_t^n, \quad t\geq 0\right) \to (\chi_t:t\geq 0) \quad n\to\infty.$$

The measure-valued Markov process $(\chi_t : t > 0)$ is called a multi-type superdiffusion. For details see Dawson, Gorostiza and Li (2002).

Let $\Gamma_t(B \times \{i\})$ denote the number of type i particles located in $B \in \mathcal{B}(D)$ that are alive at time $t \geq 0$ and assume $\Gamma_0(D \times S) < \infty$. Then $(\Gamma_t, t \geq 0)$ is a Markov process taking values in $\mathcal{M}_F(D \times S)$.

Let $(\Gamma_t^n: t \ge 0), n \ge 1$, be a sequence of branching particle systems with parameters $(\xi^{D,i}, b_n, F_n)$. Under some conditions, one has

$$\left(\frac{1}{n}\Gamma_t^n, \quad t\geq 0\right) \to (\chi_t:t\geq 0) \quad n\to\infty.$$

The measure-valued Markov process $(\chi_t : t \ge 0)$ is called a multi-type superdiffusion. For details see Dawson, Gorostiza and Li (2002).

 $branching\ mechanism = local\ branching + nonlocal\ branching.$

We will focus on nonlocal branching mechanism.

nonlocal branching mechanism

For $f \in B^+(D \times S)$, define

$$\zeta(x,i;f) = d(x,i)\pi(x,i;f) + \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f)\right) n(x,i;du),$$

where $d \in B^+(D \times S)$, $d(x, i) \ge \int_0^\infty u \, n(x, i; du) \in B^+(D \times S)$, and

$$\pi(x, i; f) = \sum_{j=1}^{K} p_j^{(i)}(x) f_j(x), \text{ where } p_j^{(i)}(x) \ge 0, \sum_{j=1}^{K} p_j^{(i)}(x) = 1.$$

$$\psi(x,i;f) = b(x,i) \left(f_i(x) - \zeta(x,i;f) \right), \quad (x,i) \in \mathbb{R}^d \times S, f \in B^+(D \times S).$$

nonlocal branching mechanism

For $f \in B^+(D \times S)$, define

$$\zeta(x,i;f) = d(x,i)\pi(x,i;f) + \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f)\right) n(x,i;du),$$

where $d \in B^+(D \times S)$, $d(x, i) \ge \int_0^\infty u \, n(x, i; du) \in B^+(D \times S)$, and

$$\pi(x, i; f) = \sum_{j=1}^{K} p_j^{(i)}(x) f_j(x), \text{ where } p_j^{(i)}(x) \ge 0, \sum_{j=1}^{K} p_j^{(i)}(x) = 1.$$

Put

$$\psi(\mathbf{x},i;f) = b(\mathbf{x},i) \left(f_i(\mathbf{x}) - \zeta(\mathbf{x},i;f) \right), \quad (\mathbf{x},i) \in \mathbb{R}^d \times S, f \in \mathcal{B}^+(D \times S).$$

nonlocal branching mechanism

For $f \in B^+(D \times S)$, define

$$\zeta(x,i;f) = d(x,i)\pi(x,i;f) + \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f)\right) n(x,i;du),$$

where $d \in B^+(D \times S)$, $d(x, i) \ge \int_0^\infty u \, n(x, i; du) \in B^+(D \times S)$, and

$$\pi(x, i; f) = \sum_{j=1}^{K} p_j^{(i)}(x) f_j(x), \text{ where } p_j^{(i)}(x) \ge 0, \sum_{j=1}^{K} p_j^{(i)}(x) = 1.$$

Put

$$\psi(\textbf{\textit{x}},\textbf{\textit{i}};\textbf{\textit{f}}) = \textbf{\textit{b}}(\textbf{\textit{x}},\textbf{\textit{i}}) \left(f_{\textbf{\textit{i}}}(\textbf{\textit{x}}) - \zeta(\textbf{\textit{x}},\textbf{\textit{i}};\textbf{\textit{f}}) \right), \quad (\textbf{\textit{x}},\textbf{\textit{i}}) \in \mathbb{R}^d \times S, \textbf{\textit{f}} \in \textbf{\textit{B}}^+(\textbf{\textit{D}} \times S).$$

We suppose that $p_i^i(x) = 0$ for any $(x, i) \in D \times S$, which means that ψ is a purely nonlocal branching mechanism.

We write $\chi_t = (\chi_t^1, \dots, \chi_t^K)$.

$$f(x) = (f(x, 1), \dots, f(x, K)) = (f_1(x), \dots, f_K(x)), \quad x \in \mathbb{R}^d$$

and
$$\langle f, \chi_t
angle = \sum_{j=1}^K \langle f_j, \chi_t^j
angle$$
 .

$$P_{\mu} \exp\langle -f, \chi_t \rangle = \exp\langle -u_t^f(\cdot), \mu \rangle, \tag{3}$$

$$u_t^f(x,i) + \Pi_x^i \left[\int_0^t \psi(\xi_s^{i,D}, i; u_{t-s}^f) ds \right] = \Pi_x^i f_i(\xi_t^{i,D}), \quad \text{for } t \ge 0, \quad (4)$$

We write $\chi_t = (\chi_t^1, \dots, \chi_t^K)$.

Motivation

We often use the convention

$$f(x) = (f(x,1), \cdots, f(x,K)) = (f_1(x), \cdots, f_K(x)), \quad x \in \mathbb{R}^d$$

and
$$\langle f, \chi_t \rangle = \sum_{j=1}^K \langle f_j, \chi_t^j \rangle$$
.

$$P_{\mu} \exp\langle -f, \chi_t \rangle = \exp\langle -u_t^f(\cdot), \mu \rangle, \tag{3}$$

$$u_t^f(x,i) + \Pi_x^i \left[\int_0^t \psi(\xi_s^{i,D},i;u_{t-s}^f) ds \right] = \Pi_x^i f_i(\xi_t^{i,D}), \quad \text{for } t \ge 0,$$
 (4)

We write $\chi_t = (\chi_t^1, \dots, \chi_t^K)$.

We often use the convention

$$f(\mathbf{x}) = (f(\mathbf{x}, 1), \cdots, f(\mathbf{x}, K)) = (f_1(\mathbf{x}), \cdots, f_K(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^d,$$

and
$$\langle f, \chi_t \rangle = \sum_{j=1}^K \langle f_j, \chi_t^j \rangle$$
.

The Laplace-functional of χ is given by

$$P_{\mu} \exp\langle -f, \chi_t \rangle = \exp\langle -u_t^f(\cdot), \mu \rangle, \tag{3}$$

where $u_t^f(x,i)$ is the unique bounded positive solution to the evolution equation

$$u_t^f(x,i) + \Pi_x^i \left[\int_0^t \psi(\xi_s^{i,D},i;u_{t-s}^f) ds \right] = \Pi_x^i f_i(\xi_t^{i,D}), \quad \text{for } t \ge 0, \quad (4)$$

First moment

Let's first find $v(t, x, i) = P_{\delta_{(x,i)}}\langle f, \chi_t \rangle$ (the mean of χ_t).

Then v(t, x, i) is the unique bounded solution to the following equation:

$$\frac{\partial}{\partial t}\mathbf{v}(t,x) = \mathcal{L}\mathbf{v}(t,x) + B(x) \cdot (R(x) - I)\mathbf{v}(t,x), \tag{5}$$

where

$$\mathcal{L} = \left(\begin{array}{cccc} L_1 & 0 & \cdots & 0 \\ 0 & L_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_K \end{array}\right)$$

$$B(x) = \text{diag}(B(x, 1), \cdots B(x, K)), \quad x \in D,$$

$$R(x) = (r_{il}(x)), \quad r_{il}(x) = d(x, i)p_{i}^{(i)}(x) \quad x \in \mathbb{R}^{d}, i, l \in \mathbb{S}$$

Assumptions

Model: Multi-type Superdiffusion

First moment

Let's first find $v(t, x, i) = P_{\delta_{(x,i)}}\langle f, \chi_t \rangle$ (the mean of χ_t).

Then v(t, x, i) is the unique bounded solution to the following equation:

$$\frac{\partial}{\partial t}\mathbf{v}(t,x) = \mathcal{L}\mathbf{v}(t,x) + B(x) \cdot (R(x) - I)\mathbf{v}(t,x), \tag{5}$$

where

$$\mathcal{L} = \left(\begin{array}{cccc} \mathcal{L}_1 & & 0 & \cdots & 0 \\ 0 & & \mathcal{L}_2 & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & & 0 & \cdots & \mathcal{L}_K \end{array} \right),$$

$$B(x) = \operatorname{diag}(B(x,1), \cdots B(x,K)), \quad x \in D,$$

$$R(x) = (r_{il}(x)), \quad r_{il}(x) = d(x, i)p_{i}^{(i)}(x) \quad x \in \mathbb{R}^{d}, i, l \in S.$$

First moment

Recall that

$$\frac{\partial}{\partial t}\mathbf{v}(t,x) = \mathcal{L}\mathbf{v}(t,x) + \mathbf{B}(x) \cdot (\mathbf{R}(x) - \mathbf{I})\mathbf{v}(t,x),$$

Note that

$$B(x) \cdot (R(x) - I) = \widehat{B}(x) \cdot (P(x) - I) + B(x)(D(x) - I), \tag{6}$$

where

$$\widehat{B}(x) = \operatorname{diag}(b(x,1)d(x,1), \cdots, b(x,K)d(x,K)).$$

and

$$P(x) = (p_{ij}(x))_{i:i \in S}, \quad p_{ij}(x) = p_i^{(i)}(x).$$

Put $Q(x) = \widehat{B}(x) \cdot (P(x) - I)$. We will assume that the matrix Q is symmetric and irreducible.

Recall that

$$\frac{\partial}{\partial t}\mathbf{v}(t,x) = \mathcal{L}\mathbf{v}(t,x) + \mathbf{B}(x)\cdot(\mathbf{R}(x)-\mathbf{I})\mathbf{v}(t,x),$$

Assumptions

Note that

$$B(x) \cdot (R(x) - I) = \widehat{B}(x) \cdot (P(x) - I) + B(x)(D(x) - I),$$
 (6)

where

$$\widehat{B}(x) = \operatorname{diag}(b(x,1)d(x,1),\cdots,b(x,K)d(x,K)),$$

and

$$P(x) = (p_{ij}(x))_{i,i \in S}, \quad p_{ij}(x) = p_i^{(i)}(x).$$

Put $Q(x) = \widehat{B}(x) \cdot (P(x) - I)$. We will assume that the matrix Q is symmetric and irreducible.

First moment

Model: Multi-type Superdiffusion

Recall that

$$\frac{\partial}{\partial t}\mathbf{v}(t,x) = \mathcal{L}\mathbf{v}(t,x) + \mathbf{B}(x) \cdot (\mathbf{R}(x) - \mathbf{I})\mathbf{v}(t,x),$$

Note that

$$\underline{B(x)\cdot(R(x)-I)}=\widehat{B}(x)\cdot(P(x)-I)+B(x)(D(x)-I), \qquad (6)$$

where

$$\widehat{B}(x) = \operatorname{diag}(b(x,1)d(x,1),\cdots,b(x,K)d(x,K)),$$

and

$$P(x) = (p_{ij}(x))_{i,i \in S}, \quad p_{ij}(x) = p_i^{(i)}(x).$$

Put $Q(x) = \hat{B}(x) \cdot (P(x) - I)$. We will assume that the matrix Q is symmetric and irreducible.

Let $\{(X_t, Y_t), t \ge 0\}$ be a switched diffusion with generator $\mathcal{A} := \mathcal{L} + Q(x)$ killed upon exiting from $D \times S$ and $\Pi_{(x,i)}$ be its law starting from (x, i).

$$P_t^{A+B\cdot (D-I)} f(x,i) = \Pi_{(x,i)} \left[f(X_t, Y_t) \, \exp\left(\int_0^t b(X_s, Y_s) (d(X_s, Y_s) - 1) ds \right) \right]$$

Let $\{(X_t, Y_t), t \ge 0\}$ be a switched diffusion with generator $\mathcal{A} := \mathcal{L} + Q(x)$ killed upon exiting from $D \times S$ and $\Pi_{(x,i)}$ be its law starting from (x, i).

Let $\{P_t^{A+B\cdot(D-I)}, t \geq 0\}$ be the Feynman-Kac semigroup defined by

$$P_t^{\mathcal{A}+B\cdot(D-I)}f(x,i)=\Pi_{(x,i)}\left[f(X_t,Y_t)\,\exp\left(\int_0^tb(X_s,Y_s)(d(X_s,Y_s)-1)ds\right)\right].$$

First moment
$$P_{\delta_{(\mathbf{x},i)}}\langle f, \chi_t \rangle = P_t^{A+B\cdot(D-I)}f(\mathbf{x},i).$$
 (7)

Let $\{(X_t, Y_t), t \ge 0\}$ be a switched diffusion with generator $\mathcal{A} := \mathcal{L} + Q(x)$ killed upon exiting from $D \times S$ and $\Pi_{(x,i)}$ be its law starting from (x, i).

Let $\{P_t^{A+B\cdot(D-I)}, t \geq 0\}$ be the Feynman-Kac semigroup defined by

$$P_t^{\mathcal{A}+B\cdot(D-I)}f(x,i)=\Pi_{(x,i)}\left[f(X_t,Y_t)\,\exp\left(\int_0^tb(X_s,Y_s)(d(X_s,Y_s)-1)ds\right)\right].$$

First moment
$$P_{\delta_{(\mathbf{x},i)}}\langle f, \chi_t \rangle = P_t^{\mathcal{A}+B\cdot(D-I)}f(\mathbf{x},i).$$
 (7)

Recall that

$$\zeta(x,i;f) = d(x,i)\pi(x,i;f) + \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f)\right) n(x,i;du).$$

Define

$$\zeta_1(x,i;f) = d(x,i)\pi(x,i;f) = \sum_{l=1}^K r_{il}(x)f_l(x);$$
 (8)

$$\zeta_2(x,i;f) = \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f) \right) n(x,i;du). \tag{9}$$

Then

$$\zeta(x, i; f) = \zeta_1(x, i; f) + \zeta_2(x, i; f).$$
 (10)

Remark $\{\chi_t, t \ge 0\}$ can be regarded as a super-switched diffusion with (X_t, Y_t) as spatial motion on the space $D \times S$ and

$$\widehat{\psi}(x,i;f) = -b(x,i)d(x,i)f_i(x) + b(x,i)(f_i(x) - \zeta_2(x,i;f)), \quad f \in B^+(\mathbb{R}^d \times \mathbb{S}),$$

as branching mechanism (nonlocal).

Recall that

$$\zeta(x,i;f) = d(x,i)\pi(x,i;f) + \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f)\right) n(x,i;du).$$

Define

$$\zeta_1(x,i;f) = d(x,i)\pi(x,i;f) = \sum_{l=1}^{K} r_{il}(x)f_l(x);$$
 (8)

$$\zeta_2(x,i;f) = \int_0^\infty \left(1 - e^{-u\pi(x,i;f)} - u\pi(x,i;f) \right) n(x,i;du). \tag{9}$$

Then

$$\zeta(x, i; f) = \zeta_1(x, i; f) + \zeta_2(x, i; f).$$
 (10)

Remark $\{\chi_t, t \ge 0\}$ can be regarded as a super-switched diffusion with (X_t, Y_t) as spatial motion on the space $D \times S$ and

$$\widehat{\psi}(x,i;f) = -b(x,i)d(x,i)f_i(x) + b(x,i)(f_i(x) - \zeta_2(x,i;f)), \quad f \in B^+(\mathbb{R}^d \times \mathbb{S}),$$

as branching mechanism (nonlocal).

Outline

- Motivation
- Model: Multi-type Superdiffusion
- 3 Assumptions
- Main Results
- **5** Spine Decomposition

Let $\{P_t : t \ge 0\}$ be the semigroup of $\{(X_t, Y_t), t \ge 0\}$. For any t > 0, P_t is a compact self-adjoint operator.

Let $\{e^{\nu_k t}: k=1,2,\cdots\}$ be all the eigenvalues of P_t arranged in decreasing order, each repeated according to its multiplicity.

Then $\nu_k \downarrow -\infty$ and the corresponding eigenfunctions $\{\varphi_k\}$ can be chosen so that they form an orthonormal basis of $L^2(D \times S, dx \times di)$. All the eigenfunctions φ_k are continuous.

The eigenspace corresponding to $e^{\nu_1 t}$ is of dimension 1 and φ_1 can chosen to be strictly positive.

 $\{(X_t, Y_t), t \ge 0\}$ has a transition density p(t, (x, k), (y, l)) which is positive and jointly continuous in $(x, y) \in D \times D$.

Let $\{P_t : t \ge 0\}$ be the semigroup of $\{(X_t, Y_t), t \ge 0\}$. For any t > 0, P_t is a compact self-adjoint operator.

Let $\{e^{\nu_k t}: k=1,2,\cdots\}$ be all the eigenvalues of P_t arranged in decreasing order, each repeated according to its multiplicity.

Then $\nu_k \downarrow -\infty$ and the corresponding eigenfunctions $\{\varphi_k\}$ can be chosen so that they form an orthonormal basis of $L^2(D \times S, dx \times di)$. All the eigenfunctions φ_k are continuous.

The eigenspace corresponding to $e^{\nu_1 t}$ is of dimension 1 and φ_1 can chosen to be strictly positive.

 $\{(X_t, Y_t), t \ge 0\}$ has a transition density p(t, (x, k), (y, l)) which is positive and jointly continuous in $(x, y) \in D \times D$.

Let $\{P_t : t \ge 0\}$ be the semigroup of $\{(X_t, Y_t), t \ge 0\}$. For any t > 0, P_t is a compact self-adjoint operator.

Let $\{e^{\nu_k t}: k=1,2,\cdots\}$ be all the eigenvalues of P_t arranged in decreasing order, each repeated according to its multiplicity.

Then $\nu_k \downarrow -\infty$ and the corresponding eigenfunctions $\{\varphi_k\}$ can be chosen so that they form an orthonormal basis of $L^2(D \times S, dx \times di)$. All the eigenfunctions φ_k are continuous.

The eigenspace corresponding to $e^{\nu_1 t}$ is of dimension 1 and φ_1 can chosen to be strictly positive.

Let $\{e^{\lambda_k t}: k=1,2,\cdots\}$ be all the eigenvalues of $P_t^{A+B\cdot(D-I)}$ arranged in decreasing order, each repeated according to its multiplicity.

Then $\lambda_k \downarrow -\infty$ and the corresponding eigenfunctions $\{\phi_k\}$ can be chosen so that they form an orthonormal basis of $L^2(D \times S, dx \times di)$. All the eigenfunctions ϕ_k are continuous.

The eigenspace corresponding to $e^{\lambda_1 t}$ is of dimension 1 and ϕ_1 can chosen to be strictly positive. For simplicity, in the remainder of this paper, we will write ϕ_1 as ϕ .

Let $\{e^{\lambda_k t}: k=1,2,\cdots\}$ be all the eigenvalues of $P_t^{\mathcal{A}+B\cdot(D-l)}$ arranged in decreasing order, each repeated according to its multiplicity.

Then $\lambda_k \downarrow -\infty$ and the corresponding eigenfunctions $\{\phi_k\}$ can be chosen so that they form an orthonormal basis of $L^2(D \times S, dx \times di)$. All the eigenfunctions ϕ_k are continuous.

The eigenspace corresponding to $e^{\lambda_1 t}$ is of dimension 1 and ϕ_1 can chosen to be strictly positive. For simplicity, in the remainder of this paper, we will write ϕ_1 as ϕ .

Assumption 1 $\lambda_1 > 0$ (supercritical).

Assumption 2 The semigroup $\{P_t : t \ge 0\}$ is intrinsically ultracontractive, that is, for any t > 0, there exists $c_t > 0$ such that

$$p(t,(x,k),(y,l)) \leq c_t \varphi_1(x,k) \varphi_1(y,l), \qquad x,y \in D, k,l \in S.$$

Then the semigroup $P_t^{A+D\cdot(D-t)}$ is also intrinsically ultracontractive that is, for any t>0, there exists $c_t>0$ such that

$$\widetilde{p}(t,(x,k),(y,l)) \le c_t \phi(x,k) \phi(y,l), \qquad x,y \in D, k,l \in S.$$

Remark When D is a bounded $C^{1,1}$ domain in \mathbb{R}^d , Assumption 2 holds

Assumption 1 $\lambda_1 > 0$ (supercritical).

Assumption 2 The semigroup $\{P_t: t \ge 0\}$ is intrinsically ultracontractive, that is, for any t > 0, there exists $c_t > 0$ such that

$$p(t,(x,k),(y,l)) \le c_t \varphi_1(x,k) \varphi_1(y,l), \qquad x,y \in D, k,l \in S.$$

Then the semigroup $P_t^{A+D\cdot(D-t)}$ is also intrinsically ultracontractive that is, for any t>0, there exists $c_t>0$ such that

$$\widetilde{p}(t,(x,k),(y,l)) \le c_t \phi(x,k) \phi(y,l), \qquad x,y \in D, k,l \in S$$

Remark When D is a bounded $C^{1,1}$ domain in \mathbb{R}^d , Assumption 2 holds

Assumption 2 The semigroup $\{P_t : t \ge 0\}$ is intrinsically ultracontractive, that is, for any t > 0, there exists $c_t > 0$ such that

$$p(t,(x,k),(y,l)) \le c_t \varphi_1(x,k) \varphi_1(y,l), \qquad x,y \in D, k,l \in S.$$

Then the semigroup $P_t^{A+B\cdot(D-l)}$ is also intrinsically ultracontractive, that is, for any t>0, there exists $c_t>0$ such that

$$\widetilde{p}(t,(x,k),(y,l)) \leq c_t \phi(x,k) \phi(y,l), \qquad x,y \in D, k,l \in S.$$

Remark When *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d , Assumption 2 holds.

Assumption 2 The semigroup $\{P_t : t \ge 0\}$ is intrinsically ultracontractive, that is, for any t > 0, there exists $c_t > 0$ such that

$$p(t,(x,k),(y,l)) \le c_t \varphi_1(x,k) \varphi_1(y,l), \qquad x,y \in D, k,l \in S.$$

Then the semigroup $P_t^{A+B\cdot(D-l)}$ is also intrinsically ultracontractive, that is, for any t>0, there exists $c_t>0$ such that

$$\widetilde{p}(t,(x,k),(y,l)) \leq c_t \phi(x,k)\phi(y,l), \qquad x,y \in D, k,l \in S.$$

Remark When *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d , Assumption 2 holds.

Lemma Define

$$W_t(\phi) := e^{-\lambda_1 t} \langle \phi, \chi_t \rangle. \tag{11}$$

Then $W_t(\phi)$, $t \ge 0$ is a non-negative martingale and therefore there exists a limit $W_{\infty}(\phi) \in [0, \infty)$, P_{μ} -a.s.

Question: When $W_{\infty}(\phi)$ is nondegenerate?

Lemma Define

$$W_t(\phi) := e^{-\lambda_1 t} \langle \phi, \chi_t \rangle. \tag{11}$$

Main Results

Then $W_t(\phi)$, $t \ge 0$ is a non-negative martingale and therefore there exists a limit $W_{\infty}(\phi) \in [0, \infty)$, P_{μ} -a.s.

Question: When $W_{\infty}(\phi)$ is nondegenerate?

Outline

- **1** Motivation
- Model: Multi-type Superdiffusion
- Assumptions
- Main Results
- Spine Decomposition

We define a new kernel $n^{\pi(\phi)}(x, i; dr)$ from $D \times S$ to $(0, \infty)$ such that for any nonnegative measurable function f on $(0, \infty)$,

$$\int_0^\infty f(r)n^{\pi(\phi)}(x,i;dr) = \int_0^\infty f(\pi(x,i;\phi)r)n(x,i;dr), \quad (x,i) \in D \times S.$$

$$I(x,i) := \int_0^\infty r \log^+(r) n^{\pi(\phi)}(x,i;dr).$$
 (12)

$$(L\log L) \qquad \int_{\mathbb{R}} \phi(x,i)b(x,i)l(x,i)dx < \infty, \quad \forall i \in \mathbb{S},$$
 (13)

We define a new kernel $n^{\pi(\phi)}(x, i; dr)$ from $D \times S$ to $(0, \infty)$ such that for any nonnegative measurable function f on $(0, \infty)$,

Assumptions

$$\int_0^\infty f(r) n^{\pi(\phi)}(x,i;dr) = \int_0^\infty f(\pi(x,i;\phi)r) n(x,i;dr), \quad (x,i) \in D \times S.$$

Define

$$I(x,i) := \int_0^\infty r \log^+(r) n^{\pi(\phi)}(x,i;dr).$$
 (12)

Theorem 1 Suppose that $\{\chi_t; t \geq 0\}$ is a multi-type superdiffusion and that Assumptions 1 and 2 are satisfied. Then $W_\infty(\phi)$ is non-degenerate under P_μ for any nonzero measure $\mu \in M_F(D \times S)$ if and only if

$$(L\log L) \qquad \int_{\mathbb{R}} \phi(x,i)b(x,i)l(x,i)dx < \infty, \quad \forall i \in \mathbb{S},$$
 (13)

Main Results

We define a new kernel $n^{\pi(\phi)}(x, i; dr)$ from $D \times S$ to $(0, \infty)$ such that for any nonnegative measurable function f on $(0, \infty)$,

$$\int_0^\infty f(r)n^{\pi(\phi)}(x,i;dr) = \int_0^\infty f(\pi(x,i;\phi)r)n(x,i;dr), \quad (x,i) \in D \times S.$$

Define

$$I(x,i) := \int_0^\infty r \log^+(r) n^{\pi(\phi)}(x,i;dr).$$
 (12)

Suppose that $\{\chi_t; t \geq 0\}$ is a multi-type superdiffusion and that Assumptions 1 and 2 are satisfied. Then $W_{\infty}(\phi)$ is non-degenerate under P_{μ} for any nonzero measure $\mu \in M_F(D \times S)$ if and only if

$$(L\log L) \qquad \int_{\Omega} \phi(x,i)b(x,i)l(x,i)dx < \infty, \quad \forall i \in S,$$
 (13)

The proof of this theorem is based on a "spine decomposition". The new feature here is that we consider a nonlocal branching mechanism as opposed to the local branching mechanisms considered before.

The nonlocal branching mechanism results in *nonlocal immigration* as opposed to the local immigration in Liu-R.-Song (2009).

The proof of this theorem is based on a "spine decomposition". The new feature here is that we consider a nonlocal branching mechanism as opposed to the local branching mechanisms considered before.

The nonlocal branching mechanism results in *nonlocal immigration*, as opposed to the local immigration in Liu-R.-Song (2009).

Outline

- Motivation
- Model: Multi-type Superdiffusion
- 3 Assumptions
- Main Results
- Spine Decomposition

Let $\mathcal{F}_t = \sigma(\chi_s; s \leq t)$. We define a probability measure \widetilde{P}_u by:

$$\frac{d\widetilde{P}_{\mu}}{dP_{\mu}}\Big|_{\mathcal{F}_t} = \frac{1}{\langle \phi, \mu \rangle} W_t(\phi). \tag{14}$$

We aim to give a spine decomposition of $\{\chi_t, t \geq 0\}$ under P_{μ} .

Let $\mathcal{E}_t = \sigma(X_s, Y_s; \ s \leq t)$. Define a measure $\Pi^{\phi}_{(x,i)}$ by

$$\frac{d\Pi_{(x,i)}^{\phi}}{d\Pi_{(x,i)}}\Big|_{\mathcal{E}_t} = e^{-\lambda_1 t} \frac{\phi(X_t, Y_t)}{\phi(x,i)} \exp\left(\int_0^t b(X_s, Y_s)(d(X_s, Y_s) - 1) ds\right). \tag{15}$$

Let $\mathcal{F}_t = \sigma(\chi_s; \ s \leq t)$. We define a probability measure \widetilde{P}_n by:

$$\frac{d\widetilde{P}_{\mu}}{dP_{\mu}}\Big|_{\mathcal{F}_t} = \frac{1}{\langle \phi, \mu \rangle} W_t(\phi). \tag{14}$$

We aim to give a spine decomposition of $\{\chi_t, t \geq 0\}$ under \widetilde{P}_n .

Let $\mathcal{E}_t = \sigma(X_s, Y_s; s \leq t)$. Define a measure $\Pi^{\phi}_{(x,t)}$ by

$$\frac{d\Pi_{(\mathbf{x},i)}^{\phi}}{d\Pi_{(\mathbf{x},i)}}\Big|_{\mathcal{E}_t} = \mathbf{e}^{-\lambda_1 t} \frac{\phi(X_t, Y_t)}{\phi(\mathbf{x}, i)} \exp\left(\int_0^t b(X_s, Y_s)(d(X_s, Y_s) - 1) \mathrm{d}s\right). \tag{15}$$

The generator of (X, Y) under $\Pi^{\phi}_{(x,i)}$ is given by

$$\mathcal{L}^{\phi} + \operatorname{diag}\left(\frac{bd\pi(\phi)}{\phi}(x,1), \cdots \frac{bd\pi(\phi)}{\phi}(x,K)\right) (\widetilde{P}(x) - I),$$
 (16)

which is a generator of a new switched diffusion,

where

$$\mathcal{L}^{\phi} = \begin{pmatrix} L_{1}^{\phi(\cdot,\cdot)} & 0 & \cdots & 0 \\ 0 & L_{2}^{\phi(\cdot,2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_{K}^{\phi(\cdot,K)} \end{pmatrix}$$
$$L_{k}^{\phi(\cdot,k)} u_{k}(x) = \frac{1}{\phi(x,k)} L_{k} \left(\phi(x,k) u_{k}(x) \right),$$
$$\widetilde{P}(x) = \left(\widetilde{p}_{ij}(x) \right)_{i,i \in S},$$

Spine decomposition

The generator of (X, Y) under $\Pi^{\phi}_{(x, i)}$ is given by

$$\mathcal{L}^{\phi} + \operatorname{diag}\left(\frac{bd\pi(\phi)}{\phi}(x,1), \cdots \frac{bd\pi(\phi)}{\phi}(x,K)\right) (\widetilde{P}(x) - I), \tag{16}$$

which is a generator of a new switched diffusion,

where

$$\mathcal{L}^{\phi} = \begin{pmatrix} L_1^{\phi(\cdot,1)} & 0 & \cdots & 0 \\ 0 & L_2^{\phi(\cdot,2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_K^{\phi(\cdot,K)} \end{pmatrix},$$

$$L_k^{\phi(\cdot,k)} u_k(x) = \frac{1}{\phi(x,k)} L_k \left(\phi(x,k) u_k(x) \right),$$

$$\widetilde{P}(x) = \left(\widetilde{p}_{ij}(x) \right)_{i,i \in S},$$

and

$$\widetilde{
ho}_{ij}(x) = rac{\phi(x,i)}{d(x,i)\pi(x,i;\phi)}r_{ij}^{\phi}(x) = rac{
ho_j^{(i)}(x)\phi(x,j)}{\pi(x,i;\phi)}, \quad i,j \in S, x \in D.$$

Define

$$\tilde{d}(x,i) = d(x,i) - \int_0^\infty u \, n(x,i,du) \ge 0, \tag{17}$$

and

$$\widetilde{n}(x,i;du) = \frac{1}{d(x,i)} \left(\widetilde{d}(x,i) \delta_0 + I_{(0,\infty)} u \ n(x,i;du) \right). \tag{18}$$

and

$$\widetilde{
ho}_{ij}(x) = rac{\phi(x,i)}{d(x,i)\pi(x,i;\phi)} r_{ij}^{\phi}(x) = rac{
ho_j^{(I)}(x)\phi(x,j)}{\pi(x,i;\phi)}, \quad i,j \in S, x \in D.$$

Define

$$\tilde{d}(x,i) = d(x,i) - \int_0^\infty u \, n(x,i,du) \ge 0, \tag{17}$$

and

$$\widetilde{n}(x,i;du) = \frac{1}{d(x,i)} \left(\widetilde{d}(x,i) \delta_0 + I_{(0,\infty)} u \ n(x,i;du) \right). \tag{18}$$

Using the non-local Feynman-Kac transform, we get

Proposition 1 Suppose $\mu \in M_F(D \times S)$ and $g \in B^+(D \times S)$. Let D_J be the set of jump times of (X, Y). Then

$$\widetilde{P}_{\mu}\left(\exp\langle -g, \chi_{t}\rangle\right) \\
= P_{\mu}\left(\exp\langle -g, \chi_{t}\rangle\right) \\
\cdot \Pi_{\phi\mu}^{\phi} \left[\prod_{s \in D_{J}, 0 < s \leq t} \int_{0}^{\infty} \exp(-u\pi(X_{s}, Y_{s}; u_{t-s}^{g}))\widetilde{n}(X_{s}, Y_{s}; du)\right], \quad (19)$$

where u_{t-s}^g is the unique solution of (4) with f replaced by g and

$$\eta_2(\mathbf{x},\mathbf{i};\lambda) = \int_{[0,\infty)} \mathrm{e}^{-u\lambda} u \, n(\mathbf{x},\mathbf{i};du), \quad \lambda \geq 0, \, (\mathbf{x},\mathbf{i}) \in D imes S.$$

Theorem 2 (Spine decomposition):

$$\{\chi_t, t \ge 0; \widetilde{P}_{\mu}\} = \{\chi_t + \widehat{\chi}_t, t \ge 0; P_{\mu,\phi}\}$$
 in distribution, (20)

Here, under $P_{\mu,\phi}$, χ and $\hat{\chi}$ are two independent processes,

$$\{\chi_t, t \ge 0; P_{\mu,\phi}\} = \{\chi_t, t \ge 0; P_{\mu}\}$$
 in distribution,

and $\hat{\chi}$ is obtained by taking an "immortal particle" that moves according to the law of (X, Y) under $\Pi^{\phi}_{\phi \mu}$ and spins off pieces of mass that continue to evolve according to the dynamics of χ .

Theorem 2 (Spine decomposition):

$$\{\chi_t, t \ge 0; \widetilde{P}_{\mu}\} = \{\chi_t + \widehat{\chi}_t, t \ge 0; P_{\mu,\phi}\}$$
 in distribution, (20)

Here, under $P_{\mu,\phi}$, χ and $\widehat{\chi}$ are two independent processes,

$$\{\chi_t, t \ge 0; P_{\mu,\phi}\} = \{\chi_t, t \ge 0; P_{\mu}\}$$
 in distribution,

and $\widehat{\chi}$ is obtained by taking an "immortal particle" that moves according to the law of (X,Y) under $\Pi^{\phi}_{\phi\mu}$ and spins off pieces of mass that continue to evolve according to the dynamics of χ .

Now we construct the measure-valued process $\{\hat{\chi}_t, t \geq 0\}$ as follows:

- a) Suppose that $(\widehat{X},\widehat{Y})$ is defined on some probability space $(\Omega,P_{\mu,\phi})$, and $(\widehat{X},\widehat{Y})$ has the same law as $((X,Y);\Pi^{\phi}_{\phi\mu})$. $(\widehat{X},\widehat{Y})$ serves as the spine or the immortal particle, which is ergodic. Let D_J be the set of jump points of $(\widehat{X},\widehat{Y})$. D_J is countable.
- b) Conditioned on $s \in D_J$, a measure-valued process $\{\chi_t^s, t \geq s\}$ started at $m_s \delta_{(\widehat{X}_s, l)}(l \in S)$ is immigrated at space position \widehat{X}_s and the new immigrated particles choose their types independently according to the distribution $\{p_l^{(l)}(x), l \in S\}$. We suppose $\{m_s; s \in D_J\}$ is also defined on $(\Omega, P_{\mu,\phi})$ such that, given $s \in D_J$ and $(\widehat{X}_s, \widehat{Y}_s)$, the distribution of m_s is $\widetilde{n}(\widehat{X}_s, \widehat{Y}_s; dr)$.
- c) Once the particles are in the system, they begin to move and branch according to the $\{(X, Y), \widehat{\psi}\}$ -superprocess independently

- a) Suppose that $(\widehat{X},\widehat{Y})$ is defined on some probability space $(\Omega,P_{\mu,\phi})$, and $(\widehat{X},\widehat{Y})$ has the same law as $((X,Y);\Pi^{\phi}_{\phi\mu}).(\widehat{X},\widehat{Y})$ serves as the spine or the immortal particle, which is ergodic. Let D_J be the set of jump points of $(\widehat{X},\widehat{Y}).D_J$ is countable.
- b) Conditioned on $s \in D_J$, a measure-valued process $\{\chi_t^s, t \geq s\}$ started at $m_s \delta_{(\widehat{X}_s, I)}(I \in S)$ is immigrated at space position \widehat{X}_s and the new immigrated particles choose their types independently according to the distribution $\{p_I^{(I)}(x), I \in S\}$. We suppose $\{m_s; s \in D_J\}$ is also defined on $(\Omega, P_{\mu, \phi})$ such that, given $s \in D_J$ and $(\widehat{X}_s, \widehat{Y}_s)$, the distribution of m_s is $\widetilde{n}(\widehat{X}_s, \widehat{Y}_s; dr)$.
- c) Once the particles are in the system, they begin to move and branch according to the $\{(X, Y), \widehat{\psi}\}$ -superprocess independently.

- a) Suppose that $(\widehat{X},\widehat{Y})$ is defined on some probability space $(\Omega,P_{\mu,\phi})$, and $(\widehat{X},\widehat{Y})$ has the same law as $((X,Y);\Pi^{\phi}_{\phi\mu}).(\widehat{X},\widehat{Y})$ serves as the spine or the immortal particle, which is ergodic. Let D_J be the set of jump points of $(\widehat{X},\widehat{Y})$. D_J is countable.
- b) Conditioned on $s \in D_J$, a measure-valued process $\{\chi_t^s, t \geq s\}$ started at $m_s \delta_{(\widehat{X}_s, I)}(I \in S)$ is immigrated at space position \widehat{X}_s and the new immigrated particles choose their types independently according to the distribution $\{p_l^{(i)}(x), I \in S\}$. We suppose $\{m_s; s \in D_J\}$ is also defined on $(\Omega, P_{\mu, \phi})$ such that, given $s \in D_J$ and $(\widehat{X}_s, \widehat{Y}_s)$, the distribution of m_s is $\widetilde{n}(\widehat{X}_s, \widehat{Y}_s; dr)$.
- c) Once the particles are in the system, they begin to move and branch according to the $\{(X, Y), \widehat{\psi}\}$ -superprocess independently.

Recall that $\{\chi_t^s,\ t\geq s\}$ denote the measure-valued process generated by the mass immigrated at time s and the position $(\widehat{X}_s,\widehat{Y}_s)$.

Conditional on $\{(\widehat{X}_t,\widehat{Y}_t)_{t\geq 0}; m_s, s\in D_J\}, \{\chi_t^s, t\geq s\}$ for different $s\in D_J$ are independent $((X,Y),\widehat{\psi})$ -superprocesses. Set

$$\widehat{\chi}_t = \sum_{s \in (0,t] \cap D_J} \chi_t^s. \tag{21}$$

Remark The nonlocal immigration process appears to be a new feature not seen before in previous spine decompositions and is a consequence of non-local branching. Simultaneously to our work, we learnt that a similar phenomenon has been observed by Kyprianou and Palauy for super Markov chain (prepint 2016).

Recall that $\{\chi_t^s,\ t\geq s\}$ denote the measure-valued process generated by the mass immigrated at time s and the position $(\widehat{X}_s,\widehat{Y}_s)$.

Conditional on $\{(\widehat{X}_t, \widehat{Y}_t)_{t\geq 0}; m_s, s \in D_J\}, \{\chi_t^s, t \geq s\}$ for different $s \in D_J$ are independent $((X, Y), \widehat{\psi})$ -superprocesses. Set

$$\widehat{\chi}_t = \sum_{s \in (0,t] \cap D_J} \chi_t^s. \tag{21}$$

Remark The nonlocal immigration process appears to be a new feature not seen before in previous spine decompositions and is a consequence of non-local branching. Simultaneously to our work, we learnt that a similar phenomenon has been observed by Kyprianou and Palauy for super Markov chain (prepint 2016).

Recall that $\{\chi_t^s,\ t\geq s\}$ denote the measure-valued process generated by the mass immigrated at time s and the position $(\widehat{X}_s,\widehat{Y}_s)$.

Conditional on $\{(\widehat{X}_t, \widehat{Y}_t)_{t\geq 0}; m_s, s \in D_J\}, \{\chi_t^s, t \geq s\}$ for different $s \in D_J$ are independent $((X, Y), \widehat{\psi})$ -superprocesses. Set

$$\widehat{\chi}_t = \sum_{\mathbf{s} \in (0, t] \cap D_J} \chi_t^{\mathbf{s}}.$$
 (21)

Remark The nonlocal immigration process appears to be a new feature not seen before in previous spine decompositions and is a consequence of non-local branching. Simultaneously to our work, we learnt that a similar phenomenon has been observed by Kyprianou and Palauy for super Markov chain (prepint 2016).

References

- [1]. Aidekon, E. and Shi, Z. (2010): Weak convergence for the minimal position in a branching random walk: a simple proof, *Periodica Mathematica Hungarica*, **61**, 43-54.
- [2]. Aidekon, E. and Shi, Z. (2014): The Seneta-Heyde scaling for the branching random walk, *Ann. Probab.*, bf 42, 959-993.
- [3]. Biggins, J. D. and Kyprianou, A. E. (2004): *Measure change in multitype branching*, Adv. in Appl. Probab., **36**, 544-581.
- [4]. Dawson, D. A., Gorostiza, L. G. and Li, Z. (2002): Nonlocal branching superprocesses and some related models, *Acta Appl. Math.*, **74**, 93-112.
- [5]. Gantert, N., Hu, Y. and Shi, Z. (2011): Asymptotics for the survival probability in a killed branching random walk, *Annales de l'Institut Henri Poincare*, **47**, 111-129.

References

- [6]. Faraud, G., Hu, Y. and Shi, Z. (2012): Almost sure convergence for stochastically biased random walks on trees, *Probability Theory and Related Fields*, **154**, 621-660.
- [7]. Hu, Y. and Shi, Z. (2009): Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees, *Ann. Probab.*, **37**, 742-781.
- [8]. Kurtz, T. G., Lyons,R., Pemantle, R. and Peres, Y. (1997): *A conceptual proof of the Kesten-Sigum theorem for multitype branching processes*. In *Classical and Modern Branching processes* (K. B. Athreya and P. Jagers, eds), **84**, 181-186, Springer-Verlag, New York.
- [9]. Kyprianou, A. E. and Palau, S.(2016): Extinction properties of multi-type continuous-state branching processes, preprint.

References

- [10]. Lyons, R. (1997): A simple path to Biggins' martingale convergence for branching random walk, In Classical and modern branching processes, 217-221. IMA Vol. Math. Appl., 84, Springer, New York,
- [11]. Lyons, R., Pemantle, R. and Peres, Y. (1995): Conceptual proofs of L log L criteria for mean behavior of branching processes, Ann. Probab., **23**, 1125-1138.
- [12]. Liu, R., Ren, Y.-X. and Song R. (2009): *L* log *L* criterion for a class of super-diffusions, *J. Appl. Probab.*, **46**, 479-496.
- [13]. Liu, R., Ren, Y.-X. and Song R. (2011): *L* log *L* criterion for supercritical branching Hunt processes *J. Theor. Probab.*, **24**, 170–193.
- [14]. Chen Z.-Q. Ren, Y.-X. and Yang, T. (2016+): Law of large numbers for branching symmetric Hunt processes with measure-valued branching rates. To appear in *J. Theor. Probab.* DOI:10.1007/s10959-016-0671-y